WorldWideScience

Sample records for degraded waste package

  1. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  2. WAPDEG Analysis of Waste Package and Drip shield Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-09-29

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of

  3. Incorporation of Uncertainty and Variability of Drip Shield and Waste Package Degradation in WAPDEG Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Helton

    2000-04-19

    This presentation investigates the incorporation of uncertainty and variability of drip shield and waste package degradation in analyses with the Waste Package Degradation (WAPDEG) program (CRWMS M&O 1998). This plan was developed in accordance with Development Plan TDP-EBS-MD-000020 (CRWMS M&O 1999a). Topics considered include (1) the nature of uncertainty and variability (Section 6.1), (2) incorporation of variability and uncertainty into analyses involving individual patches, waste packages, groups of waste packages, and the entire repository (Section 6.2), (3) computational strategies (Section 6.3), (4) incorporation of multiple waste package layers (i.e., drip shield, Alloy 22, and stainless steel) into an analysis (Section 6.4), (5) uncertainty in the characterization of variability (Section 6.5), and (6) Gaussian variance partitioning (Section 6.6). The presentation ends with a brief concluding discussion (Section 7).

  4. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  5. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  6. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  7. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  8. Preliminary Criticality Analysis of Degraded SNF Accumulations to a Waste Package (SCPB: N/A) 

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis

    2005-12-15

    This study is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probability of criticality in the far-field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses. The objective of this evaluation is to provide input to a risk analysis which will show that criticalities involving commercial spent nuclear fuel (SNF) are not credible, or indicate additional measures that are required for the Engineered Barrier Segment (EBS) to make such events incredible. Minimum critical volumes and masses of UO{sub 2}/H{sub 2}O/tuff mixtures are determined without application of regulatory safety limits. This study does not address or demonstrate compliance with regulatory limits.

  9. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  10. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  11. Naval Waste Package Design Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.

  12. The reduction of packaging waste

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  13. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  14. Packaging Design Criteria for the Steel Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-10-19

    This packaging design criteria provides the criteria for the design, fabrication, safety evaluation, and use of the steel waste package (SWP) to transport remote-handled waste and special-case waste from the 324 facility to Central Waste Complex (CWC) for interim storage.

  15. Classification of waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.P.; Sauer, M.; Rojahn, T. [Versuchsatomkraftwerk GmbH, Kahl am Main (Germany)

    2001-07-01

    A barrel gamma scanning unit has been in use at the VAK for the classification of radioactive waste materials since 1998. The unit provides the facility operator with the data required for classification of waste barrels. Once these data have been entered into the AVK data processing system, the radiological status of raw waste as well as pre-treated and processed waste can be tracked from the point of origin to the point at which the waste is delivered to a final storage. Since the barrel gamma scanning unit was commissioned in 1998, approximately 900 barrels have been measured and the relevant data required for classification collected and analyzed. Based on the positive results of experience in the use of the mobile barrel gamma scanning unit, the VAK now offers the classification of barrels as a service to external users. Depending upon waste quantity accumulation, this measurement unit offers facility operators a reliable and time-saving and cost-effective means of identifying and documenting the radioactivity inventory of barrels scheduled for final storage. (orig.)

  16. Reference waste package environment report

    Energy Technology Data Exchange (ETDEWEB)

    Glassley, W.E.

    1986-10-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

  17. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  18. Safety Analysis Report for packaging (onsite) steel waste package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  19. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  20. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  1. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  2. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  3. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  4. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  5. Engineered waste-package-system design specification

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  6. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  7. Development of waste packages for tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, A.J.

    1982-09-20

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission`s requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling.

  8. Mass Transfer Model for a Breached Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    C. Hsu; J. McClure

    2004-07-26

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss.

  9. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    Science.gov (United States)

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains.

  10. Packaging wastes management; Gestion integral de los residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1996-12-01

    Packaging, having fulfilled their function, become waste and joint the flow of resure we generate every day. Packaging waste is a usable secondary raw material, provided that a suitable integrated management strategy is devised. This article highlights the Integrated Management Strategic Plan for Packaging Waste, following the priority guidelines established by the Community Directives on waste management: Reduction, re-use, Recycling, Energy Recovery and Final Elimination, and the European Directive 94/62/CE about packaging and packaging waste. (Author)

  11. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  12. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  13. Symmetric Rock Fall on Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    Sreten Mastilovic

    2001-08-09

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  14. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    Energy Technology Data Exchange (ETDEWEB)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  15. Hydrogen generation in tru waste transportation packages

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  16. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  17. 44 BWR Waste Package Loading Curve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  18. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  19. Horizontal Drop of 21- PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2001-04-26

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  20. A study on the gas generation from radioactive waste packages under disposal conditions in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo wan; Kim, Chang Lak; Choi, Heui Joo; Yoon, Jeong Hyoun [Korea Electric Power Corporation, Nuclear Environment Institute, Taejon (Korea, Republic of)

    1999-07-01

    In order to confirm the compliance to acceptance criteria , the performance of radioactive waste packages currently used at the nuclear power plants in Korea in aspect of gas generation is investigated. As the principal gas generation mechanisms radiolysis, corrosion of metals, and microbial activity of organic materials are considered. For calculating rates and total volumes of radiolytic hydrogen gas generated in waste packages a computer program that accommodates interactions among adjacent packages is used. Gas production due to metal corrosion and microbial degradation of Dry Active Waste (DAW) packages and the others is estimated over an assessment period of one thousand years under a given set of repository condition, respectively. Flammability hazard caused by radiolytic hydrogen formation inside a sealed waste package, pressure build-up inside the engineered barrier structure under repository condition is also assessed. (author)

  1. Reasons for household food waste with special attention to packaging

    OpenAIRE

    Williams, Helén; Wikström, Fredrik; Otterbring, Tobias; Löfgren, Martin; Gustafsson, Anders

    2012-01-01

    The amount of food waste needs to be reduced in order to sustain the world’s limited resources and secure enough food to all humans. Packaging plays an important role in reducing food waste. The knowledge about how packaging affects food waste in households, however, is scarce. This exploratory study examines reasons for food waste in household and especially how and to what extent packaging influences the amount of food waste. Sixty-one families measured their amount of food waste during sev...

  2. Reasons for household food waste with special attention to packaging

    OpenAIRE

    Williams, Helén; Wikström, Fredrik; Otterbring, Tobias; Löfgren, Martin; Gustafsson, Anders

    2012-01-01

    The amount of food waste needs to be reduced in order to sustain the world’s limited resources and secure enough food to all humans. Packaging plays an important role in reducing food waste. The knowledge about how packaging affects food waste in households, however, is scarce. This exploratory study examines reasons for food waste in household and especially how and to what extent packaging influences the amount of food waste. Sixty-one families measured their amount of food waste during sev...

  3. Disposal and degradation of pesticide waste.

    Science.gov (United States)

    Felsot, Allan S; Racke, Kenneth D; Hamilton, Denis J

    2003-01-01

    recycled by spraying it onto cropland, thus avoiding a soil contamination problem. If it is not feasible to spray out rinsates, then water treatment becomes necessary. However, for small waste generators, practical technology is still too experimental and not easily implemented on an individual farm or at a small application business. Nevertheless, research has been quite active in application of advanced oxidation processes (UV/ozonation: photoassisted Fenton reaction: photocatalysis using TiO2). Obsolete pesticide stocks in developing countries are being packaged and shipped to developed countries for incineration. Contaminated soil can also be incinerated, but this is not practical nor affordable for small waste generators. Chemical degradation of chlorinated hydrocarbon pesticides may be amenable to dechlorination by alkali polyethylene glycol treatment, but further study is needed to make the technique practical for small waste generators. Contaminated soils may be amenable to cleanup by one of several biological treatment methods, including composting, landfarming, and bioaugmentation/ biostimulation. Composting and landfarming (which may be used in combination with biostimulation) may be the most practical of the biological methods that is immediately ready for implementation by small-scale pesticide waste generators.

