WorldWideScience

Sample records for degree cell size

  1. Cell-Size Control

    Science.gov (United States)

    Amodeo, Amanda A.; Skotheim, Jan M.

    2015-01-01

    Cells of a given type maintain a characteristic cell size to function efficiently in their ecological or organismal context. They achieve this through the regulation of growth rates or by actively sensing size and coupling this signal to cell division. We focus this review on potential size-sensing mechanisms, including geometric, external cue, and titration mechanisms. Mechanisms that titrate proteins against DNA are of particular interest because they are consistent with the robust correlation of DNA content and cell size. We review the literature, which suggests that titration mechanisms may underlie cell-size sensing in Xenopus embryos, budding yeast, and Escherichia coli, whereas alternative mechanisms may function in fission yeast. PMID:26254313

  2. The degree distribution of fixed act-size collaboration networks

    Indian Academy of Sciences (India)

    Qinggui Zhao; Xiangxing Kong; Zhenting Hou

    2009-11-01

    In this paper, we investigate a special evolving model of collaboration net-works, where the act-size is fixed. Based on the first-passage probability of Markov chain theory, this paper provides a rigorous proof for the existence of a limiting degree distribution of this model and proves that the degree distribution obeys the power-law form with the exponent adjustable between 2 and 3.

  3. Correlations Between Degree of Petal Fusion, Leaf Size and Fruit Size: A Case in Syzygium (Myrtaceae

    Directory of Open Access Journals (Sweden)

    PUDJI WIDODO

    2009-07-01

    Full Text Available Syzygium is one of large genera of the flowering plants. In order to simplify the identification, a classification is required, e.g. based on degree of petal fusion, leaf size and fruit size. Due to variations of vegetative and generative characters, a correlation analysis was carried out. The aim of this research is to know the correlation between degree of petal fusion, leaf length and fruit diameter. The result of this research showed that there is positive correlation between those three variables. The increase of leaf size will increase fruit size and petal lobe depth.

  4. Control of transcription by cell size.

    Directory of Open Access Journals (Sweden)

    Chia-Yung Wu

    Full Text Available Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.

  5. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  6. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  7. Random walks and cell size.

    Science.gov (United States)

    Agutter, P S; Wheatley, D N

    2000-11-01

    For many years, it has been believed that diffusion is the principle motive force for distributing molecules within the cell. Yet, our current information about the cell makes this improbable. Furthermore, the argument that limitations responsible for the relative constancy of cell size--which seldom varies by more than a factor of 2, whereas organisms can vary in mass by up to 10(24)--are based on the limits of diffusion is questionable. This essay seeks to develop an alternative explanation based on transport of molecules along structural elements in the cytoplasm and nucleus. This mechanism can better account for cell size constancy, in light of modern biological knowledge of the complex microstructure of the cell, than simple diffusion.

  8. Prime Factors of π-Partial Character Degrees and Conjugacy Class Sizes of π-Elements

    Institute of Scientific and Technical Information of China (English)

    Antonio Beltrán; María José Felipe

    2005-01-01

    Let G be a finite solvable group. We prove that any prime dividing any irreducible π-partial character degree of G divides the size of some conjugacy class of π-elements of G. Under certain hypothesis, we show that if two distinct primes r and s both divide some irreducible π-partial character degree, then there exists a conjugacy class of π-elements whose size is divisible by rs.

  9. On being the right (cell) size

    Science.gov (United States)

    Ginzberg, Miriam B.; Kafri, Ran; Kirschner, Marc

    2015-01-01

    Different animal cell types have distinctive and characteristic sizes. How a particular cell size is specified by differentiation programs and physiology remains one of the fundamental unknowns in cell biology. In this review we explore the evidence that individual cells autonomously sense and specify their own size. We discuss possible mechanisms by which size sensing and size specification may take place. Finally, we explore the physiological implications of size control. Why is it important that particular cell types maintain a particular size? We develop these questions by examination of current literature and pose the questions that we anticipate will guide this field in the upcoming years. PMID:25977557

  10. Intensity and degree of segregation in bimodal and multimodal grain size distributions

    Science.gov (United States)

    Katra, Itzhak; Yizhaq, Hezi

    2017-08-01

    The commonly used grain size analysis technique which applies moments (sorting, skewness and kurtosis) is less useful in the case of sediments with bimodal size distributions. Herein we suggest a new simple method for analyzing the degree of grain size segregation in sand-sized sediment that has clear bimodal size distributions. Two main features are used to characterize the bimodal distribution: grain diameter segregation, which is the normalized difference between coarse and fine grain diameters, and the frequency segregation which is the normalized difference in frequencies between two modes. The new defined indices can be calculated from frequency plot curves and can be graphically represented on a two dimensional coordinate system showing the dynamical aspects of the size distribution. The results enable comparison between granular samples from different locations and/or times to shed new light on the dynamic processes involved in grain size segregation of sediments. We demonstrate here the use of this method to analyze bimodal distributions of aeolian granular samples mostly from aeolian megaripples. Six different aeolian cases were analyzed to highlight the method's applicability, which is relevant to wide research themes in the Earth and environmental sciences, and can furthermore be easily adapted to analyze polymodal grain size distributions.

  11. Counting independent sets of a fixed size in graphs with a given minimum degree

    CERN Document Server

    Engbers, John

    2012-01-01

    Galvin showed that for all fixed $\\delta$ and sufficiently large $n$, the $n$-vertex graph with minimum degree $\\delta$ that admits the most independent sets is the complete bipartite graph $K_{\\delta,n-\\delta}$. He conjectured that except perhaps for some small values of $t$, the same graph yields the maximum count of independent sets of size $t$ for each possible $t$. Evidence for this conjecture was recently provided by Alexander, Cutler, and Mink, who showed that for all triples $(n,\\delta, t)$ with $t\\geq 3$, no $n$-vertex {\\em bipartite} graph with minimum degree $\\delta$ admits more independent sets of size $t$ than $K_{\\delta,n-\\delta}$. Here we make further progress. We show that for all triples $(n,\\delta,t)$ with $\\delta \\leq 3$ and $t\\geq 3$, no $n$-vertex graph with minimum degree $\\delta$ admits more independent sets of size $t$ than $K_{\\delta,n-\\delta}$, and we obtain the same conclusion for $\\delta > 3$ and $t \\geq 2\\delta +1$. Our proofs lead us naturally to the study of an interesting famil...

  12. Relation between weight size and degree of over-fitting in neural network regression.

    Science.gov (United States)

    Hagiwara, Katsuyuki; Fukumizu, Kenji

    2008-01-01

    This paper investigates the relation between over-fitting and weight size in neural network regression. The over-fitting of a network to Gaussian noise is discussed. Using re-parametrization, a network function is represented as a bounded function g multiplied by a coefficient c. This is considered to bound the squared sum of the outputs of g at given inputs away from a positive constant delta(n), which restricts the weight size of a network and enables the probabilistic upper bound of the degree of over-fitting to be derived. This reveals that the order of the probabilistic upper bound can change depending on delta(n). By applying the bound to analyze the over-fitting behavior of one Gaussian unit, it is shown that the probability of obtaining an extremely small value for the width parameter in training is close to one when the sample size is large.

  13. Cell size, genome size and the dominance of Angiosperms

    Science.gov (United States)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic

  14. Nanomaterial cytotoxicity is composition, size, and cell type dependent.

    Science.gov (United States)

    Sohaebuddin, Syed K; Thevenot, Paul T; Baker, David; Eaton, John W; Tang, Liping

    2010-08-21

    Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs]) with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 microm) to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT) bronchiolar epithelial cells. Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the target cell type are critical determinants of

  15. Nanomaterial cytotoxicity is composition, size, and cell type dependent

    Directory of Open Access Journals (Sweden)

    Sohaebuddin Syed K

    2010-08-01

    Full Text Available Abstract Background Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs] with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 μm to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT bronchiolar epithelial cells. Results Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Conclusions Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the

  16. Mathematical model of a cell size checkpoint.

    Directory of Open Access Journals (Sweden)

    Marco Vilela

    Full Text Available How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed.

  17. Degree Distribution, Rank-size Distribution, and Leadership Persistence in Mediation-Driven Attachment Networks

    CERN Document Server

    Hassan, Md Kamrul; Haque, Syed Arefinul

    2016-01-01

    We investigate the growth of a class of networks in which a new node first picks a mediator at random and connects with $m$ randomly chosen neighbors of the mediator at each time step. We show that degree distribution in such a mediation-driven attachment (MDA) network exhibits power-law $P(k)\\sim k^{-\\gamma(m)}$ with a spectrum of exponents depending on $m$. To appreciate the contrast between MDA and Barab\\'{a}si-Albert (BA) networks, we then discuss their rank-size distribution. To quantify how long a leader, the node with the maximum degree, persists in its leadership as the network evolves, we investigate the leadership persistence probability $F(\\tau)$ i.e. the probability that a leader retains its leadership up to time $\\tau$. We find that it exhibits a power-law $F(\\tau)\\sim \\tau^{-\\theta(m)}$ with persistence exponent $\\theta(m) \\approx 1.51 \\ \\forall \\ m$ in the MDA networks and $\\theta(m) \\rightarrow 1.53$ exponentially with $m$ in the BA networks.

  18. Degree distribution, rank-size distribution, and leadership persistence in mediation-driven attachment networks

    Science.gov (United States)

    Hassan, Md. Kamrul; Islam, Liana; Haque, Syed Arefinul

    2017-03-01

    We investigate the growth of a class of networks in which a new node first picks a mediator at random and connects with m randomly chosen neighbors of the mediator at each time step. We show that the degree distribution in such a mediation-driven attachment (MDA) network exhibits power-law P(k) ∼k - γ(m) with a spectrum of exponents depending on m. To appreciate the contrast between MDA and Barabási-Albert (BA) networks, we then discuss their rank-size distribution. To quantify how long a leader, the node with the maximum degree, persists in its leadership as the network evolves, we investigate the leadership persistence probability F(τ) i.e. the probability that a leader retains its leadership up to time τ. We find that it exhibits a power-law F(τ) ∼τ - θ(m) with persistence exponent θ(m) ≈ 1.51 ∀ m in MDA networks and θ(m) → 1.53 exponentially with m in BA networks.

  19. On size and growth of cells

    CERN Document Server

    Boudaoud, A

    2002-01-01

    Understanding how growth induces form is a longstanding biological question. Many studies concentrated on the shapes of plant cells, fungi or bacteria. Some others have shown the importance of the mechanical properties of bacterial walls and plant tissues in pattern formation. Here I sketch a simple physical picture of cell growth. The study is focussed on isolated cells that have walls. They are modeled as thin elastic shells containing a liquid, which pressure drives the growth as generally admitted for bacteria or plant cells. Requiring mechanical equilibrium leads to estimations of typical cell sizes, in quantitative agreement with compiled data including bacteria, cochlear outer hair, fungi, yeast, root hair and giant alga cells.

  20. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size

    Science.gov (United States)

    R. Jones, Angharad; Forero-Vargas, Manuel; Withers, Simon P.; Smith, Richard S.; Traas, Jan; Dewitte, Walter; Murray, James A. H.

    2017-01-01

    Mean cell size at division is generally constant for specific conditions and cell types, but the mechanisms coupling cell growth and cell cycle control with cell size regulation are poorly understood in intact tissues. Here we show that the continuously dividing fields of cells within the shoot apical meristem of Arabidopsis show dynamic regulation of mean cell size dependent on developmental stage, genotype and environmental signals. We show cell size at division and cell cycle length is effectively predicted using a two-stage cell cycle model linking cell growth and two sequential cyclin dependent kinase (CDK) activities, and experimental results concur in showing that progression through both G1/S and G2/M is size dependent. This work shows that cell-autonomous co-ordination of cell growth and cell division previously observed in unicellular organisms also exists in intact plant tissues, and that cell size may be an emergent rather than directly determined property of cells. PMID:28447614

  1. Nucleolar function and size in cancer cells.

    OpenAIRE

    Derenzini, M; Trerè, D; Pession, A; Montanaro, L; Sirri, V.; Ochs, R. L.

    1998-01-01

    We have have studied the relationship between nucleolar function and size and cell doubling time in cancer cells. Seven human cancer cell lines characterized by different proliferation rates were used. Nucleolar functional activity was evaluated by measuring RNA polymerase I activity and expression of RNA polymerase I upstream binding factor (UBF), DNA topoisomerase I, and fibrillarin, three proteins involved in synthesis and processing of rRNA. Transcriptional activity of RNA polymerase I wa...

  2. Size of Undergraduate Physics and Astronomy Programs: Data from the AIP Enrollments and Degrees and Academic Workforce Surveys. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Tyler, John; Nicholson, Starr; Ivie, Rachel

    2017-01-01

    This report provides data on the size of degree-granting physics and astronomy departments by examining the number of bachelor's degrees awarded and the number of full-time equivalent (FTE) faculty members employed. The benchmarking data in this report is intended to allow physics and astronomy departments to see how they fit in the national…

  3. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography

    OpenAIRE

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S.; Robert J Linhardt

    2012-01-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermedia...

  4. Cell size control - a mechanism for maintaining fitness and function.

    Science.gov (United States)

    Miettinen, Teemu P; Caldez, Matias J; Kaldis, Philipp; Björklund, Mikael

    2017-09-01

    The maintenance of cell size homeostasis has been studied for years in different cellular systems. With the focus on 'what regulates cell size', the question 'why cell size needs to be maintained' has been largely overlooked. Recent evidence indicates that animal cells exhibit nonlinear cell size dependent growth rates and mitochondrial metabolism, which are maximal in intermediate sized cells within each cell population. Increases in intracellular distances and changes in the relative cell surface area impose biophysical limitations on cells, which can explain why growth and metabolic rates are maximal in a specific cell size range. Consistently, aberrant increases in cell size, for example through polyploidy, are typically disadvantageous to cellular metabolism, fitness and functionality. Accordingly, cellular hypertrophy can potentially predispose to or worsen metabolic diseases. We propose that cell size control may have emerged as a guardian of cellular fitness and metabolic activity. © 2017 WILEY Periodicals, Inc.

  5. Measuring bacterial cells size with AFM.

    Science.gov (United States)

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described.

  6. Degree of supersaturation: An effective tool to control the luminescence efficiency and size distribution in CdTe quantum dots

    Science.gov (United States)

    Kumar, Indrajit; Priyam, Amiya; Choubey, Ravi Kant

    2013-06-01

    Supersaturation controlled synthesis of thioglycollic acid (TGA) capped CdTe quantum dots in aqueous medium has been carried out. With a four-fold increase in the degree of supersaturation, the photoluminescence quantum efficiency of the nanoparticles was enhanced more than five times to a remarkably high value of 46%. This was accompanied by concomitant narrowing of the size distribution of the QDs. The simplified approach obviates the need for post-preparative treatments to improve the particle characteristics.

  7. Zero degree contour cutting below 100 μm feature size with femtosecond laser

    Science.gov (United States)

    Stolberg, Klaus; Friedel, Susanna

    2016-03-01

    By the use of a 16 W femtosecond laser we demonstrate steep wall angles and small feature spacings for non-thermal melt-free laser drilling and contour cutting of 100 to 500 μm thick metals like Cu-alloy, stainless steel, titanium and tantalum as well as for ceramics and polymer (polycarbonate). Especially processing of thin materials is a challenge, because heat accumulation in thermal processing usually causes mechanical distortion or edge melting as well as material. The combination of beam deflection in trepanning optics and sample motion allowed us to work in a special "laser milling mode" with rotating beam. Zero degree taper angle as well as positive or negative tapers can be achieved at micrometer scale.

  8. From grid cells to place cells with realistic field sizes.

    Science.gov (United States)

    Neher, Torsten; Azizi, Amir Hossein; Cheng, Sen

    2017-01-01

    While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus mostly have single spatial firing fields. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell firing into robust place cell firing. However, these models generate place fields that are consistently too small compared to those recorded in experiments. Here, we argue that it is implausible that grid cell activity alone can be transformed into place cells with robust place fields of realistic size in a feedforward network. We propose two solutions to this problem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. This simple model reproduces many place cell characteristics as well as results from lesion studies. Secondly, the recurrent connections between place cells in the CA3 network generate robust and realistic place fields. Both mechanisms could work in parallel in the hippocampal formation and this redundancy might account for the robustness of place cell responses to a range of disruptions of the hippocampal circuitry.

  9. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography.

    Science.gov (United States)

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-10-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermediates in a bioengineered heparin process that have different levels of sulfation. A size exclusion chromatography method was established that eliminates this charge density effect and allows the determination of relative molecular mass using a single calibration curve with heparin oligosaccharides calibrants. This is accomplished by overcoming the electrostatic interaction between the glycosaminoglycans and size exclusion chromatography stationary phase using high ionic strength mobile phase.

  10. Sample Size Determination: A Comparison of Attribute, Continuous Variable, and Cell Size Methods.

    Science.gov (United States)

    Clark, Philip M.

    1984-01-01

    Describes three methods of sample size determination, each having its use in investigation of social science problems: Attribute method; Continuous Variable method; Galtung's Cell Size method. Statistical generalization, benefits of cell size method (ease of use, trivariate analysis and trichotyomized variables), and choice of method are…

  11. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    Science.gov (United States)

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case.

  12. In vitro digestibility and glycemic response of potato starch is related to granule size and degree of gelatinization.

    Science.gov (United States)

    Parada, Javier; Aguilera, José M

    2009-01-01

    Starch granule microstructure affects the digestion of starch and its nutritional impact; however, the exact relationship between both factors is not clear. This study reports quantitative relationships between granule size (length and polygonal area), degree of gelatinization (DG), in vitro digestibility (by enzymatic methods), and glycemic response of potato starch granules gelatinized to various extents by heating at several constant temperatures in the range of 55 to 65 degrees C. DG measured by differential scanning calorimetry was closely related with heating temperature (R(2)= 0.997), size parameters of granules (measured by image analysis), in vitro digestion, and in vivo glycemic response (R(2) of adjusted models > 0.9); shape parameters of granules (measured by image analysis) were not related with DG. Results demonstrate that DG of starch strongly affects its digestibility in vitro, and may influence the postpandrial glycemic response. Future studies should be performed to investigate the effect of potato starch gelatinization on the nutritional impact at other temperatures and in more complex matrices.

  13. Cell Size Breathing and Possibilities to Introduce Cell Sleep Mode

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto

    2010-01-01

    mode. The energy consumption and network performance of the resulting network are used to quantify the potential of this feature. The investigation is carried out on a tilt optimized network. Since putting cells into sleep mode results in a non-optimum antenna tilt configuration, this paper also...... investigates the possible gains of re-optimizing antenna tilting. The results show that by allowing sleep mode, over a restricted period of 12 hours, an energy saving of 33% is possible. While this energy saving comes at no expense of the overall network performance, the gain in average user data rate is noted...... regular upgrades in the infrastructure. While network equipment is in itself becoming more efficient, these upgrades still increase the overall energy consumption of the networks. This paper investigates the energy saving potential of exploiting cell size breathing by putting low loaded cells into sleep...

  14. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.

  15. Physics of sinking and selection of plankton cell size

    Energy Technology Data Exchange (ETDEWEB)

    Sciascia, R., E-mail: r.sciascia@isac.cnr.it [Institute of Atmospheric Sciences and Climate, CNR, Corso Fiume, 4, 10133 Torino (Italy); Doctorate Program in Fluid Dynamics, Politecnico di Torino (Italy); De Monte, S. [CNRS, UMR 7625 “Ecologie et Evolution”, Paris, F-75005 (France); Université Pierre et Marie Curie-Paris 6, UMR 7625 “Ecologie et Evolution”, Paris, F-75005 (France); Institut de Biologie de l' Ecole Normale Supérieure, UMR 7625 “Ecologie et Evolution”, Paris, F-75005 (France); Provenzale, A. [Institute of Atmospheric Sciences and Climate, CNR, Corso Fiume, 4, 10133 Torino (Italy)

    2013-02-04

    Gravitational sinking in the water column is known to affect size composition of planktonic communities. One important driver toward the reduction of plankton size is the fact that larger cells tend to sink faster below the euphotic layer. In this work, we discuss the role of gravitational sinking in driving cell size selection, showing that the outcome of phytoplankton competition is determined by the dependence of sinking velocity on cell size, shape, and on the temporal variability associated with turbulence. This opens a question on whether regional modulations of the turbulence intensity could affect size distribution of planktonic communities.

  16. The size of the nucleus increases as yeast cells grow.

    Science.gov (United States)

    Jorgensen, Paul; Edgington, Nicholas P; Schneider, Brandt L; Rupes, Ivan; Tyers, Mike; Futcher, Bruce

    2007-09-01

    It is not known how the volume of the cell nucleus is set, nor how the ratio of nuclear volume to cell volume (N/C) is determined. Here, we have measured the size of the nucleus in growing cells of the budding yeast Saccharomyces cerevisiae. Analysis of mutant yeast strains spanning a range of cell sizes revealed that the ratio of average nuclear volume to average cell volume was quite consistent, with nuclear volume being approximately 7% that of cell volume. At the single cell level, nuclear and cell size were strongly correlated in growing wild-type cells, as determined by three different microscopic approaches. Even in G1-phase, nuclear volume grew, although it did not grow quite as fast as overall cell volume. DNA content did not appear to have any immediate, direct influence on nuclear size, in that nuclear size did not increase sharply during S-phase. The maintenance of nuclear size did not require continuous growth or ribosome biogenesis, as starvation and rapamycin treatment had little immediate impact on nuclear size. Blocking the nuclear export of new ribosomal subunits, among other proteins and RNAs, with leptomycin B also had no obvious effect on nuclear size. Nuclear expansion must now be factored into conceptual and mathematical models of budding yeast growth and division. These results raise questions as to the unknown force(s) that expand the nucleus as yeast cells grow.

  17. Probing Mammalian Cell Size Homeostasis by Channel-Assisted Cell Reshaping.

    Science.gov (United States)

    Varsano, Giulia; Wang, Yuedi; Wu, Min

    2017-07-11

    Cell size homeostasis can be achieved by size checkpoints that couple cell size to cell-cycle progression or by alternative mechanisms such as constant extension. In mammalian cells, the existence of strict size checkpoints remains controversial due to the technical limitations in determining cell size directly and accurately. We developed a microfabricated channel system that linearizes mammalian cell growth and facilitates cell size measurements. By tracking cell length, while directly visualizing cell-cycle progression in rat basophilic leukemia cells and RAW 264.7 macrophages, we examined the mechanisms of size homeostasis and the existence of a size checkpoint at the G1/S transition. Our analysis revealed a two-tier size homeostasis mechanism where a G1 "sizer" or "adder" could operate, depending on the birth size of the cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Effect of hypothermia (20-25 degrees C) on mitosis in PtK1 cells.

    Science.gov (United States)

    Rieder, C L

    1981-06-01

    PtK1 cells enter prophase and complete mitosis at 24-25 degrees C but are inhibited from entering prophase at 20-21 degrees C. Cells which have progressed up to midprophase at 24-37 degrees C return to interphase when cooled to 20-21 degrees C, but those in late prophase complete a normal, although prolonged mitosis. If prophase cells which have reverted to interphase at 20-21 degrees C are incubated at 24-37 degrees C they reenter prophase and complete mitosis. This temperature-induced prophase-interphase-prophase transition can be repeated several times on the same cell. At 24-25 degrees C the process of spindle formation (i.e. prometaphase to the initiation of anaphase) encompasses approximately 75% of the total mitotic interval, with a duration of 8-12 h, compared to about 50% of the mitotic interval and a duration of 0.5 to 1.0 h at 37 degrees C.

  19. Effects of cell size on compressive properties of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-qing; WANG Zhi-hua; MA Hong-wei; ZHAO Long-mao; YANG Gui-tong

    2006-01-01

    The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.

  20. Epidermal Patterning Genes Impose Non-cell Autonomous Cell Size Determination and have Additional Roles in Root Meristem Size Control

    Institute of Scientific and Technical Information of China (English)

    Christian L?fke; Kai Dünser; Jürgen Kleine-Vehn

    2013-01-01

    The regulation of cellular growth is of vital importance for embryonic and postembryonic patterning. Growth regulation in the epidermis has importance for organ growth rates in roots and shoots, proposing epidermal cells as an interesting model for cellular growth regulation. Here we assessed whether the root epidermis is a suitable model system to address cell size determination. In Arabidopsis thaliana L., root epidermal cells are regularly spaced in neighbouring tricho-(root hair) and atrichoblast (non-hair) cells, showing already distinct cell size regulation in the root meristem. We determined cell sizes in the root meristem and at the onset of cellular elongation, revealing that not only division rates but also cellular shape is distinct in tricho-and atrichoblasts. Intriguingly, epidermal-patterning mutants, failing to define differential vacuolization in neighbouring epidermal cell files, also display non-differential growth. Using these epidermal-patterning mutants, we show that polarized growth behaviour of epidermal tricho-and atrichoblast is interdependent, suggesting non-cell autonomous signals to integrate tissue expansion. Besides the interweaved cell-type-dependent growth mechanism, we reveal an additional role for epidermal patterning genes in root meristem size and organ growth regulation. We conclude that epidermal cells represent a suitable model system to study cell size determination and interdependent tissue growth.

  1. Comparative ultrastructural study of endoplasmic reticulum in colorectal carcinoma cell lines with different degrees of differentiation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng; Jin Dan Song

    2000-01-01

    The endoplasmic reticulum (ER) consists of a complex system of tubules, lamellae, and flattened vesicles, and has a variety of morphologies in different cells. It is believed to play a central role in the biosynthesis of cholesterol, phospholipids, steroids, prostaglandins, membrane and secretory proteins[1]. Cancer cells have different functions and ultrastmcture from their original cells[2-4]. The studies on ER membrane system of cancer cells are of great significance in understanding their malignant behavior. In the present work, the ultrastructural characteristics of ER in human colorectal carcinoma cell lines with different differentiation degrees were investigated.

  2. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  3. The relationship between the prevalance and size of lumbar ossified ligamentum flavum and the presence and degree of facet joint degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ergun, Tarkan, E-mail: tarkanergun@yahoo.com [Baskent University School Medicine, Departments of Radiology, Alanya Teaching and Medical Research Center, 07400 Alanya, Antalya (Turkey); Lakadamyali, Hatice, E-mail: adviyesalman@yahoo.com [Baskent University School Medicine, Departments of Radiology, Alanya Teaching and Medical Research Center, 07400 Alanya, Antalya (Turkey)

    2012-11-15

    Objectives: To investigate whether there is any relationship between the prevalence and the dimension of OLF and the presence and degree of facet joint degeneration. In addition, it revealed the prevalence and distribution of lumbar OLF with regard to age and spinal levels. Methods: The stone protocol abdominal CT images of 114 patients were retrospectively analyzed. Presence of OLF, degenerative changes in the posterior vertebral elements was evaluated on axial CT images and incidence for each finding was determined. Additionally, the degree of facet joint degeneration and size of OLF was evaluated and recorded. All findings were also grouped based on age and lumbar level. Results: OLF has been observed in 40 (35%) individuals at 76 (13%) lumbar levels. OLF has been most frequently encountered at the upper lumbar levels. Its frequency and size showed correlation to increased age. Frequency of OLF correlated with the presence of degenerative changes of in the posterior elements (p < 0.001). There was an association between the OLF size and the presence (p = 0.001) and degree of the degeneration in the posterior elements. There was no lumbar level case where the degree of OLF would lead to enough narrowing to be symptomatic. Conclusions: OLF prevalence and sizes increase parallel to age. Posterior elements' degenerative changes facilitate OLF development. A close relation exists between OLF size and facet joint degeneration. A direct relationship exists between OLF size and the degree of posterior elements degeneration. It is highly probable for lumbar level OLF size to be insufficient to cause any symptoms.

  4. An increase in the degree of olisthesis during axial loading reduces the dural sac size and worsens clinical symptoms in patients with degenerative spondylolisthesis.

    Science.gov (United States)

    Kanno, Haruo; Aizawa, Toshimi; Ozawa, Hiroshi; Koizumi, Yutaka; Morozumi, Naoki; Itoi, Eiji

    2017-09-01

    Previous studies have shown that axial loading during MRI significantly reduces the size of the dural sac compared with conventional MRI in patients with degenerative lumbar disease. In our previous study, axial-loaded MRI showed a significantly larger degree of olisthesis than conventional MRI in patients with degenerative spondylolisthesis (DS). Furthermore, the degree of olisthesis on axial-loaded MRI correlated more strongly with that observed on X-ray in the upright position. However, no study has investigated whether or not the increase in the degree of olisthesis during axial loading correlates with the reduction in the dural sac size and affects the severity of clinical symptoms in patients with DS. To determine whether or not the increase in the degree of olisthesis correlates with the reduction of the dural sac cross-sectional area (DCSA) detected on axial-loaded MRI and worsens the severity of clinical symptoms in patients with DS. Imaging cohort study. A total of 41 consecutive patients with DS were prospectively evaluated in this study. The degree of olisthesis, the DCSA, Pearson's correlation coefficient, and the severity of clinical symptoms. The differences in the degree of olisthesis and the DCSA between conventional and axial-loaded MRI were determined. The Pearson's correlation coefficient of the increase in the degree of olisthesis with the reduction in the DCSA during axial loading was calculated. The reduction in the DCSA and the severity of clinical symptoms in patients exhibiting a ≥ 2-mm increase in the degree of olisthesis were compared with those in the patients exhibiting a increase. The increase in the degree of olisthesis was significantly correlated with the reduction in the DCSA during axial loading (Pearson's correlation coefficient = 0.63; pincrease in the degree of olisthesis (26 ± 3 mm(2)) was significantly greater than in those with a increase (13 ± 2 mm(2)) (pincrease in the degree of olisthesis (117 ± 19 m and 6.7 ± 0

  5. Characterization of aggregate size in Taxus suspension cell culture.

    Science.gov (United States)

    Kolewe, Martin E; Henson, Michael A; Roberts, Susan C

    2010-05-01

    Plant cells grow as aggregates in suspension culture, but little is known about the dynamics of aggregation, and no routine methodology exists to measure aggregate size. In this study, we evaluate several different methods to characterize aggregate size in Taxus suspension cultures, in which aggregate diameters range from 50 to 2,000 microm, including filtration and image analysis, and develop a novel method using a specially equipped Coulter counter system. We demonstrate the suitability of this technology to measure plant cell culture aggregates, and show that it can be reliably used to measure total biomass accumulation compared to standard methods such as dry weight. Furthermore, we demonstrate that all three methods can be used to measure an aggregate size distribution, but that the Coulter counter is more reliable and much faster, and also provides far better resolution. While absolute measurements of aggregate size differ based on the three evaluation techniques, we show that linear correlations are sufficient to account for these differences (R(2) > 0.99). We then demonstrate the utility of the novel Coulter counter methodology by monitoring the dynamics of a batch process and find that the mean aggregate size increases by 55% during the exponential growth phase, but decreases during stationary phase. The results indicate that the Coulter counter method can be routinely used for advanced process characterization, particularly to study the relationship between aggregate size and secondary metabolite production, as well as a source of reliable experimental data for modeling aggregation dynamics in plant cell culture.

  6. Influence of geography and climate on patterns of cell size and body size in the lizard Anolis carolinensis.

    Science.gov (United States)

    Goodman, Rachel M; Echternacht, Arthur C; Hall, Jim C; Deng, Lihan D; Welch, Jessica N

    2013-06-01

    Geographic patterns in body size are often associated with latitude, elevation, or environmental and climatic variables. This study investigated patterns of body size and cell size of the green anole lizard, Anolis carolinensis, and potential associations with geography or climatic variables. Lizards were sampled from 19 populations across the native range, and body size, red blood cell size and size and number of muscle cells were measured. Climatic data from local weather stations and latitude and longitude were entered into model selection with Akaike's information criterion to explain patterns in cell and body sizes. Climatic variables did not drive any major patterns in cell size or body size; rather, latitude and longitude were the best predictors of cell and body size. In general, smaller body and cell sizes in Florida anoles drove geographic patterns in A. carolinensis. Small size in Florida may be attributable to the geological history of the peninsular state or the unique ecological factors in this area, including a recently introduced congener. In contrast to previous studies, we found that A. carolinensis does not follow Bergmann's rule when the influence of Florida is excluded. Rather, the opposite pattern of larger lizards in southern populations is evident in the absence of Florida populations, and mirrors the general pattern in squamates. Muscle cell size was negatively related to latitude and red blood cell size showed no latitudinal trend outside of Florida. Different patterns in the sizes of the 2 cell types confirm the importance of examining multiple cell types when studying geographic variation in cell size.

  7. Effect of cell-size on the energy absorption features of closed-cell aluminium foams

    Science.gov (United States)

    Nammi, S. K.; Edwards, G.; Shirvani, H.

    2016-11-01

    The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.

  8. Evaluation of the degree of mixing of combinations of dry syrup, powder, and fine granule products in consideration of particle size distribution using near infrared spectrometry.

    Science.gov (United States)

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Matsumoto, Mika; Ohtani, Michiteru; Hayano, Shuichi; Fukami, Toshiro; Tomono, Kazuo

    2012-01-01

    We used near infrared (NIR) spectroscopy to evaluate the degree of mixing of blended dry syrup (DS) products whose particle sizes are not specified in the Revised 16th Edition of the Japanese Pharmacopoeia, and also evaluated the degree of mixing when powder products or fine granule products were added to DS products. The data obtained were used to investigate the relationship between the particle size distributions of the products studied and the degree of mixing. We found that the particle size distribution characteristics of the 15 DS products studied can be broadly classified into 5 types. Combinations of frequently prescribed products were selected to represent 4 of the 5 particle size distribution types and were blended with a mortar and pestle. The coefficient of variation (CV) decreased as the percent mass of Asverin® Dry Syrup 2% (Asverin-DS) increased in blends of Periactin® Powder 1% (Periactin) and Asverin-DS, indicating an improved degree of mixing (uniformity). In contrast, in blends of Periactin and Mucodyne® DS 33.3%, mixing a combination at a 1:1 mass ratio 40 times resulted in a CV of 20%. Other mixing frequencies and mass ratios resulted in a CV by 50% to 70%, indicating a very poor degree of mixing (poor uniformity). These results suggest that when combining different DSs, or a DS with a powder or fine granule product, the blending obtained with a mortar and pestle improves as the particle size distributions of the components approach each other and as the ranges of the distributions narrow.

  9. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Science.gov (United States)

    Yi, Ming; Jia, Ya; Liu, Quan; Zhu, Chun-Lian; Yang, Li-Jian

    2007-07-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25Δ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  10. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Institute of Scientific and Technical Information of China (English)

    YI Ming; JIA Ya; LIU Quan; ZHU Chun-Lian; YANG Li-Jian

    2007-01-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  11. Quantification of the degree of cell spreading of human fibroblasts by semi-automated analysis of the cell perimeter.

    Science.gov (United States)

    Brugmans, M; Cassiman, J J; Vanderheydt, L; Oosterlinck, A J; Vlietinck, R; Van den Berghe, H

    1983-01-01

    Cell flattening and spreading on a substratum is of major importance in cellular and developmental biology. To study the mechanisms of cell spreading, quantitative and reproducible measures of the degree of cell spreading must be available. Normal human fibroblasts, spreading on a substratum, were fixed with glutaraldehyde, stained with acridine orange and photographed (X 40) under a fluorescence microscope. The photonegatives (containing 10-30 cells) were scanned with a drum scanner and a complete picture containing 128 gray levels was constructed. Each cell contour was calculated with the use of a local threshold. The image and the superimposed cell contours were displayed on a television screen (16 gray levels) and errors were corrected interactively. With this system the spreading of normal human skin fibroblasts as a function of time could be quantified reproducibly. Compared to surface area or shape, the cell perimeter proved to be a very sensitive parameter of the degree of spreading. By using cell perimeter measurements, differences in the degree of spreading on various substrata could be quantified.

  12. How Cells Can Control Their Size by Pumping Ions

    Directory of Open Access Journals (Sweden)

    Alan R. Kay

    2017-05-01

    Full Text Available The ability of all cells to set and regulate their size is a fundamental aspect of cellular physiology. It has been known for sometime but not widely so, that size stability in animal cells is dependent upon the operation of the sodium pump, through the so-called pump-leak mechanism (Tosteson and Hoffman, 1960. Impermeant molecules in cells establish an unstable osmotic condition, the Donnan effect, which is counteracted by the operation of the sodium pump, creating an asymmetry in the distribution of Na+ and K+ staving off water inundation. In this paper, which is in part a tutorial, I show how to model quantitatively the ion and water fluxes in a cell that determine the cell volume and membrane potential. The movement of water and ions is constrained by both osmotic and charge balance, and is driven by ion and voltage gradients and active ion transport. Transforming these constraints and forces into a set of coupled differential equations allows us to model how the ion distributions, volume and voltage change with time. I introduce an analytical solution to these equations that clarifies the influence of ion conductances, pump rates and water permeability in this multidimensional system. I show that the number of impermeant ions (x and their average charge have a powerful influence on the distribution of ions and voltage in a cell. Moreover, I demonstrate that in a cell where the operation of active ion transport eliminates an osmotic gradient, the size of the cell is directly proportional to x. In addition, I use graphics to reveal how the physico-chemical constraints and chemical forces interact with one another in apportioning ions inside the cell. The form of model used here is applicable to all membrane systems, including mitochondria and bacteria, and I show how pumps other than the sodium pump can be used to stabilize cells. Cell biologists may think of electrophysiology as the exclusive domain of neuroscience, however the electrical

  13. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology.