  4. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1999-03-23

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  5. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    S. Bader

    1999-09-20

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through-cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  6. Cleanup Verification Package for the 300-8 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2005-11-07

    This cleanup verification package documents completion of remedial action for the 300-8 waste site. This waste site was formerly used to stage scrap metal from the 300 Area in support of a program to recycle aluminum.

  7. Waste forms, packages, and seals working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, N. [Center Antonio, TX (United States); McNeil, M.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  8. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  9. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  10. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-14

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations.

  11. 9975 Shipping package component long-term degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    Special nuclear materials are being stored in the K-Area Complex using 3013 containers that are held within Model 9975 shipping packages. The service life for these packages in storage was recently increased from 15 to 20 years, since some of these packages have been stored for nearly 15 years. A strategy is also being developed whereby such storage might be extended beyond 20 years. This strategy is based on recent calculations that support acceptable 9975 package performance for 20 years with internal heat loads up to 19 watts, and identifies a lower heat load limit for which the package components should degrade at half the bounding rate or less, thus doubling the effective storage life for these lower wattage packages. The components of the 9975 package that are sensitive to aging under storage conditions are the fiberboard overpack and the O-ring seals, although some degradation of the lead shield and outer drum are also possible. This report summarizes degradation rates applicable to lower heat load storage conditions. In particular, the O-ring seals should provide leak-tight performance for more than 40 years in packages for which their maximum temperature is ≤135 °F. Similarly, the fiberboard should remain acceptable in performance of its required safety functions for up to 40 years in packages with a maximum fiberboard temperature ≤125 °F.

  12. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  13. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J. CUNNANE

    2004-11-19

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an &apos

  14. Technical Basis Document No. 6: Waste Package and Drip Shield Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Pasupathi, V; Nair, P; Gordon, G; McCright, D; Gdowski, G; Carroll, S; Steinborn, T; Summers, T; Wong, F; Rebak, R; Lian, T; Ilevbare, G; Lee, J; Hua, F; Payer, J

    2003-08-01

    The waste package and drip shield will experience a wide range of interactive environmental conditions and degradation modes that will determine the overall performance of the waste package and repository. The operable modes of degradation are determined by the temperature regime of operation (region), and are summarized here. Dry-Out Region (T {ge} 120 C; 50 to 400 Years): During the pre-closure period, the waste package will be kept dry by ventilation air. During the thermal pulse, heat generated by radioactive decay will eventually increase the temperature of the waste package, drip shield and drift wall to a level above the boiling point, where the probability of seepage into drifts will become insignificant. Further heating will push the waste package surface temperature above the deliquescence point of expected salt mixtures, thereby preventing the formation of deliquescence brines from dust deposits and humid air. Phase and time-temperature-transformation diagrams predicted for Alloy 22, and validated with experimental data, indicates no significant phase instabilities (LRO and TCP precipitation) at temperatures below 300 C for 10,000 years. Neither will dry oxidation at these elevated temperatures limit waste package life. After the peak temperature is reached, the waste package will begin to cool, eventually reaching a point where deliquescence brine formation may occur. However, corrosion testing of Alloy 22 underneath such films has shown no evidence of life-limiting localized corrosion. Transition Region (120 C {ge} T {ge} 100 C; 400 to 1,000 Years): During continued cooling, the temperature of the drift wall will drop to a level close to the boiling point of the seepage brine, thus permitting the onset of seepage. Corrosion in a concentrated, possibly aggressive, liquid-phase brine, evolved through evaporative concentration, is possible while in this region. However, based upon chemical divide theory, most ({ge} 99%) of the seepage water entering the

  15. STUDY ON PACKAGING WASTE PREVENTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Scortar Lucia-Monica

    2013-07-01

    It is very important to mention that individuals and businesses can often save a significant amount of money through waste prevention: waste that never gets created doesn't have management costs (handling, transporting, treating and disposing of waste. The rule is simple: the best waste is that which is not produced.

  16. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance...... material streams....

  17. Safety evaluation for packaging (onsite) disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  18. SECOND WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: GENERATION AND EVALUATION OF INTERNAL CRITICIALITY CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Gottlieb, J.R. Massari, J.K. McCoy

    1996-03-27

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having sonic or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment. The ultimate objective of this analysis is to augment the information gained from the Initial Waste Package Probabilistic Criticality Analyses (Ref. 5.8 and 5.9, hereafter referred to as IPA) to a degree which will support preliminary waste package design recommendations intended to reduce the risk of waste package criticality and the risk to total repository system performance posed by the consequences of any criticality. The IPA evaluated the criticality potential under the assumption that the waste package basket retained its structural integrity, so that the assemblies retained their initial separation, even when the neutron absorbers had been leached from the basket. This analysis is based on the more realistic condition that removal of the neutron absorbers is a consequence of the corrosion of the steel in which they are contained, which has the additional consequence of reducing the structural support between assemblies. The result is a set of more reactive configurations having a smaller spacing between assemblies, or no inter-assembly spacing at all. Another difference from the IPA is the minimal attention to probabilistic evaluation given in this study. Although the IPA covered a time horizon to 100,000 years, the lack of consideration of basket degradation modes made it primarily applicable to the first 10,000 years. In contrast, this study, by focusing on the degraded modes of the basket, is primarily

  19. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-03-21

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  20. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-05-06

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  1. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-12-18

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  2. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-10-17

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  3. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-08-28

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  4. Waste package environment studies. FY 1984 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.; McVay, G.L.; Moore, D.A.; Rai, D.; Schramke, J.A.

    1986-03-01

    Tests were conducted by Pacific Northwest Laboratory in FY 1984 to examine the influence of heat and radiation on the chemical environment of a high-level nuclear waste package in a repository in salt and to determine the solubility of key radionuclides in site-specific brines. These tests are part of an ongoing effort by the Waste Package Program, whose objective is to help develop a data base on package components and system interactions necessary to qualify a nuclear waste package for geologic disposal. Specifically, tests performed in FY 1984 involved alpha and gamma radiolysis of brines, americium solubility in brines, the influence of heat and radiation on rock salt, and the influence of temperature on brine chemistry.

  5. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  6. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables.

  7. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.

  8. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  9. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  10. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  11. Thermal Evaluation of the Fort Saint Vrain Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    Adam Scheider; Horia Radulescu

    2001-07-19

    The objective of this calculation is to evaluate the thermal response of the Fort Saint Vrain (FSV) Codisposal Waste Package (WP) design under nominal Monitored Geologic Repository conditions. The objective of the calculation is to provide thermal parameter information to support the FSV waste package design. The information provided by the sketches (Attachment IV) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.124, ''Calculations'' (Ref. 17) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the SDHLW (Defense High Level Waste) / DOE (Department of Energy) Long WP.

  12. WASTE PACKAGE OPERATIONS FY99 CLOSURE METHODS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    M. C. Knapp

    1999-09-23

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing.

  13. Strategy for experimental validation of waste package performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Abrajano, T.A. Jr.; Wronkiewicz, D.J.; Gerding, T.J.; Seils, C.A.

    1990-07-01

    A strategy for the experimental validation of waste package performance assessment has been developed as part of a program supported by the Repository Technology Program. The strategy was developed by reviewing the results of laboratory analog experiments, in-situ tests, repository simulation tests, and material interaction tests. As a result of the review, a listing of dependent and independent variables that influence the ingress of water into the near-field environment, the reaction between water and the waste form, and the transport of radionuclides from the near-field environment was developed. The variables necessary to incorporate into an experimental validation strategy were chosen by identifying those which had the greatest effect of each of the three major events, i.e., groundwater ingress, waste package reactions, and radionuclide transport. The methodology to perform validation experiments was examined by utilizing an existing laboratory analog approach developed for unsaturated testing of glass waste forms. 185 refs., 9 figs., 2 tabs.

  14. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Mitchell

    2000-05-31

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M

  15. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  16. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-14

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included.

  17. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: UNCANISTERED FUEL (TBV)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint, The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact uncanistered fuel waste package (UCF-WP) configuration; and (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the UCF-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. Due to the current lack of knowledge in a number of areas, every attempt has been made to ensure that the all calculations and assumptions were conservative. This analysis is preliminary in nature, and is intended to be superseded by at least two more versions prior to license application. The information and assumptions used to generate this analysis are unverified and have been globally assigned TBV identifier TBV-059-WPD. Future versions of this analysis will update these results, possibly replacing the global TBV with a small number of TBV's on individual items, with the goal of removing all TBV designations by license application submittal. The final output of this document, the probability of UCF-WP criticality as a function of time, is therefore, also TBV. This document is intended to deal only with the risk of internal criticality with unaltered fuel

  18. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  20. Waste Package Data Processing by Direct Upload to the SRS Waste Information System

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V.R.

    2002-06-20

    Hundreds of waste packages are generated each month at the Westinghouse Savannah River Site (SRS), Aiken, SC. Most of these waste packages are compactable, low level waste (LLW) either in 55-gallon drums or B-25 boxes, and TRU waste is put in DOT Type A 55-gallon drums. Several methods are used for assay of the waste package contents, including direct assay, dose-to-curie measurements, and smear-to-curie measurements. These assays generate many thousands of data that must be entered manually into the SRS Waste Information Tracking System (WITS) by a Generation Certification Official, even though much of this data is already available electronically. Since spreadsheets are routinely used to collect data for manual entry into WITS, direct data upload would greatly improve data entry. WITS was originally written as an interactive program, requiring each data item to be entered individually with subsequent tests being performed on each data entry to ensure that acceptance criteria were me t. An error message was displayed if the acceptance criteria were not met, and either corrected data had to be re-entered or a deviation had to be approved by WITS personnel. This system did not allow batch data entry, where essentially all the data could be entered, and then all of this data were evaluated against the acceptance criteria. A WITS user interface has been written for batch data entry for over twenty waste generators. This interface accepts all the data for a waste package, and an error report is generated listing non-conforming data. This interface allows direct uploads of electronic data for waste packages by dumping this data into Microsoft Excel spreadsheets that are formatted for direct data entry into WITS. Therefore, programs can be written to transfer any electronic data to the WITS interface spreadsheet for direct uploads of waste data. The whole process is now much less labor intensive, more cost effective, and more accurate.

  1. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-11-15

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis).

  2. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  3. Microbial Effects on Nuclear Waste Packaging Materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J; Martin, S; Carrillo, C; Lian, T

    2005-07-22

    Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM

  4. The effects of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada); King, F

    1999-07-01

    The influence of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages has been comprehensively reviewed. The comparison of corrosion of the various materials was compared in three distinct environments: Environment A; Mg{sup 2+}-enriched brines in which hydrolysis of the cation produces acidic environments and the Mg{sup 2+} interferes with the formation of protective films; Environment B; saline environments with a low Mg{sup 2+} content which remain neutral; Environment C; moist aerated conditions.The reference design of nuclear waste package for emplacement in the proposed waste repository in Yucca Mountain, Nevada, employs a dual wall arrangement, in which a 2 cm thick nickel alloy inner barrier is encapsulated within a 10 cm thick mild steel outer barrier. It is felt that this arrangement will give considerable containment lifetimes, since no common mode failure exists for the two barriers. The corrosion performance of this waste package will be determined by the exposure environment established within the emplacement drifts. Key features of the Yucca Mountain repository in controlling waste package degradation are expected to be the permanent availability of oxygen and the limited presence of water. When water contacts the surface of the waste package, its gamma radiolysis could produce an additional supply of corrosive agents. the gamma field will be produced by the radioactive decay of radionuclides within the waste form, and its magnitude will depend on the nature and age of the waste form as well as the material and wall thickness of the waste package.

  5. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE #13- WASTE PACKAGE SELF SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    J. Owen

    1999-04-09

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes.

  6. Bioremediation and degradation of CCA-treated wood waste.

    Science.gov (United States)

    Barbara L Illman; Vina W. Yang

    2004-01-01

    Bioprocessing CCA wood waste is an efficient and economical alternative to depositing the waste in landfills, especially if landfill restrictions on CCA waste are imposed nation wide. We have developed bioremediation and degradation technologies for microbial processing of CCA waste. The technologies are based on specially formulated inoculum of wood decay fungi,...

  7. The Role of Packaging in Solid Waste Management 1966 to 1976.

    Science.gov (United States)

    Darnay, Arsen; Franklin, William E.

    The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…

  8. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  9. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  10. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  11. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B J

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios.

  12. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  13. Vertical Drop Of 21-Pwr Waste Package On Unyielding Surface

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-29

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only.

  14. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  15. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  16. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    Science.gov (United States)

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

    Science.gov (United States)

    Berzina, Alise; Dace, Elina; Bazbauers, Gatis

    2010-01-01

    This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

  18. Degradation of organic nitrogenous wastes by a soil streptomycete.

    Science.gov (United States)

    De, S; Chandra, A L

    1979-01-01

    A soil streptomycete degraded hair, silk, wool, feather and leather which were collected from solid wastes. The organism was identified taxonomically and designated Streptomyces sp. A956. It degraded leather to the maximum extent and solubilized 35.9% of the total nitrogen, 2.32 mg of glycine equivalent amino nitrogen could be obtained by degradation of 100 mg leather.

  19. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    Energy Technology Data Exchange (ETDEWEB)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen [Galson Sciences Ltd. Oakham, Rutland (United Kingdom); Bolton, Gary [National Nuclear Laboratory Risley, Warrington (United Kingdom); McKinney, James; Morris, Darrell [Nuclear Decommissioning Authority Moor Row, Cumbria (United Kingdom); Angus, Mike [National Nuclear Laboratory Risley, Warrington (United Kingdom); Cann, Gavin; Binks, Tracey [National Nuclear Laboratory Sellafield (United Kingdom)

    2013-07-01

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. During the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)

  20. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  1. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crow, S R

    1996-02-15

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown.

  2. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  3. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  4. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  5. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  6. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  7. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  8. Challenges in Modeling the Degradation of Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin

    2011-09-01

    We identify the state of the art, gaps in current understanding, and key research needs in the area of modeling the long-term degradation of ceramic waste forms for nuclear waste disposition. The directed purpose of this report is to define a roadmap for Waste IPSC needs to extend capabilities of waste degradation to ceramic waste forms, which overlaps with the needs of the subconsinuum scale of FMM interests. The key knowledge gaps are in the areas of (i) methodology for developing reliable interatomic potentials to model the complex atomic-level interactions in waste forms; (ii) characterization of water interactions at ceramic surfaces and interfaces; and (iii) extension of atomic-level insights to the long time and distance scales relevant to the problem of actinide and fission product immobilization.

  9. Challenges in Modeling the Degradation of Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin

    2011-09-01

    We identify the state of the art, gaps in current understanding, and key research needs in the area of modeling the long-term degradation of ceramic waste forms for nuclear waste disposition. The directed purpose of this report is to define a roadmap for Waste IPSC needs to extend capabilities of waste degradation to ceramic waste forms, which overlaps with the needs of the subconsinuum scale of FMM interests. The key knowledge gaps are in the areas of (i) methodology for developing reliable interatomic potentials to model the complex atomic-level interactions in waste forms; (ii) characterization of water interactions at ceramic surfaces and interfaces; and (iii) extension of atomic-level insights to the long time and distance scales relevant to the problem of actinide and fission product immobilization.