    Science.gov (United States)

    Wensveen, Felix M; Klarenbeek, Paul L; van Gisbergen, Klaas P J M; Pascutti, Maria F; Derks, Ingrid A M; van Schaik, Barbera D C; Ten Brinke, Anja; de Vries, Niek; Cekinovic, Durdica; Jonjic, Stipan; van Lier, René A W; Eldering, Eric

    2013-02-01

    Memory T cells form a highly specific defense layer against reinfection with previously encountered pathogens. In addition, memory T cells provide protection against pathogens that are similar, but not identical to the original infectious agent. This is because each T cell response harbors multiple clones with slightly different affinities, thereby creating T cell memory with a certain degree of diversity. Currently, the mechanisms that control size, diversity, and cross-reactivity of the memory T cell pool are incompletely defined. Previously, we established a role for apoptosis, mediated by the BH3-only protein Noxa, in controlling diversity of the effector T cell population. This function might positively or negatively impact T cell memory in terms of function, pool size, and cross-reactivity during recall responses. Therefore, we investigated the role of Noxa in T cell memory during acute and chronic infections. Upon influenza infection, Noxa(-/-) mice generate a memory compartment of increased size and clonal diversity. Reinfection resulted in an increased recall response, whereas cross-reactive responses were impaired. Chronic infection of Noxa(-/-) mice with mouse CMV resulted in enhanced memory cell inflation, but no obvious pathology. In contrast, in a model of continuous, high-level T cell activation, reduced apoptosis of activated T cells rapidly led to severe organ pathology and premature death in Noxa-deficient mice. These results establish Noxa as an important regulator of the number of memory cells formed during infection. Chronic immune activation in the absence of Noxa leads to excessive accumulation of primed cells, which may result in severe pathology.

  14. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  15. Influence of texture feature size on spherical silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    HAYASHI Shota; MINEMOTO Takashi; TAKAKURA Hideyuki; HAMAKAWA Yoshihiro

    2006-01-01

    The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring. Two kinds of texture feature sizes (1 and 5μm pyramids) were prepared by changing stirring speed. After fabrication through our baseline processes, these cells were evaluated by solar cell performance and external quantum efficiency. The cell with 1 and 5μm pyramids shows the short circuit current density ( Jsc ) value of 31.9 and 33.2 mA·cm-2 , which is 9% and 13% relative increase compared to the cell without texturing. Furthermore, the cell with 5 μm pyramids has a higher open-circuit voltage (0.589 V) than the cell with 1 μm pyramids (0.577 V). As a result, the conversion efficiency was improved from 11.4% for the cell without texturing to 12.1% for the cell with 5 μm pyramids.

  16. Vesicle Size Regulates Nanotube Formation in the Cell.

    Science.gov (United States)

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-04-07

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.

  17. Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size.

    Science.gov (United States)

    Vadia, Stephen; Tse, Jessica L; Lucena, Rafael; Yang, Zhizhou; Kellogg, Douglas R; Wang, Jue D; Levin, Petra Anne

    2017-06-19

    Nutrients-and by extension biosynthetic capacity-positively impact cell size in organisms throughout the tree of life. In bacteria, cell size is reduced 3-fold in response to nutrient starvation or accumulation of the alarmone ppGpp, a global inhibitor of biosynthesis. However, whether biosynthetic capacity as a whole determines cell size or whether particular anabolic pathways are more important than others remains an open question. Here we identify fatty acid synthesis as the primary biosynthetic determinant of Escherichia coli size and present evidence supporting a similar role for fatty acids as a positive determinant of size in the Gram-positive bacterium Bacillus subtilis and the single-celled eukaryote Saccharomyces cerevisiae. Altering fatty acid synthesis recapitulated the impact of altering nutrients on cell size and morphology, whereas defects in other biosynthetic pathways had either a negligible or fatty-acid-dependent effect on size. Together, our findings support a novel "outside-in" model in which fatty acid availability sets cell envelope capacity, which in turn dictates cell size. In the absence of ppGpp, limiting fatty acid synthesis leads to cell lysis, supporting a role for ppGpp as a linchpin linking expansion of cytoplasmic volume to the growth of the cell envelope to preserve cellular integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  19. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide.

    Science.gov (United States)

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui

    2016-04-01

    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides.

  20. AlGaInP/GaAs Tandem Solar Cells for Power Conversion at 400 degrees C and High Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharps, Paul [SolAero Technologies Corp.; McPheeters, Claiborne [SolAero Technologies Corp.; Lee, Minjoo L. [University of Illinois at Urbana-Champaign

    2017-09-06

    We demonstrate dual junction (Al)GaInP/GaAs solar cells that are designed to operate at 400 degrees C and 1000X concentration in a hybrid photovoltaic-solar thermal concentrator system. The cells have a front metallization and anti-reflection coating that are stable under 400 degrees C operation. We show how the cell performance degrades with increasing aluminum compositions in the top cell. Our best cell is a GaInP/GaAs tandem that demonstrated 15+/-1% efficiency at 400 degrees C over a concentration range of 300-1000 suns, with several pathways to improved performance.

  1. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size.

    Science.gov (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen

    2015-03-05

    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  2. Multifunctional assembly of micrometer-sized colloids for cell sorting.

    Science.gov (United States)

    Nie, Chenyao; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-06-03

    Compared to the extensively studied nanometer-sized colloids, less attention has been paid to the assembly of micrometer-sized colloids with multifunctional characteristics. To address this need, a bottom-up approach is developed for constructing self-assemblies of micrometer-sized magnetic colloids possessing multifunctionality, including magnetic, optical, and biological activities. Biotinylated oligo (p-phenylene vinylene) (OPV) derivatives are designed to mediate the self-assembly of streptavidin-modified magnetic beads. The optical element OPV derivatives provide a fluorescence imaging ability for tracing the assembly process. Target cells can be recognized and assembled by the colloidal assembly with bioactive element antibodies. The colloidal assembly reveals better cell isolation performance by its amplified magnetic response in comparison to monodisperse colloids. The self-assembly of micrometer-sized magnetic colloids through a combination of different functional ingredients to realize multifunction is conceptually simple and easy to achieve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cell size and cancer: a new solution to Peto's paradox?

    Science.gov (United States)

    Maciak, Sebastian; Michalak, Pawel

    2015-01-01

    Cancer, one of the leading health concerns for humans, is by no means a human-unique malady. Accumulating evidence shows that cancer kills domestic and wild animals at a similar rate to humans and can even pose a conservation threat to certain species. Assuming that each physiologically active and proliferating cell is at risk of malignant transformation, any evolutionary increase in the number of cells (and thus body mass) will lead to a higher cancer frequency, all else being equal. However, available data fail to support the prediction that bigger animals are affected by cancer more than smaller ones. The unexpected lack of correlation between body size (and life span) and cancer risk across taxa was dubbed Peto's paradox. In this perspective, several plausible explanations of Peto's paradox are presented, with the emphasis on a largely underappreciated relation of cell size to both metabolism and cell division rates across species, which we believe are key factors underlying the paradox. We conclude that larger organisms have bigger and slowly dividing cells with lower energy turnover, all significantly reducing the risk of cancer initiation. Solving Peto's paradox will enhance our understanding the evolution of cancer and may provide new implications for cancer prevention and treatment.

  4. Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 degrees C.

    Science.gov (United States)

    Grose, C; Brunel, P A

    1978-01-01

    Cell lines derived from human malignant melanoma tumors are susceptible to infection with varicella-zoster virus (VZV). Within 5 days after inoculation of vesicular fluid, cytopathic changes appeared in melanoma cell monolayer cultures that were incubated at either 36 or 32 degrees C. The VZV isolates at the two temperatures were serially propagated by passage of trypsin-dispersed infected cells. A plaque assay was developed utilizing melanoma cell monolayers overlaid with nutrient medium containing carboxymethylcellulose. By this assay method, the growth cycle of a VZV isolate propagated at 36 degrees C was studied and compared with that of another VZV isolate grown at 32 degrees C. With equivalent infected-cell inocula at a ratio on one inoculum cell to eight uninfected cells, the yield of cell-free virus at an incubation temperature of 32 degrees C was slightly higher than at 36 degrees C, although the peak occurred 60 h, rather than 36 h, postinfection. It was also found that the titer of low-passage VZV propagated at 36 degrees C was 0.5 to 1 log higher when assayed at 32 degrees C rather than at 36 degrees C.

  5. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  6. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects.

    Science.gov (United States)

    Bružauskaitė, Ieva; Bironaitė, Daiva; Bagdonas, Edvardas; Bernotienė, Eiva

    2016-05-01

    During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.

  7. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Directory of Open Access Journals (Sweden)

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  8. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Science.gov (United States)

    Hanley, Cory; Thurber, Aaron; Hanna, Charles; Punnoose, Alex; Zhang, Jianhui; Wingett, Denise G.

    2009-12-01

    Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  9. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2013-10-23

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).

  10. Size and Carbon Content of Sub-seafloor Microbial Cells

    Science.gov (United States)

    Braun, S.; Morono, Y.; Littmann, S.; Jørgensen, B. B.; Lomstein, B. A.

    2015-12-01

    Into the seafloor, a radical decline in nutrient and energy availability poses strong metabolic demands to any residing life. However, a sedimentary microbial ecosystem seems to maintain itself close to what we understand to be the energetic limit of life. Since a complex sediment matrix is interfering with the analysis of whole cells and sub-cellular compounds such as cell wall and membrane molecules, little is known about the physiological properties of cells in the deep biosphere. Here we focus on the size and carbon content of cells from a 90-m sediment drill core retrieved in October 2013 at Landsort Deep, Baltic Sea, in 437 meters water depth. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via fluorescence microscopy (FM), scanning electron microscopy (SEM), and stimulated emission depletion microscopy (STED). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography after cells had additionally been purified by fluorescence activated cell sorting (FACS). Cell-carbon turnover times were estimated using an amino acid racemization model that is based on the built-in molecular clock of aspartic acid, which due to racemization alternates between the D- and L-isomeric configurations over timescales of thousands of years at low in-situ temperatures (≈4˚C). We find that the majority of microbial cells in the sediment have coccoid or rod-shaped morphology, and that absolute values for cell volume are strongly dependent on the method used, spanning three orders of magnitude from approximately 0.001 to 1 µm3 for both coccoid and rod-shaped cells. From the surface to the deepest sample measured (≈60 mbsf), cell volume decreases by an order of magnitude, and carbon content is in the lower range (factors. Cell-carbon is turned over approximately every 50-600 years, and total carbon oxidation rates decrease from ≈3400

  11. Lin28a regulates germ cell pool size and fertility.

    Science.gov (United States)

    Shinoda, Gen; De Soysa, T Yvanka; Seligson, Marc T; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P; Gregory, Richard I; Moss, Eric G; Daley, George Q

    2013-05-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males, the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild-type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. Copyright © 2013 AlphaMed Press.

  12. MyosinV controls PTEN function and neuronal cell size.

    Science.gov (United States)

    van Diepen, Michiel T; Parsons, Maddy; Downes, C Peter; Leslie, Nicholas R; Hindges, Robert; Eickholt, Britta J

    2009-10-01

    The tumour suppressor PTEN can inhibit cell proliferation and migration as well as control cell growth, in different cell types. PTEN functions predominately as a lipid phosphatase, converting PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), thereby antagonizing PI(3)K (phosphoinositide 3-kinase) and its established downstream effector pathways. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane, which is necessary for its activity towards PtdIns(3,4,5)P(3) (Refs 3, 4, 5). Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and myosinV. FRET (Förster resonance energy transfer) measurements revealed that PTEN interacts directly with myosinV, which is dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of myosinV-transport function in neurons increased cell size, which, in line with known attributes of PTEN-loss, required PI(3)K and mTor. Our data demonstrate a myosin-based transport mechanism that regulates PTEN function, providing new insights into the signalling networks regulating cell growth.

  13. Cell Surface Binding and Internalization of Aβ Modulated by Degree of Aggregation

    Directory of Open Access Journals (Sweden)

    David A. Bateman

    2011-01-01

    Full Text Available The amyloid peptides, Aβ40 and Aβ42, are generated through endoproteolytic cleavage of the amyloid precursor protein. Here we have developed a model to investigate the interaction of living cells with various forms of aggregated Aβ40/42. After incubation at endosomal pH 6, we observed a variety of Aβ conformations after 3 (Aβ3, 24 (Aβ24, and 90 hours (Aβ90. Both Aβ4224 and Aβ4024 were observed to rapidly bind and internalize into differentiated PC12 cells, leading to accumulation in the lysosome. In contrast, Aβ40/4290 were both found to only weakly associate with cells, but were observed as the most aggregated using dynamic light scattering and thioflavin-T. Internalization of Aβ40/4224 was inhibited with treatment of monodansylcadaverine, an endocytosis inhibitor. These studies indicate that the ability of Aβ40/42 to bind and internalize into living cells increases with degree of aggregation until it reaches a maximum beyond which its ability to interact with cells diminishes drastically.

  14. The coordination of ploidy and cell size differs between cell layers in leaves.

    Science.gov (United States)

    Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu

    2016-04-01

    Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity.

  15. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.

    Science.gov (United States)

    Zhao, Yannan; Sun, Xiaoxing; Zhang, Guannan; Trewyn, Brian G; Slowing, Igor I; Lin, Victor S-Y

    2011-02-22

    The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC-MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC-MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging.

  16. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  17. Ragweed subpollen particles of respirable size activate human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Kitti Pazmandi

    Full Text Available Ragweed (Ambrosia artemisiifolia pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(PH oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs. We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+ pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI, an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(PH oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs in the airways and SPPs' NAD(PH oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins.

  18. MANOVA for Nested Designs with Unequal Cell Sizes and Unequal Cell Covariance Matrices

    Directory of Open Access Journals (Sweden)

    Li-Wen Xu

    2014-01-01

    satisfactorily for various cell sizes and parameter configurations and generally outperforms the AHT test in terms of controlling the nominal size. For the heteroscedastic cases, the PB test outperforms the AHT test in terms of power. In addition, the PB test does not lose too much power when the homogeneity assumption is actually valid.

  19. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  20. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Barboni Barbara

    2003-05-01

    Full Text Available Abstract Background The possibility to predict the ability of a germ cell to properly sustain embryo development in vitro or in vivo as early as possible is undoubtedly the main problem of reproductive technologies. To date, only the achievement of nuclear maturation and cumulus expansion is feasible, as all the studies on cytoplasmic maturation are too invasive and have been complicated by the death of the cells analyzed. The authors studied the possibility to test the cytoplasmic quality of pig oocytes by evaluating their ability to produce steroidogenesis enabling factor(s. To this aim, oocytes matured under different culture conditions that allowed to obtain gradable level of cytoplasmic maturation, were used to produce conditioned media (OCM. The secretion of the factor(s in conditioned media was then recorded by evaluating the ability of the spent media to direct granulosa cells (GC steroidogenesis. Methods In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique. Results Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by

  1. Adhesion and proliferation of adipose derived mesenchymal stromal cells on chitosan scaffolds with different degree of deacetylation

    Directory of Open Access Journals (Sweden)

    Rogulska O. Yu.

    2014-03-01

    Full Text Available Aim. Selection of the optimal scaffold for the creation of tissue engineering constructs is a key challenge of biotechnology. In this study we investigated the biocompatibility of human adipose derived mesenchymal stromal cells (MSCs within the three-dimensional matrices based on the chitosan with a different degree of deacetylation. Methods. MSCs were seeded on the chitosan scaffolds by a perfusion method and cultured for 7 days. The morphology, viability, metabolic activity and distribution of the cells within the matrices were analyzed. Results. The level of MSCs adhesion to the surface of the chitosan scaffolds with low degree of deacetylation (67 % was insignificant, the cells were round and formed aggregates. In the chitosan scaffolds with a high degree of deacetylation (82 % the cells attached to the surface of matrices, were able to spread and proliferate. Conclusions. The chitosan scaffolds with a high degree of deacetylation and the human adipose derived MSCs can be used for the creation of bioengineered structures.

  2. Morphology, dendritic field size, somal size, density, and coverage of M and P retinal ganglion cells of dichromatic Cebus monkeys.

    Science.gov (United States)

    Yamada, E S; Silveira, L C; Perry, V H

    1996-01-01

    Male Cebus monkeys are all dichromats, but about two thirds of the females are trichromats. M and P retinal ganglion cells were studied in the male Cebus monkey to investigate the relationship of their morphology to retinal eccentricity. Retinal ganglion cells were retrogradely labeled after optic nerve deposits of biocytin to reveal their entire dendritic tree. Cebus M and P ganglion cell morphology revealed by biocytin retrograde filling is similar to that described for macaque and human M and P ganglion cells obtained by in vitro intracellular injection of HRP and neurobiotin. We measured 264 and 441 M and P ganglion cells, respectively. M ganglion cells have larger dendritic field and cell body size than P ganglion cells at any comparable temporal or nasal eccentricity. Dendritic trees of both M and P ganglion cells are smaller in the nasal than in the temporal region at eccentricities greater than 5 mm and 2 mm for M and P ganglion cells, respectively. The depth of terminal dendrites allows identification of both inner and outer subclasses of M and P ganglion cells. The difference in dendritic tree size between inner and outer cells is small or absent. Comparison between Cebus and Macaca shows that M and P ganglion cells have similar sizes in the central retinal region. The results support the view that M and P pathways are similarly organized in diurnal dichromat and trichromat primates.

  3. Principles of Bacterial Cell-Size Determination Revealed by Cell-Wall Synthesis Perturbations

    Directory of Open Access Journals (Sweden)

    Carolina Tropini

    2014-11-01

    Full Text Available Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cytoskeleton. We quantified the biochemical and biophysical properties of the cell wall across a wide range of cell sizes. We find that, although cell-wall chemical composition is unaltered, MreB dynamics, cell twisting, and cellular mechanics exhibit systematic large-scale changes consistent with altered chirality and a more isotropic cell wall. This multiscale analysis enabled identification of distinct roles for MreB and PBP2, despite having similar morphological effects when depleted. Altogether, our results highlight the robustness of cell-wall synthesis and physical principles dictating cell-size control.

  4. Minimizing cell size dependence in micromagnetics simulations with thermal noise

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, E [Departamento de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain); Lopez-DIaz, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); Torres, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); GarcIa-Cervera, C J [Department of Mathematics. University of California, Santa Barbara, CA 93106 (United States)

    2007-02-21

    Langevin dynamics treats finite temperature effects in a micromagnetics framework by adding a thermal fluctuation field to the effective field. Several works have addressed the dependence of numerical results on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this paper, some former problems dealing with the dependence on the spatial discretization at finite temperature have been revised. We have focused our attention on the stability of the numerical schemes used to integrate the Langevin equation. In particular, a detailed analysis of results was carried out as a function of the time step. It was confirmed that the mentioned dependence can be minimized if an unconditional stable integration method is used to numerically solve the Langevin equation.

  5. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.

    Science.gov (United States)

    Zámborszky, Judit; Hong, Christian I; Csikász Nagy, Attila

    2007-12-01

    Cell cycle and circadian rhythms are conserved from cyanobacteria to humans with robust cyclic features. Recently, molecular links between these two cyclic processes have been discovered. Core clock transcription factors, Bmal1 and Clock (Clk), directly regulate Wee1 kinase, which inhibits entry into the mitosis. We investigate the effect of this connection on the timing of mammalian cell cycle processes with computational modeling tools. We connect a minimal model of circadian rhythms, which consists of transcription-translation feedback loops, with a modified mammalian cell cycle model from Novak and Tyson (2004). As we vary the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal quantized cell cycles when the activity of Wee1 is influenced by clock components. The quantized cell cycles disappear in the absence of coupling or when the strength of this link is reduced. More intriguingly, our simulations indicate that the circadian clock triggers critical size control in the mammalian cell cycle. A periodic brake on the cell cycle progress via Wee1 enforces size control when the MDT is quite different from the circadian period. No size control is observed in the absence of coupling. The issue of size control in the mammalian system is debatable, whereas it is well established in yeast. It is possible that the size control is more readily observed in cell lines that contain circadian rhythms, since not all cell types have a circadian clock. This would be analogous to an ultradian clock intertwined with quantized cell cycles (and possibly cell size control) in yeast. We present the first coupled model between the mammalian cell cycle and circadian rhythms that reveals quantized cell cycles and cell size control influenced by the clock.

  6. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions.

    Science.gov (United States)

    Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; Urrutia, Araxi O; Gutiérrez, Humberto

    2014-01-22

    Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.

  7. Predictors of paravalvular aortic regurgitation following self-expanding Medtronic CoreValve implantation: the role of annulus size, degree of calcification, and balloon size during pre-implantation valvuloplasty and implant depth.

    Science.gov (United States)

    Ali, O F; Schultz, C; Jabbour, A; Rubens, M; Mittal, T; Mohiaddin, R; Davies, S; Di Mario, C; Van der Boon, R; Ahmad, A S; Amrani, M; Moat, N; De Jaegere, P P T; Dalby, M

    2015-01-20

    We sought to investigate the role of balloon size during pre-implantation valvuloplasty in predicting AR and optimal Medtronic CoreValve (MCS) implantation depth. Paravalvular aortic regurgitation (AR) is common following MCS implantation. A number of anatomical and procedural variables have been proposed as determinants of AR including degree of valve calcification, valve undersizing and implantation depth. We conducted a multicenter retrospective analysis of 282 patients who had undergone MCS implantation with prior cardiac CT annular sizing between 2007 and 2011. Native valve minimum (Dmin), maximum (Dmax) and arithmetic mean (Dmean) annulus diameters as well as agatston calcium score were recorded. Nominal and achieved balloon size was also recorded. AR was assessed using contrast angiography at the end of each procedure. Implant depth was measured as the mean distance from the nadir of the non- and left coronary sinuses to the distal valve frame angiographically. 29 mm and 26 mm MCS were implanted in 60% and 39% of patients respectively. The majority of patients (N=165) developed AR <2 following MCS implantation. AR ≥3 was observed in 16% of the study population. High agatston calcium score and Dmean were found to be independent predictors of AR ≥3 in multivariate analysis (P<0.0001). Nominal balloon diameter and the number of balloon inflations did not influence AR. However a small achieved balloon diameter-to-Dmean ratio (≤0.85) showed modest correlation with AR ≥3 (P=0.04). This observation was made irrespective of the degree of valve calcification. A small MCS size-to-Dmean ratio is also associated with AR ≥3 (P=0.001). A mean implantation depth of ≥8+2mm was also associated with AR ≥3. Implantation depth of ≥12 mm was associated with small MCS diameter-to-Dmean ratio and increased 30-day mortality. CT measured aortic annulus diameter and agatston calcium score remain important predictors of significant AR. Other procedural predictors

  8. Aspects of chip and cell size of silicon photomultipliers

    Science.gov (United States)

    Iskra, P.; Dietzinger, Christoph; Eggert, T.; Fraczek, M.; Ganka, T.; Höllt, L.; Knobloch, J.; Miyakawa, N.; Pahlke, A.; Wiest, F.; Fojt, R.

    2012-10-01

    Requirements like device miniaturization, insensitivity to magnetic field and cost aspects in the field of low level light detection will lead to a replacement of the conventional photomultiplier tube by Silicon Photomultiplier (SiPM) for several applications in case the photon detection efficiency will be comparably higher at the same price level. This novel solid-state sensor consists of an array of parallel connected avalanche photodiodes operated in limited Geiger-mode. The triggered cells are recovered by an upstream connected quenching resistor. The main characteristics are gain, noise, photon detection efficiency (PDE), dynamic range and time resolution. To meet the requirements of various potential applications, SiPMs need to be available with several micro pixel sizes and total active areas. For this reason KETEK produces devices with microcell pitches from 15μm up to 100μm and total active sensor areas from 1.0 x 1.0 mm2 up to 6.0 mm x 6.0 mm2. The effects of this scaling on the SiPM device parameters are discussed.

  9. Porous silicon for micro-sized fuel cell reformer units

    Energy Technology Data Exchange (ETDEWEB)

    Presting, H.; Konle, J.; Starkov, V.; Vyatkin, A.; Koenig, U

    2004-04-25

    Randomly, self-organized and ordered anodically etched porous silicon with pore sizes down to hundred nanometers have been fabricated for a variety of automotive applications which range from carrier structures in fuel cell technology up to shower heads for fuel injection in combustion engines. The porous wafers are produced by deep anodic etching which is a very effective and cheap fabrication method compatible to standard Si CMOS fabrication technology. The density of nano- (and micro-) pores can be varied in a wide range by choice of substrate doping level and appropriate electrolyte solution. Surface enlargement up to a factor of 1000 can be achieved [J. Electrochem. Soc. 149 (1) (2002) G70]. After deposition of a catalyst on the inner surface of the pores these structures can be used as an effective catalytic reaction area for the injected hydrocarbons in a micro-steam reformer unit with a small reaction volume. In addition deep anodic etching (DAE) of a pinhole array with very high aspect ratios is demonstrated using a pre-patterned inverted pyramidal array which is produced by lithography and subsequent wet chemical potassium hydroxide (KOH) etch. The structures can also be used as carrier structures for the hydrogen separation membrane of the reforming gas in a reformer unit when a thin layer of palladium is evaporated prior to the anodic etching of the pores. The noble metal foil serves as anode contact during the etch as well as hydrogen separating membrane of the device.

  10. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  11. Regional variations in HDL metabolism in human fat cells: effect of cell size

    Energy Technology Data Exchange (ETDEWEB)

    Despres, J.; Fong, B.S.; Julien, P.; Jimenez, J.; Angel, A.

    1987-05-01

    Abdominal obesity is related to reduced plasma high-density lipoprotein (HDL) cholesterol, and both are associated with cardiovascular disease risk. The authors have observed that plasma membranes from abdominal subcutaneous adipocytes have a greater HDL binding capacity than omental fat cell plasma membranes. The present study examined whether these binding characteristics could be due to differences in fat cell size or cholesterol concentration between the two adipose depots. Abdominal subcutaneous and deep omental fat were obtained from massively obese patients at surgery. Subcutaneous abdominal fat cells were significantly larger and their cellular cholesterol content greater than omental adipocytes. The uptake of HDL by collagenase-isolated fat cells was studied by incubating the cells for 2 h at 37/sup 0/C with 10 ..mu..g/ml /sup 125/I-HDL/sub 2/ or /sup 125/I-HDL/sub 3/. In both depots, the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/ was specifically inhibited by addition of 25-fold excess unlabeled HDL and a close correlation was observed between the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/. In obese patients, the uptake of /sup 125/I-HDL was higher in subcutaneous cells than in omental cells. The cellular /sup 125/I-HDL uptake was significantly correlated with adipocyte size and fat cell cholesterol content but not with adipocyte cholesterol concentration. These results suggest that the higher HDL uptake observed in subcutaneous cells compared with omental cells in obesity is the result of differences in adipocyte size rather than differences in the cholesterol concentration (cholesterol-to-triglyceride ratio). The increased interaction of HDL with hypertrophied abdominal adipocytes may play an important role in determining the lipid composition of HDL in obesity.

  12. Digital standard cells and operational amplifiers for operation up to 250 degrees C using low-cost CMOS technology

    Science.gov (United States)

    Stemmer, Jens; Ackermann, Joerg; Uffmann, Dirk; Aderhold, Jochen

    1996-09-01

    There is an increasing demand from automotive, aircraft and space industry for reliable high temperature resistant electronics. Circuits with reliable functionality up to temperatures of 250 degree(s)C would be sufficient for most of these applications. Digital standard cells and operational amplifiers are the basic building blocks of these circuits. Commercially available digital standard cell libraries and operational amplifiers are normally specified for operation up to a maximum temperature of 125 degree(s)C. Hence, the purpose of this work was the design and characterization of digital standard cells and operational amplifiers for operation up to 250 degree(s)C using a low-cost 1.0 micrometers epi-CMOS process. Several design measures were applied to the cells in order to further improve latch-up resistivity and to limit leakage currents, respectively. The transfer curves of all digital cells for all input signal combinations have been recorded in the temperature range from 30 to 250 degree(s)C. Significant results are very low temperature shifts of the noise margins and of the switching point, respectively. Furthermore, the low (0 V) and high (5 V) levels are reached exactly over the entire temperature range. Outstanding characteristics of the operational amplifier comprise low open-loop gain temperature drift as well as low offset and offset temperature drift, respectively. The open-loop gain was greater than 83 dB at room temperature with a drift of less than 0.02 dB/ degree(s)C. The offset voltage amounted to -1 mV at room temperature and 1 mV at 250 degree(s)C, respectively. The long-term behavior of these cells is currently under investigation.

  13. Relationship between Microcellular Foaming Injection Molding Process Parameters and Cell Size

    Institute of Scientific and Technical Information of China (English)

    HU Guang-hong; JIANG Chao-dong; CUI Zhen-shan

    2008-01-01

    In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pre- filled volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched.Appropriate reduction of the melt temperature and increase of the we-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.

  14. Enrichment of putative human epidermal stem cells based on cell size and collagen type IV adhesiveness

    Institute of Scientific and Technical Information of China (English)

    Juxue Li; Enkui Duan; Chenglin Miao; Weixiang Guo; Liwei Jia; Jiaxi Zhou; Baohua Ma; Sha Peng; Shuang Liu; Yujing Cao

    2008-01-01

    The enrichment and identification of human epidermal stem cells (EpSCs) are of paramount importance for both basic research and clinical application. Although several approaches for the enrichment of EpSCs have been established, enriching a pure population of viable EpSCs is still a challenging task. An improved approach is worth developing to enhance the purity and viability of EpSCs. Here we report that cell size combined with collagen type IV adhesiveness can be used in an improved approach to enrich pure and viable human EpSCs. We separated the rapidly adherent keratinocytes into three populations that range in size from 5-7 μm (population A), to 7-9 μm (population B), to >9 μm (population C) in diameter, and found that human putative EpSCs could be further enriched in population A with the smallest size. Among the three populations, population A displayed the highest density of βl-integrin receptor, contained the highest percentage of cells in G0/G1 phase, showed the highest nucleus to cytoplasm ratio, and possessed the highest colony formation efficiency (CFE). When injected into murine blastocysts, these cells participated in multi-tissue formation. More significantly, compared with a previous approach that sorted putative EpSCs according to pl-integrin antibody staining, the viability of the EpSCs enriched by the improved approach was significantly enhanced. Our results provide a putative strategy for the enrichment of human EpSCs, and encourage further study into the role of cell size in stem cell biology.

  15. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    Science.gov (United States)

    2015-06-01

    EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES...protection in the United States. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR...DISTRIBUTION UNLIMITED. AFIT-ENY-MS-15-J-045 EFFECT OF MIXTURE PRESSURE AND EQUIVALENCE RATIO ON DETONATION CELL SIZE FOR HYDROGEN -AIR MIXTURES

  16. New algorithm and system for measuring size distribution of blood cells

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yao(姚翠萍); Zheng Li(李政); Zhenxi Zhang(张镇西)

    2004-01-01

    In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.

  17. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-02-01

    Full Text Available One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.

  18. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Science.gov (United States)

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  19. Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli.

    Science.gov (United States)

    Si, Fangwei; Li, Dongyang; Cox, Sarah E; Sauls, John T; Azizi, Omid; Sou, Cindy; Schwartz, Amy B; Erickstad, Michael J; Jun, Yonggun; Li, Xintian; Jun, Suckjoon

    2017-05-08

    It is generally assumed that the allocation and synthesis of total cellular resources in microorganisms are uniquely determined by the growth conditions. Adaptation to a new physiological state leads to a change in cell size via reallocation of cellular resources. However, it has not been understood how cell size is coordinated with biosynthesis and robustly adapts to physiological states. We show that cell size in Escherichia coli can be predicted for any steady-state condition by projecting all biosynthesis into three measurable variables representing replication initiation, replication-division cycle, and the global biosynthesis rate. These variables can be decoupled by selectively controlling their respective core biosynthesis using CRISPR interference and antibiotics, verifying our predictions that different physiological states can result in the same cell size. We performed extensive growth inhibition experiments, and we discovered that cell size at replication initiation per origin, namely the initiation mass or unit cell, is remarkably invariant under perturbations targeting transcription, translation, ribosome content, replication kinetics, fatty acid and cell wall synthesis, cell division, and cell shape. Based on this invariance and balanced resource allocation, we explain why the total cell size is the sum of all unit cells. These results provide an overarching framework with quantitative predictive power over cell size in bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Reduced iNKT cells numbers in type 1 diabetes patients and their first-degree relatives.

    Science.gov (United States)

    Beristain-Covarrubias, Nonantzin; Canche-Pool, Elsy; Gomez-Diaz, Rita; Sanchez-Torres, Luvia E; Ortiz-Navarrete, Vianney

    2015-12-01

    Type 1 diabetes (T1D) is an autoimmune disease that is characterized by the specific destruction of insulin-producing pancreatic β cells. Invariant natural killer T (iNKT) cells have been associated with development of T1D. Class I MHC-restricted T cell-associated molecule (CRTAM) is expressed on activated iNKT, CD8(+), and CD4(+) T cells, and it is associated with the pro-inflammatory profiles of these cells. Crtam gene expression in CD3(+) lymphocytes from non-obese diabetic (NOD) mice is associated with T1D onset. However, expression of CRTAM on T cells from patients with T1D has not yet been evaluated. We compared iNKT cell (CD3(+)Vα24(+)Vβ11(+)) numbers and CRTAM expression in a Mexican population with recent-onset T1D and their first-degree relatives with control families. Remarkably, we found lower iNKT cell numbers in T1D families, and we identified two iNKT cell populations in some of the families. One iNKT cell population expressed high iTCR levels (iNKT(hi)), whereas another expressed low levels (iNKT(lo)) and also expressed CRTAM. These findings support a probable genetic determinant of iNKT cell numbers and a possible role for these cells in T1D development. This study also suggests that CRTAM identifies recently activated iNKT lymphocytes.

  1. Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizeshave been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimentalresults showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic,plateau and densification. The dynamic compressive strength of foams is affected not only by the relative densitybut also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size aremore sensitive to the strain rate than foams with lower relative density or larger cell size.

  2. Aggregate Size Optimization in Microwells for Suspension-based Cardiac Differentiation of Human Pluripotent Stem Cells

    OpenAIRE

    Bauwens, Celine L.; Toms, Derek; Ungrin, Mark

    2016-01-01

    Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization l...

  3. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  4. Cytocompatibility of HeLa Cells to Nano-Sized Ceramics Particles.

    Science.gov (United States)

    Seitoku, Eri; Abe, Shigeaki; Kusaka, Teruo; Nakamura, Mariko; Inoue, Satoshi; Yoshida, Yasuhiro; Sano, Hidehiko

    2016-04-01

    In this study, we investigated the behaviors and cytocompatibility response of human cervical carcinoma (HeLa) cells expose to nano-sized particles. Cultivated cells exposed to titanium oxide and indium oxide nanoparticles remained highly viable. In the presence of copper oxide (CuO); however, the cells became seriously inflamed. To understand the mechanism by which CuO causes cell death, we evaluated cell death and apoptosis cytometry. CuO induced cells apoptosis more strongly than exposure to titania nanoparticles. Confocal fluorescence microscopy revealed that the nano-sized particles penetrate the cells.

  5. Cell Size Discrimination Based on the Measurement of the Equilibrium Velocity in Rectangular Microchannels

    Directory of Open Access Journals (Sweden)

    Lisa Schott

    2015-05-01

    Full Text Available Flow cytometry is a well-established diagnostic tool for cell counting and characterization. It utilizes fluorescence and scattered excitation light simultaneously emitted from cells passing an excitation laser focus to discriminate various cell types and estimate cell size. Here, we apply the principle of spatially modulated emission (SME to fluorescently stained SUP-B15 cells as a model system for cancer cells and Marinococcus luteus as model for bacteria. We demonstrate that the experimental apparatus is able to detect these model cells and that the results are comparable to those obtained by a commercially available CASY® TT Counter. Furthermore, by examining the velocity distribution of the cells, we observe clear relationships between cell condition/size and cell velocity. Thus, the cell velocity provides information comparable to the scatter signal in conventional flow cytometry. These results indicate that the SME technique is a promising method for simultaneous cell counting and viability characterization.

  6. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance......-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size....

  7. Effects of HMGA2 on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ni Xi; Xiao-Yan Xin; Hong-Mei Ye

    2014-01-01

    Objective: To analyze effects of high mobility group AT-hook 2 (HMGA2) on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells. Methods:Three methods were applied to observe the effect on HMGA2 expression in ovarian cancer cells and ovarian epithelial cells. Results: After the application of siRNA-HMGA2, number of T29A2-cell clones was decreased, there was significant difference compared with the negative control Block-iT. After application of let-7c, number of T29A2+ cell clones was decreased significantly, however, after the application of Anti-let-7, the number of clones restored, and there was no significant difference compared with the negative control group. After interference, the number of T29A2- cells which passed through Matrigel polycarbonate membrane were significantly lower than the negative control group. After the treatment of siRNA-HMGA2, let-7c and sh-HMGA2 respectively, growth and proliferation of T29A2-, T29A2+ and SKOV3 were slower, and the phenomenon was most obvious in SKOV3. Stable interference of HMGA2 induced mesenchymal-epithelial changes in the morphology of SKOV3-sh-HMGA2. Conclusions: HMGA2 can promote malignant transformation of ovarian cancer cells, enhance cell invasion and metastasis, and promote cell growth and proliferation of ovarian cancer cells, which can cause ovarian cancer to progress rapidly and affect the quality of life.

  8. Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen [Graduate School of Southern Medical University, Guangzhou 510515 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Su Zexuan, E-mail: suz2008@126.com [The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Yao Xiuqiong; Peng Hua; Deng Suiping [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2012-05-01

    The current study examined the role of injured human kidney tubular epithelial cell (HKC) in the mediation of formation of calcium oxalate (CaOxa) crystals by means of scanning electronic microscopy and X-ray diffraction. HKC was injured using different concentrations of H{sub 2}O{sub 2}. Cell injury resulted in a significant decrease in cell viability and superoxide dismutase (SOD) concentration and an increase in the level of malondialdehyde (MDA) and expression of osteopontin (OPN). Injured cells not only promote nucleation and aggregation of CaOxa crystals, but also induce the formation of calcium oxalate monohydrate (COM) crystals that strongly adhere to cells. These results imply that injured HKCs promote stone formation by providing more nucleating sites for crystals, promoting the aggregation of crystals, and inducing the formation of COM crystals. - Graphical abstract: Injured cells promote nucleation and aggregation of CaOxa crystals, induce the formation of calcium oxalate monohydrate (COM) crystals. Highlights: Black-Right-Pointing-Pointer A direct nucleation and growth of CaOxa crystals on both normal and injured cells. Black-Right-Pointing-Pointer Stronger green fluorescence, i.e. OPN expression, was seen on the injury cell surface Black-Right-Pointing-Pointer Injured cells promote nucleation and aggregation of CaOxa crystals. Black-Right-Pointing-Pointer Injured cells induce the formation of calcium oxalate monohydrate crystals. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} decrease cell viability in a dose-dependent manner at 0.1-1 mmol/L.