  10. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  11. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  12. Management and legislation of packaging wastes; La gestion y la legislacion de residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Berbel Vecino, J.; Gomez-Limon Rodriguez, J.A. [SADECO, Saneamientos de Cordoba. Empresa Municipal (Spain)

    1997-06-01

    Municipal Solid Waste management and Packaging Waste management have became in a big environmental problem in Western Europe. This situation made compulsory a European Law to rule the Packaging Waste management recycling (Directive 94/62), that have to be translated inside the different Member States. This paper try to analyze the spanish law project developed in this area, pointing its positive and negative aspects, relating this one with other solutions adopted by other countries. (Author) 9 refs.

  13. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  14. Degradation of dome cutting minerals in Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  15. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  16. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    F. Wong

    2004-09-28

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP

  17. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation... importation, and the sale within the United States after importation of certain food waste disposers and... sale within the United States after importation of certain food waste disposers and components...

  18. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  19. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  20. Geochemistry Model Abstraction and Sensitivity Studies for the 21 PWR CSNF Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot; S. LeStrange; E. Thomas; K. Zarrabi; S. Arthur

    2002-10-29

    The CSNF geochemistry model abstraction, as directed by the TWP (BSC 2002b), was developed to provide regression analysis of EQ6 cases to obtain abstracted values of pH (and in some cases HCO{sub 3}{sup -} concentration) for use in the Configuration Generator Model. The pH of the system is the controlling factor over U mineralization, CSNF degradation rate, and HCO{sub 3}{sup -} concentration in solution. The abstraction encompasses a large variety of combinations for the degradation rates of materials. The ''base case'' used EQ6 simulations looking at differing steel/alloy corrosion rates, drip rates, and percent fuel exposure. Other values such as the pH/HCO{sub 3}{sup -} dependent fuel corrosion rate and the corrosion rate of A516 were kept constant. Relationships were developed for pH as a function of these differing rates to be used in the calculation of total C and subsequently, the fuel rate. An additional refinement to the abstraction was the addition of abstracted pH values for cases where there was limited O{sub 2} for waste package corrosion and a flushing fluid other than J-13, which has been used in all EQ6 calculation up to this point. These abstractions also used EQ6 simulations with varying combinations of corrosion rates of materials to abstract the pH (and HCO{sub 3}{sup -} in the case of the limiting O{sub 2} cases) as a function of WP materials corrosion rates. The goodness of fit for most of the abstracted values was above an R{sup 2} of 0.9. Those below this value occurred during the time at the very beginning of WP corrosion when large variations in the system pH are observed. However, the significance of F-statistic for all the abstractions showed that the variable relationships are significant. For the abstraction, an analysis of the minerals that may form the ''sludge'' in the waste package was also presented. This analysis indicates that a number a different iron and aluminum minerals may form in

  1. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  2. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  3. WastePD, An Innovative Center on Materials Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Gerald S.; Vienna, John D.; Lian, Jie

    2017-07-25

    The US Department of Energy recently awarded funds to create the Center for Performance and Design of Nuclear Waste Forms and Containers (WastePD) as part of the Energy Frontier Research Center (EFRC) program. EFRCs are multi-investigator collaborations of universities, national labs and companies that “conduct fundamental research focusing on one or more “grand challenges” and use-inspired “basic research needs” identified in major strategic planning efforts by the scientific community.” The major performance parameter of nuclear waste forms is their ability to isolate the radionuclides by withstanding degradation in a repository environment over very long periods of time. So WastePD is at heart a center focused on materials degradation.

  4. Gas generation from transuranic waste degradation: data summary and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.

    1979-12-01

    A comprehensive review of all applicable gas generation data resulting from the degradation of existing and potential forms of transuranic-contaminated wastes is presented. Extensive experimental studies have been performed under both realistic environmental conditions expected in the Waste Isolation Pilot Plant and overtest conditions. Degradation mechanisms investigated were radiolysis, thermal decomposition and dewatering, bacterial action, and chemical corrosion. Waste matrices studied include cellulosics, plastics, rubbers, organic composite, concrete-TRU ash, asphalt, process sludges, and mild steel. Measured gas generation rates are presented in terms of gas moles/year/drum of waste and in G(gas) values for radiolysis. The effects of multiple variables on gas generation are also described. 7 figures, 15 tables.

  5. FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2013-10-10

    This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansion will be discussed.

  6. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  7. 78 FR 1881 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's...

    Science.gov (United States)

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate...

  8. 77 FR 50716 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission...

    Science.gov (United States)

    2012-08-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission Determination Not to Review an Initial Determination Granting Complainant's Motions To Amend the Notice...

  9. PACKAGING WASTE MANAGEMENT ON EXAMPLE OF CITY ZIELONA GÓRA

    OpenAIRE

    Joanna ZARĘBSKA

    2012-01-01

    The article presents the legal requirements of the European Union's packaging waste, and their most recent transposition into Polish law. The author has attempted to describe selected achievements of the Department of Public Utilities and Housing (DPUaH) in Zielona Góra, which for many years on behalf of the city, in a systematic way it’s developing municipal waste management system (including packaging), consistent with EU policies and objectives of sustainable development. The deficiencies ...

  10. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  11. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1995-09-22

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

  12. Options for reducing food waste by ‘Quality Controlled Logistics’ using intelligent packaging along the supply chain

    NARCIS (Netherlands)

    Heising, J.K.; Claassen, G.D.H.; Dekker, M.

    2017-01-01

    Optimizing supply chain management can help to reduce food waste. This article describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on Quality Controlled Logistics (QCL). Intelligent packaging senses compounds in the package that correlate

  13. High-Level waste glass dissolution in simulated internal waste package environments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V.; Pan, Y.M. [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio (United States)

    2000-07-01

    The rate of radionuclide release as a result of leaching of high-level radioactive waste (HLW) glass is important to the performance of engineered barriers. The modified product consistency test (PCT), with regular leachant exchanges, was used to determine the leaching rate of simulated HLW glasses (West Valley Demonstration Project Reference 6 and Defense Waste Processing Facility Blend 1) in aqueous solutions of FeCl{sub 2} and FeCl{sub 3} at 90 EC. These conditions were selected to simulate an internal waste package (WP) environment containing steel corrosion products and oxidized by radiolysis. Substantially higher initial B and alkali release rates, approximately a factor of 50 to 70 times greater than those in deionized water, were measured in 0.25 M FeCl{sub 3} solutions. The initial leaching rate for B and alkali was found to be pH-dependent and decreased as the leachate pH was increased. While the leach rate for Si did not show any significant change in the pH range studied, the leach rate for Al showed a minimum. The minimum in the leach rate of Al occurred at different pH values. The study indicates that elements in the glass matrix are released incongruently. (authors)

  14. Production and degradation of polyhydroxyalkanoates in waste environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Choi, J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  15. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...

  16. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  17. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W.; Dunn, K.; Hackney, B.

    2013-06-19

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of cane fiberboard in elevated temperature – elevated humidity environments.

  18. Implementation of Control Measures for Radioactive Waste Packages with Respect to the Materials Composition - 12365

    Energy Technology Data Exchange (ETDEWEB)

    Steyer, S.; Kugel, K. [Federal Office for Radiation Protection (BfS), Salzgitter (Germany); Brennecke, P. [Braunschweig (Germany); Boetsch, W.; Gruendler, D.; Haider, C. [ISTec, Cologne (Germany)

    2012-07-01

    In addition to the radiological characterization and control measures the materials composition has to be described and respective control measures need to be implemented. The approach to verify the materials composition depends on the status of the waste: - During conditioning of raw waste the control of the materials composition has to be taken into account. - For already conditioned waste a retrospective qualification of the process might be possible. - If retrospective process qualification is not possible, legacy waste can be qualified by spot checking according to the materials composition requirements The integration of the control of the material composition in the quality control system for radioactive waste is discussed and examples of control measures are given. With the materials-list and the packaging-list the Federal Office for Radiation Protection (BfS) provides an appropriate tool to describe the materials composition of radioactive waste packages. The control measures with respect to the materials composition integrate well in the established quality control framework for radioactive waste. The system is flexible enough to deal with waste products of different qualities: raw waste, qualified conditioned waste or legacy waste. Control measures to verify the materials composition can be accomplished with minimal radiation exposure and without undue burden on the waste producers and conditioners. (authors)

  19. STRATEGIES FOR PACKAGE WASTE REDUCING THROUGH A RATIONAL AND EFFECTIVE DESIGN

    Directory of Open Access Journals (Sweden)

    Barsan Lucian

    2017-05-01

    Full Text Available The paper presents a number of regulations which should be respected when designing a package. Package represents a large percent of the total waste, therefore we should focus on this ‘type’ of product to reduce the resources used and also to reduce the waste through reusing and recycling. Design is strongly involved in this activity analysing the package lifecycle and trying to respect some rules, which represent the fundaments for a design strategy. Regulations regarding materials choosing, materials combinations, choosing the most adequate process are presented. Either the package is reusable or not, it must be recyclable. The possibility of simply dismantle the package for sorting the materials represent another requirement for the design process. Examples of good practice are presented as a case study.