  9. Properties of Encapsulated CIGS Cells in 85 degrees C/85%RH

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Larry C.; Gross, Mark E.; Kundu, Sambhu N.; Shafaman, William N.

    2010-02-16

    This paper concerns studies of encapsulated cells subjected to an environment of 85ºC and 85%RH (85/85). Cells are encapsulated with PNNL multi-layer coatings (referred to as PML coatings) utilizing alternating layers of Al2O3, and an advanced polymer. The new polymer has been determined to withstand the 85/85 environment. Two types of cells were used for these studies, namely, SSI mini-modules (which are actually CIGSS devices) and CIGS cells provided by the Institute of Energy Conversion (IEC). Cells were coated and stressed at 85/85 in an environmental chamber. Current-voltage characteristics were acquired before and after coating, and periodically after being subjected to the 85/85 environment. Whereas coated SSI modules were determined to last 1000 hours when stressed at 60ºC/90%RH without degradation, the efficiency of these modules degrade to a level of 60% of the beginning-of-life value when stressed at 85/85. Encapsulated IEC cells, however, have exhibited extraordinary results. The efficiency of several encapsulated cells did not decrease for 1500 hours in an 85ºC/85%RH environment. This results establishes a benchmark for stressed, encapsulated CIGS cells.

  10. Larger Daphnia at lower temperature: a role for cell size and genome configuration?

    Science.gov (United States)

    Jalal, Marwa; Wojewodzic, Marcin W; Laane, Carl Morten M; Hessen, Dag O

    2013-09-01

    Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA-fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.

  11. Safe extension of red blood cell storage life at 4{degree}C

    Energy Technology Data Exchange (ETDEWEB)

    Bitensky, M.; Yoshida, Tatsuro

    1996-04-01

    The project sought to develop methods to extend the storage life of red blood cells. Extended storage would allow donor to self or autologous transfusion, expand and stabilize the blood supply, reduce the cost of medical care and eliminate the risk of transfusion related infections, including a spectrum of hepatitides (A, B and C) and HIV. The putative cause of red blood cell spoilage at 4 C has been identified as oxidative membrane damage resulting from deoxyhemoglobin and its denaturation products including hemichrome, hemin and Fe{sup 3+}. Trials with carbon monoxide, which is a stabilizer of hemoglobin, have produced striking improvement of red blood cell diagnostics for cells stored at 4 C. Carbonmonoxy hemoglobin is readily converted to oxyhemoglobin by light in the presence of oxygen. These findings have generated a working model and an approach to identify the best protocols for optimal red cell storage and hemoglobin regeneration.

  12. Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome.

    Science.gov (United States)

    Medina-Gomez, Gema; Yetukuri, Laxman; Velagapudi, Vidya; Campbell, Mark; Blount, Margaret; Jimenez-Linan, Mercedes; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio

    2009-01-01

    The events that contribute to the expansion of beta-cell mass and enhanced beta-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that beta-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of beta cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the beta cells, (2) identify molecular effectors that contribute to increasing beta-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate beta-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of beta-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult beta cells contribute to the failure of the POKO beta cell. Our results indicate that the rapid development of insulin resistance and beta-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and beta-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms

  13. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    Science.gov (United States)

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  14. Multi-Cell Random Beamforming: Achievable Rate and Degrees of Freedom Region

    CERN Document Server

    Nguyen, Hieu Duy; Hui, Hon Tat

    2012-01-01

    Random beamforming (RBF) is a practically favorable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the multiuser diversity effect that eliminates the inter-user interference. In this paper, we extend the study on RBF to a more practical multi-cell downlink system subject to the additional inter-cell interference (ICI). First, we consider the case of finite user's signal-to-noise ratio (SNR). We derive a closed-form expression of the achievable sum rate with the multi-cell RBF, based upon which we show the asymptotic sum-rate scaling law as the number of users goes to infinity. Next, we consider the high-SNR regime and for a tractable analysis assume that the number of users in each cell scales in a certain order with the per-cell SNR. Under this setup, we cha...

  15. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses

    DEFF Research Database (Denmark)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J

    2009-01-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose...... of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response...... GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes....

  16. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Lee, Minjoo Larry; Friedman, Daniel J.; Steiner, Myles A.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased, we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.

  17. Clinical efficacy of Colgate 360 degrees and three commercially available toothbrushes on the removal of desquamated epithelial cells.

    Science.gov (United States)

    Williams, Malcolm I; Vazquez, Joe; Cummins, Diane

    2004-10-01

    A clinical study was done to evaluate the performance of four toothbrushes on the removal of desquamated epithelial cells after brushing according to the manufacturers' instructions for use. This randomized, crossover-design clinical study compared a new manual toothbrush (Colgate 360 degrees) to two commercially available manual toothbrushes (Oral-B CrossAction and Oral-B Indicator) and a commercially available battery-powered toothbrush (Crest SpinBrush PRO). Adult men and women subjects reported to the clinical facility after a 1-week "washout" period of brushing with a regular fluoride dentifrice and a soft-bristled toothbrush. Participants reported having refrained from oral hygiene procedures, eating, and drinking that morning. After providing a baseline rinse sample, subjects brushed their teeth for 1 minute with their assigned toothbrush and a commercially available fluoride toothpaste, then returned 30 minutes later to provide postuse rinse samples. Subjects refrained from dental hygiene, eating, and drinking during the 30-minute evaluation period. To provide the samples, subjects rinsed with 10 mL of sterile phosphate-buffered saline solution for 10 seconds. Each collected sample was centrifuged, resuspended, and run in a colorimetric assay to determine the level of desquamated epithelial cells found in the rinse as measured by the absorbance at 570 nm. Twenty adults completed the study. At baseline, the mean levels of desquamated epithelial cells for the 4 treatments were 0.70+/-0.27, 0.63+/-0.20, 0.69+/-0.30, and 0.62+/-0.31 for the Colgate 360 degrees, Oral-B Indicator, Crest SpinBrush PRO, and Oral-B CrossAction, respectively. Posttreatment, the mean levels of epithelial cells were 0.19, 0.38, 0.42, and 0.34, respectively. All of the treatments provided a statistically significant reduction compared to their respective baseline. In addition, the Colgate 360 degrees toothbrush was statistically significantly better than the other three toothbrushes in

  18. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.

    Science.gov (United States)

    Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu

    2016-03-01

    Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.

  19. Critical cell wall hole size for lysis in Gram-positive bacteria

    Science.gov (United States)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  20. Conventional and 360 degree electron tomography of a micro-crystalline silicon solar cell

    DEFF Research Database (Denmark)

    Duchamp, Martial; Ramar, Amuthan; Kovács, András

    2011-01-01

    Bright-field (BF) and annular dark-field (ADF) electron tomography in the transmission electron microscope (TEM) are used to characterize elongated porous regions or cracks (simply referred to as cracks thereafter) in micro-crystalline silicon (μc-Si:H) solar cell. The limitations of inferring...

  1. Incidence of cancer in first-degree relatives of basal cell carcinoma patients

    NARCIS (Netherlands)

    M.M. van Rossum; D. Wopereis; T. Hoyer; I. Soerjomataram (Isabelle); J. Schalkwijk; P.C.M. van de Kerkhof; L.A.L.M. Kiemeney (Bart); N. Hoogerbrugge (Nicoline)

    2009-01-01

    textabstractThere is evidence to suggest that genetic factors play an important role in the development of basal cell carcinomas (BCCs), and that skin neoplasms might be a sign for a genetic predisposition to cancer. We investigated whether the incidence of visceral and skin malignancies among first

  2. Subcutaneous adipose cell size and distribution: relationship to insulin resistance and body fat.

    Science.gov (United States)

    McLaughlin, T; Lamendola, C; Coghlan, N; Liu, T C; Lerner, K; Sherman, A; Cushman, S W

    2014-03-01

    Metabolic heterogeneity among obese individuals may be attributable to differences in adipose cell size. We sought to clarify this by quantifying adipose cell size distribution, body fat, and insulin-mediated glucose uptake in overweight to moderately-obese individuals. A total of 148 healthy nondiabetic subjects with BMI 25-38 kg/m2 underwent subcutaneous adipose tissue biopsies and quantification of insulin-mediated glucose uptake with steady-state plasma glucose (SSPG) concentrations during the modified insulin suppression test. Cell size distributions were obtained with Beckman Coulter Multisizer. Primary endpoints included % small adipose cells and diameter of large adipose cells. Cell-size and metabolic parameters were compared by regression for the whole group, according to insulin-resistant (IR) and insulin-sensitive (IS) subgroups, and by body fat quintile. Both large and small adipose cells were present in nearly equal proportions. Percent small cells was associated with SSPG (r = 0.26, P = 0.003). Compared to BMI-matched IS individuals, IR counterparts demonstrated fewer, but larger large adipose cells, and a greater proportion of small-to-large adipose cells. Diameter of the large adipose cells was associated with % body fat (r = 0.26, P = 0.014), female sex (r = 0.21, P = 0.036), and SSPG (r = 0.20, P = 0.012). In the highest versus lowest % body fat quintile, adipose cell size increased by only 7%, whereas adipose cell number increased by 74%. Recruitment of adipose cells is required for expansion of body fat mass beyond BMI of 25 kg/m2 . Insulin resistance is associated with accumulation of small adipose cells and enlargement of large adipose cells. These data support the notion that impaired adipogenesis may underlie insulin resistance. Copyright © 2012 The Obesity Society.

  3. Co-variation of metabolic rates and cell-size in coccolithophores

    Directory of Open Access Journals (Sweden)

    G. Aloisi

    2015-04-01

    Full Text Available Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size. I show that growth, photosynthesis, and to a lesser extent calcification, co-vary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature produces the opposite effect. The magnitude of the coccosphere size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass and cell maturity (biological complexity, eventually leading to cell division

  4. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.

    Science.gov (United States)

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene

    2017-01-01

    The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Finite-size corrections to scaling behavior in sorted cell aggregates.

    Science.gov (United States)

    Klopper, A V; Krens, G; Grill, S W; Heisenberg, C-P

    2010-10-01

    Cell sorting is a widespread phenomenon pivotal to the early development of multicellular organisms. In vitro cell sorting studies have been instrumental in revealing the cellular properties driving this process. However, these studies have as yet been limited to two-dimensional analysis of three-dimensional cell sorting events. Here we describe a method to record the sorting of primary zebrafish ectoderm and mesoderm germ layer progenitor cells in three dimensions over time, and quantitatively analyze their sorting behavior using an order parameter related to heterotypic interface length. We investigate the cell population size dependence of sorted aggregates and find that the germ layer progenitor cells engulfed in the final configuration display a relationship between total interfacial length and system size according to a simple geometrical argument, subject to a finite-size effect.

  6. Metabolic characterization of a CHO cell size increase phase in fed-batch cultures.

    Science.gov (United States)

    Pan, Xiao; Dalm, Ciska; Wijffels, René H; Martens, Dirk E

    2017-09-26

    Normally, the growth profile of a CHO cell fed-batch process can be divided into two main phases based on changes in cell concentration, being an exponential growth phase and a stationary (non-growth) phase. In this study, an additional phase is observed during which the cell division comes to a halt but the cell growth continues in the form of an increase in cell size. The cell size increase (SI) phase occurs between the exponential proliferation phase (also called the number increase or NI phase) and the stationary phase. During the SI phase, the average volume and dry weight per cell increase threefold linearly with time. The average mAb specific productivity per cell increases linearly with the cell volume and therefore is on average two times higher in the SI phase than in the NI phase. The specific essential amino acids consumption rates per cell remain fairly constant between the NI and the SI phase, which agrees with the similar biomass production rate per cell between these two phases. Accumulation of fatty acids and formation of lipid droplets in the cells are observed during the SI phase, indicating that the fatty acids synthesis rate exceeds the demand for the synthesis of membrane lipids. A metabolic comparison between NI and SI phase shows that the cells with a larger size produce more mAb per unit of O2 and nutrient consumed, which can be used for further process optimization.

  7. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    Science.gov (United States)

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture.

  8. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds

    National Research Council Canada - National Science Library

    Murphy, Ciara M; O'Brien, Fergal J

    2010-01-01

    Mean pore size is an essential aspect of scaffolds for tissue-engineering. If pores are too small cells cannot migrate in towards the center of the construct limiting the diffusion of nutrients and removal of waste products...

  9. Cell size effects for vibration analysis and design of sandwich beams

    Institute of Scientific and Technical Information of China (English)

    Gaoming Dai; Weihong Zhang

    2009-01-01

    In this work, sandwich beams are studied to reveal the underlying size effects of the periodic core cells for the first time within the framework of free vibration analysis of such an advanced lightweight structure. The energy equiv-alence method is formulated as a theoretical approach that takes into account the cell size effect. It is compared with the asymptotic homogenization method and direct finite element method systematically to show their consistence and appli-cability. The accuracy of free vibration responses predicted by the detailed finite element model is used as the standard of comparison. It is shown that the cell size is an important parameter characterizing the cellular core rigidities that influ-ence vibration responses. The homogenization model agrees exactly with the asymptotic solution of the analytical expres-sion of the beam model only whenever the cell size tends to be infinitely small.

  10. Effect of Saccharide Structure and Size on the Degree of Substitution and Product Dispersity of a-Lactalbumin Glycated via the Maillard Reaction

    NARCIS (Netherlands)

    Haar, ter R.; Schols, H.A.; Gruppen, H.

    2011-01-01

    The course of the Maillard reaction between a-lactalbumin and various mono- and oligosaccharides in the solid state was studied using UPLC–ESI-TOF-MS. Individual reaction products were monitored for their degree of substitution per protein molecule (DSP). The Maillard reaction rate depended on the s

  11. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  12. A flexible microprocessor system for the measurement of cell size.

    Science.gov (United States)

    Round, J M; Jones, D A; Edwards, R H

    1982-06-01

    A flexible system for the measurement of length and area is described. The system consists of the Reichert Jung MOP-1 area measuring device interfaced with a Commodore PET computer. Its use is illustrated by the planimetric measurement of cross sectional areas in histochemical preparations of normal and diseased muscle. While measurements are being made data can be displayed on the computer screen either in numerical form or as a frequency histogram together with simple statistical analyses. Hard copy can be obtained from an attached printer. Mean values for fibre area in normal human skeletal muscle are reported. An alternative, widely used method of calculating fibre area from the lesser diameter was found to give a consistent underestimate of approximately 30% when compared with our planimetric method. In diseased muscle with abnormally shaped fibres the discrepancy is even larger; such fibres can be identified using a "form factor" which relates the area of a cell to its perimeter. This rapid, accurate and flexible system is also suitable for the measurement of many different types of graphical record.

  13. [Mathematical processing of human platelet distribution according to size for determination of cell heterogeneity].

    Science.gov (United States)

    Kosmovskiĭ, S Iu; Vasin, S L; Rozanova, I B; Sevast'ianov, V I

    1999-01-01

    The paper proposes a method for mathematical treatment of the distribution of human platelets by sizes to detect the heterogeneity of cell populations. Its use allowed the authors to identify three platelet populations that have different parameters of size distribution. The proposed method opens additional vistas for analyzing the heterogeneity of platelet populations without sophisticating experimental techniques.

  14. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    Science.gov (United States)

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.

  15. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies.

    Science.gov (United States)

    Moon, Sung-Hwan; Ju, Jongil; Park, Soon-Jung; Bae, Daekyeong; Chung, Hyung-Min; Lee, Sang-Hoon

    2014-07-01

    Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line.

  16. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability.

    Science.gov (United States)

    Laluce, Cecilia; Tognolli, João Olimpio; de Oliveira, Karen Fernanda; Souza, Crisla Serra; Morais, Meline Rezende

    2009-06-01

    Aiming to obtain rapid fermentations with high ethanol yields and a retention of high final viabilities (responses), a 2(3) full-factorial central composite design combined with response surface methodology was employed using inoculum size, sucrose concentration, and temperature as independent variables. From this statistical treatment, two well-fitted regression equations having coefficients significant at the 5% level were obtained to predict the viability and ethanol production responses. Three-dimensional response surfaces showed that increasing temperatures had greater negative effects on viability than on ethanol production. Increasing sucrose concentrations improved both ethanol production and viability. The interactions between the inoculum size and the sucrose concentrations had no significant effect on viability. Thus, the lowering of the process temperature is recommended in order to minimize cell mortality and maintain high levels of ethanol production when the temperature is on the increase in the industrial reactor. Optimized conditions (200 g/l initial sucrose, 40 g/l of dry cell mass, 30 degrees C) were experimentally confirmed and the optimal responses are 80.8 +/- 2.0 g/l of maximal ethanol plus a viability retention of 99.0 +/- 3.0% for a 4-h fermentation period. During consecutive fermentations with cell reuse, the yeast cell viability has to be kept at a high level in order to prevent the collapse of the process.

  17. Moving forward moving backward: directional sorting of chemotactic cells due to size and adhesion differences.

    Directory of Open Access Journals (Sweden)

    Jos Käfer

    2006-06-01

    Full Text Available Differential movement of individual cells within tissues is an important yet poorly understood process in biological development. Here we present a computational study of cell sorting caused by a combination of cell adhesion and chemotaxis, where we assume that all cells respond equally to the chemotactic signal. To capture in our model mesoscopic properties of biological cells, such as their size and deformability, we use the Cellular Potts Model, a multiscale, cell-based Monte Carlo model. We demonstrate a rich array of cell-sorting phenomena, which depend on a combination of mescoscopic cell properties and tissue level constraints. Under the conditions studied, cell sorting is a fast process, which scales linearly with tissue size. We demonstrate the occurrence of "absolute negative mobility", which means that cells may move in the direction opposite to the applied force (here chemotaxis. Moreover, during the sorting, cells may even reverse the direction of motion. Another interesting phenomenon is "minority sorting", where the direction of movement does not depend on cell type, but on the frequency of the cell type in the tissue. A special case is the cAMP-wave-driven chemotaxis of Dictyostelium cells, which generates pressure waves that guide the sorting. The mechanisms we describe can easily be overlooked in studies of differential cell movement, hence certain experimental observations may be misinterpreted.

  18. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.

    Science.gov (United States)

    Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel

    2017-04-01

    In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production.IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution.

  19. Cell Size Clues for the Allee Effect in Vegetative Amoeba Suspension Culture

    Science.gov (United States)

    Franck, Carl; Rappazzo, Brendan; Wang, Xiaoning; Segota, Igor

    That cells proliferate at higher rates with increasing density helps us appreciate and understand the development of multicellular behavior through the study of dilute cell systems. However, arduous cell counting with a microscope reveals that in the model eukaryote, Dictyostelium discoideum this transition is difficult to ascertain and thereby further explore despite our earlier progress (Phys. Rev. E 77, 041905, (2008)). Here we report preliminary evidence that the slow proliferation phase is well characterized by reduced cell size compared to the wide distribution of cell sizes in the familiar exponential proliferation phase of moderate densities. This observation is enabled by a new system for characterizing cells in stirred suspension cultures. Our technique relies on quickly acquiring magnitude distributions of detected flashes of laser light scattered in situ by cell targets.

  20. Planar anchoring strength and pitch measurements in achiral and chiral chromonic liquid crystals using 90-degree twist cells

    Science.gov (United States)

    McGinn, Christine K.; Laderman, Laura I.; Zimmermann, Natalie; Kitzerow, Heinz-S.; Collings, Peter J.

    2013-12-01

    Chromonic liquid crystals are formed by molecules that spontaneously assemble into anisotropic structures in water. The ordering unit is therefore a molecular assembly instead of a molecule as in thermotropic liquid crystals. Although it has been known for a long time that certain dyes, drugs, and nucleic acids form chromonic liquid crystals, only recently has enough knowledge been gained on how to control their alignment so that studies of their fundamental liquid crystal properties can be performed. In this article, a simple method for producing planar alignment of the nematic phase in chromonic liquid crystals is described, and this in turn is used to create twisted nematic structures of both achiral and chiral chromonic liquid crystals. The optics of 90-degree twist cells allows the anchoring strength to be measured in achiral systems, which for this alignment technique is quite weak, about 3×10-7 J/m2 for both disodium cromoglycate and Sunset Yellow FCF. The addition of a chiral amino acid to the system causes the chiral nematic phase to form, and similar optical measurements in 90-degree twist cells produce a measurement of the intrinsic pitch of the chiral nematic phase. From these measurements, the helical twisting power for L-alanine is found to be (1.1±0.4)×10-2 μm-1 wt%-1 for 15 wt% disodium cromoglycate.

  1. Temperature and developmental responses of body and cell size in Drosophila; effects of polyploidy and genome configuration.

    Science.gov (United States)

    Jalal, Marwa; Andersen, Tom; Hessen, Dag O

    2015-07-01

    Increased adult body size in Drosophila raised at lower temperatures could be attributed both to an increase in the cell volume and cell number. It is not clear, however, whether increased cell size is related to (or even caused by) increased nuclear volume and genome size (or configuration). Experiments with Drosophila melanogaster stocks (Oregon-R and w1118) raised at 16, 22, 24, and 28°C resulted in larger adult body and wing size with lower temperature, while eye size was less affected. The increase in wing size reflected an increase in cell size in both males and females of both stocks. The nucleus size, genome size, and DNA condensation of adult flies, embryos, and Schneider 2 cells (S2 cells, of larval origin) were estimated by flow cytometry. In both adult flies and S2 cells, both nucleus size and DNA condensation varied with temperature, while DNA content appears to be constant. From 12% to 18% of the somatic cells were tetraploid (4C) and 2-5% were octoploid (8C), and for the Oregon strain we observed an increase in the fraction of polyploid cells with decreasing temperature. The observed increase in body size (and wing size) at low temperatures could partly be linked with the cell size and DNA condensation, while corresponding changes in the haploid genome size were not observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Assembly of MOF Microcapsules with Size-Selective Permeability on Cell Walls.

    Science.gov (United States)

    Li, Wanbin; Zhang, Yufan; Xu, Zehai; Meng, Qin; Fan, Zheng; Ye, Shuaiju; Zhang, Guoliang

    2016-01-18

    The assembly of metal-organic frameworks (MOFs) into microcapsules has attracted great interest because of their unique properties. However, it remains a challenge to obtain MOF microcapsules with size selectivity at the molecular scale. In this report, we used cell walls from natural biomaterials as non-toxic, stable, and inexpensive support materials to assemble MOF/cell wall (CW) microcapsules with size-selective permeability. By making use of the hollow structure, small pores, and high density of heterogeneous nucleation sites of the cell walls, uniform and continuous MOF layers could be easily obtained by inside/outside interfacial crystallization. The prepared MOF/CW microcapsules have excellent stability and enable the steady, slow, and size-selective release of small molecules. Moreover, the size selectivity of the microcapsules can be adjusted by changing the type of deposited MOF.

  3. Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations

    Science.gov (United States)

    Daniele Tonina; Alberto Bellin

    2008-01-01

    Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...

  4. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    Science.gov (United States)

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  5. Imaging-based analysis of liposome internalization to macrophage cells: Effects of liposome size and surface modification with PEG moiety.

    Science.gov (United States)

    Lee, Jae Sun; Hwang, Sang Youn; Lee, E K

    2015-12-01

    Liposome is one of the frequently used carriers for active targeting systems in vivo. Such parameters as its size, surface charge, and surface modifiers are known to influence the liposome uptake by macrophage cells. In this study, we investigated the effects of liposome size and polyethylene glycol (PEG) surface modifier on the liposomal internalization to murine macrophage (RAW-264.7), by using an imaging analysis technique. Three different sized liposomes (100, 200, and 400 nm in nominal diameter) labeled with rhodamine fluorescence were used. Liposome internalization appeared to reach a pseudo-steady plateau in about 5h incubation, and most of the internalized liposomes were seen to accumulate in the cytosol including cellular extensions. The maximum fluorescent density from the internalized liposomes was similar between 100 nm and 200 nm liposomes. However, that of the larger 400 nm liposome was approximately 1.7 times higher than the others, confirming the previous report that the larger the liposomes are the higher the degree of internalization is. When the outside of the 200 nm liposomes was modified with biocompatible anchor molecule (BAM) consisting of PEG (ca. 2kD molecular weight) moiety, the endocytosis was indeed reduced by about 2.1-fold, despite the increase of the hydrodynamic size due to BAM conjugation. This fluorescence-based cellular imaging analysis can be used to quantitatively monitor and optimize cellular internalization systems.

  6. Environmental control of the Pom1-dependent cell-size regulation pathway in fission yeast

    OpenAIRE

    Kelkar, M.

    2015-01-01

    Cells couple their growth and division rate in response to nutrient availability to maintain a constant size. This co-ordination happens either at the G1-S or the G2-M transition of the cell cycle. In the rod-shaped fission yeast, size regulation happens at the G2-M transition prior to mitotic commitment. Recent studies have focused on the role of the DYRK-family protein kinase Pom1, which forms gradients emanating from cell poles and inhibits the mitotic activator kinase Cdr2, present at the...

  7. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.

    Science.gov (United States)

    Sankaran, Vijay G; Ludwig, Leif S; Sicinska, Ewa; Xu, Jian; Bauer, Daniel E; Eng, Jennifer C; Patterson, Heide Christine; Metcalf, Ryan A; Natkunam, Yasodha; Orkin, Stuart H; Sicinski, Piotr; Lander, Eric S; Lodish, Harvey F

    2012-09-15

    Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.

  8. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning.

  9. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation

    DEFF Research Database (Denmark)

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N.; Svahn, Helene Andersson

    2017-01-01

    The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation...... in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped...... after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation...

  10. A moonlighting enzyme links Escherichia coli cell size with central metabolism.

    Directory of Open Access Journals (Sweden)

    Norbert S Hill

    Full Text Available Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.

  11. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters.

    Science.gov (United States)

    Van Hoof, Dennis; Mendelsohn, Adam D; Seerke, Rina; Desai, Tejal A; German, Michael S

    2011-05-01

    Pancreatic β-cells function optimally when clustered in islet-like structures. However, nutrient and oxygen deprivation limits the viability of cells at the core of excessively large clusters. Hence, production of functional β-cells from human embryonic stem cells (hESCs) for patients with diabetes would benefit from the growth and differentiation of these cells in size-controlled aggregates. In this study, we controlled cluster size by seeding hESCs onto glass cover slips patterned by the covalent microcontact-printing of laminin in circular patches of 120 μm in diameter. These were used as substrates to grow and differentiate hESCs first into SOX17-positive/SOX7-negative definitive endoderm, after which many clusters released and formed uniformly sized three-dimensional clusters. Both released clusters and those that remained attached differentiated into HNF1β-positive primitive gut tube-like cells with high efficiency. Further differentiation yielded pancreatic endoderm-like cells that co-expressed PDX1 and NKX6.1. Controlling aggregate size allows efficient production of uniformly-clustered pancreatic endocrine precursors for in vivo engraftment or further in vitro maturation.

  12. A Nonlinear Size-Dependent Equivalent Circuit Model for Single-Cell Electroporation on Microfluidic Chips.

    Science.gov (United States)

    Shagoshtasbi, Hooman; Deng, Peigang; Lee, Yi-Kuen

    2015-08-01

    Electroporation (EP) is a process of applying a pulsed intense electric field on the cell membrane to temporarily induce nanoscale electropores on the plasma membrane of biological cells. A nonlinear size-dependent equivalent circuit model of a single-cell electroporation system is proposed to investigate dynamic electromechanical behavior of cells on microfluidic chips during EP. This model consists of size-dependent electromechanical components of a cell, electrical components of poration media, and a microfluidic chip. A single-cell microfluidic EP chip with 3D microelectrode arrays along a microchannel is designed and fabricated to experimentally analyze the permeabilization of a cell. Predicted electrical current responses of the model are in good agreement (average error of 6%) with that of single-cell EP. The proposed model can successfully predict the time responses of transmembrane voltage, pore diameter, and pore density at four different stages of permeabilization. These stages are categorized based on electromechanical changes of the lipid membrane. The current-voltage characteristic curve of the cell membrane during EP is also investigated at different EP stages in detail. The model can precisely predict the electric breakdown of different cell lines at a specific critical cell membrane voltage of the target cell lines.

  13. Studies on nonidet P40 lysis of murine lymphoid cells. I. Use of cholera toxin and cell surface Ig to determine degree of dissociation of the plasma membrane.

    Science.gov (United States)

    Hart, D A

    1975-09-01

    Lymphoid cells from A/J mice were iodinated (125I) by the lactoperoxidase lysed with the non-ionic detergent NP-40. The plasma membrane glycolipid receptor for cholera toxin and cell surface immunoglobulin were utilized in immune precipitation systems to characterize the degree of dissociation of the plasma membrane under various conditions. It was found that at 0.1% NP-40 and at cell concentration from 5 to 10 times 10(7) cells/ml, lipid-protein and protein-lipid-protein complexes formed in NP-40 which were soluble after centrifugation at 10(5) times G. Column chromatography of 125I-cell lysates on agarose A-0.5 M in 0.1% or 0.5% NP-40/PBS indicated that the majority of iodinated cell surface material existed as aggregates in detergent micelles. The availability of the oligosaccharide moiety of the glycolipid to interact with the cholera toxin was dependent on both the detergent concentration and the cell concentration used for cell lysis. However, the cell surface immunoglobulin was immunoprecipitable under all conditions of lysis tested.

  14. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses.

    Science.gov (United States)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J; Stein, Peter P; Mari, Andrea; Holst, Jens J; Nijpels, Giel; Dekker, Jacqueline M

    2010-04-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1 release. In contrast with the other meals, GIP release was still rising 2 hours after the fat-rich meal. The initial glucagon response was stimulated by the large CH-rich meal, whereas the fat-rich meal induced a late glucagon response. Fat preferentially stimulates GIP secretion, whereas CH stimulates GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes.

  15. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Korneliusz Golebski

    Full Text Available BACKGROUND: Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. METHODS: We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA. RESULTS: We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1. We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α, sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF. Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF where up-regulated specifically by poly(I:C and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C. CONCLUSIONS: Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  16. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm

    KAUST Repository

    Sabelli, Paolo A.

    2013-04-22

    The endospermof cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ~70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 downregulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1- dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organlevel regulation of endosperm/seed homeostasis.

  17. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size

    Science.gov (United States)

    Moens, Tom; Vafeiadou, Anna-Maria; De Geyter, Ellen; Vanormelingen, Pieter; Sabbe, Koen; De Troch, Marleen

    2014-09-01

    We examine the capacity of nematodes from three feeding types (deposit feeder, epistrate feeder, predator) to utilize microphytobenthos (MPB), and assess whether diatom cell size and consumer body size are important drivers of their feeding. We analyzed natural stable isotope ratios of carbon and nitrogen in abundant nematode genera and a variety of carbon sources at an estuarine intertidal flat. All nematodes had δ13C indicating that MPB is their major carbon source. δ15N, however, demonstrated that only one deposit and one epistrate feeder genus obtained most of their carbon from direct grazing on MPB, whereas other deposit feeders and predators obtained at least part of their carbon by predation on MPB grazers. We then performed a microcosm experiment in which equal cell numbers of each of three differently sized strains of the pennate diatom Seminavis were offered as food to four, one and one genera of deposit feeders, epistrate feeders and predators, respectively. Previous studies have shown that all but the epistrate feeder ingest whole diatoms, whereas the epistrate feeder pierces cells and sucks out their contents. Most genera showed markedly higher carbon absorption from medium and large cells than from small ones. When considering the number of cells consumed, however, none of the nematodes which ingest whole cells exhibited a clear preference for any specific diatom size. The epistrate feeder was the smallest nematode taxon considered here, yet it showed a marked preference for large cells. These results highlight that the feeding mechanism is much more important than consumer size as a driver of particle size selection in nematodes grazing MPB.

  18. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-08-31

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability.

  19. Platelet expression of stromal cell-derived factor-1 is associated with the degree of valvular aortic stenosis.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND AND PURPOSE: Platelet surface expression of stromal-cell-derived factor-1 (SDF-1 is increased during platelet activation and constitutes an important factor in hematopoetic progenitor cell trafficking at sites of vascular injury and ischemia. Enhanced platelet SDF-1 expression has been reported previously in patients suffering from acute coronary syndrome (ACS. We hypothesized that expression of platelet associated SDF-1 may also be influenced by calcified valvular aortic stenosis (AS. METHODS: We consecutively evaluated 941 patients, who were admitted to the emergency department with dyspnea and chest pain. Platelet surface expression of SDF-1 was determined by flow cytometry, AS was assessed using echocardiography and hemodynamic assessment by heart catheterization. A 1∶1 propensity score matching was implemented to match 218 cases with 109 pairs adjusting for age, sex, cardiovascular risk factors, and medication including ACE inhibitors, angiotensin receptor blockers, beta blockers, statins, aspirin, clopidogrel, GPIIb/IIIa antagonists, and vitamin K antagonists. RESULTS: Patients with valvular AS showed enhanced platelet SDF-1 expression compared to patients without AS (non-valvular disease, NV independent of ACS and stable coronary artery disease (SAP [mean fluorescence intensity (MFI for ACS (AS vs. NV: 75±40.4 vs. 39.5±23.3; P = 0.002; for SAP (AS vs. NV: 54.9±44.6 vs. 24.3±11.2; P = 0.008]. Moreover, the degree of AS significantly correlated with SDF-1 platelet surface expression (r = 0.462; P = 0.002. CONCLUSIONS: Valvular AS is associated with enhanced platelet-SDF-1 expression; moreover the degree of valvular AS correlates with SDF-1 platelet surface expression. These findings may have clinical implications in the future.

  20. Lithium AA-size cells for Navy mine applications. 1. Selection and test plan. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kilroy, W.J.; Freeman, W.A.; Banner, J.A.; Hoff, G.F.; Mitchell, K.A.

    1993-11-30

    As part of an effort to reduce Navy battery procurement problems, a program has been developed to standardize battery chemistries and cell sizes. Currently, several mercury-based cells are being used in mine batteries; however, they have limited energy and power densities and present uncertain long-term availability and disposal issues. The lithium/thionyl chloride electrochemical technology is being considered as a long-term solution to these problems. This report describes the surveillance effort that gave rise to selection of AA-size lithium thionyl chloride cells for mine battery development. A test plan to verify this choice and to identify potential cell or battery production and performance problems is also provided. Lithium/thionyl chloride, Lithium, Battery, Mercury-based cells.

  1. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H2 Osolar cell based on a perovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells.

  2. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality.

    Science.gov (United States)

    Svenkrtova, Andrea; Belicova, Lenka; Volejnikova, Andrea; Sigler, Karel; Jazwinski, S Michal; Pichova, Alena

    2016-04-01

    Cells of the budding yeast Saccharomyces cerevisiae undergo a process akin to differentiation during prolonged culture without medium replenishment. Various methods have been used to separate and determine the potential role and fate of the different cell species. We have stratified chronologically-aged yeast cultures into cells of different sizes, using centrifugal elutriation, and characterized these subpopulations physiologically. We distinguish two extreme cell types, very small (XS) and very large (L) cells. L cells display higher viability based on two separate criteria. They respire much more actively, but produce lower levels of reactive oxygen species (ROS). L cells are capable of dividing, albeit slowly, giving rise to XS cells which do not divide. L cells are more resistant to osmotic stress and they have higher trehalose content, a storage carbohydrate often connected to stress resistance. Depletion of trehalose by deletion of TPS2 does not affect the vital characteristics of L cells, but it improves some of these characteristics in XS cells. Therefore, we propose that the response of L and XS cells to the trehalose produced in the former differs in a way that lowers the vitality of the latter. We compare our XS- and L-fraction cell characteristics with those of cells isolated from stationary cultures by others based on density. This comparison suggests that the cells have some similarities but also differences that may prove useful in addressing whether it is the segregation or the response to trehalose that may play the predominant role in cell division from stationary culture.

  3. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    Science.gov (United States)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  4. Size-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells.

    Science.gov (United States)

    Choi, Kyong-Hoon; Nam, Ki Chang; Malkinski, Leszek; Choi, Eun Ha; Jung, Jin-Seung; Park, Bong Joo

    2016-09-06

    In this study, newly designed biocompatible multifunctional magnetic submicron particles (CoFe₂O₄-HPs-FAs) of well-defined sizes (60, 133, 245, and 335 nm) were fabricated for application as a photosensitizer delivery agent for photodynamic therapy in cancer cells. To provide selective targeting of cancer cells and destruction of cancer cell functionality, basic cobalt ferrite (CoFe₂O₄) particles were covalently bonded with a photosensitizer (PS), which comprises hematoporphyrin (HP), and folic acid (FA) molecules. The magnetic properties of the CoFe₂O₄ particles were finely adjusted by controlling the size of the primary CoFe₂O₄ nanograins, and secondary superstructured composite particles were formed by aggregation of the nanograins. The prepared CoFe₂O₄-HP-FA exhibited high water solubility, good MR-imaging capacity, and biocompatibility without any in vitro cytotoxicity. In particular, our CoFe₂O₄-HP-FA exhibited remarkable photodynamic anticancer efficiency via induction of apoptotic death in PC-3 prostate cancer cells in a particle size- and concentration-dependent manner. This size-dependent effect was determined by the specific surface area of the particles because the number of HP molecules increased with decreasing size and increasing surface area. These results indicate that our CoFe₂O₄-HP-FA may be applicable for photodynamic therapy (PDT) as a PS delivery material and a therapeutic agent for MR-imaging based PDT owing to their high saturation value for magnetization and superparamagnetism.

  5. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Science.gov (United States)

    2012-01-01

    Background Nanoparticles (NPs) are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS) NPs of different sizes (20, 40 and 100 nm) in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher. PMID:23006133

  6. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Directory of Open Access Journals (Sweden)

    Varela Juan A

    2012-09-01

    Full Text Available Abstract Background Nanoparticles (NPs are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS NPs of different sizes (20, 40 and 100 nm in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher.

  7. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  8. Clast Size, Void Space, and Degree of Contortion in Spatter Piles at Craters of the Moon, ID. Implications for Eruptions Conditions of Lunar Basalts.

    Science.gov (United States)

    Rader, E. L.; Heldmann, J. L.

    2016-12-01

    Spatter is an explosive volcanic product consisting of partially-molten clasts found predominantly in mafic eruptions. Classification of spatter deposits is currently based on qualitative visual identification, and its presence signifies little more than a near-vent environment. However, the variables that effect spatter morphology (density of clasts, aspect ratio of clasts, rind thickness, etc.) are related to heat transfer from the vent via convection and radiation to the atmosphere and conduction through the spatter pile. Subsequently, the heat flux is proportional to the volume and rate of eruption, as faster and more voluminous eruptions result in a higher degree of welding between clasts. With a quantitative classification scheme, spatter deposits may reveal important eruption conditions such as eruption duration, eruption vigor, and fountain height. These factors are particularly important for non-terrestrial volcanoes whose eruptions have never been observed and whose products will likely be sampled on too small of a scale for more detailed chemical and thermal analysis. This study describes physical aspects of multiple spatter deposits at Craters of the Moon National Monument in Idaho, and suggests different eruptions conditions will produce quantitatively unique spatter deposits.

  9. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator

    Science.gov (United States)

    Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.

    2007-09-01

    We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10-4g/cm3.

  10. Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals.

    Science.gov (United States)

    Kozlowski, J; Czarnoleski, M; François-Krassowska, A; Maciak, S; Pis, T

    2010-12-23

    We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.

  11. A chemical screen probing the relationship between mitochondrial content and cell size.

    Directory of Open Access Journals (Sweden)

    Toshimori Kitami

    Full Text Available The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.

  12. Small-Size Resonant Photoacoustic Cell of Inclined Geometry for Gas Detection

    CERN Document Server

    Gorelik, A V; Nikonovich, F N; Zakharich, M P; Chebotar, A I; Firago, V A; Stetsik, V M; Kazak, N S; Starovoitov, V S

    2009-01-01

    A photoacoustic cell intended for laser detection of trace gases is represented. The cell is adapted so as to enhance the gas-detection performance and, simultaneously, to reduce the cell size. The cell design provides an efficient cancellation of the window background (a parasite response due to absorption of laser beam in the cell windows) and acoustic isolation from the environment for an acoustic resonance of the cell. The useful photoacoustic response from a detected gas, window background and noise are analyzed in demonstration experiments as functions of the modulation frequency for a prototype cell with the internal volume ~ 0.5 cm^3. The minimal detectable absorption for the prototype is estimated to be ~ 1.2 10^{-8} cm^{-1} W Hz^{-1/2}.

  13. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.

    Science.gov (United States)

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A

    2013-04-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss.

  14. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation.

    Science.gov (United States)

    Ma, Chunquan; Zhou, Dong; Wang, Haitao; Han, Dongming; Wang, Yang; Yan, Xiufeng

    2017-01-01

    Plant cell suspension cultures have emerged as a potential source of secondary metabolites for food additives and pharmaceuticals. In this study inulin accumulation and its degree of polymerisation (DP) in the treated cells in the same medium were investigated after treatment with six types of elicitors. An in vitro cell suspension culture of Jerusalem artichoke (Helianthus tuberosus L.) was optimised by adding an extra nitrogen source. According to the growth kinetics, a maximum biomass of 5.48 g L(-1) was obtained from the optimal cell suspension medium consisted of Murashige and Skoog basic medium (MS) + 1.0 mg L(-1) α-naphthalene acetic acid (NAA) + 1.0 mg L(-1) 6-benzylaminopurine (6-BA) + 0.5 mg L(-1) proline + 1.0 mg L(-1) glutamine. Methyl jasmonate (MeJA, 250 µmol L(-1) ) treatment for 15 days led to the highest levels of inulin (2955.27 ± 9.81 mg L(-1) compared to control of 1217.46 ± 0.26 mg L(-1) ). The elicited effect of five elicitors to the suspension cells of Jerusalem artichoke is as follows: AgNO3 (Ag, 10 µmol L(-1) ), salicylic acid (SA, 75 µmol L(-1) ), chitosan (KJT, 40 mg L(-1) ), Trichoderma viride (Tv, 90 mg L(-1) ), yeast extract (YE, 0.25 mg L(-1) ), and the corresponding content of inulin is increased by 2.05-, 1.93-, 1.76-, 1.44- and 1.18-fold compared to control, respectively. The obvious effect on the percentage of lower DP in inulin was observed in cells treated with 40 mg L(-1) KJT, 0.25 mg L(-1) YE and 10 µmol L(-1) Ag. Among the six types of elicitors, the descending order of inulin content is MeJA > Ag > SA > KJT > Tv > YE. For the purpose inulin with lower DP and its application to prebiotic food, three elicitors, including KJT, YE and Ag, can be used for the elicitation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion.

    Directory of Open Access Journals (Sweden)

    Akira C Saito

    Full Text Available Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC field to induce a linear cell-GUV alignment, and then a direct current (DC pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.

  16. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  17. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    Science.gov (United States)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  18. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size.

    Science.gov (United States)

    Chen, Jian-Fu; Zhang, Ying; Wilde, Jonathan; Hansen, Kirk C; Lai, Fan; Niswander, Lee

    2014-05-30

    Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly.

  19. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    Science.gov (United States)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  20. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  1. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation.

    Science.gov (United States)

    Ferrezuelo, Francisco; Colomina, Neus; Palmisano, Alida; Garí, Eloi; Gallego, Carme; Csikász-Nagy, Attila; Aldea, Martí

    2012-01-01

    Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.

  2. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy.

    Science.gov (United States)

    Soifer, Ilya; Robert, Lydia; Amir, Ariel

    2016-02-08

    To maintain a constant cell size, dividing cells have to coordinate cell-cycle events with cell growth. This coordination has long been supposed to rely on the existence of size thresholds determining cell-cycle progression [1]. In budding yeast, size is controlled at the G1/S transition [2]. In agreement with this hypothesis, the size at birth influences the time spent in G1: smaller cells have a longer G1 period [3]. Nevertheless, even though cells born smaller have a longer G1, the compensation is imperfect and they still bud at smaller cell sizes. In bacteria, several recent studies have shown that the incremental model of size control, in which size is controlled by addition of a constant volume (in contrast to a size threshold), is able to quantitatively explain the experimental data on four different bacterial species [4-7]. Here, we report on experimental results for the budding yeast Saccharomyces cerevisiae, finding, surprisingly, that cell size control in this organism is very well described by the incremental model, suggesting a common strategy for cell size control with bacteria. Additionally, we argue that for S. cerevisiae the "volume increment" is not added from birth to division, but rather between two budding events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2014-09-01

    Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft.

  4. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    Science.gov (United States)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  5. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Tazelaar, Edwin; Shen, Y.; Veenhuizen, Bram; Hofman, T.; Bosch, P. van den

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  6. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    Science.gov (United States)

    Wu, Haibin; Chen, Wei

    2011-10-05

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells.

  7. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Y. Shen; P. van den Bosch; Edwin Tazelaar; Bram Veenhuizen; T. Hofman

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  8. Determining the optimum cell size of digital elevation model for hydrologic application

    Indian Academy of Sciences (India)

    Arabinda Sharma; K N Tiwari; P B S Bhadoria

    2011-08-01

    Scale is one of the most important but unsolved issues in various scientific disciplines that deal with spatial data. The arbitrary choice of grid cell size for contour interpolated digital elevation models (DEM) is one of the major sources of uncertainty in the hydrologic modelling process. In this paper, an attempt was made to identify methods for determining an optimum cell size for a contour interpolated DEM in prior to hydrologic modelling. Twenty-meter interval contour lines were used to generate DEMs of five different resolutions, viz., 30, 45, 60, 75, and 90 m using TOPOGRID algorithm. The obtained DEMs were explored for their intrinsic quality using four different methods, i.e., sink analysis, fractal dimension of derived stream network, entropy measurement and semivariogram modelling. These methods were applied to determine the level artifacts (interpolation error) in DEM surface as well as derived stream network, spatial information content and spatial variability respectively. The results indicated that a 90 m cell size is sufficient to capture the terrain variability for subsequent hydrologic modelling in the study area. The significance of this research work is that it provides methods which DEM users can apply to select an appropriate DEM cell size in prior to detailed hydrologic modelling.

  9. Cell size and communication: role in structural and electrical development and remodeling of the heart.

    Science.gov (United States)

    Spach, Madison S; Heidlage, J Francis; Barr, Roger C; Dolber, Paul C

    2004-10-01

    With the advent of new information about alterations of cardiac gap junctions in disease conditions associated with arrhythmias, there have been major advances in the genetic and metabolic manipulation of gap junctions. In contrast, in naturally occurring cardiac preparations, little is known about cell-to-cell transmission and the subcellular events of propagation or about structural mechanisms that may affect conduction events at this small size scale. Therefore, the aim of this article is to review results that produce the following unifying picture: changes in cardiac conduction due to remodeling cardiac morphology ultimately are limited to changes in three morphologic parameters: (1) cell geometry (size and shape), (2) gap junctions (distribution and conductivity), and (3) interstitial space (size and distribution). In this article, we consider changes in conduction that result from the remodeling of cell size and gap junction distribution that occurs with developmental ventricular hypertrophy from birth to maturity. We then go on to changes in longitudinal and transverse propagation in aging human atrial bundles that are produced by remodeling interstitial space due to deposition of collagenous septa. At present, experimental limitations in naturally occurring preparations prevent measurement of the conductance of individual gap junctional plaques, as well as the delays in conduction associated with cell-to-cell transmission. Therefore, we consider the development of mathematical electrical models based on documented cardiac microstructure to gain insight into the role of specific morphologic parameters in generating the changes in anisotropic propagation that we measured in the tissue preparations. A major antiarrhythmic implication of the results is that an "indirect" therapeutic target is interstitial collagen, because regulation of its deposition and turnover to prevent or alter microfibrosis can enhance side-to-side electrical coupling between small

  10. Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Helmar Waiczies

    Full Text Available The development of cellular tracking by fluorine ((19F magnetic resonance imaging (MRI has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton ((1H imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by (19F MR spectroscopy (MRS that the efficiency in labeling cells of the murine immune system (dendritic cells by perfluoro-15-crown-5-ether (PFCE particles increases with increasing particle size (560>365>245>130 nm. Dendritic cells (DC are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86 were also significantly elevated following labeling with larger PFCE particles (560 nm. When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the (19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation, it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.

  11. Preparation of big size open-cell aluminum foam board using infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Wang Lucai; Chen Yuyong; Wang Fang; Wu Jianguo; You Xiaohong

    2008-01-01

    This paper presents an infiltration casting technique for manufacturing big size open-cell aluminum foam boards. The principle and key technologies of infiltration casting are also analyzed. Based on the previous practice of the small size aluminum foam production, the die for preparing big size aluminum foam boards is designed and manufactured. The experiments on aluminum boards of 300 mm×300 mm×(20-75) mm, with the pore size ranging from 1.0 to 3.2 mm and average porosity of 60%, have been performed. The experimental results show that a reliable infiltration process depends critically on the pouring temperature of the molten AI-alloy, the preheated temperature of the mould and salt particles and vacuum. Current research explores the possibility of large-scale manufacturing and application of the aluminum foams.

  12. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  13. Nucleus and cell size changes in human bulbar conjunctival cells after soft contact lens wear, as assessed by impression cytology.

    Science.gov (United States)

    Doughty, Michael J; Naase, Taher

    2008-06-01

    To specifically assess the nucleus size and its relationship to cell size for human bulbar conjunctival cells. Impression cytology samples were taken from the nasal side of the intra-palpebral zone of the bulbar conjunctival surface from 20 young adult white European males, half of whom were successful daily soft contact lens wearers. A Millcell-CM filter was used, after topical anaesthesia with oxybuprocaine 0.4%, which was stained with Giemsa and colour images taken at 400x magnification by light microscopy. The images were graded and also a 35mm was prepared. From the projected image, an overlay method was used to outline the borders such that the cell and nucleus areas could be measured by planimetry. The group mean cell area values were 267+/-59microm(2) (n=10, +/-S.D.) and 1028+/-357microm(2) for the non-contact lens wearers and contact lens wearers, respectively. The cell nucleus areas were 64+/-11microm(2) and 99+/-19microm(2), respectively. Both the cell areas and nucleus area values were statistically different between the two groups (pnucleus-to-cytoplasm ratio also changes, but the nucleus size generally increases (rather than decreases).

  14. Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

    Directory of Open Access Journals (Sweden)

    Li Shang

    2014-12-01

    Full Text Available Engineered nanomaterials are known to enter human cells, often via active endocytosis. Mechanistic details of the interactions between nanoparticles (NPs with cells are still not well enough understood. NP size is a key parameter that controls the endocytic mechanism and affects the cellular uptake yield. Therefore, we have systematically analyzed the cellular uptake of fluorescent NPs in the size range of 3.3–100 nm (diameter by live cells. By using spinning disk confocal microscopy in combination with quantitative image analysis, we studied the time courses of NP association with the cell membrane and subsequent internalization. NPs with diameters of less than 10 nm were observed to accumulate at the plasma membrane before being internalized by the cells. In contrast, larger NPs (100 nm were directly internalized without prior accumulation at the plasma membrane, regardless of their surface charges. We attribute this distinct size dependence to the requirement of a sufficiently strong local interaction of the NPs with the endocytic machinery in order to trigger the subsequent internalization.

  15. Mechanical tugging force regulates the size of cell–cell junctions

    Science.gov (United States)

    Liu, Zhijun; Tan, John L.; Cohen, Daniel M.; Yang, Michael T.; Sniadecki, Nathan J.; Ruiz, Sami Alom; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell–matrix and cell–cell contact. While increased mechanical loading at cell–matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell–cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell–cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell–cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (S1P, thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell–cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces. PMID:20463286

  16. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.

    Science.gov (United States)

    Fadda, S; Briesen, H; Cincotti, A

    2011-06-01

    Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram. This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173-2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells. From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Semiquantitative RT-PCR measurement of gene expression in rat tissues including a correction for varying cell size and number

    Directory of Open Access Journals (Sweden)

    Esteve Montserrat

    2007-11-01

    Full Text Available Abstract Background Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation. A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion The method presented allows the comparison (i.e. as copies of mRNA per cell between different genes and tissues, establishing the degree of abundance of the different molecular species tested.

  18. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.

    2016-01-01

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  19. Scaling of traction forces with the size of cohesive cell colonies.

    Science.gov (United States)

    Mertz, Aaron F; Banerjee, Shiladitya; Che, Yonglu; German, Guy K; Xu, Ye; Hyland, Callen; Marchetti, M Cristina; Horsley, Valerie; Dufresne, Eric R

    2012-05-11

    To understand how the mechanical properties of tissues emerge from interactions of multiple cells, we measure traction stresses of cohesive colonies of 1-27 cells adherent to soft substrates. We find that traction stresses are generally localized at the periphery of the colony and the total traction force scales with the colony radius. For large colony sizes, the scaling appears to approach linear, suggesting the emergence of an apparent surface tension of the order of 10(-3)  N/m. A simple model of the cell colony as a contractile elastic medium coupled to the substrate captures the spatial distribution of traction forces and the scaling of traction forces with the colony size.

  20. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    Energy Technology Data Exchange (ETDEWEB)

    Puseenam, Aekkachai [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Nagai, Rika [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Suyari, Osamu [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Itoh, Masanobu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Enomoto, Atsushi [Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Takahashi, Masahide [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  1. Limitations of mRNA amplification from small-size cell samples

    Directory of Open Access Journals (Sweden)

    Myklebost Ola

    2005-10-01

    Full Text Available Abstract Background Global mRNA amplification has become a widely used approach to obtain gene expression profiles from limited material. An important concern is the reliable reflection of the starting material in the results obtained. This is especially important with extremely low quantities of input RNA where stochastic effects due to template dilution may be present. This aspect remains under-documented in the literature, as quantitative measures of data reliability are most often lacking. To address this issue, we examined the sensitivity levels of each transcript in 3 different cell sample sizes. ANOVA analysis was used to estimate the overall effects of reduced input RNA in our experimental design. In order to estimate the validity of decreasing sample sizes, we examined the sensitivity levels of each transcript by applying a novel model-based method, TransCount. Results From expression data, TransCount provided estimates of absolute transcript concentrations in each examined sample. The results from TransCount were used to calculate the Pearson correlation coefficient between transcript concentrations for different sample sizes. The correlations were clearly transcript copy number dependent. A critical level was observed where stochastic fluctuations became significant. The analysis allowed us to pinpoint the gene specific number of transcript templates that defined the limit of reliability with respect to number of cells from that particular source. In the sample amplifying from 1000 cells, transcripts expressed with at least 121 transcripts/cell were statistically reliable and for 250 cells, the limit was 1806 transcripts/cell. Above these thresholds, correlation between our data sets was at acceptable values for reliable interpretation. Conclusion These results imply that the reliability of any amplification experiment must be validated empirically to justify that any gene exists in sufficient quantity in the input material. This

  2. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    Science.gov (United States)

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  3. Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles.

    Science.gov (United States)

    Dong, Haiyan; Parekh, Harendra S; Xu, Zhi Ping

    2015-01-01

    It is well known that delivery efficiency to cells is highly dependent on particle size and the administered dose. However, there is a marked discrepancy in many reports, mainly due to the inconsistency in assessment of various parameters. In this particular research, we designed experiments using layered double hydroxide nanoparticles (LDH NPs) to specifically elucidate the effect of particle size, dose and dye loading manner on cellular uptake. Using the number of LDH NPs taken up by HCT-116 cells as the indicator of delivery efficiency, we found that (1) the size of sheet-like LDH in the range of 40-100 nm did not significantly affect their cellular uptake; (2) cellular uptake of 40 and 100 nm LDH NPs was increased proportionally to the number concentration below a critical value, but remained relatively constant beyond the critical value; and (3) the effect of the dye loading manner is mainly dependent on the loading capacity or yield. In particular, the loading capacity is determined by the NP specific surface area. This research may be extended to a larger size range to examine the size effect, but suggests that it is necessary to set up a protocol to evaluate the effects of NP's physicochemical properties on the cellular delivery efficiency.

  4. Temperature and phytoplankton cell size regulate carbon uptake and carbon overconsumption in the ocean

    Directory of Open Access Journals (Sweden)

    S. E. Craig

    2013-07-01

    Full Text Available Phytoplankton plays a critical role in the uptake of atmospheric carbon dioxide by the ocean, and is comprised of a spectrum of cell sizes that are strongly associated with different oceanographic conditions. Studies suggest that the ocean will become increasingly stratified in response to a warming climate, limiting nutrient exchange to the upper sunlit ocean and favouring small cells able to grow in warmer, nutrient poor conditions. Here we show that, in a temperate shelf sea, a summertime population of numerically abundant small cells accounts for approximately 20% of annual carbon uptake. These small cells are not well represented by chlorophyll a – the ubiquitously used proxy of phytoplankton biomass – but rather, are strongly correlated with surface water temperature. Given the persistent near-zero nutrient concentrations during the summer, it appears that small cells drive carbon overconsumption, and suggest that their role in carbon fixation will become increasingly important in a warming ocean.

  5. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  6. Effects of microbubble size on ultrasound-mediated gene transfection in auditory cells.

    Science.gov (United States)

    Liao, Ai-Ho; Hsieh, Yi-Lei; Ho, Hsin-Chiao; Chen, Hang-Kang; Lin, Yi-Chun; Shih, Cheng-Ping; Chen, Hsin-Chien; Kuo, Chao-Yin; Lu, Ying-Jui; Wang, Chih-Hung

    2014-01-01

    Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-)facilitated ultrasound (US) technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  7. Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size.

    Science.gov (United States)

    Nakata, Yumiko; Taniguchi, Go; Takazaki, Shinya; Oda-Ueda, Naoko; Miyahara, Kohji; Ohshima, Yasumi

    2012-09-01

    Common pumpkin plants (Cucurbita maxima) produce fruits of 1-2 kg size on the average, while special varieties of the same species called Atlantic Giant are known to produce a huge fruit up to several hundred kilograms. As an approach to determine the factors controlling the fruit size in C. maxima, we cultivated both AG and control common plants, and found that both the cell number and cell sizes were increased in a large fruit while DNA content of the cell did not change significantly. We also compared protein patterns in the leaves, stems, ripe and young fruits by two-dimensional (2D) gel electrophoresis, and identified those differentially expressed between them with mass spectroscopy. Based on these results, we suggest that factors in photosynthesis such as ribulose-bisphosphate carboxylase, glycolysis pathway enzymes, heat-shock proteins and ATP synthase play positive or negative roles in the growth of a pumpkin fruit. These results provide a step toward the development of plant biotechnology to control fruit size in the future.

  8. Molecular behavior of DNA in a cell-sized compartment coated by lipids

    CERN Document Server

    Hamada, T; Shimobayashi, S F; Ichikawa, M; Takagi, M

    2015-01-01

    The behavior of long DNA molecules in a cell-sized confined space was investigated. We prepared water-in-oil droplets covered by phospholipids, which mimic the inner space of a cell, following the encapsulation of DNA molecules with unfolded coil and folded globule conformations. Microscopic observation revealed that the adsorption of coiled DNA onto the membrane surface depended on the size of the vesicular space. Globular DNA showed a cell-size-dependent unfolding transition after adsorption on the membrane. Furthermore, when DNA interacted with a two-phase membrane surface, DNA selectively adsorbed on the membrane phase, such as an ordered or disordered phase, depending on its conformation. We discuss the mechanism of these trends by considering the free energy of DNA together with a polyamine in the solution. The free energy of our model was consistent with the present experimental data. The cooperative interaction of DNA and polyamines with a membrane surface leads to the size-dependent behavior of molec...

  9. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  10. Rgs13 constrains early B cell responses and limits germinal center sizes.

    Directory of Open Access Journals (Sweden)

    Il-Young Hwang

    Full Text Available Germinal centers (GCs are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN of immunized mice revealed the rapid appearance of GFP(+ cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.

  11. Size-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kyong-Hoon Choi

    2016-09-01

    Full Text Available In this study, newly designed biocompatible multifunctional magnetic submicron particles (CoFe2O4-HPs-FAs of well-defined sizes (60, 133, 245, and 335 nm were fabricated for application as a photosensitizer delivery agent for photodynamic therapy in cancer cells. To provide selective targeting of cancer cells and destruction of cancer cell functionality, basic cobalt ferrite (CoFe2O4 particles were covalently bonded with a photosensitizer (PS, which comprises hematoporphyrin (HP, and folic acid (FA molecules. The magnetic properties of the CoFe2O4 particles were finely adjusted by controlling the size of the primary CoFe2O4 nanograins, and secondary superstructured composite particles were formed by aggregation of the nanograins. The prepared CoFe2O4-HP-FA exhibited high water solubility, good MR-imaging capacity, and biocompatibility without any in vitro cytotoxicity. In particular, our CoFe2O4-HP-FA exhibited remarkable photodynamic anticancer efficiency via induction of apoptotic death in PC-3 prostate cancer cells in a particle size- and concentration-dependent manner. This size-dependent effect was determined by the specific surface area of the particles because the number of HP molecules increased with decreasing size and increasing surface area. These results indicate that our CoFe2O4-HP-FA may be applicable for photodynamic therapy (PDT as a PS delivery material and a therapeutic agent for MR-imaging based PDT owing to their high saturation value for magnetization and superparamagnetism.

  12. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis.

    Directory of Open Access Journals (Sweden)

    Karine Toupet

    Full Text Available Application of mesenchymal stem/stromal cells (MSCs in treating different disorders, in particular osteo-articular diseases, is currently under investigation. We have already documented the safety of administrating human adipose tissue-derived stromal MSCs (hASCs in immunodeficient mice. In the present study, we investigated whether the persistence of MSC is affected by the degree of inflammation and related to the therapeutic effect in two inflammatory models of arthritis.We used C57BL/6 or DBA/1 mice to develop collagenase-induced osteoarthritis (CIOA or collagen-induced arthritis (CIA, respectively. Normal and diseased mice were administered 2.5×10(5 hASCs in the knee joints (i.a. or 10(6 in the tail vein (i.v.. For CIA, clinical scores were monitored during the time course of the disease while for CIOA, OA scores were assessed by histology at euthanasia. Thirteen tissues were recovered at different time points and processed for real-time PCR and Alu sequence detection. Immunological analyses were performed at euthanasia. After i.v. infusion, no significant difference in the percentage of hASCs was quantified in the lungs of normal and CIA mice at day 1 while no cell was detected at day 10 taking into account the sensitivity of the assay, indicating that a high level of inflammation did not affect the persistence of cells. In CIOA mice, we reported the therapeutic efficacy of hASCs at reducing OA clinical scores at day 42 when hASCs were not detected in the joints. However, the percentage and distribution of hASCs were similar in osteoarthritic and normal mice at day 1 and 10 after implantation indicating that moderate inflammation does not alter hASC persistence in vivo.While inflammatory signals are required for the immunosuppressive function of MSCs, they do not enhance their capacity to survive in vivo, as evaluated in two xenogeneic inflammatory pre-clinical models of arthritis.

  13. Effects of Honeycomb Cell Size on Performances of Sandwich Panels%蜂窝体胞尺寸对夹芯板性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    孙士平; 赖余东

    2011-01-01

    Honeycomb sandwich panel was studied to reveal the effects of the cell size in the static analysis and the free vibration analysis. The response of the sandwich panel with the homogenized cores was used as the standard of comparison. The ratio of the responses of the detailed finite element models of sandwich panels to the corresponding comparison solutions was defined as a Size Influencing Index that reflects the influences of the size variation of different cell configuration. Based finite element technique, the static and the free variation response of honeycomb sandwich panels with the different cores and the homogenized cores were analyzed comparatively, under three typical boundary conditions, including the hexagonal, triangular and square honeycomb core. The computed results reveal the size effect of the honeycomb cell on the stiffness and the frequency behavior of sandwich panel. It is shown that when the ratio of the macrostructure size to the cell size is larger than 12, the influence of the cell size on the sandwich panel performances tends to gentle weakening. Meanwhile, when the cell size and macrostructure size are comparable with each other, the size effect is quite obvious, and the degree of influence is significantly dependent on the boundary condition and the cell configuration.%研究了周期性夹芯蜂窝体胞尺寸对夹芯板刚度性能、一阶频率的影响规律.以夹芯均匀化等效的夹芯板模型为基准,定义无量纲尺寸影响因子,描述不同蜂窝尺寸夹芯板性能相对均匀化等效模型基准值的变化趋势,量化蜂窝尺寸的影响程度.采用有限元数值方法,开展了不同尺寸、不同构型以及不同边界条件下蜂窝夹芯板性能的比较分析.计算结果表明:夹芯板的刚度性能与频率具有尺寸效应,当夹芯尺寸与蜂窝尺寸比值大于12,蜂窝尺寸的影响程度趋于平缓减弱,当蜂窝尺寸与夹芯尺寸相当时,蜂窝尺寸的影响非常明显,其影

  14. Heterotrophic free-living and particle-bound bacterial cell size in the river Cauvery and its downstream tributaries

    Indian Academy of Sciences (India)

    T S Harsha; Sadanand M Yamakanamardi; M Mahadevaswamy

    2007-03-01

    This is the first comprehensive study on planktonic heterotrophic bacterial cell size in the river Cauvery and its important tributaries in Karnataka State, India. The initial hypothesis that the mean cell size of planktonic heterotrophic bacteria in the four tributaries are markedly different from each other and also from that in the main river Cauvery was rejected, because all five watercourses showed similar planktonic heterotrophic bacterial cell size. Examination of the correlation between mean heterotrophic bacterial cell size and environmental variables showed four correlations in the river Arkavathy and two in the river Shimsha. Regression analysis revealed that 18% of the variation in mean heterotrophic free-living bacterial cell size was due to biological oxygen demand (BOD) in the river Arkavathy, 11% due to surface water velocity (SWV) in the river Cauvery and 11% due to temperature in the river Kapila. Heterotrophic particle-bound bacterial cell size variation was 28% due to chloride and BOD in the river Arkavathy, 11% due to conductivity in the river Kapila and 8% due to calcium in the river Cauvery. This type of relationship between heterotrophic bacterial cell size and environmental variables suggests that, though the mean heterotrophic bacterial cell size was similar in all the five water courses, different sets of environmental variables apparently control the heterotrophic bacterial cell size in the various water bodies studied in this investigation. The possible cause for this environmental (bottom–up) control is discussed.

  15. Simulation step size analysis of a whole-cell computational model of bacteria

    Science.gov (United States)

    Abreu, Raphael; Castro, Maria Clicia S.; Silva, Fabrício Alves B.

    2016-12-01

    Understanding how complex phenotypes arise from individual molecules and their interactions is a major challenge in biology and, to meet this challenge, computational approaches are increasingly employed. As an example, a recent paper [1] proposed a whole-cell model Mycoplasma genitalium including all cell components and their interactions. 28 modules representing several cell functions were modeled independently, and then integrated into a single computational model. One assumption considered in the whole-cell model of M.Genitalium is that all 28 modules can be modeled independently given the 1 second step size used in simulations. This is a major assumption, since it simplifies the modeling of several cell functions and makes the modeling of the system as a whole feasible. In this paper we investigate the dependency of experimental results on that assumption. We have simulated the M.Genitalium cell cycle using several simulation time step sizes and compared the results to the ones obtained with the system using 1 second simulation time step.

  16. A micro-sized bio-solar cell for self-sustaining power generation.

    Science.gov (United States)

    Lee, Hankeun; Choi, Seokheun

    2015-01-21

    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  17. Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Recent studies have indicated that graphene and its derivative graphene oxide (GO engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm, small GOs (SGOs, 50–200 nm, and large GOs (LGOs, 0.5–3 μm. We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7 cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.

  18. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.

    Science.gov (United States)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette; Kassem, Moustapha; Mygind, Tina

    2011-06-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation

  19. Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-07-01

    Full Text Available The content of volatile and semivolatile organic compounds (VOC and SOC, measured as exchangeable dissolved organic carbon (EDOC, was quantified in 9 phytoplanktonic species that spanned 4 orders of magnitude in cell volume, by disrupting the cells and quantifying the gaseous organic carbon released. EDOC content varied 4 orders of magnitude, from 0.0015 to 14.12 pg C cell-1 in the species studied and increased linearly with increasing phytoplankton cell volume following the equation EDOC (pg C cell-1 = -2.35 x cellular volume (CV, µm3 cell-1 0.90 (± 0.3, with a slope (0.90 not different from 1 indicating a constant increase in volatile carbon as the cell size of phytoplankton increased. The percentage of EDOC relative to total cellular carbon was small but varied 20 fold from 0.28 % to 5.17 %, and no obvious taxonomic pattern in the content of EDOC was appreciable for the species tested. The cell release rate of EDOC is small compared to the amount of carbon in the cell and difficult to capture. Nonetheless, the results point to a potential flux of volatile and semivolatile phytoplankton-derived organic carbon to the atmosphere that has been largely underestimated and deserves further attention in the future.

  20. The impact of metabolism on aging and cell size in single yeast cells

    NARCIS (Netherlands)

    Huberts, Daphne

    2015-01-01

    The aim of this thesis was to determine how metabolism affects yeast aging in single yeast cells using a novel microfluidic device. We first review how cells are able to sense nutrients in their environment and then describe the use of the microfluidic dissection platform that greatly improves our

  1. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    Science.gov (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  2. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6......, a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i.......e., reduced quantal size). This was paralleled by a reduction in the mean single-vesicle capacitance, estimated by averaging time-locked capacitance traces. EM confirmed that LDCVs were fewer and of markedly reduced size in the PICK1 KO, demonstrating that all phenotypes can be explained by reductions...

  3. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    CERN Document Server

    Hase, M; Hamada, T; Yoshikawa, K; Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The lipid vesicle can then be transported back into the oil phase. This novel experimental procedure may be a useful tool for creating a model cellular system, which, together with a microreactor, is applicable as a micrometer-scale biochemical reaction field.

  4. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan

    2017-02-01

    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  5. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    Science.gov (United States)

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  6. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  7. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    Science.gov (United States)

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  8. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin Weisheng [Missouri University of Science and Technology, Department of Chemistry and Environmental Research Center (United States); Xu Yi; Huang Chuanchin [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States); Ma Yinfa [Missouri University of Science and Technology, Department of Chemistry and Environmental Research Center (United States); Shannon, Katie B. [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States); Chen Daren [Washington University in St. Louis, Department of Energy, Environmental and Chemical Engineering (United States); Huang, Yue-Wern, E-mail: huangy@mst.ed [Missouri University of Science and Technology, Department of Biological Sciences and Environmental Research Center (United States)

    2009-01-15

    This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn{sup 2+} and metal impurities were not major contributors of ROS induction as indicated by limited free Zn{sup 2+} cytotoxicity, extent of Zn{sup 2+} dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose-response pattern unseen in other metal oxides, and (3) neither free Zn{sup 2+} nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

  9. Exact, time-independent estimation of clone size distributions in normal and mutated cells.

    Science.gov (United States)

    Roshan, A; Jones, P H; Greenman, C D

    2014-10-06

    Biological tools such as genetic lineage tracing, three-dimensional confocal microscopy and next-generation DNA sequencing are providing new ways to quantify the distribution of clones of normal and mutated cells. Understanding population-wide clone size distributions in vivo is complicated by multiple cell types within observed tissues, and overlapping birth and death processes. This has led to the increased need for mathematically informed models to understand their biological significance. Standard approaches usually require knowledge of clonal age. We show that modelling on clone size independent of time is an alternative method that offers certain analytical advantages; it can help parametrize these models, and obtain distributions for counts of mutated or proliferating cells, for example. When applied to a general birth-death process common in epithelial progenitors, this takes the form of a gambler's ruin problem, the solution of which relates to counting Motzkin lattice paths. Applying this approach to mutational processes, alternative, exact, formulations of classic Luria-Delbrück-type problems emerge. This approach can be extended beyond neutral models of mutant clonal evolution. Applications of these approaches are twofold. First, we resolve the probability of progenitor cells generating proliferating or differentiating progeny in clonal lineage tracing experiments in vivo or cell culture assays where clone age is not known. Second, we model mutation frequency distributions that deep sequencing of subclonal samples produce.

  10. Analysis of a stochastic model for bacterial growth and the lognormality in the cell-size distribution

    CERN Document Server

    Yamamoto, Ken

    2016-01-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell divisions and linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We derive that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values which give good lognormal approximation, so the experimental cell-size distribution is in good agreement with a lognormal distribution.

  11. Relationship between tumor size and disease stage in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yang Fu

    2010-09-01

    Full Text Available Abstract Background Whether tumor size and stage distribution are correlated remains controversial. The objective is to assess the relationship between tumor size and disease stage distribution in non-small cell lung cancer (NSCLC. Methods We conducted a retrospective analysis of 917 cases of NSCLC that were resected in the Cancer Hospital of Fudan University and Shanghai Sixth Hospital between January 2000 and February 2009. Tumor sizes were grouped into five categories: ≤20 mm, 21 to 30 mm, 31 to 50 mm, 51 to 70 mm and ≥71 mm. Results Age and tumor size affected stage distribution: patients 60 years or older had a higher percentage of N0M0 disease than patients younger than 60 years (61.67% vs. 44.85%, p Conclusions There is a statistically significant relationship between tumor size and distribution of disease stage of primary NSCLC tumors: the smaller the tumor, the more likely the disease is N0M0 status.

  12. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    Science.gov (United States)

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  13. On the effect of particle size distribution on the discharge performance of nickel-metal hydride cells

    Energy Technology Data Exchange (ETDEWEB)

    Heikonen, J.M. [Center for Scientific Computing, Espoo (Finland); Nagarajan, G.S.; Zee, J.W. van [Department of Chemical Engineering, University of South Carolina, Columbia, SC (United States)

    1997-12-31

    The effect of particle size distribution on the discharge performance of nickel-metal hydride cells with mathematical models is investigated. A model with a continuous size distribution is presented and a simplified discrete version with two particle sizes is numerically analyzed for various parameter values. Simulation results are compared with experiments from another article and the deviations are analyzed. (orig.) 13 refs.

  14. The PhytoSCALE project: calibrating phytoplankton cell size as a proxy for climatic adaptation

    Science.gov (United States)

    Henderiks, Jorijntje; Gerecht, Andrea; Hannisdal, Bjarte; Liow, Lee Hsiang; Reitan, Trond; Schweder, Tore; Edvardsen, Bente

    2013-04-01

    The Cenozoic fossil record reveals that coccolithophores (marine unicellular haptophyte algae) were globally more common and widespread, larger, and more heavily calcified before 34 million years ago (Ma), in a high-CO2 greenhouse world. We have recently demonstrated that changes in atmospheric CO2 have, directly or indirectly, exerted an important long-term control on the ecological prominence of coccolithophores as a whole [1]. On closer inspection, this macroevolutionary pattern primarily reflects the decline in abundance and subsequent extinction of large-celled and heavily calcified lineages, while small-sized species appear to have been more successful in adapting to the post-34 Ma "icehouse" world. Coccolith size (length) is a proxy for cellular volume-to-surface ratios (V:SA), as determined from fossil coccosphere geometries. Algal V:SA provides physiological constraints on carbon acquisition and other resource uptake rates, affecting both photosynthesis and calcification, and is therefore considered to be a key indicator of adaptation. As a general rule, small cells have faster growth rates than large cells under similar environmental conditions, giving small species a competitive advantage when resources become limiting. Our research aims to bridge the gap between short-term experimental observations of physiological and phenotypic plasticity in the modern species Emiliania huxleyi and Coccolithus pelagicus, and time series of the long-term phenotypic variability of their Cenozoic ancestors. Single-clone growth experiments revealed significant plasticity in cell size and coccolith volume under growth-limiting conditions. However, the range in coccolith size (length) remained relatively constant for single genotypes between various growth conditions. With these new data we test to what extent the size variation observed in the fossil time series is a reflection of anagenetic changes (i.e. evolution of an ancestral species to a descendant species without

  15. Size-dependent cytotoxicity of europium doped NaYF{sub 4} nanoparticles in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shizhu; Zhang, Cuimiao; Jia, Guang; Duan, Jianlei; Wang, Shuxiang, E-mail: wsx@hbu.edu.cn; Zhang, Jinchao, E-mail: jczhang6970@163.com

    2014-10-01

    Lanthanide-doped sodium yttrium fluoride (NaYF{sub 4}) nanoparticles exhibit novel optical properties which make them be widely used in various fields. The extensive applications increase the chance of human exposure to these nanoparticles and thus raise deep concerns regarding their riskiness. In the present study, we have synthesized europium doped NaYF{sub 4} (NaYF{sub 4}:Eu{sup 3+}) nanoparticles with three diameters and used endothelial cells (ECs) as a cell model to explore the potential toxic effect. The cell viability, cytomembrane integrity, cellular uptake, intracellular localization, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis detection, caspase-3 activity and expression of inflammatory gene were studied. The results indicated that these nanoparticles could be uptaken into ECs and decrease the cell viability, induce the intracellular lactate dehydrogenase (LDH) release, increase the ROS level, and decrease the cell MMP in a size-dependent manner. Besides that, the cells were suffered to apoptosis with the caspase-3 activation, and the inflammation specific gene expressions (ICAM1 and VCAM1) were also increased. Our results suggest that the damage pathway may be related to the ROS generation and mitochondrial damage. The results provide novel evidence to elucidate their toxicity mechanisms and may be helpful for more rational applications of these compounds in the future. - Highlights: • NaYF{sub 4}:Eu{sup 3+} nanoparticles with three diameters have been synthesized. • NaYF{sub 4}:Eu{sup 3+} nanoparticles could be uptaken by endothelial cells (ECs). • NaYF{sub 4}:Eu{sup 3+} nanoparticles show a significant cytotoxicity on ECs. • The size of NaYF{sub 4}:Eu{sup 3+} nanoparticles may be important to their toxicology effect.