  20. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  1. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  2. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    K.D. Draper

    2005-03-31

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a

  3. Compaction behavior of surrogate degraded emplaced WIPP waste.

    Energy Technology Data Exchange (ETDEWEB)

    Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bronowski, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuthakun, Souvanny James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifle, Thomas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of degraded Waste Isolation Pilot Plant (WIPP) containers and TRU waste materials at the end of the 10,000 year regulatory period. Testing consists of hydrostatic, triaxial, and uniaxial strain tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers (CPR). Axial, lateral, and volumetric strain and axial, lateral, and pore stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk moduli of the samples measured using this technique were consistent with those measured using more conventional methods. The second technique involved performing triaxial tests under lateral strain control. By limiting the lateral strain to zero by controlling the applied confining pressure while loading the specimen axially in compression, one can maintain a right-circular cylindrical geometry even under large deformations. This technique is preferred over standard triaxial testing methods which result in inhomogeneous deformation or (3z(Bbarreling(3y. (BManifestations of the inhomogeneous deformation included non-uniform stress states, as well as unrealistic Poissons ratios (> 0.5) or those that vary significantly along the length of the specimen. Zero lateral strain controlled tests yield a more uniform stress state, and admissible and uniform values of Poissons ratio.

  4. Microbial degradation of low-level radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  5. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.

  6. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    Science.gov (United States)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  8. Microbial Degradation of Organic Wastes at Low Temperatures.

    Directory of Open Access Journals (Sweden)

    K.V. Ramana

    2000-10-01

    Full Text Available Microbial degradation of organic wastes mainly comprising animal and human wastes, is drastically reduced at extreme low temperatures. For the biodegradation of these wastes, technological inputs are required from disciplines like microbiology, biochemistry, molecular biology, digester modelling and heat transfer at extreme low temperature climates. Various steps in the process of biodegradation have to be studied to formulate an effective organic waste disposal method. Anaerobic digestion of organic wastes is preferred over aerobic waste treatment method, since it yields biogas as a by-product, which in turn can be utilised for heating the digester contents to increase its efficiency. Furthermore, one of the possibilities that can be explored is the utilisation of high rate anaerobic digesters which maintain temperature by means of artificial heating. It is either met by non-conventional energy sources, such as solar and wind energy, or by expending liquid fuels. In addition, insulation of the digester with polymeric materials and immobilisation of slow growing bacterial population may enhance the digester performance to a great extent. In spite of several developments, inoculum adaptation is considered to be one of the essential steps for low temperature anaerobic digestion to obtain methane as a by-product. With advancements in recombinant DNA technology, it may be possible to increase the efficiency of various microbial population that take part in the anaerobic digestion. However, till date, the options available for low temperature biodegradation are digester insulation, inoculum adaptation, and use of high rate/second-generation digesters.

  9. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  10. A degradation model for high kitchen waste content municipal solid waste.

    Science.gov (United States)

    Chen, Yunmin; Guo, Ruyang; Li, Yu-Chao; Liu, Hailong; Zhan, Tony Liangtong

    2016-12-01

    Municipal solid waste (MSW) in developing countries has a high content of kitchen waste (KW), and therefore contains large quantities of water and non-hollocellulose degradable organics. The degradation of high KW content MSW cannot be well simulated by the existing degradation models, which are mostly established for low KW content MSW in developed countries. This paper presents a two-stage anaerobic degradation model for high KW content MSW with degradations of hollocellulose, sugars, proteins and lipids considered. The ranges of the proportions of chemical compounds in MSW components are summarized with the recommended values given. Waste components are grouped into rapidly or slowly degradable categories in terms of the degradation rates under optimal water conditions for degradation. In the proposed model, the unionized VFA inhibitions of hydrolysis/acidogenesis and methanogenesis are considered as well as the pH inhibition of methanogenesis. Both modest and serious VFA inhibitions can be modeled by the proposed model. Default values for the parameters in the proposed method can be used for predictions of degradations of both low and high KW content MSW. The proposed model was verified by simulating two laboratory experiments, in which low and high KW content MSW were used, respectively. The simulated results are in good agreement with the measured data of the experiments. The results show that under low VFA concentrations, the pH inhibition of methanogenesis is the main inhibition to be considered, while the inhibitions of both hydrolysis/acidogenesis and methanogenesis caused by unionized VFA are significant under high VFA concentrations. The model is also used to compare the degradation behaviors of low and high KW content MSW under a favorable environmental condition, and it shows that the gas potential of high KW content MSW releases more quickly.

  11. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  12. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  13. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    Energy Technology Data Exchange (ETDEWEB)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  14. Waste package performance assessment code with automated sensitivity-calculation capability

    Energy Technology Data Exchange (ETDEWEB)

    Worley, B.A.; Horwedel, J.E.

    1986-09-01

    WAPPA-C is a waste package performance assessment code that predicts the temporal and spatial extent of the loss of containment capability of a given waste package design. This code was enhanced by the addition of the capability to calculate the sensitivity of model results to any parameter. The GRESS automated procedure was used to add this capability in only two man-months of effort. The verification analysis of the enhanced code, WAPPAG, showed that the sensitivities calculated using GRESS were accurate to within the precision of perturbation results against which the sensitivities were compared. Sensitivities of all summary table values to eight diverse data values were verified.

  15. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  16. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2016-06-01

    Environmental Protection Agency ESTCP Environmental Security Technology Certification Program FEST Food Engineering and Science Team FOC Force Operating ... Engineering Program DLA Defense Logistics Agency DoD Department of Defense EQBR Environmental Quality Basic Research EPA United States...each case inspected by NSRDEC engineers . The focus was on examining the food quality and packaging integrity of the prototype and control systems

  17. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  18. Production of degradable polymers from food-waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  19. Production of degradable polymers from food-waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  20. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Directory of Open Access Journals (Sweden)

    Arantzazu eValdés

    2014-02-01

    Full Text Available The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  1. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  2. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  3. STRUCTURAL CALCULATIONS FOR THE CODISPOSAL OF TRIGA SPENT NUCLEAR FUEL IN A WASTE PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic

    1999-07-28

    The purpose of this analysis is to determine the structural response of a TRIGA Department of Energy (DOE) spent nuclear fuel (SNF) codisposal canister placed in a 5-Defense High Level Waste (DHLW) waste package (WP) and subjected to a tipover design basis event (DBE) dynamic load; the results will be reported in terms of displacements and stress magnitudes. This activity is associated with the WP design.

  4. Safety evaluation for packaging for onsite transfer of B Plant organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, M.S.

    1996-10-07

    This safety evaluation for packaging authorizes the use of a 17,500-L (4,623-gal) tank manufactured by Brenner Tank, Incorporated, to transport up to 16,221 L (4,285 gal) of radioactive organic liquid waste. The waste will be transported from the organic loading pad to a storage pad. Both pads are within the B Plant complex, but approximately 4 mi apart.