  16. Assessing T cell clonal size distribution: a non-parametric approach.

    Science.gov (United States)

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  17. Assessing T cell clonal size distribution: a non-parametric approach.

    Directory of Open Access Journals (Sweden)

    Olesya V Bolkhovskaya

    Full Text Available Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  18. Subcellular Size

    Science.gov (United States)

    Marshall, Wallace F.

    2015-01-01

    All of the same conceptual questions about size in organisms apply equally at the level of single cells. What determines the size, not only of the whole cell, but of all of its parts? What ensures that subcellular components are properly proportioned relative to the whole cell? How does alteration in organelle size affect biochemical function? Answering such fundamental questions requires us to understand how the size of individual organelles and other cellular structures is determined. Knowledge of organelle biogenesis and dynamics has advanced rapidly in recent years. Does this knowledge give us enough information to formulate reasonable models for organelle size control, or are we still missing something? PMID:25957302

  19. Selective Rapid Eye Movement Sleep Deprivation Affects Cell Size and Number in Kitten Locus Coeruleus

    Directory of Open Access Journals (Sweden)

    James P Shaffery

    2012-05-01

    Full Text Available Cells in the locus coeruleus (LC constitute the sole source of norepinephrine (NE in the brain, and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas. Selective suppression of rapid eye movement sleep (REMS in the CP kitten enhances the central effects of monocular occlusion. The mechanisms responsible for heightened cortical plasticity following REMS deprivation (REMSD remain undetermined. One possible mediator of an increase in plasticity is continuous NE outflow, which presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH is the rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells. We selectively suppressed REMS in kittens for one week during the CP. The number and size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir was assessed in age-matched REMS-deprived (RD-, treatment-control (TXC-, and home cage-reared (HCC animals. Sleep amounts and slow wave activity (SWA were also examined relative to baseline. Time spent in REMS during the study was lower in RD compared to TXC animals, and RD kittens increased SWA delta power in the latter half of the REMSD period. The estimated total number of TH-ir cells in LC was significantly lower in the RD- than in the TXC kittens and numerically lower than in HCC animals. The size of LC cells expressing TH-ir was greatest in the HCC group. They were significantly larger than the cells in the RD kittens. These data are consistent with a possible reduction in NE in forebrain areas, including visual cortex, caused by one week of REMSD.

  20. Rapid monitoring of cell size, vitality and lipid droplet development in the oleaginous yeast Waltomyces lipofer.

    Science.gov (United States)

    Raschke, D; Knorr, D

    2009-11-01

    The aim of this work was the development of rapid methods suitable for monitoring the growth of the oleaginous yeast Waltomyces lipofer by means of cell size, vitality and the development of internal lipid droplets throughout different growth phases. Oleaginous yeasts are of interest for the industrial production of lipids and therefore precise monitoring of growth characteristics is needed. This paper provides information about both the method development as well as about examples for their use in monitoring applications. Cell size and shape were determined using FPIA (Flow Particle Image Analysis). Vitality and internal lipid droplets were measured using two independent staining methods for Flow Cytometry. Double staining with cFDA & PI was used for the distinction between "vital", "sublethal" and "dead" subpopulations, whereas Nile Red allowed the monitoring of lipid accumulation. In this approach the method for vitality measurement was optimized focussing on the staining buffer. An addition of 25 mM citric acid and pH 4.8 revealed to be optimal. The cells in the growth experiment showed a constantly high vitality, which was always above 90%, but slowly decreasing over time. In the course of lipid droplet development it could be seen that the cell size and the Nile Red fluorescence intensity increased. It was demonstrated that the tested method combination provides a powerful tool for rapid fermentation monitoring of the oleaginous yeast W. lipofer, which allows gaining information about the desired growth characteristics in less than 45 min. Further applications for the two methods will be discussed in this article.

  1. Differentiation of mouse iPS cells is dependent on embryoid body size in microwell chip culture.

    Science.gov (United States)

    Miyamoto, Daisuke; Nakazawa, Kohji

    2016-10-01

    A microwell chip possessing microwells of several hundred micrometers is a promising platform for generating embryoid bodies (EBs) of stem cells. Here, we investigated the effects of initial EB size on the growth and differentiation of mouse iPS cells in microwell chip culture. We fabricated a chip that contained 195 microwells in a triangular arrangement at a diameter of 600 μm. To evaluate the effect of EB size, four similar conditions were designed with different seeding cell densities of 100, 500, 1000, and 2000 cells/EB. The cells in each microwell gradually aggregated and then spontaneously formed a single EB within 1 d of culture, and EB size increased with further cell proliferation. EB growth was regulated by the initial EB size, and the growth ability of smaller EBs was higher than that of larger EBs. Furthermore, stem cell differentiation also depended on the initial EB size, and the EBs at more than 500 cells/EB promoted hepatic and cardiac differentiations, but the EBs at 100 cells/EB preferred vascular differentiation. These results indicated that the initial EB size was one of the important factors controlling the proliferation and differentiation of stem cells in the microwell chip culture.

  2. Innovative heating of large-size automotive Li-ion cells

    Science.gov (United States)

    Yang, Xiao-Guang; Liu, Teng; Wang, Chao-Yang

    2017-02-01

    Automotive Li-ion cells are becoming much larger and thicker in order to reduce the cell count and increase battery reliability, posing a new challenge to battery heating from the cold ambient due to poor through-plane heat transfer across a cell's multiple layers of electrodes and separators. In this work, widely used heating methods, including internal heating using the cell's resistance and external heating by resistive heaters, are compared with the recently developed self-heating Li-ion battery (SHLB) with special attention to the heating speed and maximum local temperature critical to battery safety. Both conventional methods are found to be slow due to low heating power required to maintain battery safety. The heating power in the external heating method is limited by the risk of local over-heating, in particular for thick cells. As a result, the external heating method is restricted to ∼20 min slow heating for a 30 °C temperature rise. In contrast, the SHLB is demonstrated to reach a heating speed of 1-2 °C/sec, ∼40 times faster for large-size thick cells, with nearly 100% heating efficiency and spatially uniform heating free from safety concerns.

  3. Mechanical responses of cancer cells on nanoscaffolds for adhesion size control.

    Science.gov (United States)

    Park, Soyeun; Bastatas, Lyndon; Matthews, James; Lee, Yong Joong

    2015-06-01

    A mechano-reciprocal interaction plays a critical role for cancer cells searching for favorable metastasis sites. For this study, we utilized nanoscaffolds that can control the maturation of focal adhesions in order to investigate how cancer cells mechanically respond to their nanoenvironments. We found that prostate cancer cells showed linearly decreasing proliferation rate and mechanical stiffness as the size of nanoislands on nanoscaffolds where the cells were grown decreases. This mechanical signature was exacerbated for less metastatic prostate cancer cells. However, there was no dependence of mechanical responses on the geometric properties of nanoscaffolds for breast cancer cells, despite the acute inhibition of adhesion and the abrupt mechanical changes. We believe that our holistic approach that utilizes atomic force microscopy (AFM) and nanoscaffolds can reveal which mechano-reciprocal interactions are crucial for metastasis and, thus, provide useful information for anti-cancer drug development targeting integrin-associated signaling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cell size at S phase initiation: an emergent property of the G1/S network.

    Directory of Open Access Journals (Sweden)

    Matteo Barberis

    2007-04-01

    Full Text Available The eukaryotic cell cycle is the repeated sequence of events that enable the division of a cell into two daughter cells. It is divided into four phases: G1, S, G2, and M. Passage through the cell cycle is strictly regulated by a molecular interaction network, which involves the periodic synthesis and destruction of cyclins that bind and activate cyclin-dependent kinases that are present in nonlimiting amounts. Cyclin-dependent kinase inhibitors contribute to cell cycle control. Budding yeast is an established model organism for cell cycle studies, and several mathematical models have been proposed for its cell cycle. An area of major relevance in cell cycle control is the G1 to S transition. In any given growth condition, it is characterized by the requirement of a specific, critical cell size, PS, to enter S phase. The molecular basis of this control is still under discussion. The authors report a mathematical model of the G1 to S network that newly takes into account nucleo/cytoplasmic localization, the role of the cyclin-dependent kinase Sic1 in facilitating nuclear import of its cognate Cdk1-Clb5, Whi5 control, and carbon source regulation of Sic1 and Sic1-containing complexes. The model was implemented by a set of ordinary differential equations that describe the temporal change of the concentration of the involved proteins and protein complexes. The model was tested by simulation in several genetic and nutritional setups and was found to be neatly consistent with experimental data. To estimate PS, the authors developed a hybrid model including a probabilistic component for firing of DNA replication origins. Sensitivity analysis of PS provides a novel relevant conclusion: PS is an emergent property of the G1 to S network that strongly depends on growth rate.

  5. Energy harvesting from organic liquids in micro-sized microbial fuel cells

    KAUST Repository

    Mink, J.E.

    2014-03-07

    Micro-sized microbial fuel cells (MFCs) are miniature energy harvesters that use bacteria to convert biomass from liquids into usable power. The key challenge is transitioning laboratory test beds into devices capable of producing high power using readily available fuel sources. Here, we present a pragmatic step toward advancing MFC applications through the fabrication of a uniquely mobile and inexpensive micro-sized device that can be fueled with human saliva. The 25-ll MFC was fabricated with graphene, a two-dimensional atomic crystal-structured material, as an anode for efficient current generation and with an air cathode for enabling the use of the oxygen present in air, making its operation completely mobile and free of the need for laboratory chemicals. With saliva as a fuel, the device produced higher current densities (1190 Am-3) than any previous aircathode micro-sized MFCs. The use of the graphene anode generated 40 times more power than that possible using a carbon cloth anode. Additional tests were performed using acetate, a conventional organic material, at high organic loadings that were comparable to those in saliva, and the results demonstrated a linear relationship between the organic loading and current. These findings open the door to saliva-powered applications of this fuel cell technology for Lab-on-a-Chip devices or portable point-of-care diagnostic devices. 2014 Nature Publishing Group All rights reserved 1884-4057/14.

  6. The Drosophila Cadherin Fat regulates tissue size and planar cell polarity through different domains.

    Directory of Open Access Journals (Sweden)

    Xuesong Zhao

    Full Text Available The Drosophila Cadherin Fat (Ft has been identified as a crucial regulator of tissue size and Planar Cell Polarity (PCP. However, the precise mechanism by which Ft regulates these processes remains unclear. In order to advance our understanding of the action of Ft, we have sought to identify the crucial Ft effector domains. Here we report that a small region of the Ft cytoplasmic domain (H2 region is both necessary and sufficient, when membrane localized, to support viability and prevent tissue overgrowth. Interestingly, the H2 region is dispensable for regulating PCP signaling, whereas the mutant Ft lacking the H2 region is fully capable of directing PCP. This result suggests that Ft's roles in PCP signaling and tissue size control are separable, and each can be carried out independently. Surprisingly, the crucial regions of Ft identified in our structure-function study do not overlap with the previously reported interaction regions with Atrophin, Dco, or Lowfat.

  7. Effect of Different Support Morphologies and Pt Particle Sizes in Electrocatalysts for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    G. Sevjidsuren

    2010-01-01

    Full Text Available The performance of a low temperature fuel cell is strongly correlated with parameters like the platinum particle size, platinum dispersion on the carbon support, and electronic and protonic conductivity in the catalyst layer as well as its porosity. These parameters can be controlled by a rational choice of the appropriate catalyst synthesis and carbon support. Only recently, particular attention has been given to the support morphology, as it plays an important role for the formation of the electrode structure. Due to their significantly different structure, mesoporous carbon microbeads (MCMBs and multiwalled carbon nanotubes (MWCNTs were used as supports and compared. Pt nanoparticles were decorated on these supports using the polyol method. Their size was varied by different heating times during the synthesis, and XRD, TEM, SEM, CV, and single cell tests used in their detailed characterization. A membrane-electrode assembly prepared with the MCMB did not show any activity in the fuel cell test, although the catalyst's electrochemical activity was almost similar to the MWCNT. This is assumed to be due to the very dense electrode structure formed by this support material, which does not allow for sufficient mass transport.

  8. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    Science.gov (United States)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  9. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    Science.gov (United States)

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  10. The color and size of chili peppers (Capsicum annuum) influence Hep-G2 cell growth.

    Science.gov (United States)

    Popovich, David G; Sia, Sharon Y; Zhang, Wei; Lim, Mon L

    2014-11-01

    Four types of chili (Capsicum annuum) extracts, categorized according to color; green and red, and size; small and large were studied in Hep-G2 cells. Red small (RS) chili had an LC50 value of 0.378 ± 0.029 compared to green big (GB) 1.034 ± 0.061 and green small (GS) 1.070 ± 0.21 mg/mL. Red big (RB) was not cytotoxic. Capsaicin content was highest in RS and produced a greater percentage sub-G1 cells (6.47 ± 1.8%) after 24 h compared to GS (2.96 ± 1.3%) and control (1.29 ± 0.8%) cells. G2/M phase was reduced by GS compared to RS and control cells. RS at the LC50 concentration contained 1.6 times the amount of pure capsaicin LC50 to achieve the same effect of capsaicin alone. GS and GB capsaicin content at the LC50 value was lower (0.2 and 0.66, respectively) compared to the amount of capsaicin to achieve a similar reduction in cell growth.

  11. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pengpeng; Guan Rongfa; Jiang Jiaxin; Liu Mingqi; Huang Guangrong; Chen Xiaoting [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018 (China); Ye Xingqian, E-mail: rfguan@163.com [Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029 (China)

    2011-07-06

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 {mu}g{center_dot}mL{sup -1}. LDH leakage significantly increased in cells exposed to Ag NPs ({>=} 25 {mu}g mL{sup -1}) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 {mu}g{center_dot}mL{sup -1}). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage

  12. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Science.gov (United States)

    Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting

    2011-07-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs

  13. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2012-08-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  14. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...

  15. Dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, B.J.

    1977-01-01

    Reproductive rates have been calculated for ten species of ciliated protozoa in defined conditions. Interspecific double log regressions of generation time vs. cell volume have been computed at each of three temperatures (8.5/sup 0/C, 15/sup 0/C, and 20/sup 0/C) indicating a significant dependence of reproductive rate on cell size. Recorded generation times varied from 6.38 h in Vorticella microstoma at 20/sup 0/C to 1004 h in Spirostomum teres at 8.5/sup 0/C. These values correspond to a range in r/sub m/ (day)/sup -1/ of 2.607 to 0.017 and lambda (day)/sup -1/ of 13.554 to 1.017. The relationship between these data and similar published data for marine ciliates is examined and the value of such regressions in ecological studies of the protozoa is discussed.

  16. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    Science.gov (United States)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  17. Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    CERN Document Server

    Kalay, Z; Kenkre, V M

    2008-01-01

    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.

  18. Estimation of size of red blood cell aggregates using backscattering property of high-frequency ultrasound: In vivo evaluation

    Science.gov (United States)

    Kurokawa, Yusaku; Taki, Hirofumi; Yashiro, Satoshi; Nagasawa, Kan; Ishigaki, Yasushi; Kanai, Hiroshi

    2016-07-01

    We propose a method for assessment of the degree of red blood cell (RBC) aggregation using the backscattering property of high-frequency ultrasound. In this method, the scattering property of RBCs is extracted from the power spectrum of RBC echoes normalized by that from the posterior wall of a vein. In an experimental study using a phantom, employing the proposed method, the sizes of microspheres 5 and 20 µm in diameter were estimated to have mean values of 4.7 and 17.3 µm and standard deviations of 1.9 and 1.4 µm, respectively. In an in vivo experimental study, we compared the results between three healthy subjects and four diabetic patients. The average estimated scatterer diameters in healthy subjects at rest and during avascularization were 7 and 28 µm, respectively. In contrast, those in diabetic patients receiving both antithrombotic therapy and insulin therapy were 11 and 46 µm, respectively. These results show that the proposed method has high potential for clinical application to assess RBC aggregation, which may be related to the progress of diabetes.

  19. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size.

    Science.gov (United States)

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants.

  20. Culture of Dermal Papilla Cells from Ovine Wool Follicles: An In Vitro Model for Papilla Size Determination.

    Science.gov (United States)

    Rufaut, Nicholas W; Nixon, Allan J; Sinclair, Rodney D

    2016-01-01

    Common human balding or hair loss is driven by follicle miniaturization. Miniaturization is thought to be caused by a reduction in dermal papilla size. The molecular mechanisms that regulate papilla size are poorly understood, and their elucidation would benefit from a tractable experimental model. We have found that dermal papilla cells from sheep spontaneously aggregate in culture to form papilla-like structures. Here, we describe methods for microdissecting dermal papillae from wool follicles, for initiating and maintaining cultures of ovine papilla cells, and for using these cells in an in vitro assay to measure the effect of bioactive molecules on aggregate size.

  1. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities

    Directory of Open Access Journals (Sweden)

    Wei SC

    2012-03-01

    Full Text Available Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing, 4Hospital of Stomatology, Tongji University, Shanghai, ChinaIntroduction:Hydroxyapatite (HA is the principal inorganic constituent of human bone. Due to its good biocompatibility and osteoconductivity, all kinds of HA particles were prepared by different methods. Numerous reports demonstrated that the properties of HA affected its biological effects.Methods: Two kinds of nanohydroxyapatite with different sizes and crystallinities were obtained via a hydrothermal treatment method under different temperatures. It was found that at a temperature of 140°C, a rod-like crystal (n-HA1 with a diameter of 23 ± 5 nm, a length of 47 ± 14 nm, and crystallinity of 85% ± 5% was produced, while at a temperature of 80°C, a rod-like crystal (n-HA2 with a diameter of 16 ± 3 nm, a length of 40 ± 10 nm, and crystallinity of 65% ± 3% was produced. The influence of nanohydroxyapatite size and crystallinity on osteoblast viability was studied by MTT, scanning electron microscopy, and flow cytometry.Results: n-HA1 gave a better biological response than n-HA2 in promoting cell growth and inhibiting cell apoptosis, and also exhibited much more active cell morphology. Alkaline phosphatase activity for both n-HA2 and n-HA1 was obviously higher than for the control, and no significant difference was found between n-HA1 and n-HA2. The same trend was observed on Western blotting for expression of type I collagen and osteopontin. In addition, it was found by transmission electron microscopy that large quantities of n-HA2 entered into the cell

  2. How does a single cell know when the liver has reached its correct size?

    Directory of Open Access Journals (Sweden)

    Nadine Hohmann

    Full Text Available The liver is a multi-functional organ that regulates major physiological processes and that possesses a remarkable regeneration capacity. After loss of functional liver mass the liver grows back to its original, individual size through hepatocyte proliferation and apoptosis. How does a single hepatocyte 'know' when the organ has grown to its final size? This work considers the initial growth phase of liver regeneration after partial hepatectomy in which the mass is restored. There are strong and valid arguments that the trigger of proliferation after partial hepatectomy is mediated through the portal blood flow. It remains unclear, if either or both the concentration of metabolites in the blood or the shear stress are crucial to hepatocyte proliferation and liver size control. A cell-based mathematical model is developed that helps discriminate the effects of these two potential triggers. Analysis of the mathematical model shows that a metabolic load and a hemodynamical hypothesis imply different feedback mechanisms at the cellular scale. The predictions of the developed mathematical model are compared to experimental data in rats. The assumption that hepatocytes are able to buffer the metabolic load leads to a robustness against short-term fluctuations of the trigger which can not be achieved with a purely hemodynamical trigger.

  3. Intravenous immunoglobulin treatment responsiveness depends on the degree of CD8+ T cell activation in Kawasaki disease.

    Science.gov (United States)

    Ye, Qing; Gong, Fang-Qi; Shang, Shi-Qiang; Hu, Jian

    2016-10-01

    Kawasaki disease (KD) has become the most common cause of acquired heart disease in children and is also a risk factor for ischemic heart disease in adults. However, Kawasaki disease lacks specific laboratory diagnostic indices. Thus, this study analyzed the T cell activation profiles of Kawasaki disease and assessed their value in the diagnosis of Kawasaki disease and the prediction of intravenous immunoglobulin (IVIG) sensitivity. We analyzed human leukocyte antigen-DR (HLA-DR), CD69 and CD25 expression on peripheral blood CD4+ and CD8+ T cells during the acute phase of KD. We compared the percentages of HLA-DR+/CD69+/CD25+ T cells in the CD4+ and CD8+ T cell populations of IVIG-effective and IVIG-resistant groups. Receiver operating characteristic curves were used to assess the diagnostic value of the above parameters. The median percentage of CD8+HLA-DR+ T cells and the median ratio of CD8+HLA-DR+ T cells/CD8+CD25+ T cells were significantly elevated in the patient group compared with those in the control group during the acute phase of KD. Regarding the diagnosis of Kawasaki disease, the area under the ROC curve was 0.939 for the percentage of CD8+HLA-DR+ T cells. There was a significant difference in the ratio of CD8+HLA-DR+ T cells/CD8+CD69+ T cells between IVIG-resistant patients and IVIG-sensitive patients. Regarding IVIG sensitivity, the area under the ROC curve was 0.795 for it. Excessive CD8+ T cell activation, as well as an imbalance between CD8+ T cell activation and inhibition, underlies the pathogenesis of Kawasaki disease. The percentage of CD8+ HLA-DR+ T cells may be used as an index to diagnose Kawasaki disease. IVIG inhibits CD8+ T cell activation, but excessive CD8+ T cell activation may cause IVIG resistance. The ratio of CD8+HLA-DR+ T cells/CD8+CD69+ T cells may be used as a predictor of IVIG sensitivity. Copyright © 2016. Published by Elsevier Inc.

  4. Mechanical remodeling of normally sized mammalian cells under a gravity vector.

    Science.gov (United States)

    Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian

    2017-02-01

    Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.

  5. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  6. cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool.

    Science.gov (United States)

    Kerosuo, Laura; Bronner, Marianne E

    2016-12-06

    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context.

  7. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  8. Finite cell-size effects on protein variability in Turing patterned tissues.

    Science.gov (United States)

    Buceta, Javier

    2017-08-01

    Herein we present a framework to characterize different sources of protein expression variability in Turing patterned tissues. In this context, we introduce the concept of granular noise to account for the unavoidable fluctuations due to finite cell-size effects and show that the nearest-neighbours autocorrelation function provides the means to measure it. To test our findings, we perform in silico experiments of growing tissues driven by a generic activator-inhibitor dynamics. Our results show that the relative importance of different sources of noise depends on the ratio between the characteristic size of cells and that of the pattern domains and on the ratio between the pattern amplitude and the effective intensity of the biochemical fluctuations. Importantly, our framework provides the tools to measure and distinguish different stochastic contributions during patterning: granularity versus biochemical noise. In addition, our analysis identifies the protein species that buffer the stochasticity the best and, consequently, it can help to determine key instructive signals in systems driven by a Turing instability. Altogether, we expect our study to be relevant in developmental processes leading to the formation of periodic patterns in tissues. © 2017 The Author(s).

  9. Passive permeability and effective pore size of HeLa cell nuclear membranes.

    Science.gov (United States)

    Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K

    2016-09-01

    Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors.

  10. The cell size distribution of tomato fruit can be changed by overexpression of CDKA1.

    Science.gov (United States)

    Czerednik, Anna; Busscher, Marco; Angenent, Gerco C; de Maagd, Ruud A

    2015-02-01

    Tomato is one of the most cultivated vegetables in the world and an important ingredient of the human diet. Tomato breeders and growers face a continuous challenge of combining high quantity (production volume) with high quality (appearance, taste and perception for the consumers, processing quality for the processing industry). To improve the quality of tomato, it is important to understand the regulation of fruit development and of fruit cellular structure, which is in part determined by the sizes and numbers of cells within a tissue. The role of the cell cycle therein is poorly understood. Plant cyclin-dependent kinases (CDKs) are homologues of yeast cdc2, an important cell cycle regulator conserved throughout all eukaryotes. CDKA1 is constitutively expressed during the cell cycle and has dual functions in S- and M-phase progression. We have produced transgenic tomato plants with increased expression of CDKA1 under the control of the fruit-specific TPRP promoter, which despite a reduced number of seeds and diminished amount of jelly, developed fruits with weight and shape comparable to that of wild-type fruits. However, the phenotypic changes with regard to the pericarp thickness and placenta area were remarkable. Fruits of tomato plants with the highest expression of CDKA1 had larger septa and columella (placenta), compared with wild-type fruits. Our data demonstrate the possibility of manipulating the ratio between cell division and expansion by changing the expression of a key cell cycle regulator and probably its activity with substantial effects on structural traits of the harvested fruit.

  11. Assessment of the degree of contamination of rat germ cell preparations using specific cDNA probes

    Directory of Open Access Journals (Sweden)

    Savaris R.F.

    1997-01-01

    Full Text Available Recent reports showing a decrease in sperm count in men have brought new concerns about male infertility. Animal models have been widely used to provide some relevant information about the human male gamete, and extrapolations are made to men and to the clinical context. The present study assesses one of the methods used for separation of germ cells of the adult rat testis, namely centrifugal elutriation followed by density gradients (Percoll®. This method was chosen since it presents the best results for cell purity in separating germ cells from the rat testis. A comparison between continuous and discontinuous Percoll® gradients was performed in order to identify the best type of gradient to separate the cells. Maximal cell purity was obtained for spermatocytes (81 ± 8.2%, mean ± SEM and spermatids (84 ± 2.6% using centrifugal elutriation followed by continuous Percoll® gradients. A significant difference in purity was observed between elongating spermatids harvested from continuous Percoll® gradients and from discontinuous gradients. Molecular analysis was used to assess cell contamination by employing specific probes, namely transition protein 2 (TP2, mitochondrial cytochrome C oxidase II (COX II, and sulfated glycoprotein 1 (SGP1. Molecular analysis of the samples demonstrated that morphological criteria are efficient in characterizing the main composition of the cell suspension, but are not reliable for identifying minimal contamination from other cells. Reliable cell purity data should be established using molecular analysis

  12. Ability of cell-sized beads bearing tumor cell membrane proteins to stimulate LAK cells to secrete interferon-gamma and tumor necrosis factor-alpha.

    Science.gov (United States)

    Chong, A S; Pinkard, J K; Lam, K S; Scuderi, P; Hersh, E M; Grimes, W J

    1991-04-15

    We recently reported that lymphokine activated killer (LAK) cells were stimulated to release both interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) when stimulated by a variety of tumor cells. We proposed then that the released cytokines may play a role in mediating tumor cell regression in vivo. In this paper, we provide further information on the nature of the signals, provided by the tumor cells (K562 erythroleukemia), that stimulate LAK cells to secrete IFN-gamma and TNF-alpha. Using a previously published protocol for coating tumor-membrane molecules onto cell-sized hydrophobic beads (also called pseudocytes), we demonstrate that the signal provided by the tumor cell is membrane associated. Beads coated with K562 membranes stimulated LAK cells to release IFN-gamma and TNF-alpha. The pretreatment of these beads with trypsin and sodium periodate eliminated the ability of these pseudocytes to stimulate cytokine release in LAK cells. The glycoproteins that stimulate LAK cells to secrete IFN-gamma and TNF-alpha were further enriched by their ability to bind concanavalin A (Con A, Jack Bean). To determine if the tumor-associated molecules that stimulate LAK cells to release IFN-gamma and TNF-alpha are also the molecules involved in mediating tumor cell lysis, we tested the ability of the Con A binding and nonbinding proteins to inhibit the LAK cell-mediated lysis of K562 cells. Our results demonstrate that molecules that inhibited LAK cell-mediated cytotoxicity were not enriched by Con A. These results are therefore consistent with the conclusion that different sets of tumor-associated molecules are involved in the stimulation of LAK cells to secrete cytokine and in the induction of LAK cells to mediate tumor cell cytolysis.

  13. Fast and Near-Optimal Timing-Driven Cell Sizing under Cell Area and Leakage Power Constraints Using a Simplified Discrete Network Flow Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Ren

    2013-01-01

    Full Text Available We propose a timing-driven discrete cell-sizing algorithm that can address total cell size and/or leakage power constraints. We model cell sizing as a “discretized” mincost network flow problem, wherein available sizes of each cell are modeled as nodes. Flow passing through a node indicates the choice of the corresponding cell size, and the total flow cost reflects the timing objective function value corresponding to these choices. Compared to other discrete optimization methods for cell sizing, our method can obtain near-optimal solutions in a time-efficient manner. We tested our algorithm on ISCAS’85 benchmarks, and compared our results to those produced by an optimal dynamic programming- (DP- based method. The results show that compared to the optimal method, the improvements to an initial sizing solution obtained by our method is only 1% (3% worse when using a 180 nm (90 nm library, while being 40–60 times faster. We also obtained results for ISPD’12 cell-sizing benchmarks, under leakage power constraint, and compared them to those of a state-of-the-art approximate DP method (optimal DP runs out of memory for the smallest of these circuits. Our results show that we are only 0.9% worse than the approximate DP method, while being more than twice as fast.

  14. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo.

    Science.gov (United States)

    Kim, Hye Yun; Kim, Ha Neul; Lee, So Jin; Song, Jeong Eun; Kwon, Soon Yong; Chung, Jin Wha; Lee, Dongwon; Khang, Gilson

    2017-01-01

    This study investigated the influence of pore sizes of poly(lactic-co-glycolic acid) (PLGA) scaffolds on the compressive strength of tissue-engineered biodiscs and selection of the best suitable pore size for cells to grow in vivo. PLGA scaffolds were fabricated by solvent casting/salt-leaching with pore sizes of 90-180, 180-250, 250-355 and 355-425 µm. Nucleus pulposus (NP) cells were seeded on PLGA scaffolds with various pore sizes. Each sample was harvested at each time point, after retrieval of PLGA scaffolds seeded with NP cells, which were implanted into subcutaneous spaces in nude mice at 4 and 6 weeks. MTT assay, glycosaminoglycan (GAG) assay, haematoxylin and eosin (H&E) staining, safranin O staining and immunohistochemistry (for collagen type II) were performed at each time point. As the pores became smaller, the value of the compressive strength of the scaffold was increased. The group of scaffolds with pore sizes of 90-250 µm showed better cell proliferation and ECM production. These results demonstrated that the compressive strength of the scaffold was improved while the scaffold had pore sizes in the range 90-250 µm and good cell interconnectivity. Suitable space in the scaffold for cell viability is a key factor for cell metabolism. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  16. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  17. Microfabrication of chip-sized scaffolds for three-dimensional cell cultivation.

    Science.gov (United States)

    Giselbrecht, Stefan; Gottwald, Eric; Truckenmueller, Roman; Trautmann, Christina; Welle, Alexander; Guber, Andreas; Saile, Volker; Gietzelt, Thomas; Weibezahn, Karl-Friedrich

    2008-05-12

    Using microfabrication technologies is a prerequisite to create scaffolds of reproducible geometry and constant quality for three-dimensional cell cultivation. These technologies offer a wide spectrum of advantages not only for manufacturing but also for different applications. The size and shape of formed cell clusters can be influenced by the exact and reproducible architecture of the microfabricated scaffold and, therefore, the diffusion path length of nutrients and gases can be controlled.1 This is unquestionably a useful tool to prevent apoptosis and necrosis of cells due to an insufficient nutrient and gas supply or removal of cellular metabolites. Our polymer chip, called CellChip, has the outer dimensions of 2 x 2 cm with a central microstructured area. This area is subdivided into an array of up to 1156 microcontainers with a typical dimension of 300 m edge length for the cubic design (cp- or cf-chip) or of 300 m diameter and depth for the round design (r-chip).2 So far, hot embossing or micro injection moulding (in combination with subsequent laborious machining of the parts) was used for the fabrication of the microstructured chips. Basically, micro injection moulding is one of the only polymer based replication techniques that, up to now, is capable for mass production of polymer microstructures.3 However, both techniques have certain unwanted limitations due to the processing of a viscous polymer melt with the generation of very thin walls or integrated through holes. In case of the CellChip, thin bottom layers are necessary to perforate the polymer and provide small pores of defined size to supply cells with culture medium e.g. by microfluidic perfusion of the containers. In order to overcome these limitations and to reduce the manufacturing costs we have developed a new microtechnical approach on the basis of a down-scaled thermoforming process. For the manufacturing of highly porous and thin walled polymer chips, we use a combination of heavy ion

  18. [Effects of low temperature at 10 degrees C on some antioxidant enzyme activities and ultrastructures of hypocotylar cells in mung bean and garden pea].

    Science.gov (United States)

    Chen, Xu-Wei; Yang, Ling; Zhang, Yi; Gong, Ju-Fang

    2005-10-01

    Mung bean (Phaseolus radiatus Linn.) and garden pea (Pisum satium Linn.), which were stressed 4 days under a low temperature of 10 degrees C, were used as materials to study the cold tolerance of plant with different resistance. On the 2nd and 3rd day under 10 degrees C stress, both the malondialdehyde (MDA) content and the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities increased significantly in hypocotylar cells of mung bean, so did SOD activity in garden pea, but other physiological indexes in garden pea were not different from the non-treatment groups (Figs. 1-5). In hypocotylar cells of mung bean, SOD activity always maintain at the highest level in a period of time,and so does POD activity (Figs. 3, 4). Ultrastructural results after stress indicated as follows: (1) Plastids in hypocotylar cells of mung bean accumulated much starch (Plate I-6), whereas the form of plastids in hypocotylar cells of garden pea changed maskedly to become dumb-bell-shaped, round or irregular, with the last one being the most common form (Plate I-8, 12); (2) In both mung bean and garden pea, central vacuole was divided into small vacuoles (Plate I-4, 10), and the number of mitochondria increased and became aggregated (Plate I-3, 11, 12). Judging from the activities of protective enzymes and ultrastructures, 10 degrees C low temperature caused non-lethal, temporary injuries to hypocotyls ultrastructures in mung bean, but no visible injury at all, and even improved its cold tolerance to a certain degree in garden pea.

  19. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy.

    Science.gov (United States)

    Kirby, Tyler J; Patel, Rooshil M; McClintock, Timothy S; Dupont-Versteegden, Esther E; Peterson, Charlotte A; McCarthy, John J

    2016-03-01

    Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy.

  20. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    Science.gov (United States)

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  1. PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis.

    Science.gov (United States)

    Ji, Hongtao; Wang, Shuangfeng; Li, Kexue; Szakonyi, Dóra; Koncz, Csaba; Li, Xia

    2015-02-01

    The stem cell niche in the root meristem maintains pluripotent stem cells to ensure a constant supply of cells for root growth. Despite extensive progress, the molecular mechanisms through which root stem cell fates and stem cell niche activity are determined remain largely unknown. In Arabidopsis thaliana, the Pleiotropic Regulatory Locus 1 (PRL1) encodes a WD40-repeat protein subunit of the spliceosome-activating Nineteen Complex (NTC) that plays a role in multiple stress, hormone and developmental signaling pathways. Here, we show that PRL1 is involved in the control of root meristem size and root stem cell niche activity. PRL1 is strongly expressed in the root meristem and its loss of function mutation results in disorganization of the quiescent center (QC), premature stem cell differentiation, aberrant cell division, and reduced root meristem size. Our genetic studies indicate that PRL1 is required for confined expression of the homeodomain transcription factor WOX5 in the QC and acts upstream of the transcription factor PLETHORA (PLT) in modulating stem cell niche activity and root meristem size. These findings define a role for PRL1 as an important determinant of PLT signaling that modulates maintenance of the stem cell niche and root meristem size. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Science.gov (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D

    2012-01-01

    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  3. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  4. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres.

    Science.gov (United States)

    Lewis, Jamal S; Roche, Chris; Zhang, Ying; Brusko, Todd M; Wasserfall, Clive H; Atkinson, Mark; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-05-07

    Microparticulate systems are beginning to show promise for delivery of modulatory agents for immunotherapeutic applications which modulate dendritic cell (DC) functions. Co-administration of multiple factors is an emerging theme in immune modulation which may prove beneficial in this setting. Herein, we demonstrate that localized, controlled delivery of multiple factors can be accomplished through poly (lactic-co-glycolic acid) (PLGA) microparticle systems fabricated in two size classes of phagocytosable and unphagocytosable microparticles (MPs). The immunosuppressive ability of combinatorial multi-factor dual MP systems was evaluated by investigating effects on DC maturation, DC resistance to LPS-mediated maturation and proliferation of allogeneic T cells in a mixed lymphocyte reaction. Phagocytosable MPs (~2 μm) were fabricated encapsulating either rapamycin (RAPA) or all-trans retinoic acid (RA), and unphagocytosable MPs (~30 μm) were fabricated encapsulating either transforming growth factor beta-1 (TGF-β1) or interleukin-10 (IL-10). Combinations of these MP classes reduced expression of stimulatory/costimulatory molecules (MHC-II, CD80 and CD86) in comparison to iDC and soluble controls, but not necessarily to single factor MPs. Dual MP-treated DCs resisted LPS-mediated activation, in a manner driven by the single factor phagocytosable MPs used. Dendritic cells treated with dual MP systems suppressed allogeneic T cell proliferation, generally demonstrating greater suppression by combination MPs than single factor formulations, particularly for the RA/IL-10 MPs. This work demonstrates feasibility of simultaneous targeted delivery of immunomodulatory factors to cell surface receptors and intracellular locations, and indicates that a combinatorial approach can boost immunoregulatory responses for therapeutic application in autoimmunity and transplantation.

  5. Quantifying the degree of bias from using county-scale data in species distribution modeling: Can increasing sample size or using county-averaged environmental data reduce distributional overprediction?

    Science.gov (United States)

    Collins, Steven D; Abbott, John C; McIntyre, Nancy E

    2017-08-01

    Citizen-science databases have been used to develop species distribution models (SDMs), although many taxa may be only georeferenced to county. It is tacitly assumed that SDMs built from county-scale data should be less precise than those built with more accurate localities, but the extent of the bias is currently unknown. Our aims in this study were to illustrate the effects of using county-scale data on the spatial extent and accuracy of SDMs relative to true locality data and to compare potential compensatory methods (including increased sample size and using overall county environmental averages rather than point locality environmental data). To do so, we developed SDMs in maxent with PRISM-derived BIOCLIM parameters for 283 and 230 species of odonates (dragonflies and damselflies) and butterflies, respectively, for five subsets from the OdonataCentral and Butterflies and Moths of North America citizen-science databases: (1) a true locality dataset, (2) a corresponding sister dataset of county-centroid coordinates, (3) a dataset where the average environmental conditions within each county were assigned to each record, (4) a 50/50% mix of true localities and county-centroid coordinates, and (5) a 50/50% mix of true localities and records assigned the average environmental conditions within each county. These mixtures allowed us to quantify the degree of bias from county-scale data. Models developed with county centroids overpredicted the extent of suitable habitat by 15% on average compared to true locality models, although larger sample sizes (>100 locality records) reduced this disparity. Assigning county-averaged environmental conditions did not offer consistent improvement, however. Because county-level data are of limited value for developing SDMs except for species that are widespread and well collected or that inhabit regions where small, climatically uniform counties predominate, three means of encouraging more accurate georeferencing in citizen

  6. The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Umme S. Akhtar

    2014-01-01

    Full Text Available Epidemiological and toxicological studies have suggested that the health effects associated with exposure to particulate matter (PM are related to the different physicochemical properties of PM. These effects occur through the initiation of differential cellular responses including: the induction of antioxidant defenses, proinflammatory responses, and ultimately cell death. The main objective of this study was to investigate the effects of size-fractionated ambient PM on epithelial cells in relation to their physicochemical properties. Concentrated ambient PM was collected on filters for three size fractions: coarse (aerodynamic diameter [AD] 2.5–10 μm, fine (0.15–2.5 μm, and quasi-ultrafine (<0.2 μm, near a busy street in Toronto, Ontario, Canada. Filters were extracted and analyzed for chemical composition and redox activity. Chemical analyses showed that the coarse, fine, and quasi-ultrafine particles were comprised primarily of metals, water-soluble species, and organic compounds, respectively. The highest redox activity was observed for fine PM. After exposure of A549 cells to PM (10–100 μg/ml for 4 h, activation of antioxidant, proinflammatory and cytotoxic responses were assessed by determining the expression of heme oxygenase (HMOX-1, mRNA, interleukin-8 (IL-8, mRNA, and metabolic activity of the cells, respectively. All three size fractions induced mass-dependent antioxidant, proinflammatory, and cytotoxic responses to different degrees. Quasi-ultrafine PM caused significant induction of HMOX-1 at the lowest exposure dose. Correlation analyses with chemical components suggested that the biological responses correlated mainly with transition metals and organic compounds for coarse and fine PM and with organic compounds for quasi-ultrafine PM. Overall, the observed biological responses appeared to be related to the combined effects of size and chemical composition and thus both of these physicochemical properties should be

  7. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  8. MODELING, SIMULATON AND SIZING OF PHOTOVOLTAIC/WIND/FUEL CELL HYBRID GENERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr.S.LATHA

    2012-05-01

    Full Text Available The depleting fossil fuel reserves and increasing concern towards global warming have created the need to surge for the alternative power generation options. Renewable energy sources like Wind, Solar-PV, Biomass and fuel cells are gaining prominence nowadays, as they are more energy efficient, reduce pollution and also they serveas a promising solution to the toughest energy crisis faced during the recent years. This paper focuses on the modeling and simulation of solar – photovoltaic, wind and fuel cell hybrid energy systems using MATLAB/Simulink software. The intermittent nature of solar and wind energy sources make them unreliable. Hence Maximum Power Point Tracking (MPPT is used to extract maximum power from the wind and sunwhen it is available. The standard perturb and observe method of MPPT is used for the PV system and for the wind generation system. The simulation results of the PV/Wind /Fuel cell hybrid system are presented in graph showing the effectiveness of the proposed system model. Also, hardware implementation of microcontroller based MPPT for solar-PV alone and unit sizing of the hybrid system for the PG simulation lab in EEE Dept. of Thiagarajar College of Engineering is depicted in the paper.

  9. Effect of allogeneic bone marrow derived stromal cells on induced third-degree skin burn healing in mouse

    Directory of Open Access Journals (Sweden)

    Leyla Soleymani

    2014-10-01

    Conclusion: This experimental modulation of wound healing suggests that bone marrow-derived stromal cells can significantly enhance the rate of wound healing possibly through stimulation of granulation tissue, angiogenesis, fibroblast proliferation and collagen deposition.

  10. Cell size matters in gamma-H2AX assay for low-dose alpha particle effect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ui seob; Kim, Eun Hee [Seoul National University, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma-H2AX assay is an immuno-fluorescence experiment that enables detecting the location and number of DNA double strand breaks (DSBs) in cells. Under uniform radiation beam intensity, cells would respond with similar numbers of gamma-H2AX if they are similar in cross section. If cells are not represented by a common size, however, a larger cell has a greater chance of radiation exposure and has a better chance of counting a greater number of foci. In other words, the cell size distribution would be reflected in the FPC distribution. In the conventional gamma-H2AX assay, the mean FPC value solely indicates the level of cellular damage under a certain radiation exposure. The purpose of this study is to investigate the FPC distribution in connection with the cell size distribution. The high-LET alpha beam was employed for radiation exposure so that a single track of radiation leaves a meaningful amount of energy in the cell. Gamma-H2AX is a powerful tool for investigating the cellular response at low-dose exposure. If the gamma-H2AX assay is performed with cells of the same size, 'the average number of foci per cell' may accord with the overall response of sample cells to radiation exposure. With cells of non-uniform size, however, one should be cautious in taking the value as an index of the severity in cellular effect of radiation exposure. According to our experiments, a portion of sample cells carried DSBs of more than 5 times greater number than the mean FPC value and might play a critical role in radio-response.

  11. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    Directory of Open Access Journals (Sweden)

    Zachary J Smith

    Full Text Available We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  12. Optimizing the electrode size and arrangement in a microbial electrolysis cell.

    Science.gov (United States)

    Gil-Carrera, L; Mehta, P; Escapa, A; Morán, A; García, V; Guiot, S R; Tartakovsky, B

    2011-10-01

    This study investigates the influence of anode and cathode size and arrangement on hydrogen production in a membrane-less flat-plate microbial electrolysis cell (MEC). Protein measurements were used to evaluate microbial density in the carbon felt anode. The protein concentration was observed to significantly decrease with the increase in distance from the anode-cathode interface. Cathode placement on both sides of the carbon felt anode was found to increase the current, but also led to increased losses of hydrogen to hydrogenotrophic activity leading to methane production. Overall, the best performance was obtained in the flat-plate MEC with a two-layer 10 mm thick carbon felt anode and a single gas-diffusion cathode sandwiched between the anode and the hydrogen collection compartments.

  13. Size-Tuning of WSe2 Flakes for High Efficiency Inverted Organic Solar Cells.

    Science.gov (United States)

    Kakavelakis, George; Del Rio Castillo, Antonio Esau; Pellegrini, Vittorio; Ansaldo, Alberto; Tzourmpakis, Pavlos; Brescia, Rosaria; Prato, Mirko; Stratakis, Emmanuel; Kymakis, Emmanuel; Bonaccorso, Francesco

    2017-04-25

    The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of ∼9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2-fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.

  14. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size.

    Science.gov (United States)

    Gray, Jennifer A; Shalit-Kaneh, Akiva; Chu, Dalena Nhu; Hsu, Polly Yingshan; Harmer, Stacey

    2017-03-02

    The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis thaliana, the clock is comprised of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in modulation of light input to the clock and control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a day-length and sucrose dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild type, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results shows that even small changes in PIF gene expression caused by perturbation of clock gene function can have large effects on the growth of adult plants.

  15. Effect of Silver Nanoparticle Size on Efficiency Enhancement of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chanu Photiphitak

    2011-01-01

    Full Text Available Titanium dioxide/silver (TiO2/Ag composite films were prepared by incorporating Ag in pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 4.36–38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The TiO2 and TiO2/Ag composite films were then sensitized by immersing in a 0.3 mM N719 dye solution and fabricated for conventional dye-sensitized solar cells (DSCs. J-V characteristics of the TiO2/Ag DSCs showed that the Ag nanoparticle size of 19.16 nm resulted in the short circuit current density and efficiency of 8.12 mA/cm2 and 4.76%.

  16. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells.

    Science.gov (United States)

    Zhao, Rui; Fallon, Timothy R; Saladi, Srinivas Vinod; Pardo-Saganta, Ana; Villoria, Jorge; Mou, Hongmei; Vinarsky, Vladimir; Gonzalez-Celeiro, Meryem; Nunna, Naveen; Hariri, Lida P; Camargo, Fernando; Ellisen, Leif W; Rajagopal, Jayaraj

    2014-07-28

    Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap (Yes-associated protein 1) is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and determines epithelial architecture.

  17. 市场规模结构、竞争程度与小微企业关系型贷款%THE MARKET SIZE STRUCTURE,COMPETITION DEGREE AND SMES RELATIONSHIP LENDING

    Institute of Scientific and Technical Information of China (English)

    程超

    2015-01-01

    This paper studies the relationship between the banking competition degree and SMEs rela-tionship lending,as well as the influence of the market size structure to this kind of relationship.Informa-tion hypothesis holds that since asymmetric information and agency problems,monopoly power increases bank internality relationship lending,so there was a negative correlation between relationship lending and the degree of competition.However,more and more studies have challenged the information hypothesis. Based on the mathematical derivation,we use 352 SMEs unbalanced panel data of the county areas of Jian-gsu province in the year 2011-2015 for empirical analysis.The results show that:the market size struc-ture is an important factor in determining the relationship between competition and relationship lending, when large banks dominate the credit market,the bank competition on relationship lending is negative;when small and medium-sized banks dominate the credit market,competition is conducive to relationship lending.On this basis,we put forward the corresponding policy recommendations.%本文研究了银行业竞争度与小微企业关系型贷款之间的关系,以及市场规模结构对该关系的影响。信息假说认为,由于信息不对称和代理问题,垄断增加了银行内部化关系型贷款的收益,关系型贷款与竞争度之间呈负相关。然而,越来越多的研究对信息假说提出了质疑。本文在数理推导的基础上,采用江苏省县域地区352家小微企业2011—2015年非平衡面板数据,运用 Fractional Logit 模型进行实证分析。研究结果表明:市场规模结构是决定竞争度与关系型贷款之间关系的重要因素,当信贷市场中大银行的市场份额占比较大时,银行竞争的加剧对关系型贷款是不利的;当市场中小银行的市场份额占比较大时,竞争的加剧有利于关系型贷款的发放。以往研究对于市场规模结构的忽视可

  18. Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling.

    Science.gov (United States)

    Schuster, Jens; Halvardson, Jonatan; Pilar Lorenzo, Laureanne; Ameur, Adam; Sobol, Maria; Raykova, Doroteya; Annerén, Göran; Feuk, Lars; Dahl, Niklas

    2015-10-01

    Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling.

  19. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Science.gov (United States)

    Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe

    2014-01-01

    Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the

  20. Skew-Laplace and Cell-Size Distribution in Microbial Axenic Cultures: Statistical Assessment and Biological Interpretation

    Directory of Open Access Journals (Sweden)

    Olga Julià

    2010-01-01

    Full Text Available We report a skew-Laplace statistical analysis of both flow cytometry scatters and cell size from microbial strains primarily grown in batch cultures, others in chemostat cultures and bacterial aquatic populations. Cytometry scatters best fit the skew-Laplace distribution while cell size as assessed by an electronic particle analyzer exhibited a moderate fitting. Unlike the cultures, the aquatic bacterial communities clearly do not fit to a skew-Laplace distribution. Due to its versatile nature, the skew-Laplace distribution approach offers an easy, efficient, and powerful tool for distribution of frequency analysis in tandem with the flow cytometric cell sorting.

  1. Methotrexate and etanercept-induced primary cutaneous CD4 positive small/medium-sized pleomorphic T-cell lymphoma*

    Science.gov (United States)

    MA, Han; Qiu, Shu; Lu, Rongbiao; Feng, Peiying; Lu, Chun

    2016-01-01

    Immunosuppressive drugs and biological agents may represent a potential risk of lymphoma development in patients with rheumatoid arthritis. But most cases are diffuse, large B-cell lymphomas. Primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma, a provisional entity in the 2005 WHO-EORTC classification of cutaneous lymphomas, is only described in a limited number of reports. To our knowledge, our case is a rare instance of primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma, after associated treatment with methotrexate and etanercept, in a patient with moderate rheumatoid arthritis who had undergone an orchidectomy incorrectly. PMID:27438209

  2. Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.).

    Science.gov (United States)

    Andrade-da-Costa, B L; Pessoa, V F; Bousfield, J D; Clarke, R J

    1989-01-01

    The distribution of ganglion cell densities and sizes was studied in Nissl-stained flat-mount retinae of the two-toed sloth. The area centralis, a weak specialization with low ganglion cell density, is located in the temporal retina close to the center of the eye. The presence of a visual streak was noted. The distribution of different ganglion cell sizes was approximately equal throughout the retina. Although the retinal organization differs from that of the closely related three-toed sloth, the presumed function of retinal specializations in both species is to guide limb movements by permitting visualization of the branch along which the animal is climbing.

  3. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  4. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    Science.gov (United States)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  5. The stealthy nano-machine behind mast cell granule size distribution.

    Science.gov (United States)

    Hammel, Ilan; Meilijson, Isaac

    2015-01-01

    The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Chloride regulates leaf cell size and water relations in tobacco plants.

    Science.gov (United States)

    Franco-Navarro, Juan D; Brumós, Javier; Rosales, Miguel A; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M

    2016-02-01

    Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants.

  7. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM. Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B, whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin signaling components, such as Rheb (small GTPase, TOR and S6K (S6 kinase. After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth.

  8. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM. Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B, whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin signaling components, such as Rheb (small GTPase, TOR and S6K (S6 kinase. After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth.

  9. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size.

    Science.gov (United States)

    Henning, Robert J; Burgos, Jose D; Vasko, Mark; Alvarado, Felipe; Sanberg, Cyndy D; Sanberg, Paul R; Morgan, Michael B

    2007-01-01

    There is no consensus regarding the optimal dose of stem cells or the optimal route of administration for the treatment of acute myocardial infarction. Bone marrow cells, containing hematopoietic and mesenchymal stem cells, in doses of 0.5 x 10(6) to >30 x 10(6) have been directly injected into the myocardium or into coronary arteries or infused intravenously in subjects with myocardial infarctions to reduce infarct size and improve heart function. Therefore, we determined the specific effects of different doses of human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic and mesenchymal stem cells, on infarct size. In order to determine the optimal technique for stem cell administration, HUCBC were injected directly into the myocardium (IM), or into the LV cavity with the ascending aorta transiently clamped to facilitate coronary artery perfusion (IA), or injected intravenously (IV) in rats 1-2 h after the left anterior coronary artery was permanently ligated. Immune suppressive therapy was not given to any rat. One month later, the infarct size in control rat hearts treated with only Isolyte averaged 23.7 +/- 1.7% of the LV muscle area. Intramyocardial injection of HUCBC reduced the infarct size by 71% with 0.5 x 10(6) HUCBC and by 93% with 4 x 10(6) HUCBC in comparison with the controls (p p p p < 0.05). Nevertheless, IM, IA, and IV HUCBC all produced significant reductions in infarct size in comparison with Isolyte-treated infarcted hearts without requirements for host immune suppression. The present experiments demonstrate that the optimal dose of HUCBC for reduction of infarct size in the rat is 4 x 10(6) IM, 4 x 10(6) IA, and 16 x 10(6) IV, and that the IM injection of HUCBC is the most effective technique for reduction in infarct size.

  10. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Directory of Open Access Journals (Sweden)

    Seydoux E

    2014-08-01

    of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion: These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles. Keywords: polystyrene particles, nanoparticles, immune modulation, mouse dendritic cells, CD4+ T-cells

  11. Molecular size, shape, and electric charges: essential for perylene bisimide-based DNA intercalator to localize in cell nuclei and inhibit cancer cell growth.

    Science.gov (United States)

    Xu, Zejun; Cheng, Wenyu; Guo, Kunru; Yu, Jieshi; Shen, Jie; Tang, Jun; Yang, Wantai; Yin, Meizhen

    2015-05-13

    The molecular properties concerning size, shape, and electric charges of the planar aromatic DNA intercalators are still poorly understood. Herein, a series of water-soluble perylene bisimide (PBI) derivatives containing a rigid and planar aromatic nanoscaffold with different size, shape, and electric charges were synthesized. Using histochemistry and cell viability assays on animal tissues and cancer cells, we revealed the molecular properties required for successful DNA intercalators to localize in cell nuclei and inhibit cancer cells. Small molecular size and the strong polarity of hydrophilic substituents are prerequisites for PBI-based DNA intercalators. A large number of charges facilitate the nucleic accumulation of these DNA intercalators, while fewer charges and planar aromatic nanoscaffold more efficiently inhibit cancer cell growth.

  12. Effect of Salinity on the Composition, Number and Size of Epidermal Cells along the Mature Blade of Wheat Leaves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Salinity inhibits leaf growth in association with changes in cell size. The objective of this study was to determine the spatial distributions of the composition, number and dimensions of epidermal cells in the mature blades of leaf four of wheat seedlings under saline conditions. Plants were grown in loamy soil either with or without 120 mmol/L NaCl in a growth chamber, and harvested after leaf four was fully developed. The results of the spatial distribution analyses of width along the blade showed that salinity not only reduced the width of the leaf blade, but that it also altered the distribution pattern of blade width along the leaf axis. The reduction in the final size of the leaf blade was associated with a reduction in the total number of epidermal cells and in their widths and lengths. This study also revealed the spatial effects of salinity on the blade and epidermal cell dimensions along the leaf axis. In particular, salinity inhibited the total cell number for interstomatal, sister and elongated cells, implying that cell division in wheat leaves is inhibited by salinity. However, the lengths of interstomatal cells were not affected by salinity (unlike those for the sister and elongated cells), suggesting the relative contributions of cell length and numbers to the reduction in the final length of the blade under salinity is dependent on cell type.

  13. The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?

    Science.gov (United States)

    Hedayati, Mohammad; Thomas, Owen; Abubaker-Sharif, Budri; Zhou, Haoming; Cornejo, Christine; Zhang, Yonggang; Wabler, Michele; Mihalic, Jana; Gruettner, Cordula; Westphal, Fritz; Geyh, Alison; Deweese, Theodore l; Ivkov, Robert

    2013-01-01

    Aim To compare the measured surface temperature of variable size ensembles of cells heated by intracellular magnetic fluid hyperthermia with heat diffusion model predictions. Materials & methods Starch-coated Bionized NanoFerrite (Micromod Partikeltechnologie GmbH, Rostock, Germany) iron oxide magnetic nanoparticles were loaded into cultured DU145 prostate cancer cells. Cell pellets of variable size were treated with alternating magnetic fields. The surface temperature of the pellets was measured in situ and the associated cytotoxicity was determined by clonogenic survival assay. Results & conclusion For a given intracellular nanoparticle concentration, a critical minimum number of cells was required for cytotoxic hyperthermia. Above this threshold, cytotoxicity increased with increasing cell number. The measured surface temperatures were consistent with those predicted by a heat diffusion model that ignores intercellular thermal barriers. These results suggest a minimum tumor volume threshold of approximately 1 mm3, below which nanoparticle-mediated heating is unlikely to be effective as the sole cytotoxic agent. PMID:23173694

  14. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation.

    Science.gov (United States)

    Fu, Jiayin; Wiraja, Christian; Muhammad, Hamizan B; Xu, Chenjie; Wang, Dong-An

    2017-08-01

    In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that

  15. Undifferentiated (Anaplastic Carcinoma of the Pancreas with Osteoclast-Like Giant Cells Showing Various Degree of Pancreas Duct Involvement. A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Vlad Maksymov

    2011-03-01

    Full Text Available Context Undifferentiated (anaplastic carcinoma of the pancreas with osteoclast-like giant cells is exceedingly rare. The prognosis of undifferentiated carcinoma is worse than that of poorly differentiated ductal adenocarcinoma of the pancreas; however, undifferentiated carcinoma with osteoclast-like giant cells might have a more favorable prognosis. Case report We report the case of undifferentiated carcinoma of the pancreas with osteoclast-like giant cells, showing an intraductal growth pattern with various degree of pancreas duct involvement in the different areas. As a result, we were able to demonstrate the entire spectrum of changes, ranging from the early, minimal intraluminal growth to the partial or complete occlusion of the branches of the main pancreatic duct, and finally invasion and formation of the large necrotic/degenerated cysts. Conclusions Our findings support the epithelial origin of undifferentiated carcinoma of the pancreas with osteoclast-like giant cells. In early stages, the affected pancreatic duct epithelium was intermingled with nonepithelial component and had an immunoprofile distinctive from the epithelial lining of the uninvolved (normal pancreatic ducts. Distinctive immunoprofile (CK 5/6, p63 and p53 positive of the epithelial component and p63 and p53 positivity of the nonepithelial component should be explained and further investigated in the similar cases. Our findings support prior assertions that undifferentiated carcinoma of the pancreas with osteoclast-like giant cells may develop from carcinoma in situ within the main pancreatic duct or its branches

  16. Modulation on the collective response behavior by the system size in two-dimensional coupled cell systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jiqian; SHEN; Chuansheng; CUI; Zhifeng

    2006-01-01

    By the intracellular calcium ionic minimal model proposed by Berridge, we investigated the collective response of two-dimensional (N×N) coupled cell systems to the external stimulation using numerical simulation methods. With a coupled intensity fixed and an appropriate coupled cell number chosen, the kinetic system size resonance was discovered. At the same time, it was found that the system size responding to the external stimulation for different coupled intensities transferred too, especially when the coupled intensity increased, the range of the corresponding system size extended. These phenomena illustrate that the coupled cell number and the coupled intensity can play constructive roles in noisy coupled systems, by which the biology system would probably improve its capability to respond to the external stimulation.

  17. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells

    Science.gov (United States)

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F.

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  18. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells.

    Science.gov (United States)

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F

    2016-08-31

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.

  19. Networks with superfat-tailed degree distributions

    CERN Document Server

    Timár, Gábor; Mendes, José Fernando F

    2016-01-01

    A majority of studied models for scale-free networks have degree distributions with exponents greater than $2$. Real networks, however, can demonstrate essentially more heavy-tailed degree distributions. We explore two models of scale-free equilibrium networks that have the degree distribution exponent $\\gamma = 1$, $P(q) \\sim q^{-\\gamma}$. Such "superfat-tailed" degree distributions can be identified in empirical data only if the mean degree of a network is sufficiently high. Our models exploit a rewiring mechanism. They are local in the sense that no knowledge of the network structure, apart from the immediate neighbourhood of the vertices, is required. These models generate uncorrelated networks in the infinite size limit, where they are solved explicitly. We investigate finite size effects by the use of simulations. We find that both models exhibit disassortative degree-degree correlations for finite network sizes. In addition, we observe a markedly degree-dependent clustering in the finite networks. We i...

  20. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686

  1. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  2. When larger brains do not have more neurons: Increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2015-06-01

    Full Text Available There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  3. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  4. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    Science.gov (United States)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  5. Modelling studies to proper size a hydrogen generator for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, G.; Recupero, V.; Di Leonardo, R.; Lagana, M. [Istituto CNR-TAE, Lucia, Messina (Italy)

    1996-12-31

    Based upon an extensive survey of literature a mathematical model has been developed to study the temperature profile along the catalytic bed of a reactor for the methane partial oxidation. The model allowed a preliminary design of a 5 Nm{sup 3} syngas/h prototype to be integrated with second generation fuel cells as hydrogen generator (in the framework of the EC-JOU2 contract). This design was based on some target features, including the choice of a GHSV (gas hour space velocity) equal to 80000 h{sup -1}, a catalyst particle size of 1/8inches, a molar air/methane ratio of 2.7 (i.e. O{sub 2}/CH{sub 4}=0.53), a linear velocity in the catalytic bed of about 2 m/sec, and an inert/catalyst ratio 3:1. Starting from this data, the work has been concerned with the identification of the controlling regime (kinetic or diffusional), and then with the estimation of the gas composition and temperature profiles along the reactor. A comparison between experimental and model results has also been accomplished.

  6. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  7. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint.

    Directory of Open Access Journals (Sweden)

    Germán Enciso

    2014-02-01

    Full Text Available We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.

  8. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.

    Science.gov (United States)

    Veljović, Djordje; Colić, Miodrag; Kojić, Vesna; Bogdanović, Gordana; Kojić, Zvezdana; Banjac, Andrijana; Palcevskis, Eriks; Petrović, Rada; Janaćković, Djordje

    2012-11-01

    The effect of decreasing the grain size on the biocompatibility, cell-material interface, and mechanical properties of microwave-sintered monophase hydroxyapatite bioceramics was investigated in this study. A nanosized stoichiometric hydroxyapatite powder was isostatically pressed at high pressure and sintered in a microwave furnace in order to obtain fine grained dense bioceramics. The samples sintered at 1200°C, with a density near the theoretical one, were composed of micron-sized grains, while the grain size decreased to 130 nm on decreasing the sintering temperature to 900°C. This decrease in the grain size certainly led to increases in the fracture toughness by much as 54%. An in vitro investigation of biocompatibility with L929 and human MRC-5 fibroblast cells showed noncytotoxic effects for both types of bioceramics, while the relative cell proliferation rate, cell attachment and metabolic activity of the fibroblasts were improved with decreasing of grain size. An initial in vivo investigation of biocompatibility by the primary cutaneous irritation test showed that both materials exhibited no irritation properties.

  9. Large-Sized Dye-Sensitized Solar Cells with TiO2 Cemented and Protected Silver Grids

    Science.gov (United States)

    Lan, Zhang; Wu, Jihuai; Lin, Jianming; Miaoliang

    2012-03-01

    Large-sized dye-sensitized solar cells were prepared with TiO2 cemented and protected Ag grids in the photo and counter electrodes. The addition of high conductive TiO2 cemented Ag grids can maintain high performance with the enlargement of the cells. The preparation of the compact TiO2 layer on the Ag grids can prevent the corrosion of the electrolyte, moreover, when it is prepared on the whole area of the photo electrode, it also can play as the blocking layer for further enhancing the performance of cells. The presented method shows a simple and efficient way to prepare high performance large single cells.

  10. Effects of background illuminations on the receptive field size of horizontal cells in the turtle retina are mediated by dopamine.

    Science.gov (United States)

    Weiler, R; Akopian, A

    1992-06-08

    Intracellular recordings from luminosity-type horizontal cells of the turtle retina were used to analyze the effects of steady and flickering background illumination on the size of their receptive fields. Both types of background illumination reduce the size of the receptive field to about the same extent. The reduction seems largely due an increase in the coupling resistance between horizontal cells. The effects of both types of background illumination are sensitive to the dopamine antagonist fluphenazine. This suggests that steady and flickering illuminations stimulate the release of endogenous dopamine.

  11. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Charlotte A Collins

    Full Text Available Pax3 and Pax7 are paired-box transcription factors with roles in developmental and adult regenerative myogenesis. Pax3 and Pax7 are expressed by postnatal satellite cells or their progeny but are down regulated during myogenic differentiation. We now show that constitutive expression of Pax3 or Pax7 in either satellite cells or C2C12 myoblasts results in an increased proliferative rate and decreased cell size. Conversely, expression of dominant-negative constructs leads to slowing of cell division, a dramatic increase in cell size and altered morphology. Similarly to the effects of Pax7, retroviral expression of Pax3 increases levels of Myf5 mRNA and MyoD protein, but does not result in sustained inhibition of myogenic differentiation. However, expression of Pax3 or Pax7 dominant-negative constructs inhibits expression of Myf5, MyoD and myogenin, and prevents differentiation from proceeding. In fibroblasts, expression of Pax3 or Pax7, or dominant-negative inhibition of these factors, reproduce the effects on cell size, morphology and proliferation seen in myoblasts. Our results show that in muscle progenitor cells, Pax3 and Pax7 function to maintain expression of myogenic regulatory factors, and promote population expansion, but are also required for myogenic differentiation to proceed.

  12. Changes in size and shape of auditory hair cells in vivo during noise-induced temporary threshold shift.

    Science.gov (United States)

    Dew, L A; Owen, R G; Mulroy, M J

    1993-03-01

    In this study we describe changes in the size and shape of auditory hair cells of the alligator lizard in vivo during noise-induced temporary threshold shift. These changes consist of a decrease in cell volume, a decrease in cell length and an increase in cell width. We speculate that these changes are due to relaxation of cytoskeletal contractile elements and osmotic loss of intracellular water. We also describe a decrease in the surface area of the hair cell plasmalemma, and speculate that it is related to the endocytosis and intracellular accumulation of cell membrane during synaptic vesicle recycling. Finally we describe an increase in the endolymphatic surface area of the hair cell, and speculate that this could alter the micromechanics of the stereociliary tuft to attenuate the effective stimulus.

  13. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    Science.gov (United States)

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-08-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  14. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    Directory of Open Access Journals (Sweden)

    Jintao Li

    2015-08-01

    Full Text Available Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb, a mild gibberellin (GA deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  15. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro.

    Directory of Open Access Journals (Sweden)

    Angela Ivask

    Full Text Available The concept of nanotechnologies is based on size-dependent properties of particles in the 1-100 nm range. However, the relation between the particle size and biological effects is still unclear. The aim of the current paper was to generate and analyse a homogenous set of experimental toxicity data on Ag nanoparticles (Ag NPs of similar coating (citrate but of 5 different primary sizes (10, 20, 40, 60 and 80 nm to different types of organisms/cells commonly used in toxicity assays: bacterial, yeast and algal cells, crustaceans and mammalian cells in vitro. When possible, the assays were conducted in ultrapure water to minimise the effect of medium components on silver speciation. The toxic effects of NPs to different organisms varied about two orders of magnitude, being the lowest (∼0.1 mg Ag/L for crustaceans and algae and the highest (∼26 mg Ag/L for mammalian cells. To quantify the role of Ag ions in the toxicity of Ag NPs, we normalized the EC50 values to Ag ions that dissolved from the NPs. The analysis showed that the toxicity of 20-80 nm Ag NPs could fully be explained by released Ag ions whereas 10 nm Ag NPs proved more toxic than predicted. Using E. coli Ag-biosensor, we demonstrated that 10 nm Ag NPs were more bioavailable to E. coli than silver salt (AgNO3. Thus, one may infer that 10 nm Ag NPs had more efficient cell-particle contact resulting in higher intracellular bioavailability of silver than in case of bigger NPs. Although the latter conclusion is initially based on one test organism, it may lead to an explanation for "size-dependent" biological effects of silver NPs. This study, for the first time, investigated the size-dependent toxic effects of a well-characterized library of Ag NPs to several microbial species, protozoans, algae, crustaceans and mammalian cells in vitro.

  16. Species in the Cryptococcus gattii Complex Differ in Capsule and Cell Size following Growth under Capsule-Inducing Conditions

    Science.gov (United States)

    Fernandes, Kenya E.; Dwyer, Christine; Campbell, Leona T.

    2016-01-01

    ABSTRACT Cryptococcus gattii causes invasive fungal infections that have been increasing in incidence and global distribution in recent years. The major molecular genotypes of C. gattii that were previously classified as VGI to VGIV have recently been described as four new species: C. gattii (VGI), C. deuterogattii (VGII), C. bacillisporus (VGIII), and C. tetragattii (VGIV). The main driver for their classification has been phylogeny, and phenotypic diversity has not yet been extensively characterized. This study examines variation in attributes related to virulence and pathogenicity, including capsule thickness, cell size, tolerance to temperature, oxidative and osmotic stress, and cell wall integrity. A capsule induction agar using diluted Sabouraud medium revealed significant differences in capsule and cell size across the C. gattii species complex and produced irregularly shaped elongated cells in a number of strains. C. gattii/VGI strains possessed the largest capsules of all species but had smaller cells, while C. deuterogattii/VGII strains possessed the largest cells of all species but had smaller capsules. Overall thermotolerance was highest in C. deuterogattii/VGII strains, while a number of C. bacillisporus/VGIII, and C. tetragattii/VGIV strains had substantially reduced growth at 37°C. There was no significant difference among species in their tolerances to oxidative or osmotic stresses, and there was no evidence for defects in cell wall integrity in strains producing irregular cells. These data support the division of the C. gattii species complex into distinctly identified species and suggest underlying reasons for their differences in virulence, epidemiology, and host preference. IMPORTANCE Infections with the fungal pathogen Cryptococcus gattii have been increasing in recent years. Recently, four different species have been described within C. gattii, which correspond to four previously known molecular genotypes (VGI to VGIV). Examining

  17. Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies.

    Science.gov (United States)

    Muñiz, Alberto; Ramesh, Kaini R; Greene, Whitney A; Choi, Jae-Hyek; Wang, Heuy-Ching

    2015-02-04

    Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during in vitro differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of differentiation in different sizes of EBs monitored by fluorescence-activated cell sorting (FACS) analysis of RPE markers is described. These techniques will facilitate the differentiation of iPS cells into RPE for future applications.

  18. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Devanand Venkatasubbu, G.; Ramasamy, S., E-mail: sinna_ramasamy@yahoo.com [Crystal Growth Centre, Anna University (India); Avadhani, G. S. [Indian Institute of Science, Department of Materials Engineering (India); Palanikumar, L.; Kumar, J. [Crystal Growth Centre, Anna University (India)

    2012-03-15

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO{sub 2}) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO{sub 2} nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO{sub 2} nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  19. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    Science.gov (United States)

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  20. Constant Phycobilisome Size in Chromatically Adapted Cells of the Cyanobacterium Tolypothrix tenuis, and Variation in Nostoc sp. 1

    Science.gov (United States)

    Ohki, Kaori; Gantt, Elisabeth; Lipschultz, Claudia A.; Ernst, Marjorie C.

    1985-01-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution. Images Fig. 1 Fig. 2 Fig. 4 PMID:16664550

  1. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry.

    Science.gov (United States)

    De Franceschi, P; Stegmeir, T; Cabrera, A; van der Knaap, E; Rosyara, U R; Sebolt, A M; Dondini, L; Dirlewanger, E; Quero-Garcia, J; Campoy, J A; Iezzoni, A F

    2013-01-01

    Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis.

  2. The Natural Variation in Lifespans of Single Yeast Cells Is Related to Variation in Cell Size, Ribosomal Protein, and Division Time.

    Science.gov (United States)

    Janssens, Georges E; Veenhoff, Liesbeth M

    2016-01-01

    There is a large variability in lifespans of individuals even if they are genetically identical and raised under the same environmental conditions. Our recent system wide study of replicative aging in baker's yeast predicts that protein biogenesis is a driver of aging. Here, we address how the natural variation in replicative lifespan within wild-type populations of yeast cells correlates to three biogenesis-related parameters, namely cell size, ribosomal protein Rpl13A-GFP levels, and division times. Imaging wild type yeast cells in microfluidic devices we observe that in all cells and at all ages, the division times as well as the increase in cell size that single yeast undergo while aging negatively correlate to their lifespan. In the longer-lived cells Rpl13A-GFP levels also negatively correlate to lifespan. Interestingly however, at young ages in the population, ribosome concentration was lowest in the cells that increased the most in size and had shorter lifespans. The correlations between these molecular and cellular properties related to biogenesis and lifespan explain a small portion of the variation in lifespans of individual cells, consistent with the highly individual and multifactorial nature of aging.

  3. Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research.

    Science.gov (United States)

    Koehler, Sara R; Dhaher, Yasin Y; Hansen, Andrew H

    2014-04-11

    The iPecs load cell is a lightweight, six-degree-of-freedom force transducer designed to fit easily into an endoskeletal prosthesis via a universal mounting interface. Unlike earlier tethered systems, it is capable of wireless data transmission and on-board memory storage, which facilitate its use in both clinical and real-world settings. To date, however, the validity of the iPecs load cell has not been rigorously established, particularly for loading conditions that represent typical prosthesis use. The aim of this study was to assess the accuracy of an iPecs load cell during in situ human subject testing by cross-validating its force and moment measurements with those of a typical gait analysis laboratory. Specifically, the gait mechanics of a single person with transtibial amputation were simultaneously measured using an iPecs load cell, multiple floor-mounted force platforms, and a three-dimensional motion capture system. Overall, the forces and moments measured by the iPecs were highly correlated with those measured by the gait analysis laboratory (r>0.86) and RMSEs were less than 3.4% and 5.2% full scale output across all force and moment channels, respectively. Despite this favorable comparison, however, the results of a sensitivity analysis suggest that care should be taken to accurately identify the axes and instrumentation center of the load cell in situations where iPecs data will be interpreted in a coordinate system other than its own (e.g., inverse dynamics analysis).

  4. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size

    Directory of Open Access Journals (Sweden)

    Cai Y

    2015-04-01

    Full Text Available Yao Cai,1–3 Changqian Cao,1,2 Xiaoqing He,1 Caiyun Yang,1–3 Lanxiang Tian,1,2 Rixiang Zhu,2 Yongxin Pan1,21France–China Bio-Mineralization and Nano-Structures Laboratory, 2Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 3University of Chinese Academy of Sciences, Beijing, People’s Republic of ChinaPurpose: This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI and immunohistochemical staining of cancer cells.Materials and methods: M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7–5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco’s Modified Eagle’s Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections.Results: The saturation magnetization (Ms, relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM-1 s-1, allowing to

  5. Podocyte Number in Children and Adults: Associations with Glomerular Size and Numbers of Other Glomerular Resident Cells.