  5. Review of waste package verification tests. Semiannual report, April 1984-September 1984. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Veakis, E.; Soo, P.

    1985-06-01

    This ongoing study is part of a task to specify tests that may be used to verify that engineered waste package/repository systems comply with NRC radionuclide containment and controlled release performance objectives. Work covered in this report includes crushed tuff packing material for use in a high level waste tuff repository. A review of available tests to quantify packing performance is given together with recommendations for future testing work. 27 refs., 6 figs., 3 tabs.

  6. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages; Synthese des connaissances sur le comportement a long terme des betons. Application aux colis cimentes

    Energy Technology Data Exchange (ETDEWEB)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L' Hostis, V.; Levera, P

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational

  7. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  8. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  9. Potential vertical movement of large heat-generating waste packages in salt.

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest.

    2013-05-01

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  10. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    Energy Technology Data Exchange (ETDEWEB)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  11. 77 FR 17093 - Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-23

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint... complaint entitled Certain Food Waste Disposers and Components and Packaging Thereof, DN 2886; the Commission is soliciting comments on any public interest issues raised by the complaint or...

  12. Waste Package Outer Barrier Stress Due to Thermal Expansion with Various Barrier Gap Sizes

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Lewis

    2001-11-27

    The objective of this activity is to determine the tangential stresses of the outer shell, due to uneven thermal expansion of the inner and outer shells of the current waste package (WP) designs. Based on the results of the calculation ''Waste Package Barrier Stresses Due to Thermal Expansion'', CAL-EBS-ME-000008 (ref. 10), only tangential stresses are considered for this calculation. The tangential stresses are significantly larger than the radial stresses associated with thermal expansion, and at the WP outer surface the radial stresses are equal to zero. The scope of this activity is limited to determining the tangential stresses the waste package outer shell is subject to due to the interference fit, produced by having two different shell coefficients of thermal expansions. The inner shell has a greater coefficient of thermal expansion than the outer shell, producing a pressure between the two shells. This calculation is associated with Waste Package Project. The calculations are performed for the 21-PWR (pressurized water reactor), 44-BWR (boiling water reactor), 24-BWR, 12-PWR Long, 5 DHLW/DOE SNF - Short (defense high-level waste/Department of Energy spent nuclear fuel), 2-MCO/2-DHLW (multi-canister overpack), and Naval SNF Long WP designs. The information provided by the sketches attached to this calculation is that of the potential design for the types of WPs considered in this calculation. This calculation is performed in accordance with the ''Technical Work Plan for: Waste Package Design Description for SR (Ref.7). The calculation is documented, reviewed, and approved in accordance with AP-3.12Q, Calculations (Ref.1).

  13. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  14. STUDY OF DEGRADATION MECHANISM AND PACKAGING OF ORGANIC LIGHT EMITTING DEVICES

    Institute of Scientific and Technical Information of China (English)

    Gu Xu

    2003-01-01

    Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in future Flat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to their commercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fast degradation of OLEDs. In particular, we focus on the origin of the dark spots by "rebuilding" cathodes, which confirms that the growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from the search for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation and moisture resistance, in addition to electrical insulation.

  15. Fungal degradation of oil palm cellulosic wastes after radiation pasteurisation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Kume, Tamikazu; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Mat Rasol Awang; Fajah Bt Ali

    1990-10-01

    The fungal degradation ability was appreciated for upgrading of oil palm cellulosic wastes. In this work, Empty Fruit Bunch (EFB) and Palm press Fiber (PPF) were fermented in an attempt to upgrade to animal feed. However, the heavy contamination of microorganisms in EFB and PPF was observed, and they consist of largely spore forming bacteria and toxigenic moulds of Aspergillus flavus, A. versicolor, A. fumigatus and etc. Therefore, pasteurisation was necessary to be carried out before fermentation, and gamma-irradiation of ca. 10 kGy was employed. Solid-state culture media from EFB and PPF for cultivation of cellulolytic fungi were prepared by addition of some inorganic salts as nitrogen source. The degradation of crude fibre by Coprinus cinereus, Pleurotus species, Aspergillus niger, Trichoderma koningi, and T. viride was obtained in the range between 18 to 76 % after 18 to 20 days cultivation on non-alkali treated cellulosic wastes. C. cinereus could degradate crude fiber more than 50 %, and which resulted in reduction of crude fibre content to 20{approx}28 % and giving to 10-13 % crude protein content. Release of reducing sugars was obtained as 40 to 145 mg glucose/g after saccharification of precultivated alkali-treated EFB by C. cinereus, A. niger, T. knoningi and T. viride. (author).

  16. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  17. Stress corrosion cracking in canistered waste package containers: Welds and base metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.

    1998-03-01

    The current design of waste package containers include outer barrier using corrosion allowable material (CAM) such as A516 carbon steel and inner barrier of corrosion resistant material (CRM) such as alloy 625 and C22. There is concern whether stress corrosion cracking would occur at welds or base metals. The current memo documents the results of our analysis on this topic.

  18. Impact of rinsing in pesticide packaging waste management: Economic and environmental benefits

    Directory of Open Access Journals (Sweden)

    Marčeta Una

    2015-01-01

    Full Text Available Pesticides have become dailiness due to inevitable application of these preparations in agricultural activities, with the consequence of generation of large amounts of waste packaging. Impact on the environment and expenses of management of packaging waste can be minimized if the packaging is immediately rinsed after the application of devices and if identified as non-hazardous. Besides, financial losses may be reduced by maximum utilization of the preparation. Considering these two financial aspects this work shows evaluation of quantitative losses of preparations if the triple rising method is not applied. The research was conducted in two phases. Phase I included the examination of the impact of different formulations of the same volume on quantitative and financial losses. Based on the results of the first phase of the research, it was noted that the SC formulation is the most interesting to study because this type of formulation has the highest percentage of residue, as well as the fact that the highest annual consumption is noted percisely in this preparation group. This paper presents the results which indicate the impact of packaging volume of SC formulation (ALVERDE 240 SC, INTERMEZZO and ANTRE PLUS on percentage of preparation residue in packaging if there was no rinsing. The results have shown that the quantitative loss is inversely proportional to the volume of packaging, while financial losses do not only depend on the percentage of residue but also on price and quantity of utilization of preparations.

  19. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  20. Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Materials, Under Simulated Repository Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Martin, S.I.; Rivera, A.J.; Bedrossian, P.J.; Lian, T.

    2000-01-12

    The U.S. Department of Energy has been charged with assessing the suitability of a geologic nuclear waste repository at Yucca Mountain (YM), NV. Microorganisms, both those endogenous to the repository site and those introduced as a result of construction and operational activities, may contribute to the corrosion of metal nuclear waste packaging and thereby decrease their useful lifetime as barrier materials. Evaluation of potential Microbiological Influenced Corrosion (MIC) on candidate waste package materials was undertaken reactor systems incorporating the primary elements of the repository: YM rock (either non-sterile or presterilized), material coupons, and a continual feed of simulated YM groundwater. Periodically, both aqueous reactor efflux and material coupons were analyzed for chemical and surfacial characterization. Alloy 22 coupons exposed for a year at room temperature in reactors containing non-sterile YM rock demonstrated accretion of chromium oxide and silaceous scales, with what appear to be underlying areas of corrosion.

  1. Demands placed on waste package performance testing and modeling by some general results on reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chesnut, D.A.

    1991-09-01

    Waste packages for a US nuclear waste repository are required to provide reasonable assurance of maintaining substantially complete containment of radionuclides for 300 to 1000 years after closure. The waiting time to failure for complex failure processes affecting engineered or manufactured systems is often found to be an exponentially-distributed random variable. Assuming that this simple distribution can be used to describe the behavior of a hypothetical single barrier waste package, calculations presented in this paper show that the mean time to failure (the only parameter needed to completely specify an exponential distribution) would have to be more than 10{sub 7} years in order to provide reasonable assurance of meeting this requirement. With two independent barriers, each would need to have a mean time to failure of only 10{sup 5} years to provide the same reliability. Other examples illustrate how multiple barriers can provide a strategy for not only achieving but demonstrating regulatory compliance.

  2. PACKAGING WASTE MANAGEMENT ON EXAMPLE OF CITY ZIELONA GÓRA

    Directory of Open Access Journals (Sweden)

    Joanna ZARĘBSKA

    2012-01-01

    Full Text Available The article presents the legal requirements of the European Union's packaging waste, and their most recent transposition into Polish law. The author has attempted to describe selected achievements of the Department of Public Utilities and Housing (DPUaH in Zielona Góra, which for many years on behalf of the city, in a systematic way it’s developing municipal waste management system (including packaging, consistent with EU policies and objectives of sustainable development. The deficiencies and weaknesses in the system are taken into consideration, whose liquidation is a priority for future investment of DPUaH consistent with the Waste Management Plan for the City of Zielona Góra.

  3. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al/sub 2/O/sub 3/ (99%), Al/sub 2/O/sub 3/ (99.8%), mullite (2Al/sub 2/O/sub 3/.SiO/sub 2/), vitreous silica (SiO/sub 2/), BaTiO/sub 3/, CaTiO/sub 3/, CaTiSiO/sub 5/, TiO/sub 2/, ZrO/sub 2/, ZrSiO/sub 4/, Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO/sub 2/, ZrO/sub 2/, and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO/sub 2/ and ZrO/sub 2/.

  4. Effect of ionizing radiation on the waste package environment

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T. [Argonne National Lab., IL (USA); Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  5. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost.

  6. Options for reducing food waste by quality-controlled logistics using intelligent packaging along the supply chain.

    Science.gov (United States)

    Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs

    2017-10-01

    Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.

  7. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  8. Application of fluidization to separate packaging waste plastics.

    Science.gov (United States)

    Carvalho, M Teresa; Ferreira, Célia; Portela, Antía; Santos, João Tiago

    2009-03-01

    The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).

  9. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  11. Thermal testing of packages for transport of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Koski, J.A.

    1994-12-31

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives.

  12. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-06-20

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre

  13. Impact of Spanish legislation of packaging and packaging wastes on the economic agents; Repercusiones de la Legislacion EspaNola sobre los envases y residuos de envases en los agentes econOmicos involucrados e institucionales

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1997-09-01

    Review of the legislative text and the responsibilities for economical agents involve in the specific Spanish normative about packagings and packaging wastes. Highlights the Integrated Management Strategic Plan for Packagings Wastes to reach the objectives in Reduction, Recycling and Energy Recovery in Spain. (Author)

  14. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.S. (ed.)

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

  15. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  16. Recognizing Potential Buprenorphine Medication Misuse: Product Packaging Does Not Degrade With Laundering.

    Science.gov (United States)

    Gunderson, Erik W

    2015-01-01

    Expanded office-based buprenorphine opioid dependence treatment is associated with medication misuse and diversion consequences. Recurrent early refill requests may indicate misuse or diversion, although further research is needed on how to effectively recognize and address the issue in clinical practice. In the current study, patient report of damaged medication from laundering prompted evaluation of laundering on degradation of buprenorphine-containing product packages and contents. Four buprenorphine product packaging approaches were assessed: 3 buprenorphine/naloxone placebo demonstration products (Suboxone and Bunavail film in foil wrappers and Zubsolv tablet in a blister pack) and Rexam-manufactured Screw-Loc closure pill container filled with a chewable aspirin as a surrogate for generic buprenorphine and buprenorphine/naloxone products. Two experimental laundering conditions, wash machine alone (W) and washer/dryer (W+D), were compared with unlaundered control (C) condition. Standard laundering settings were based on patient presentation. Products from the 2 experimental conditions and the control condition were labeled A, B, or C with counterbalanced assignment prior to visual examination of packaging and contents by the investigator who was blinded to condition. Packaging and contents remained intact for all products across experimental conditions, with only minor cosmetic effects compared with control. The W+D Suboxone film had 1-2 mm curling of the wrapper corners. Zubsolv blister packs had slight paper label fading (W+D > W). Bunavail W+D foil had an indentation outlining the inner film. The W+D bottle tablet had a ˜1 mm nick on one edge. No other differences were noted. After implementing more structured treatment and reviewing the results with the patient, he endorsed fabricating the laundering story to get additional medication. Laundering is an unlikely cause of damaged buprenorphine-containing medication packaged in foil wrappers (Suboxone

  17. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables.

  18. An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden.

    Science.gov (United States)

    Hage, Olle; Söderholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.

  19. Environmental Degradation of Materials for Nuclear Waste Repositories Engineered Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-24

    Several countries are considering geological repositories for the storage of nuclear waste. Most of the environments for these repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, copper, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  20. Techniques and Facilities for Handling and Packaging Tritiated Liquid Wastes for Burial

    Energy Technology Data Exchange (ETDEWEB)

    Rhinehammer, T. B.; Mershad, E. A.

    1974-06-01

    Methods and facilities have been developed for the collection, storage, measurement, assay, solidification, and packaging of tritiated liquid wastes (concentrations up to 5 Ci/ml) for disposal by land burial. Tritium losses to the environment from these operations are less than 1 ppm. All operations are performed in an inert gas-purged glovebox system vented to an effluent removal system which permits nearly complete removal of tritium from the exhaust gases prior to their dischardge to the environment. Waste oil and water from tritium processing areas are vacuum-transferred to glovebox storage tanks through double-walled lines. Accommodations are also available for emptying portable liquid waste containers and for removing tritiated water from molecular sieve beds with heat and vacuum. The tritium concentration of the collected liquids is measured by an in-line calorimeter. A low-volume metering pump is used to transfer liquids from holding tanks to heavy walled polyethylene drums filled with an absorbent or cement for solidification. Final packaging of the sealed polyethylene drums is in either an asphalt-filled combination 30- and 55- gallon metal drum package or a 30-gallon welded stainless steel container.

  1. Review of waste package verification tests. Semiannual report, April 1985-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1986-01-01

    Several studies were completed this period to evaluate experimental and analytical methodologies being used in the DOE waste package program. The first involves a determination of the relevance of the test conditions being used by DOE to characterize waste package component behavior in a salt repository system. Another study focuses on the testing conditions and procedures used to measure radionuclide solubility and colloid formation in repository groundwaters. An attempt was also made to evaluate the adequacy of selected waste package performance codes. However, the latter work was limited by an inability to obtain several codes from DOE. Nevertheless, it was possible to comment briefly on the structures and intents of the codes based on publications in the open literature. The final study involved an experimental program to determine the likelihood of stress-corrosion cracking of austenitic stainless steels and Incoloy 825 in simulated tuff repository environments. Tests for six-month exposure periods in water and air-steam conditions are described. 52 figs., 48 tabs.

  2. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2001-10-16

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site).

  3. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fulekar, M H

    2017-01-01

    Petrochemical industry is one of the fastest growing industries. This industry has immense importance in the growth of economy and manufacture of large varieties of chemicals. The petrochemical industry is a hazardous group of industry generating hazardous waste containing organic and inorganic compounds. In spite of the present treatment process, the hazardous waste compounds are found untreated to the acceptable level and found discharged at soil-water environment resulting into the persistent organic-inorganic pollutant into the environment. The bioremediation will be the innovative techniques to remove the persistent pollutants in the environment. Petrochemical contaminated site was found to be a rich source of microbial consortium degrading polycyclic aromatic hydrocarbons. Indigenous microbial consortiums were identified and used for bioremediation of polycyclic aromatic hydrocarbons (naphthalene and anthracene) at the concentrations of 250, 500, and 750 ppm. The potential microorganism was also identified for naphthalene and anthracene, and their bioremediation was studied at varying concentrations. The bioremediation with consortium was found to be comparatively more effective than the potential microorganism used for bioremediation of each compound. Pseudomonas aeruginosa a potential organism was identified by 16S rRNA and further studied for the gene responsible for the PAH compounds. Indigenous microorganism as a consortium has been found effective and efficient source for remediation of organic compound-Polycyclic aromatic hydrocarbon and this will also be applicable to remediate the toxic compounds to clean up the environment.