    Science.gov (United States)

    Puelles, Victor G; Douglas-Denton, Rebecca N; Cullen-McEwen, Luise A; Li, Jinhua; Hughson, Michael D; Hoy, Wendy E; Kerr, Peter G; Bertram, John F

    2015-09-01

    Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335-502), 389 NECs (IQR=265-498), and 146 PECs (IQR=111-206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431-746; Pnumber of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology.

  6. Neurolymphomatosis in Primary Cutaneous CD4+ Pleomorphic Small/Medium-sized T-cell Lymphoma Mimicking Hansen's Disease.

    Science.gov (United States)

    Khader, Anza; Vineetha, Mary; George, Mamatha; Manakkad, Shiny Padinjarayil; Balakrishnan, Sunitha; Rajan, Uma

    2017-01-01

    Neurolymphomatosis (NL) refers to nerve infiltration by neurotropic neoplastic cells in the setting of a known or an unknown hematological malignancy. It typically presents as painful or painless peripheral mononeuropathy, mononeuritis multiplex, polyneuropathy, polyradiculopathy, or cranial neuropathy. A 32-year-old male presented with a hyperpigmented hypoesthetic plaque over the anterolateral aspect of the right leg with thickening of the right common peroneal nerve and foot drop clinically diagnosed as Hansen's disease. Biopsy taken from skin showed infiltrates of pleomorphic small and medium sized lymphocytes in the dermis and subcutis. On immunohistochemistry, the cells were positive for CD3, CD4 and negative for CD8, CD20, and CD30. Ultrasonography-guided fine-needle aspiration of the thickened nerve showed infiltrates of atypical lymphoid cells. Based on these findings, a diagnosis of NL in primary cutaneous CD4+ pleomorphic small/medium-sized T-cell lymphoma was made. The disease responded to systemic chemotherapy and localized radiotherapy with no evidence of relapse during 3 years follow-up. NL in primary cutaneous CD4+ pleomorphic small/medium-sized T-cell lymphoma presenting with manifestations redolent of Hansen's disease is not described in available literature. This case also demonstrates the utility of fine needle aspiration of nerve, a minimally invasive procedure in the diagnosis of NL.

  7. Size- and density-dependent elution of normal and pathological red blood cells by gravitational field-flow fractionation.

    Science.gov (United States)

    Cardot, P J; Elgéa, C; Guernet, M; Godet, D; Andreux, J P

    1994-04-01

    Elution of normal and pathological human red blood cells (RBCs) was performed by gravitational field-flow fractionation (GFFF). The reproducibility of the retention factor was lower than 10% and elution at high and low flow-rates confirmed the existence of "lifting forces". No direct correlation between size and retention was observed for normal RBCs in the absence of density information. Elution of pathological human RBCs, known to be modified in shape, density and rigidity, was performed. The elution parameters confirmed that the retention mechanism of RBCs is at least density dependent but that other factors can be involved, such as shape or deformity. Moreover, peak profile description parameters (standard deviation and asymmetry) can be qualitatively related to some biophysical parameters. Numerous elution characteristics can be linked to cell properties described in the literature and although GFFF appeared to have limited capabilities in terms of size analysis it appeared to be a versatile tool for studying cell biophysical characteristics.

  8. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki

    2014-01-01

    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs - VGCF(®)-X, VGCF(®)-S, and VGCF(®) (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) - and three CSCNTs of different lengths (CS-L, 20-80 μm; CS-S, 0.5-20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1-50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.

  9. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    Directory of Open Access Journals (Sweden)

    Wang YB

    2013-10-01

    Full Text Available Yanbo Wang, Xuxia Yan, Linglin Fu Marine Resources and Nutrition Biology Research Center, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, People's Republic of China Abstract: Nano-selenium (Se, with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. Keywords: selenium nanoparticle, intestinal epithelial cell, crucian carp, primary culture

  10. A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle

    Science.gov (United States)

    Cai, Q.; Brett, D. J. L.; Browning, D.; Brandon, N. P.

    Hybridizing a fuel cell with an energy storage unit (battery or supercapacitor) combines the advantages of each device to deliver a system with high efficiency, low emissions, and extended operation compared to a purely fuel cell or battery/supercapacitor system. However, the benefits of such a system can only be realised if the system is properly designed and sized, based on the technologies available and the application involved. In this work we present a sizing-design methodology for hybridisation of a fuel cell with a battery or supercapacitor for applications with a cyclic load profile with two discrete power levels. As an example of the method's application, the design process for selecting the energy storage technology, sizing it for the application, and determining the fuel load/range limitations, is given for an unmanned underwater vehicle (UUV). A system level mass and energy balance shows that hydrogen and oxygen storage systems dominate the mass and volume of the energy system and consequently dictate the size and maximum mission duration of a UUV.

  11. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  12. Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.K. [PPF Cellules solaires photovoltaiques plastiques, Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 Bd Lavoisier, 49045 Angers (France); Nunzi, J.M. [PPF Cellules solaires photovoltaiques plastiques, Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 Bd Lavoisier, 49045 Angers (France); Departments of Chemistry and Physics at Queen' s University, Kingston K7L 3N6, Ontario (Canada)], E-mail: nunjijm@queensu.ca; Ratier, B. [XLim Institute of research, UMR-CNRS 6172, Faculte des Sciences de l' Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges (France); Moliton, A. [XLim Institute of research, UMR-CNRS 6172, Faculte des Sciences de l' Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges (France)], E-mail: andre.moliton@unilim.fr

    2008-02-18

    Electromagnetic study of organic photovoltaic cells design shows that electrical parameters depend drastically on the active area geometry: we theoretically show that electrical parameters are altered when the cell length becomes greater than one centimeter. Experimental verification is provided with simple molecular heterojunction cells with areas from 0.03 to 0.78 cm{sup 2}.

  13. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    Science.gov (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  14. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  15. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.

    Science.gov (United States)

    Rodríguez-Castelán, J; Nicolás, L; Morimoto, S; Cuevas, E

    2015-04-01

    Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.

  16. Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model

    Science.gov (United States)

    Vertiz, G.; Oyarbide, M.; Macicior, H.; Miguel, O.; Cantero, I.; Fernandez de Arroiabe, P.; Ulacia, I.

    2014-12-01

    Thermal management is one of the key factors to keep lithium-ion cells in optimum electrical performance, under safe working conditions and into a reasonably low ageing process. This issue is becoming particularly relevant due to the heterogeneous heat generation along the cell. Cell working temperature is determined by ambient temperature, heat generation and evacuation capacity. Therefore, thermal management is established by: i) the intrinsic thermal properties (heat capacity & thermal conductivity) and ii) the heat generation electro-thermal parameters (internal resistance, open circuit voltage & entropic factor). In this research, different methods - calculated and experimental - are used to characterize the main heat properties of a 14Ah -LiFePO4/graphite-commercial large sizes pouch cell. In order to evaluate the accuracy of methods, two comparisons were performed. First, Newman heat generation estimations were compared with experimental heat measurements. Secondly, empirical thermal cell behaviour was match with 1D electro-thermal model response. Finally, considering the results, the most adequate methodology to evaluate the key thermal parameters of a large size Lithium-ion pouch cell are proposed to be: i) pulse method for internal resistance, ii)heat loss method for entropic factor; and iii)experimental measurement (ARC calorimeter and C-177-97 standard method) for heat capacity and thermal conductivity.

  17. Effect of size and structure of a bacteria fuel cell on the electricity production and energy conversion rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiachang; Halme, A.

    1997-12-31

    The direct conversion of chemical energy to electrical energy can be realized by using microorganisms as catalyst in a microbial fuel cell. A relative big size bacteria fuel cell is investigated and compared to a smaller one constructed and tested previously. The big cell consists of a anode chamber and two cathode chambers. A packed bed of graphite particles was used as the anode and an oxygen gas diffusion electrode was used as the cathode in both devices. The cation permeable ion-exchange membrane from DuPont was used to separate anodic and cathodic chambers. Batch and self-circulation operation modes were applied in both devices. The apparent anode volume of the bigger device is 145.3 ml which is 2.7 times of the smaller cell volume (53.3 ml). The purpose of this study is to know what size of a bacteria fuel cell is suitable for the fuel cell to obtain maximum power output per volume. (orig.) 18 refs.

  18. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    Science.gov (United States)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  19. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons.

    Science.gov (United States)

    Berciano, Maria T; Novell, Mariona; Villagra, Nuria T; Casafont, Iñigo; Bengoechea, Rocio; Val-Bernal, J Fernado; Lafarga, Miguel

    2007-06-01

    This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.

  20. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  1. Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Okello, Robert C O; Heuvelink, Ep; de Visser, Pieter H B; Lammers, Michiel; de Maagd, Ruud A; Marcelis, Leo F M; Struik, Paul C

    2015-05-01

    Light affects plant growth through assimilate availability and signals regulating development. The effects of light on growth of tomato fruit were studied using cuvettes with light-emitting diodes providing white, red or blue light to individual tomato trusses for different periods during daytime. Hypotheses tested were as follows: (1) light-grown fruits have stronger assimilate sinks than dark-grown fruits, and (2) responses depend on light treatment provided, and fruit development stage. Seven light treatments [dark, 12-h white, 24-h white, 24-h red and 24-h blue light, dark in the first 24 days after anthesis (DAA) followed by 24-h white light until breaker stage, and its reverse] were applied. Observations were made between anthesis and breaker stage at fruit, cell and gene levels. Fruit size and carbohydrate content did not respond to light treatments while cell division was strongly stimulated at the expense of cell expansion by light. The effects of light on cell number and volume were independent of the combination of light color and intensity. Increased cell division and decreased cell volume when fruits were grown in the presence of light were not clearly corroborated by the expression pattern of promoters and inhibitors of cell division and expansion analyzed in this study, implying a strong effect of posttranscriptional regulation. Results suggest the existence of a complex homeostatic regulatory system for fruit growth in which reduced cell division is compensated by enhanced cell expansion.

  2. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Littmann, Sten;

    2016-01-01

    determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density...... centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS......-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow...

  3. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Wei, Zung-Hang, E-mail: wei@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan (China); Lai, Mei-Feng; Ger, Tzong-Rong [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu City 300, Taiwan (China)

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  4. Obese First-Degree Relatives of Patients with Type 2 Diabetes with Elevated Triglyceride Levels Exhibit Increased β-Cell Function

    Science.gov (United States)

    Torres-Rasgado, Enrique; Porchia, Leonardo M.; Ruiz-Vivanco, Guadalupe; Gonzalez-Mejia, M. Elba; Báez-Duarte, Blanca G.; Pulido-Pérez, Patricia; Rivera, Alicia; Romero, Jose R.

    2015-01-01

    Abstract Background: Type 2 diabetes mellitus (T2DM) is characterized as a disease continuum that is marked by metabolic changes that are present for several years, sometimes well before frank diagnosis of T2DM. Genetic predisposition, ethnicity, geography, alterations in BMI, and lipid profile are considered important markers for the pathogenesis of T2DM through mechanisms that remain unresolved and controversial. The aim of this study was to investigate the relationship between triglycerides (TGs) and β-cell function, insulin resistance (IR), and insulin sensitivity (IS) in obese first-degree relatives of patients with T2DM (FDR-T2DM) among subjects from central Mexico with normal glucose tolerance (NGT). Methods: We studied 372 FDR-T2DM subjects (ages,18–65) and determined body mass index (BMI), fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), insulin, and TGs levels. Subjects were categorized based on glycemic control [NGT, prediabetes (PT2DM), or T2DM]. NGT subjects were further categorized by BMI [normal weight (Ob−) or obese (Ob+)] and TGs levels (TG−, <150 mg/dL, or TG+, ≥150 mg/dL). β-cell function, IR, and IS were determined by the homeostasis model assessment of β-cell function (HOMA2-β), homeostasis model assessment of insulin resistance (HOMA2-IR), and Quantitative Insulin Sensitivity Check Index (QUICKI) indices, respectively. Results: The obese subjects with elevated TGs levels had 21%–60% increased β-cell function when compared to all groups (P<0.05). In addition, this group had insulin levels, IS, and IR similar to PT2DM. Furthermore, only in obese subjects did TGs correlate with β-cell function (ρ=0.502, P<0.001). Conclusion: We characterized FDR-T2DM subjects from central Mexico with NGT and revealed a class of obese subjects with elevated TGs and β-cell function, which may precede PT2DM. PMID:25423015

  5. Cell encapsulation in sub-mm sized gel modules using replica molding.

    Directory of Open Access Journals (Sweden)

    Alison P McGuigan

    Full Text Available For many types of cells, behavior in two-dimensional (2D culture differs from that in three-dimensional (3D culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method--one that is similarly convenient, flexible, and reproducible--exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules in a variety of simple shapes (cylinders, crosses, rectangular prisms with lateral dimensions between 40 and 1000 microm, cell densities of 10(5-10(8 cells/cm(3, and total volumes between 1x10(-7 and 8x10(-4 cm(3. By varying (i the initial density of cells at seeding, and (ii the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8-10(9 cells/cm(3. This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii developing applications in tissue engineering.

  6. Cell size and basal metabolic rate in hummingbirds Tamaño celular y tasa metabólica basal en picaflores

    National Research Council Canada - National Science Library

    Juan C. Opazo; Mauricio Soto-Gamboa; Maria José Fernández

    2005-01-01

    .... Knowing that cell size is proportional to C-value, in this study we tested for a relationship between mean corpuscular volume of red blood cells and BMR in four species of hummingbirds ranging from 4 to 20 g...

  7. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  8. Immunohistochemical study of hepatocyte, cholangiocyte and stem cell markers of hepatocellular carcinoma: the second report: relationship with tumor size and cell differentiation.

    Science.gov (United States)

    Kumagai, Arisa; Kondo, Fukuo; Sano, Keiji; Inoue, Masafumi; Fujii, Takeshi; Hashimoto, Masaji; Watanabe, Masato; Soejima, Yurie; Ishida, Tsuyoshi; Tokairin, Takuo; Saito, Koji; Sasajima, Yuko; Takahashi, Yoshihisa; Uozaki, Hiroshi; Fukusato, Toshio

    2016-07-01

    The purpose of this study is to investigate whether ordinary hepatocellular carcinomas (HCCs) show positivity of stem/progenitor cell markers and cholangiocyte markers during the process of tumor progression. Ninety-four HCC lesions no larger than 8 cm from 94 patients were immuno-histochemically studied using two hepatocyte markers (Hep par 1 and α-fetoprotein), five cholangiocyte markers (cytokeratin CK7, CK19, Muc1, epithelial membrane antigen and carcinoembryonic antigen) and three hepatic stem/progenitor cell markers (CD56, c-Kit and EpCAM). The tumors were classified into three groups by tumor size: S1, tumors were also classified according to tumor differentiation: well, moderately and poorly differentiated. The relationship between the positive ratios of these markers, tumor size and tumor differentiation was examined. The positive ratios of cholangiocyte markers tended to be higher in larger sized and more poorly differentiated tumors (except for CK7). The positive ratios of stem/progenitor cell markers tended to be higher in larger sized and more poorly differentiated tumors (except for c-Kit). Ordinary HCC can acquire the characteristic of positivity of cholangiocyte and stem/progenitor cell markers during the process of tumor progression. © 2016 The Authors. Journal of Hepato-Biliary-Pancreatic Sciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  9. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  10. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Sillesen, H; Eldrup, N; Hultgren, R

    2015-01-01

    BACKGROUND: Abdominal aortic aneurysm (AAA) is thought to develop as a result of inflammatory processes in the aortic wall. In particular, mast cells are believed to play a central role. The AORTA trial was undertaken to investigate whether the mast cell inhibitor, pemirolast, could retard...... the growth of medium-sized AAAs. In preclinical and clinical trials, pemirolast has been shown to inhibit antigen-induced allergic reactions. METHODS: Inclusion criteria for the trial were patients with an AAA of 39-49 mm in diameter on ultrasound imaging. Among exclusion criteria were previous aortic....... There was no statistically significant difference in growth between patients receiving placebo and those in the three dose groups of pemirolast. Similarly, there were no differences in adverse events. CONCLUSION: Treatment with pemirolast did not retard the growth of medium-sized AAAs. REGISTRATION NUMBER: NCT01354184...

  11. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage...... devices are presented. It is concluded that not only should the energy storage devices of a FCHEV be sized by their power and energy requirements, but the battery lifetime should also be considered. Two energy-management strategies, which sufficiently divide the load power between the fuel cell stack...

  12. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    Science.gov (United States)

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  13. Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2015-10-01

    Full Text Available A perovskite-type solar cell with a substrate size of 70 mm × 70 mm was fabricated by a simple spin-coating method using a mixed solution. The photovoltaic properties of the TiO2/CH3NH3PbI3-based photovoltaic devices were investigated by current density-voltage characteristic and incident photon to current conversion efficiency measurements. Their short-circuit current densities were almost constant over a large area. The photoconversion efficiency was influenced by the open-circuit voltage, which depended on the distance from the center of the cell.

  14. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    Science.gov (United States)

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  15. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.

    Science.gov (United States)

    Bannunah, Azzah M; Vllasaliu, Driton; Lord, Jennie; Stolnik, Snjezana

    2014-12-01

    This study investigated the effect of nanoparticle size (50 and 100 nm) and surface charge on their interaction with Caco-2 monolayers as a model of the intestinal epithelium, including cell internalization pathways and the level of transepithelial transport. Initially, toxicity assays showed that cell viability and cell membrane integrity were dependent on the surface charge and applied mass, number, and total surface area of nanoparticles, as tested in two epithelial cell lines, colon carcinoma Caco-2 and airway Calu-3. This also identified suitable nanoparticle concentrations for subsequent cell uptake experiments. Nanoparticle application at doses below half maximal effective concentration (EC₅₀) revealed that the transport efficiency (ratio of transport to cell uptake) across Caco-2 cell monolayers is significantly higher for negatively charged nanoparticles compared to their positively charged counterparts (of similar size), despite the higher level of internalization of positively charged systems. Cell internalization pathways were hence probed using a panel of pharmacological inhibitors aiming to establish whether the discrepancy in transport efficiency is due to different uptake and transport pathways. Vesicular trans-monolayer transport for both positively and negatively charged nanoparticles was confirmed via inhibition of dynamin (by dynasore) and microtubule network (via nocodazole), which significantly reduced the transport of both nanoparticle systems. For positively charged nanoparticles a significant decrease in internalization and transport (46% and 37%, respectively) occurred in the presence of a clathrin pathway inhibitor (chlorpromazine), macropinocytosis inhibition (42%; achieved by 5-(N-ethyl-N-isopropyi)-amiloride), and under cholesterol depletion (38%; via methyl-β-cyclodextrin), but remained unaffected by the inhibition of lipid raft associated uptake (caveolae) by genistein. On the contrary, the most prominent reduction in

  16. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.

    Directory of Open Access Journals (Sweden)

    Kristen N Pollizzi

    Full Text Available mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.

  17. Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models

    Science.gov (United States)

    Yohan, Darren; Yang, Celina; Lu, Xiaofeng; Chithrani, Devika B.

    2016-03-01

    Gold nanoparticles (GNPs) can be used as a model NP system to improve the interface between nanotechnology and medicine since their size and surface properties can be tailored easily. GNPs are being used as radiation dose enhancers and as drug carriers in cancer research. Hence, it is important to know the optimum NP size for uptake not only at monolayer level but also at tissue level. Once GNPs leave tumor vasculature, they enter the tumor tissue. Success of any therapeutic technique using NPs depends on how well NPs penetrate the tumor tissue and reach individual tumor cells. In this work, multicellular layers (MCLs) were grown to model the post-vascular tumor environment. GNPs of 20 nm and 50 nm diameters were used to elucidate the effects of size on the GNP penetration and distribution dynamics. Larger NPs (50 nm) were better at monolayer level, but smaller NPs (20 nm) were at tissue level. The MCLs exhibited a much more extensive extracellular matrix (ECM) than monolayer cell cultures. This increased ECM created a barrier for NP transport and ECM was also dependent on the tumor cell lines. Smaller NPs penetrated better compared to larger NPs. Transport of NPs was better in MDA-MB231 vs MCF-7. This MCL model tissue structures are better tools to optimize NP transport through tissue before using them in animal models. Based on our study, we believe that smaller NPs are better for improved outcome in future cancer therapeutics.

  18. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P.P.J. van den Bosch; Y. Shen; T. Hofman; Edwin Tazelaar

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  19. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  20. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  1. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition

    NARCIS (Netherlands)

    Pfeiffer, T.V.; Ortiz Gonzalez, J.; Santbergen, R.; Tan, H.; Schmidt-Ott, A.; Zeman, M.; Smets, A.H.M.

    2014-01-01

    A soft deposition method for incorporating surface plasmon resonant metal nanoparticles within photovoltaic devices was studied. This self-assembly method provides excellent control over both nanoparticle size and surface coverage. Films of spherical Ag nanoparticles with diameter of ∼100 nm were fa

  2. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette

    2011-01-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of thi...

  3. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells.

    Science.gov (United States)

    Hatakeyama, Wataru; Taira, Masayuki; Chosa, Naoyuki; Kihara, Hidemichi; Ishisaki, Akira; Kondo, Hisatomo

    2013-12-01

    The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5‑1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle size in two HAP/Col composites on the osteogenic differentiation profile in osteoblast-like cells (SaOS-2). We created a collagen control sponge (Col) and two HAP/Col composite sponges (n-HAP/Col and m-HAP/Col) using freeze-drying and dehydrothermal cross-linking techniques, and then punched out samples of 6 mm in diameter and 1 mm in height. The SaOS-2 cells were cultured on three test materials for 1, 2, 3 and 4 weeks. Total RNA was extracted from the cultured cells and the expression of osteogenic differentiation-related genes was evaluated by reverse transcription PCR (RT-PCR) using primer sets of alkaline phosphatase (ALP), type 1 collagen (COL1), bone sialoprotein (BSP) and osteocalcin precursor [bone gamma-carboxyglutamate (gla) protein (BGLAP)] genes, as well as the β-actin gene. The cells were also cultured on Col, n-HAP/Col and m-HAP/Col specimens for 1 and 4 weeks, and were then observed under a scanning electron microscope (SEM). The experimental results were as follows: RT-PCR indicated that osteogenic differentiation, particularly the gene expression of BSP, was most accelerated when the cells were cultured on n-HAP/Col specimens, followed by m-HAP/Col, whilst the weakest accelaeration was observed when the cells were cultured on Col specimens. As shown by the SEM images, the SaOS-2 cells were fibroblastic when cultured on Col specimens for up to 4 weeks; they were fibroblastic when cultured on n-HAP/Col specimens for 1 week, but appeared as spheroids

  4. Distinct MicroRNA Subcellular Size and Expression Patterns in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Beibei Chen

    2012-01-01

    Full Text Available Introduction. Small noncoding RNAs have important regulatory functions in different cell pathways. It is believed that most of them mainly play role in gene post-transcriptional regulation in the cytoplasm. Recent evidence suggests miRNA and siRNA activity in the nucleus. Here, we show distinct genome-wide sub-cellular localization distribution profiles of small noncoding RNAs in human breast cancer cells. Methods. We separated breast cancer cell nuclei from cytoplasm, and identified small RNA sequences using a high-throughput sequencing platform. To determine the relationship between miRNA sub-cellular distribution and cancer progression, we used microarray analysis to examine the miRNA expression levels in nucleus and cytoplasm of three human cell lines, one normal breast cell line and two breast cancer cell lines. Logistic regression and SVM were used for further analysis. Results. The sub-cellular distribution of small noncoding RNAs shows that numerous miRNAs and their isoforms (isomiR not only locate to the cytoplasm but also appeare in the nucleus. Subsequent microarray analyses indicated that the miRNA nuclear-cytoplasmic-ratio is a significant characteristic of different cancer cell lines. Conclusions. Our results indicate that the sub-cellular distribution is important for miRNA function, and that the characterization of the small RNAs sub-cellular localizome may contribute to cancer research and diagnosis.

  5. Role of Endothelial Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus norvegicus)

    Science.gov (United States)

    2014-07-16

    Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus norvegicus) PRINCIPAL INVESTIGATOR...SUBTITLE FDG20110033A "Role of Endothelial Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus

  6. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Directory of Open Access Journals (Sweden)

    Lisa Fauteux

    Full Text Available There is now evidence that aerobic anoxygenic phototrophic (AAP bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively. AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC, whereas cell-specific BChla content was negatively related to chlorophyll a (Chla. As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  7. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Science.gov (United States)

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  8. Effect of toluene on Pseudomonas stutzeri ST-9 morphology - plasmolysis, cell size, and formation of outer membrane vesicles.

    Science.gov (United States)

    Michael, Esti; Nitzan, Yeshayahu; Langzam, Yakov; Luboshits, Galia; Cahan, Rivka

    2016-08-01

    Isolated toluene-degrading Pseudomonas stutzeri ST-9 bacteria were grown in a minimal medium containing toluene (100 mg·L(-1)) (MMT) or glucose (MMG) as the sole carbon source, with specific growth rates of 0.019 h(-1) and 0.042 h(-1), respectively. Scanning (SEM) as well as transmission (TEM) electron microscope analyses showed that the bacterial cells grown to mid-log phase in the presence of toluene possess a plasmolysis space. TEM analysis revealed that bacterial cells that were grown in MMT were surrounded by an additional "material" with small vesicles in between. Membrane integrity was analyzed by leakage of 260 nm absorbing material and demonstrated only 7% and 8% leakage from cultures grown in MMT compared with MMG. X-ray microanalysis showed a 4.3-fold increase in Mg and a 3-fold increase in P in cells grown in MMT compared with cells grown in MMG. Fluorescence-activated cell sorting (FACS) analysis indicated that the permeability of the membrane to propidium iodide was 12.6% and 19.6% when the cultures were grown in MMG and MMT, respectively. The bacterial cell length increased by 8.5% ± 0.1% and 17% ± 2%, as measured using SEM images and FACS analysis, respectively. The results obtained in this research show that the presence of toluene led to morphology changes, such as plasmolysis, cell size, and formation of outer membrane vesicles. However, it does not cause significant damage to membrane integrity.

  9. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ajita, J.; Saravanan, S.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2015-08-01

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol–gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7 ± 0.62 nm, nBG-2: 43.25 ± 1.5 nm, and nBG-3: 37.6 ± 0.81 nm). All three nBGs were non-toxic at a concentration of 20 mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. - Highlights: • Three different sizes of bioactive glass nanoparticles (nBGs) were prepared via the sol–gel method. • Increased concentrations of polyethylene glycol decreased the size of nBG particles. • All three nBGs were non-toxic at a concentration of 20 mg/mL. • Cell number, cell cycle phase analysis, cyclin gene expression and ERK activation were studied. • Increased proliferation was observed in mMSCs treated with smaller nBG particles.

  10. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells.

    Science.gov (United States)

    Hvichia, G E; Parveen, Z; Wagner, C; Janning, M; Quidde, J; Stein, A; Müller, V; Loges, S; Neves, R P L; Stoecklein, N H; Wikman, H; Riethdorf, S; Pantel, K; Gorges, T M

    2016-06-15

    Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with automated staining for cell identification, and subsequent recovery (harvesting) of cells from the device. Using the Parsortix™ system, average cell capture inside the device ranged between 42% and 70%. Subsequent harvest of cells from the device ranged between 54% and 69% of cells captured. Most importantly, 99% of the isolated tumor cells were viable after processing in spiking experiments as well as after harvesting from patient samples and still functional for downstream molecular analysis as demonstrated by mRNA characterization and array-based comparative genomic hybridization. Analyzing clinical blood samples from metastatic (n = 20) and nonmetastatic (n = 6) cancer patients in parallel with CellSearch(®) system, we found that there was no statistically significant difference between the quantitative behavior of the two systems in this set of twenty six paired separations. In conclusion, the epitope independent Parsortix™ system enables the isolation of viable CTCs at a very high purity. Using this system, viable tumor cells are easily accessible and ready for molecular and functional analysis. The system's ability for enumeration and molecular characterization of EpCAM-negative CTCs will help to broaden research into the mechanisms of cancer as well as facilitating the use of CTCs as "liquid biopsies."

  11. Heterogeneity of mast cells and expression of Annexin A1 protein in a second degree burn model with silver sulfadiazine treatment

    Science.gov (United States)

    Souza, Helena Ribeiro; de Azevedo, Lucas Ribeiro; Possebon, Lucas; Costa, Sara de Souza; Iyomasa-Pilon, Melina Mizusaki; Oliani, Sonia Maria; Girol, Ana Paula

    2017-01-01

    Mast cells (MCs) participate in all stages of skin healing and one of their mediators is the Annexin A1 protein (AnxA1), linked to inflammation, proliferation, migration and apoptosis processes, but not studied in thermal burns yet. Therefore, our objectives were to evaluate the behavior of MCs and AnxA1 in a second degree burn model, treated or not with silver sulfadiazine 1% (SDP 1%) and associated to macrophages quantification and cytokines dosages. MCs counts showed few cells in the early stages of repair but increased MCs in the final phases in the untreated group. The normal skin presented numerous tryptase-positive MCs that were reduced after burning in all analyzed periods. Differently, few chymase-positive MCs were observed in the early stages of healing, however, increased chymase-positive MCs were found at the final phase in the untreated group. MCs also showed high immunoreactivity for AnxA1 on day 3 in both groups. In the tissue there was a strong protein expression in the early stages of healing, but in the final phases only in the SDP treated animals. TNF-α, IL-1β, IL-6, IL-10 and MCP-1 levels and macrophages quantification were increased in inflammation and reepithelialization phases. Reduced IL-1β, IL-6 and IL-10 levels and numerous macrophages occurred in the treated animals during tissue repair. Our results indicate modulation in the profile of MCs and AnxA1expression during healing by the treatment with SDP 1%, pointing them as targets for therapeutic interventions on skin burns. PMID:28278234

  12. Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); M.K.E. Koolen; H. Jahr (Holger); N. Kops (Nicole); J.H. Waarsing (Jan); H.H. Weinans (Harrie); O.P. van der Jagt (Olav)

    2014-01-01

    markdownabstractAbstract: Grafting bone defects or atrophic non-unions with mesenchymal stromal cells (MSCs)-based grafts is not yet successful. MSC-based grafts typically use undifferentiated or osteogenically differentiated MSCs and regenerate bone through intramembranous ossification.

  13. Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population.

    Directory of Open Access Journals (Sweden)

    Julia Kozlitina

    Full Text Available Although mutations in the genes encoding either the protein or RNA component of telomerase have been found in patients with various blood disorders, the impact of telomere length on hematopoiesis is less well understood for subjects from the general population. Here we have measured telomere lengths of genomic DNA isolated from circulating leukocytes of 3157 subjects, ranging from 18 to 85 years of age, enrolled in a large multiethnic population based study, the Dallas Heart Study 2. Shorter telomere lengths are marginally associated with lower red blood cell counts in this cohort, but are significantly associated with larger mean red blood cell size (as measured by the MCV, increased red blood cell distribution width (RDW, higher hemoglobin levels and lower platelet counts, even after correction for age, gender and ethnicity (p-values of 50 years vs. p = 0.0006 for <50 years of age. To our knowledge, this is the first report of an association between telomere length and red cell size in a large urban US population and suggests a biologic mechanism for macrocytosis of aging.

  14. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.

    Science.gov (United States)

    Kim, Hui-Seon; Park, Nam-Gyu

    2014-09-04

    Current-voltage (I-V) characteristics of CH3NH3PbI3 perovskite solar cells are studied using a time-dependent current response with stepwise sweeping of the bias voltage. Compared with the crystalline Si solar cell showing time-independent current at a given bias voltage, the perovskite solar cells exhibit time-dependent current response. The current increases with time and becomes steady at forward scan from short-circuit to open-circuit, whereas it is decayed and saturated with time at reverse scan from open-circuit to short-circuit. Time-dependent current response eventually leads to I-V hysteresis depending on the scan direction and the scan rate. Crystal size of CH3NH3PbI3 and the mesoporous TiO2 (mp-TiO2) film are found to influence I-V hysteresis, where the I-V hysteresis is alleviated as crystal size increases and in the presence of mp-TiO2. The capacitance observed at low frequency (0.1 to 1 Hz), associated with dipole polarization, tends to diminish as size of perovskite and mp-TiO2 layer thickness increases, which suggests that the origin of hysteresis correlates to the capacitive characteristic of CH3NH3PbI3 and the degree of hysteresis depends strongly on perovskite crystal size and mesoporous TiO2 layer.

  15. Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kim, Hee Jin; Moon, Hong S; Delhom, Christopher D; Zeng, Linghe; Fang, David D

    2013-01-01

    Cotton fiber fineness and maturity measured indirectly as micronaire (MIC) are important properties of determining fiber grades in the textile market. To understand the genetic control and molecular mechanisms of fiber fineness and maturity, we studied two near isogenic lines, Gossypium hirsutum, Texas Marker-1 wild type (TM-1) and immature fiber (im) mutant showing a significant difference in MIC values. The fibers from im mutant plants were finer and less mature with lower MIC values than those from the recurrent parent, TM-1. A comprehensive fiber property analysis of TM-1 and im mutant showed that the lower MIC of fibers in im mutant was due to the lower degree of fiber cell wall thickening as compared to the TM-1 fibers. Using an F(2) population comprising 366 progenies derived from a cross between TM-1 and im mutant, we confirmed that the immature fiber phenotype present in a mutant plant was controlled by one single recessive gene im. Furthermore, we identified 13 simple sequence repeat markers that were closely linked to the im gene located on chromosome 3. Molecular markers associated with the im gene will lay the foundation to further investigate genetic information required for improving cotton fiber fineness and maturity.

  16. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Directory of Open Access Journals (Sweden)

    Haniu H

    2014-04-01

    Full Text Available Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1 1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs and cup-stacked carbon nanotubes (CSCNTs on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length were tested. Human bronchial epithelial (BEAS-2B and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL, and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT

  17. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    Science.gov (United States)

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; Moreno de Alborán, Ignacio

    2005-05-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth.

  18. Effects of Chronic Blood-Flow Restriction Exercise on Skeletal Muscle Size and Myogenic Satellite Cell Expression

    DEFF Research Database (Denmark)

    Aagaard, Per; Jacobsen, Mikkel; Jensen, Kasper Yde

    2016-01-01

    of continued sports activity, resulting in visible hypertrophy of his left leg. AIM: To study the effect of chronic blood-flow restricted (BFR) exercise conditions on skeletal muscle size and myogenic satellite cell (SC) expression in an arterio-venous shunt patient. METHODS: Muscle biopsies were obtained from......-regulation in myogenic satellite cell activity within all stages of the cell cycle, which was accompanied by substantial muscle hypertrophy. Specifically, muscle fiber cross-sectional area (40%) and myonuclei number (15%) were elevated in the affected leg, together with an elevated myonuclear domain (20%). This single......-case study confirms previous result from our Lab demonstrating that blood-flow restricted muscle exercise leads to a marked activation of myogenic SCs, upregulated myonuclei number and marked myofiber hypertrophy....

  19. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia.

    Science.gov (United States)

    Colegrove, Kathleen M; Venn-Watson, Stephanie

    2015-04-01

    Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.

  20. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins

    Science.gov (United States)

    Kettler, Katja; Giannakou, Christina; de Jong, Wim H.; Hendriks, A. Jan; Krystek, Petra

    2016-09-01

    Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

  1. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens.

    Science.gov (United States)

    Pathuri, Indira Priyadarshini; Zellerhoff, Nina; Schaffrath, Ulrich; Hensel, Götz; Kumlehn, Jochen; Kogel, Karl-Heinz; Eichmann, Ruth; Hückelhoven, Ralph

    2008-12-01

    RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H(2)O(2) production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.

  2. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.

    Science.gov (United States)

    Carvalho, Kevin; Tsai, Feng-Ching; Tsai, Feng C; Lees, Edouard; Voituriez, Raphaël; Koenderink, Gijsje H; Sykes, Cecile

    2013-10-08

    Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.

  3. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Science.gov (United States)

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.

  4. Preparation of nanoparticle size LiBiO2 by combustion method and its electrochemical studies for lithium secondary cells

    Indian Academy of Sciences (India)

    R Sathyamoorthi; A Subramania; R Gangadharan; T Vasudevan

    2005-11-01

    A simple combustion method has been tried for the preparation of nanoparticle-sized LiBiO2 powder with urea as the igniter and glycerol as the binding material. Nitrates of Li+ and Bi3+ were mixed together to form a uniform mixture. Required quantities of urea and glycerol were added to this mixture to form a paste. This paste was carefully heated to 100°C initially and finally heated to 460°C for 5 h. The product obtained was subjected to TG/DTA and XRD analysis. The particle size of the cathode material was roughly calculated from the X-ray data using Scherer equation. However, SEM and EDAX analysis were carried out in detail to confirm the particle size and the composition of LiBiO2 respectively. A 2016 coin type button cell was assembled with LiBiO2 as cathode and graphite as anode containing polypropylene separator and a solution of 1 M LiClO4 dissolved in 1:1 (EC+DEC) mixture as the electrolyte. Charge/discharge studies were conducted to establish viability of the reversible cell.

  5. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule.

    Directory of Open Access Journals (Sweden)

    Stephanie N Bartley

    Full Text Available We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.

  6. Comparison of bulk-tank standard plate count and somatic cell count for Wisconsin dairy farms in three size categories.

    Science.gov (United States)

    Ingham, S C; Hu, Y; Ané, C

    2011-08-01

    The objective of this study was to evaluate possible claims by advocates of small-scale dairy farming that milk from smaller Wisconsin farms is of higher quality than milk from larger Wisconsin farms. Reported bulk tank standard plate count (SPC) and somatic cell count (SCC) test results for Wisconsin dairy farms were obtained for February to December, 2008. Farms were sorted into 3 size categories using available size-tracking criteria: small (≤118 cows; 12,866 farms), large (119-713 cattle; 1,565 farms), and confined animal feeding operations (≥714 cattle; 160 farms). Group means were calculated (group=farm size category) for the farms' minimum, median, mean, 90th percentile, and maximum SPC and SCC. Statistical analysis showed that group means for median, mean, 90th percentile, and maximum SPC and SCC were almost always significantly higher for the small farm category than for the large farm and confined animal feeding operations farm categories. With SPC and SCC as quality criteria and the 3 farm size categories of ≤118, 119 to 713, and ≥714 cattle, the claim of Wisconsin smaller farms producing higher quality milk than Wisconsin larger farms cannot be supported.

  7. Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells

    KAUST Repository

    Dacarro, Giacomo

    2017-07-01

    The synthesis of large pentatwinned five-branched gold nanostars (GNS) has been modified so to obtain overall dimensions shrunk to 60% and a lower branches aspect ratio, leading to a dramatic blue shift of their two near-infrared (NIR) localized surface plasmon resonances (LSPR) absorptions but still maintaining one LSPR in the biotransparent NIR range. The interactions of polyethylene glycol (PEG) coated large and shrunk GNS with SH-SY5Y cells revealed that the large ones (DCI - diameter of the circumference in which GNS can be inscribed = 76 nm) are internalized more efficiently than the shrunk ones (DCI = 46 nm), correlating with a decreased cells surving fraction.

  8. Nano-sized LiCoO_2 Cathode for Use in Lithium-ion Cells

    Institute of Scientific and Technical Information of China (English)

    J.Yamaki; T.Doi; S.Okada

    2007-01-01

    1 Results Lithium ion batteries are widely used in many portable devices.However,their power density is not sufficient for use in electric vehicles.One of the most effective methods to improve the power density is the use of very fine cathode particles.We investigated new method,excess lithium method,of preparing nano-sized LiCoO2 powders.To begin with,lithium acetate and cobalt acetate are mixed by the molar ratio 9,13 or 21 to 1,uniformly.And the mixture is calcined at 600 ℃ for 6 hours.Finally,obtain...

  9. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  10. Conditioned Medium From Human Amniotic Mesenchymal Stromal Cells Limits Infarct Size and Enhances Angiogenesis

    NARCIS (Netherlands)

    Danieli, Patrizia; Malpasso, Giuseppe; Cluffreda, Maria Chiara; Cervio, Elisabetta; Calvillo, Laura; Copes, Francesco; Pisano, Federica; Mura, Manuela; Kleijn, Lennaert; de Boer, Rudolf A.; Viarengo, Gianluca; Rosti, Vittorio; Spinillo, Arsenio; Roccio, Marianna; Gnecchi, Massimiliano

    2015-01-01

    The paracrine properties of human amniotic membrane-derived mesenchymal stromal cells (hAMCs) have not been fully elucidated. The goal of the present study was to elucidate whether hAMCs can exert beneficial paracrine effects on infarcted rat hearts, in particular through cardioprotection and angiog

  11. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  12. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture.

    Science.gov (United States)

    Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem

    2016-01-01

    Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  13. Effects of contact electrode size on the characteristics of polycrystalline-Si p-i-n solar cells

    Institute of Scientific and Technical Information of China (English)

    M. H. Juang; H. Y. Huang; S. L. Jang

    2011-01-01

    The effects of contact electrode size on the photo-voltaic characteristics of polycrystalline-Si p-i-n solar cells have been studied,with respect to a unit-cell pitch size of 1 μm width.For the non-transparent A1 contact electrode with a contact width of 0.05-0.2 μm,the short-circuit current is obviously reduced with increasing contact width,due to a larger area of optical reflection by the electrode.On the other hand,even when using a transparent ITO (indium-tin-oxide) electrode,a larger width of contact electrode may also cause a smaller short-circuit current,due to a larger area of optical absorption by the electrode.However,for this ITO electrode,the contact electrode of 0.05 μm width causes a smaller short-circuit current than that of 0.1 μm width,primarily ascribed to a smaller area for collecting carrier and a larger contact resistance.As a result,while using the ITO contact electrode to enhance the conversion efficiency of the solar cell,a proper width of contact electrode should be employed to optimize the photo-voltaic characteristics.

  14. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold

    Science.gov (United States)

    Dumanian, Zari P.; Tollemar, Viktor; Ye, Jixing; Lu, Minpeng; Zhu, Yunxiao; Liao, Junyi; Ameer, Guillermo A.; He, Tong-Chuan; Reid, Russell R.

    2017-01-01

    Large skeletal defects caused by trauma, congenital malformations, and post-oncologic resections of the calvarium present major challenges to the reconstructive surgeon. We previously identified BMP-9 as the most osteogenic BMP in vitro and in vivo. Here we sought to investigate the bone regenerative capacity of murine-derived calvarial mesenchymal progenitor cells (iCALs) transduced by BMP-9 in the context of healing critical-sized calvarial defects. To accomplish this, the transduced cells were delivered to the defect site within a thermoresponsive biodegradable scaffold consisting of poly(polyethylene glycol citrate-co-N-isopropylacrylamide mixed with gelatin (PPCN-g). A total of three treatment arms were evaluated: PPCN-g alone, PPCN-g seeded with iCALs expressing GFP, and PPCN-g seeded with iCALs expressing BMP-9. Defects treated only with PPCN-g scaffold did not statistically change in size when evaluated at eight weeks postoperatively (p = 0.72). Conversely, both animal groups treated with iCALs showed significant reductions in defect size after 12 weeks of follow-up (BMP9-treated: p = 0.0025; GFP-treated: p = 0.0042). However, H&E and trichrome staining revealed more complete osseointegration and mature bone formation only in the BMP9-treated group. These results suggest that BMP9-transduced iCALs seeded in a PPCN-g thermoresponsive scaffold is capable of inducing bone formation in vivo and is an effective means of creating tissue engineered bone for critical sized defects. PMID:28249039

  15. Evaluation of growth, cell size and biomass of Isochrysis aff. galbana (T-ISO with two LED regimes

    Directory of Open Access Journals (Sweden)

    Miguel Victor Cordoba-Matson

    2013-04-01

    Full Text Available In contrast to crops, there are fewer studies using LED-based light with green microalgae and none cultivating the microalga Isochrysis aff. galbana (T-ISO even though of its importance in marine aquaculture. The objective was to evaluate of white and red LEDs as an alternative source of light to cultivate I. aff. galbana (T-ISO. In order to carry this out white and red LEDs were used with a laboratory built Erlenmeyer-type photobioreactor to determine productivity, cell number and size and biomass composition. Results were compared with standard fluorescent lights of the same light intensity. The culture system consisted of 3 flasks for applying red LEDs and three for white LEDs and 3 control group flasks illuminated with the normal fluorescent lighting at the similar light intensity of ~60 mM m–2 s–1. It was found that the population cell density did not significantly increase with either red LEDs or white LEDs (p > 0.05, if at all. Standard fluorescent lighting (control group showed significant increases in population cell number (p < 0.05. Through microscopic observation cell size was found to be smaller for white LEDS and even smaller for red LEDs compared to fluorescent lighting. Biochemical composition of proteins, carbohydrates and lipids was similar for all light regimes. The authors suggest that the unexpected non-growth I. aff. galbana (T-ISO, a haptophyte microalga, with white and red LEDs is possibly due to fact that to initiate cell growth this microalgae requires other wavelengths (possibly green besides red and blue, to allow other pigments, probably fucoxanthin, to capture light

  16. Determination of Even Degree of Animal Population

    Institute of Scientific and Technical Information of China (English)

    SongRen-xue; YangYun-qing

    1999-01-01

    The even degree of animal population is generlay measured by the coefficient of variation of major economic characters.Facing the coefficient of variation,a statistic with complex properties,we achieved indirectly the determination of confidence interval for even degree of an animal population by analysing the reciprocal of the statistic.The sample size which is suitable to the determination of the even degree of an animal population was probed into within the extent of permissive estimation error.

  17. Determination of Even Degree of Animal Population

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The even degree of animal population is generlay measured by the coefficient of variation of major eco- nomic characters. Facing the coefficient of variation,a statistic with complex properties,we achieved indirectly the determination of confidence interval for even degree of an animal population by analysing the reciprocal of the statistic. The sample size which is suitable to the determination of the even degree of an animal population was probed into within the extent of permissive estimation error.

  18. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro.

    Science.gov (United States)

    Tomić, Sergej; Ðokić, Jelena; Vasilijić, Saša; Ogrinc, Nina; Rudolf, Rebeka; Pelicon, Primož; Vučević, Dragana; Milosavljević, Petar; Janković, Srđa; Anžel, Ivan; Rajković, Jelena; Rupnik, Marjan Slak; Friedrich, Bernd; Colić, Miodrag

    2014-01-01

    Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50.

  19. Plane of nutrition affects growth rate, organ size and skeletal muscle satellite cell activity in newborn calves.

    Science.gov (United States)

    MacGhee, M E; Bradley, J S; McCoski, S R; Reeg, A M; Ealy, A D; Johnson, S E

    2016-11-18

    Plane of nutrition effects on body, tissue and cellular growth in the neonatal calf are poorly understood. The hypothesis that a low plane of nutrition (LPN) would limit skeletal muscle size by reducing fibre growth and muscle progenitor cell activity was tested. At birth, calves were randomly assigned to either a LPN (20% CP, 20% fat; GE=1.9 Mcal/days) or a high plane of nutrition (HPN; 27% CP, 10% fat, GE = 3.8 Mcal/days) in a 2 × 3 factorial design to test the impact of diet on neonatal calf growth, organ weight and skeletal muscle morphometry with time. Groups of calves (n = 4 or 5) were euthanised at 2, 4 and 8 week of age and organ and empty carcass weights were recorded. Body composition was measured by DXA. Longissimus muscle (LM) fibre cross-sectional area (CSA), fibre/mm(2) and Pax7 were measured by immunohistology. Satellite cells were isolated at each time point and proliferation rates were measured by EdU incorporation. Calves fed a HPN had greater (p satellite cells per fibre. Proliferation rates of satellite cells isolated from HPN fed calves were greater (p satellite cell activity.

  20. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  1. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice

    Science.gov (United States)

    Gelderblom, Mathias; Leypoldt, Frank; Lewerenz, Jan; Birkenmayer, Gabriel; Orozco, Denise; Ludewig, Peter; Thundyil, John; Arumugam, Thiruma V; Gerloff, Christian; Tolosa, Eva; Maher, Pamela; Magnus, Tim

    2012-01-01

    The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia. PMID:22234339

  2. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    Science.gov (United States)

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  3. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance.

    Science.gov (United States)

    Cheng, Alice G; Missiakas, Dominique; Schneewind, Olaf

    2014-03-01

    Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.

  4. Evaluation of growth, cell size and biomass of Isochrysis aff. galbana (T-ISO) with two LED regimes

    OpenAIRE

    Miguel Victor Cordoba-Matson; Bertha O. Arredondo - Vega; Laura Carreón - Palau

    2013-01-01

    In contrast to crops, there are fewer studies using LED-based light with green microalgae and none cultivating the microalga Isochrysis aff. galbana (T-ISO) even though of its importance in marine aquaculture. The objective was to evaluate of white and red LEDs as an alternative source of light to cultivate I. aff. galbana (T-ISO). In order to carry this out white and red LEDs were used with a laboratory built Erlenmeyer-type photobioreactor to determine productivity, cell number and size an...

  5. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Srđenović Branislava U.

    2015-01-01

    Full Text Available Fullerenol (C60(OH24 nanoparticles (FNP have a significant role in biomedical research due to their numerous biological activities, some of which are cytoprotective and antioxidative properties. The aim of this study was to measure distribution of fullerenol nanoparticles and zeta potential in cell medium RPMI 1640 with 10% fetal bovine serum (FBS and to investigate the influence of FNP on Chinese hamster ovary cells (CHO-K1 survival, as well as to determine the activity of three antioxidative enzymes: superoxide-dismutase, glutathione-reductase and glutathione-S-transferase in mitomycin C-treated cell line. Our investigation implies that FNP, as a strong antioxidant, influence the cellular redox state and enzyme activities and thus may reduce cell proliferation, which confirms that FNP could be exploited for its use as a cytoprotective agent.[Projekat Ministarstva nauke Republike Srbije, br. III45005 i Pokrajinski Sekretarijat za nauku i tehnološki razvoj Vojvodine, grant number 114-451-2056/2011-01

  6. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice.

    Science.gov (United States)

    Jiang, Yunhe; Bao, Liang; Jeong, So-Yoon; Kim, Seong-Ki; Xu, Caiguo; Li, Xianghua; Zhang, Qifa

    2012-05-01

    Organ size is determined by cell number and size, and involves two fundamental processes: cell proliferation and cell expansion. Although several plant hormones are known to play critical roles in shaping organ size by regulating the cell cycle, it is not known whether brassinosteroids (BRs) are also involved in regulating cell division. Here we identified a rice T-DNA insertion mutant for organ size, referred to as xiao, that displays dwarfism and erect leaves, typical BR-related phenotypes, together with reduced seed setting. XIAO is predicted to encode an LRR kinase. The small stature of the xiao mutant resulted from reduced organ sizes due to decreased cell numbers resulting from reduced cell division rate, as supported by the observed co-expression of XIAO with a number of genes involved in cell cycling. The xiao mutant displayed a tissue-specific enhanced BR response and greatly reduced BR contents at the whole-plant level. These results indicated that XIAO is a regulator of BR signaling and cell division. Thus, XIAO may provide a possible connection between BRs and cell-cycle regulation in controlling organ growth.

  7. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells.

    Science.gov (United States)

    Ding, M; Kisin, E R; Zhao, J; Bowman, L; Lu, Y; Jiang, B; Leonard, S; Vallyathan, V; Castranova, V; Murray, A R; Fadeel, B; Shvedova, A A

    2009-12-15

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-kappaB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P(+)). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P(+) cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-kappaB more efficiently in JB6(+/+) cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6(+/+) cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  8. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  9. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    Science.gov (United States)

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  10. A Monte Carlo study of size and angular properties of a three-dimensional Poisson-Delaunay cell

    Science.gov (United States)

    Kumar, Susmit; Kurtz, Stewart K.

    1994-05-01

    On the basis of simulation of 1.2×106 three-dimensional Poisson-Delaunay cells, the statistical properties of their size and angular parameters have been studied. The moments of the volume, face area, and edge length distributions are found to be equal to those obtained from the exact expressions of Miles and of Moller. The volume, surface area, and face area distributions can be described by the two-parameter gamma distribution. The normal distribution can be used to describe the distributions of the total edge length of a cell and the perimeter of a face. The edge length distribution has also been studied. The distribution of the angle in a face is found to be in accordance with its theoretical distribution.

  11. Effect of growth solution, membrane size and array connection on microbial fuel cell power supply for medical devices.

    Science.gov (United States)

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2016-08-01

    Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.

  12. Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale

    Science.gov (United States)

    Barrios, M. I.

    2013-12-01

    The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues

  13. The number of regulatory T cells in transbronchial lung allograft biopsies is related to FoxP3 mRNA levels in bronchoalveolar lavage fluid and to the degree of acute cellular rejection

    DEFF Research Database (Denmark)

    Krustrup, Dorrit; Madsen, Caroline B; Iversen, Martin;

    2013-01-01

    The transcription factor Forkhead Box P3 (FoxP3) is a marker of regulatory T cells (Tregs) - a subset of T cells known to suppress a wide range of immune responses. These cells are considered to be pivotal for the induction of tolerance to donor antigens in human allografts. We aimed to correlate...... the number of lymphocytes expressing FoxP3 in transbronchial biopsies from lung allografts with the FoxP3 expression in bronchoalveolar lavage fluid (BALF). In addition, we aimed to correlate the number of FoxP3+ cells in transbronchial biopsies with the degree of acute cellular rejection in lung allografts....

  14. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-08-29

    Tissue-fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and their role in vessel maturation are unknown. Here we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, PDGFB overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate a requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels and suggest an ECM-controlled checkpoint preventing SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  15. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    Science.gov (United States)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  16. Sizing of SRAM Cell with Voltage Biasing Techniques for Reliability Enhancement of Memory and PUF Functions

    Directory of Open Access Journals (Sweden)

    Chip-Hong Chang

    2016-08-01

    Full Text Available Static Random Access Memory (SRAM has recently been developed into a physical unclonable function (PUF for generating chip-unique signatures for hardware cryptography. The most compelling issue in designing a good SRAM-based PUF (SPUF is that while maximizing the mismatches between the transistors in the cross-coupled inverters improves the quality of the SPUF, this ironically also gives rise to increased memory read/write failures. For this reason, the memory cells of existing SPUFs cannot be reused as storage elements, which increases the overheads of cryptographic system where long signatures and high-density storage are both required. This paper presents a novel design methodology for dual-mode SRAM cell optimization. The design conflicts are resolved by using word-line voltage modulation, dynamic voltage scaling, negative bit-line and adaptive body bias techniques to compensate for reliability degradation due to transistor downsizing. The augmented circuit-level techniques expand the design space to achieve a good solution to fulfill several otherwise contradicting key design qualities for both modes of operation, as evinced by our statistical analysis and simulation results based on complementary metal–oxide–semiconductor (CMOS 45 nm bulk Predictive Technology Model.

  17. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas.

    Science.gov (United States)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90(∘) off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  18. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Jörn, E-mail: winter@inp-greifswald.de; Hänel, Mattis; Reuter, Stephan [Leibniz Institute for Plasma Science and Technology e.V., Felix-Hausdorff-St. 2, 17489 Greifswald (Germany)

    2016-04-15

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90{sup ∘} off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s{sub 5}) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  19. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles.

    Science.gov (United States)

    Sinturel, Flore; Gerber, Alan; Mauvoisin, Daniel; Wang, Jingkui; Gatfield, David; Stubblefield, Jeremy J; Green, Carla B; Gachon, Frédéric; Schibler, Ueli

    2017-05-04

    The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Anomalous system-size dependence of electrolytic cells with an electrified oil-water interface.

    Science.gov (United States)

    Westbroek, Marise; Boon, Niels; van Roij, René

    2015-10-14

    Manipulation of the charge of the dielectric interface between two bulk liquids not only enables the adjustment of the interfacial tension but also controls the storage capacity of ions in the ionic double layers adjacent to each side of the interface. However, adjusting this interfacial charge by static external electric fields is difficult since the external electric fields are readily screened by ionic double layers that form in the vicinity of the external electrodes. This leaves the liquid-liquid interface, which is at a macroscopic distance from the electrodes, unaffected. In this study we show theoretically, in agreement with recent experiments, that control over this surface charge at the liquid-liquid interface is nonetheless possible for macroscopically large but finite closed systems in equilibrium, even when the distance between the electrode and interface is orders of magnitude larger than the Debye screening lengths of the two liquids. We identify a crossover system-size below which the interface and the electrodes are effectively coupled. Our calculations of the interfacial tension for various electrode potentials are in good agreement with recent experimental data.

  1. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells.

    Science.gov (United States)

    Gao, Jianbo; Luther, Joseph M; Semonin, Octavi E; Ellingson, Randy J; Nozik, Arthur J; Beard, Matthew C

    2011-03-01

    The current-voltage (J-V) characteristics of ZnO/PbS quantum dot (QD) solar cells show a QD size-dependent behavior resulting from a Schottky junction that forms at the back metal electrode opposing the desirable diode formed between the ZnO and PbS QD layers. We study a QD size-dependent roll-over effect that refers to the saturation of photocurrent in forward bias and crossover effect which occurs when the light and dark J-V curves intersect. We model the J-V characteristics with a main diode formed between the n-type ZnO nanocrystal (NC) layer and p-type PbS QD layer in series with a leaky Schottky-diode formed between PbS QD layer and metal contact. We show how the characteristics of the two diodes depend on QD size, metal work function, and PbS QD layer thickness, and we discuss how the presence of the back diode complicates finding an optimal layer thickness. Finally, we present Kelvin probe measurements to determine the Fermi level of the QD layers and discuss band alignment, Fermi-level pinning, and the V(oc) within these devices.

  2. Impact of cell cluster size on apparent half-saturation coefficients for oxygen in nitrifying sludge and biofilms.

    Science.gov (United States)

    Picioreanu, Cristian; Pérez, Julio; van Loosdrecht, Mark C M

    2016-12-01

    A three-dimensional (3-D) diffusion-reaction model was used to assess the effects of nitrifiers growing in cell clusters on the apparent oxygen half-saturation coefficients in activated sludge flocs. The model allows conciliation of seemingly contradictory reports by several research groups. Although intrinsic half-saturation coefficients (i.e., not affected by diffusion) show a better affinity for oxygen for ammonia oxidizing (AOB) than for nitrite oxidizing bacteria (NOB) (KO,AOB  KO,NOB,app), which can now be explained by the 3-D model with AOB and NOB microcolonies. This effect cannot be described with a conventional 1-D homogeneous model because the reversion of the AOB/NOB apparent KO is caused by the high biomass density and resulting concentration gradients inside the microcolonies. Two main factors explain the reversion of the half-saturation coefficients: the difference in oxygen yields (for NOB lower than for AOB) and the difference in colony size (NOB colonies are smaller than those of AOB). The strongest increase in the apparent half-saturation coefficients is linked to the colony size, rather than to the floc size. For high-density microbial aggregates (i.e., granular sludge), the need for a stratified population (AOB outer shell, NOB inner layers) was revealed in order to outcompete NOB. This study stresses the need for a more detailed description of the biomass distribution in activated sludge, granular sludge and biofilm reactors when elucidating the mechanisms for NOB repression.

  3. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant.

    Directory of Open Access Journals (Sweden)

    Brandee A Price

    Full Text Available Two outstanding unknowns in the biology of photoreceptors are the molecular determinants of cell size, which is remarkably uniform among mammalian species, and the mechanisms of rod cell death associated with inherited neurodegenerative blinding diseases such as retinitis pigmentosa. We have addressed both questions by performing an in vivo titration with rhodopsin gene copies in genetically engineered mice that express only normal rhodopsin or an autosomal dominant allele, encoding rhodopsin with a disease-causing P23H substitution. The results reveal that the volume of the rod outer segment is proportional to rhodopsin gene expression; that P23H-rhodopsin, the most common rhodopsin gene disease allele, causes cell death via a dominant-negative mechanism; and that long term survival of rod cells carrying P23H-rhodopsin can be achieved by increasing the levels of wild type rhodopsin. These results point to promising directions in gene therapy for autosomal dominant neurodegenerative diseases caused by dominant-negative mutations.

  4. Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2012-01-01

    Full Text Available There have been increasing interests in applying gold nanoparticles in biological research, drug delivery, and therapy. As the interaction of gold nanoparticles with cells relies on properties of nanoparticles, the cytotoxicity is complex and still under debating. In this work, we investigate the cytotoxicity of gold nanoparticles of different encapsulations, surface charge states, sizes and shapes to both human HEp-2 and canine MDCK cells. We found that cetyltrimethylammonium-bromide- (CTAB- encapsulated gold nanorods (GNRs were relatively higher cytotoxic than GNRs undergone further polymer coating and citrate stabilized gold nanospheres (GNSs. The toxicity of CTAB-encapsulated GNRs was mainly caused by CTAB on GNRs' surface but not free CTAB in the solution. No obvious difference was found among GNRs of different aspect ratios. Time-lapse study revealed that cell death caused by GNRs occurred predominately within one hour through apoptosis, whereas cell death by free CTAB was in a time- and dose-dependent manner. Both positively and negatively surface-charged polymer-coated GNRs (PSS-GNRs and PAH-PSS-GNRs showed similar levels of cytotoxic, suggesting the significance of surface functionality rather than surface charge in this case.

  5. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect

    Science.gov (United States)

    Wu, Guofeng; Pan, Mengjie; Wang, Xianghai; Wen, Jinkun; Cao, Shangtao; Li, Zhenlin; Li, Yuanyuan; Qian, Changhui; Liu, Zhongying; Wu, Wutian; Zhu, Lixin; Guo, Jiasong

    2015-01-01

    Peripheral blood mesenchymal stem cells (PBMSCs) may be easily harvested from patients, permitting autologous grafts for bone tissue engineering in the future. However, the PBMSC’s capabilities of survival, osteogenesis and production of new bone matrix in the defect area are still unclear. Herein, PBMSCs were seeded into a nanofiber scaffold of self-assembling peptide (SAP) and cultured in osteogenic medium. The results indicated SAP can serve as a promising scaffold for PBMSCs survival and osteogenic differentiation in 3D conditions. Furthermore, the SAP seeded with the induced PBMSCs was splinted by two membranes of poly(lactic)-glycolic acid (PLGA) to fabricate a composited scaffold which was then used to repair a critical-size calvarial bone defect model in rat. Twelve weeks later the defect healing and mineralization were assessed by H&E staining and microcomputerized tomography (micro-CT). The osteogenesis and new bone formation of grafted cells in the scaffold were evaluated by immunohistochemistry. To our knowledge this is the first report with solid evidence demonstrating PBMSCs can survive in the bone defect area and directly contribute to new bone formation. Moreover, the present data also indicated the tissue engineering with PBMSCs/SAP/PLGA scaffold can serve as a novel prospective strategy for healing large size cranial defects. PMID:26568114

  6. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres.

    Directory of Open Access Journals (Sweden)

    Ignacio Flores

    Full Text Available Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing, are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness.

  7. Metabolic Rate of Diploid and Triploid Edible Frog Pelophylax esculentus Correlates Inversely with Cell Size in Tadpoles but Not in Frogs.

    Science.gov (United States)

    Hermaniuk, Adam; Rybacki, Mariusz; Taylor, Jan R E

    In multicellular organisms, cell size may have crucial consequences for basic parameters, such as body size and whole-body metabolic rate (MR). The hypothesis predicts that animals composed of smaller cells (a higher membrane surface-to-cell volume ratio) should have a higher mass-specific MR because a large part of their energy is used to maintain cell membranes and ionic gradients. In this article, we investigated the link between cell size and MR in diploid and triploid tadpoles and froglets of the hybridogenetic frog Pelophylax esculentus. In our previous study, we showed that triploids had significantly larger cells (erythrocytes, hepatocytes, and epidermal cells were measured). Therefore, we hypothesized that triploid tadpoles and froglets would have a lower standard metabolic rate (SMR). Our study demonstrated for the first time two distinct effects of polyploidy/cell size on MR within a single species developing in both aquatic and terrestrial habitats. As we hypothesized, diploid tadpoles had a higher SMR than triploids, whereas in froglets, ploidy did not affect the SMR. We also found that the water temperatures in which tadpoles were reared had no effect on the SMR of froglets after metamorphosis. Based on our results and other reports, we suggest that cell size may have more consequences for whole-body MR in aquatic habitats than in terrestrial habitats because oxygen is less available in water and its availability in relation to oxygen demand decreases with temperature.

  8. Skp2 knockout reduces cell proliferation and mouse body size: and prevents cancer?

    Institute of Scientific and Technical Information of China (English)

    Liang Zhu

    2010-01-01

    Attaching multiple ubiquitins (a 76-residue protein ubiquitously expressed in eukaryotic cells) covalently to a protein labels that protein for degradation in the proteasome (a large tunnel-like complex considered as a protein degradation factory). There are many types of ubiquitin ligases (the enzymes that carry out the protein ubiquitination reactions); one of them is the Culin-RING ubiquitin ligase (CRL). There are six Culin proteins and two RING proteins, forming six general types of Culin-RING core platforms for various substrate-recruiting subunits to complete the formation of substrate-specific CRLs. The SCF type CRL is formed with Rbx 1 (a RING protein), Skpl, Cull, and an F-box protein.

  9. Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    John M Lachin

    Full Text Available Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet, repeated 2-hour Mixed Meal Tolerance Tests (MMTT were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC of the C-peptide values. The natural log(x, log(x+1 and square-root (√x transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years and adults (18+ years. The sample size needed to detect a given relative (percentage difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1 and √x transformed values in terms of the original units of measurement (pmol/ml. Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab versus masked placebo. These results provide the information needed to

  10. Effects of maternal care and selection for low mortality on tyrosine hydroxylase concentrations and cell soma size in hippocampus and nidopallium caudolaterale in adult laying hen.

    Science.gov (United States)

    Nordquist, R E; Zeinstra, E C; Rodenburg, T B; van der Staay, F J

    2013-01-01

    Feather pecking and cannibalism in farm-kept laying hens are damaging behaviors both in terms of animal welfare and economic loss, and a major challenge in modern poultry farming. Both rearing with a foster hen and genetic selection have been demonstrated to reduce feather pecking in laying hens. We examined the effects of rearing with a foster hen, genetic selection for low mortality from cannibalism, and interactions between both, using cellular morphology and levels of the rate-limiting enzyme in dopamine production, tyrosine hydroxylase, in the hippocampus and nidopallium caudolaterale (NCL) as a potential measure for laying hen welfare. Hens from the second generation of a sib-selection scheme line derived from a pure-bred White Leghorn line, selected for low mortality and for production characteristics, or their control line (CL) selected only for production characteristics, were housed with or without a foster Silky hen for the first 7 wk of life. Aside from the presence or absence of a foster Silky hen during the first 7 wk of life, housing conditions were identical for all hens. The hens were then sacrificed and brains were removed at 52 wk of age. Brains were sectioned and stained using a Nissl staining to reveal cell soma morphology, or using immunocytochemistry for tyrosine hydroxlase. A greater degree of lateralization in the hippocampus was observed in hens reared without a foster hen, as measured by absolute difference in cell soma size between hemispheres (Phens, and that genetic selection against mortality due to cannibalism impacts tyrosine hydroxylase in the NCL of laying hens. These observations strengthen the notion that brain measures may be useful as potential readouts for animal welfare.

  11. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus.

    Science.gov (United States)

    Garcia, Nathan S; Bonachela, Juan A; Martiny, Adam C

    2016-11-01

    The factors that control elemental ratios within phytoplankton, like carbon:nitrogen:phosphorus (C:N:P), are key to biogeochemical cycles. Previous studies have identified relationships between nutrient-limited growth and elemental ratios in large eukaryotes, but little is known about these interactions in small marine phytoplankton like the globally important Cyanobacteria. To improve our understanding of these interactions in picophytoplankton, we asked how cellular elemental stoichiometry varies as a function of steady-state, N- and P-limited growth in laboratory chemostat cultures of Synechococcus WH8102. By combining empirical data and theoretical modeling, we identified a previously unrecognized factor (growth-dependent variability in cell size) that controls the relationship between nutrient-limited growth and cellular elemental stoichiometry. To predict the cellular elemental stoichiometry of phytoplankton, previous theoretical models rely on the traditional Droop model, which purports that the acquisition of a single limiting nutrient suffices to explain the relationship between a cellular nutrient quota and growth rate. Our study, however, indicates that growth-dependent changes in cell size have an important role in regulating cell nutrient quotas. This key ingredient, along with nutrient-uptake protein regulation, enables our model to predict the cellular elemental stoichiometry of Synechococcus across a range of nutrient-limited conditions. Our analysis also adds to the growth rate hypothesis, suggesting that P-rich biomolecules other than nucleic acids are important drivers of stoichiometric variability in Synechococcus. Lastly, by comparing our data with field observations, our study has important ecological relevance as it provides a framework for understanding and predicting elemental ratios in ocean regions where small phytoplankton like Synechococcus dominates.

  12. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    Science.gov (United States)

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-08-02

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.

  13. Voronoi Cell Patterns: Application of the size distribution to societal systems

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-02-01

    In studying the growth of islands on a surface subjected to a particle flux, we found it useful to characterize the distribution of the areas of associated Voronoi (proximity or Wigner-Seitz) cells in terms of the generalized Wigner surmiseootnotetextAP & TLE, PRL 99 (2007) 226102; PRL 104 (2010) 149602 and the gamma distributions. Here we show that the same concepts and distributions are useful in analyzing several problems arising in society.ootnotetextDLG et al., arXiv 1109.3994; RS, Ph.D. dissertation; RS et al., preprint We analyze the 1D problem of the distribution of gaps between parked cars, assuming that successive cars park in the middle of vacant spaces, and compare with published data. We study the formation of second-level administrative divisions, e.g. French arrondissements. We study the actual distribution of arrondissements and the Voronoi tessellation associated with the chief town in each. While generally applicable, there are subtleties in some cases. Lastly, we consider the pattern formed by Paris M'etro stations and show that near the central area, the associated Voronoi construction also has this sort of distribution.

  14. Short-term arsenic exposure reduces diatom cell size in biofilm communities.

    Science.gov (United States)

    Barral-Fraga, Laura; Morin, Soizic; Rovira, Marona D M; Urrea, Gemma; Magellan, Kit; Guasch, Helena

    2016-03-01

    Arsenic (As) pollution in water has important impacts for human and ecosystem health. In freshwaters, arsenate (As(V)) can be taken up by microalgae due to its similarity with phosphate molecules, its toxicity being aggravated under phosphate depletion. An experiment combining ecological and ecotoxicological descriptors was conducted to investigate the effects of As(V) (130 μg L(-1) over 13 days) on the structure and function of fluvial biofilm under phosphate-limiting conditions. We further incorporated fish (Gambusia holbrooki) into our experimental system, expecting fish to provide more available phosphate for algae and, consequently, protecting algae against As toxicity. However, this protection role was not fully achieved. Arsenic inhibited algal growth and productivity but not bacteria. The diatom community was clearly affected showing a strong reduction in cell biovolume; selection for tolerant species, in particular Achnanthidium minutissimum; and a reduction in species richness. Our results have important implications for risk assessment, as the experimental As concentration used was lower than acute toxicity criteria established by the USEPA.

  15. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  16. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control

    Science.gov (United States)

    Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166

  17. Inverse Degree and Connectivity

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ling; TIAN Ying-zhi

    2013-01-01

    Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) < 1 + 2/δ + n-2δ+1/(n-1)(n-3).

  18. Glucosamine inhibits decidualization of human endometrial stromal cells and decreases litter sizes in mice.

    Science.gov (United States)

    Tsai, Jui-He; Schulte, Maureen; O'Neill, Kathleen; Chi, Maggie M-Y; Frolova, Antonina I; Moley, Kelle H

    2013-07-01

    Embryo implantation in the uterus depends on decidualization of the endometrial stromal cells (ESCs), and glucose utilization via the pentose phosphate pathway is critical in this process. We hypothesized that the amino sugar glucosamine may block the pentose phosphate pathway via inhibition of the rate-limiting enzyme glucose-6-phosphate dehydrogenase in ESCs and therefore impair decidualization and embryo implantation, thus preventing pregnancy. Both human primary and immortalized ESCs were decidualized in vitro in the presence of 0, 2.5, or 5 mM glucosamine for 9 days. Viability assays demonstrated that glucosamine was well tolerated by human ESCs. Exposure of human ESCs to glucosamine resulted in significant decreases in the activity and expression of glucose-6-phosphate dehydrogenase and in the mRNA expression of the decidual markers prolactin, somatostatin, interleukin-15, and left-right determination factor 2. In mouse ESCs, expression of the decidual marker Prp decreased upon addition of glucosamine. In comparison with control mice, glucosamine-treated mice showed weak artificial deciduoma formation along the stimulated uterine horn. In a complementary in vivo experiment, a 60-day-release glucosamine (15, 150, or 1500 μg) or placebo pellet was implanted in a single uterine horn of mice. Mice with a glucosamine pellet delivered fewer live pups per litter than those with a control pellet, and pup number returned to normal after the end of the pellet-active period. In conclusion, glucosamine is a nonhormonal inhibitor of decidualization of both human and mouse ESCs and of pregnancy in mice. Our data indicate the potential for development of glucosamine as a novel, reversible, nonhormonal contraceptive.

  19. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles.

    Science.gov (United States)

    Patel, Maulik V; Nanayakkara, Imaly A; Simon, Melinda G; Lee, Abraham P

    2014-10-07

    We present a microfluidic platform for simultaneous on-chip pumping and size-based separation of cells and particles without external fluidic control systems required for most existing platforms. The device utilizes an array of acoustically actuated air/liquid interfaces generated using dead-end side channels termed Lateral Cavity Acoustic Transducers (LCATs). The oscillating interfaces generate local streaming flow while the angle of the LCATs relative to the main channel generates a global bulk flow from the inlet to the outlet. The interaction of these two competing velocity fields (i.e. global bulk velocity vs. local streaming velocity) is responsible for the observed separation. It is shown that the separation of 5 μm and 10 μm polystyrene beads is dependent on the ratio of these two competing velocity fields. The experimental and simulation results suggest that particle trajectories based only on Stokes drag force cannot fully explain the separation behavior and that the impact of additional forces due to the oscillating flow field must be considered to determine the trajectory of the beads and ultimately the separation behavior of the device. To demonstrate an application of this separation platform with cellular components, smaller red blood cells (7.5 ± 0.8 μm) are separated from larger K562 cells (16.3 ± 2.0 μm) with viabilities comparable to those of controls based on a trypan blue exclusion assay.

  20. Degree by Thesis

    Science.gov (United States)

    Courtis, Barbara

    1974-01-01

    Discusses a student's experience with a research project on the synthesis and reactions of an organo-platinum complex with an organo-Group IV linkage, including the advantages and disadvantages of such a degree by thesis course. (CC)

  1. Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism.

    Science.gov (United States)

    deZengotita, Vivian M; Schmelzer, Albert E; Miller, William M

    2002-02-15

    CO(2) partial pressure (pCO(2)) in industrial cell culture reactors may reach 150-200 mm Hg, which can significantly inhibit cell growth and recombinant protein production. The inhibitory effects of elevated pCO(2) at constant pH are due to a combination of the increases in pCO(2) and [HCO(-) (3)], per se, and the associated increase in osmolality. To decouple the effects of pCO(2) and osmolality, low-salt basal media have been used to compensate for this associated increase in osmolality. Under control conditions (40 mm Hg-320 mOsm/kg), hybridoma cell growth and metabolism was similar in DMEM:F12 with 2% fetal bovine serum and serum-free HB GRO. In both media, pCO(2) and osmolality made dose-dependent contributions to the inhibition of hybridoma cell growth and synergized to more extensively inhibit growth when combined. Elevated osmolality was associated with increased apoptosis. In contrast, elevated pCO(2) did not increase apoptotic cell death. Specific antibody production also increased with osmolality although not with pCO(2). In an effort to understand the mechanisms through which elevated pCO(2) and osmolality affect hybridoma cells, glucose metabolism, glutamine metabolism, intracellular pH (pHi), and