  4. Municipal solid waste open dumping, implication for land degradation

    Science.gov (United States)

    Yazdani, M.; Monavari, M.; Omrani, G. A.; Shariat, M.; Hosseini, M.

    2015-03-01

    Open dumping is the common procedure for final disposal of MSW in Iran. Several environmental pollutions and land degradation have caused because of poor planning, insufficient financial resources, improper organizational chart for MSW management system, and the lack of rules, guidelines and regulations. In Iran standards and regulations of environmental issues are not perfectly attended, evaluation an open dumping can show existing restrictions and troubles in these areas. So recognition of the municipal solid waste landfill state is required to prevent the increase of environmental problems and decrease the negative environmental impacts. The suitability of Tonekabon existing municipal landfill site in the west area of Mazandaran province, located in north of Iran, and the south coast of the Caspian Sea is the significance of the present study as a case study of land degradation. In order to carry out this evaluation, two guidelines are used. After reviewing all the considered criteria in each of the guidelines, the authenticity of the deposit site of the study area and also the entire city was examined; and eventually the appropriate areas were identified. The conclusion of the results indicated the incoherence in appropriateness of the existing landfill site, with two mentioned methods and field work.

  5. PHOTOCATALYTIC DEGRADATION OF WASTE WATER ON. THIN FILMS OF TiO2

    Institute of Scientific and Technical Information of China (English)

    Wu Zhenghuang

    2001-01-01

    The degradation of organic phosphorous pesticide waste water using thin films of TiO2, which was prepared in an atmospheric vertical chemical vapor deposition system, was studied. The results show that the wafer material for coating TiO2, the photocatalytic time, the TiO2 crystal phase, the pH value and the concentration of pesticides in waste water influence the degradation rate. These facts indicate some potential for photocatalytic treatment of waste water by utilizing sunlight.

  6. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  7. Degradation of drinking water sludge for long-term waste management

    OpenAIRE

    WATANABE, Yasutaka / KOMINE, Hideo / YASUHARA, Kazuya / MURAKAMI, Satoshi / TOYODA, Kazuhiro

    2008-01-01

    Drinking water sludge is industrial waste which is discharged during water purification, and it is presentlyanticipated to reuse drinking water sludge as geotechnical material. However, degradation has not been investigated. Tokeep strength, stability, and safety on long -term waste management, it is important to apply degradation characteristicsto designing and maintenance. As an aspect of degradation on drinking water sludge, variation of consolidationproperties induced interaction with wat...

  8. Long-term behaviour of concrete: development of operational model to predict the evolution of its containment performance. Application to cemented waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Peycelon, H.; Le Bescop, P.; Richet, C. [CEA Saclay, Dept. de Physico-Chimie, DPC, 91 - Gif-sur-Yvette (France); Adenot, F. [CEA Cadarache, 13 - Saint Paul lez Durance (France). Dept. d' Entreposage et de Stockage des Dechets; Blanc, V. [Cogema, 78 - Saint Quentin en Yvelines (France)

    2001-07-01

    In order to describe the main phenomena during different stages of cement waste packages life-time and to predict the long-term behaviour (containment performance) of concrete, coupled experiments and modelling studies are achieved. With respect to logical methodology, improvement of these studies is accomplished. Degradation of concrete in low mineralized, carbonated and sulfated water lead to an evolution of chemical characteristics (dissolution/precipitation of solid phases) and of transport properties which must be included or coupled in retention/transport modelling of radio nuclides to predict containment performance. (author)

  9. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  10. Penicillium strains as dominant degraders in soil for coffee residue, a biological waste unsuitable for fertilization.

    Science.gov (United States)

    Fujii, Katsuhiko; Takeshi, Kyoko

    2007-12-01

    Coffee residue is an agricultural waste which inhibits the growth of several crops. Therefore coffee residue-degrading microbes in soil were screened, isolated and characterized. Forty isolates were obtained after enrichment culture of soil samples. Seven strains (fast degraders) showed strong degrading activity, while 18 strains (slow degraders) showed weak degrading activity. DNA analysis suggested that the fast degraders are Penicillium, and the slow degraders are Penicillium, Trichoderma/Hypocrea, Fusarium/Gibberella, Phaeoacremonium/Togninia or Acidocella. The all fast degraders are cellulolytic, mannolytic and pectinolytic. Although it is generally thought that fungi such as Trichoderma contribute largely to aerobic degradation of cellulosic biomass, our data suggested that Penicillium overwhelms them in coffee residue degradation. It was implied that polysaccharides in coffee residue are not degraded independently by different microbes, but degraded simultaneously by strains with cellulolytic, mannolytic and pectinolytic activity. Since there is no report of an ascomycete possessing all the three enzyme activities, the fast degraders are ecologically important and have the potential to be used as producers of the costly enzymes from agricultural wastes. The present results advance our understanding of microbial degradation of a phytotoxic agricultural waste, and offer a new tool for recycling it.

  11. DEGRADATION OF OXO-BIODEGRADABLE AND USUAL PLASTIC PACKAGING = DEGRADAÇÃO DE EMBALAGENS PLÁSTICAS OXI-BIODEGRADÁVEIS E COMUNS

    Directory of Open Access Journals (Sweden)

    Caio da Silva Miranda

    2015-11-01

    Full Text Available The mostly packaging Urban Solid Waste are bought or acquired in commercial establishments. This study was possible to analyze the degradation of packaging urban solid waste, checking which packages used by consumers cause for less impact on the environment. The experimental conditions adopted in this present study are due to the variation of temperature, time, amount of leachate and/ or rainwater. Therefore, with the experiments it can be seen that variation of nutrients matches the variation of microorganism in the filtrate of rainwater and leachate. The samples immersed in rainwater and leachate obtained opposite results among themselves. The samples have degraded more at the high temperatures. In a short exposure time have been shown to hardly relevant to the degradation. In general the oxo-biodegradable packaging get showed similar results with the usual packaging. = A maioria das embalagens plásticas é sacola comprada ou recebida gratuitamente de estabelecimentos comerciais. No presente trabalho foi possível analisar a degradação de embalagens plásticas oxi-biodegradáveis e as comuns, verificando quais delas utilizadas pelos consumidores causam menos impacto ao meio ambiente. As condições experimentais adotadas no presente trabalho foram em função da variação de temperatura, tempo, na presença de chorume e de água de chuva. Com a realização dos experimentos pode-se observar que uma variação de nutrientes condisse com a variação de micro-organismos nos filtrados de água da chuva e do chorume. As amostras imersas em água da chuva e no chorume obtiveram efeitos inversos entre si. As amostras degradaram mais em altas temperaturas. Em pequeno período de exposição, o tempo se mostrou pouco relevante para a degradação. De uma forma geral, as embalagens oxibiodegradáveis apresentaram resultados parecidos com as embalagens comuns.

  12. Detection of high-energy delayed gammas for nuclear waste packages characterization

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F., E-mail: frederick.carrel@cea.fr [CEA, LIST, Gif-sur-Yvette F-91191 (France); Agelou, M.; Gmar, M.; Laine, F. [CEA, LIST, Gif-sur-Yvette F-91191 (France)

    2011-10-01

    Methods based on photon activation analysis (PAA) have been developed by CEA LIST for several years, in order to assay actinides inside nuclear waste packages. These techniques were primarily based on the detection of delayed neutrons emitted by fission products. To overcome some limitations related to neutrons, CEA LIST has worked on the detection of high-energy delayed gammas (E>3 MeV), which are simultaneously emitted by fission products along with delayed neutrons. Since the emission yield is more important for high-energy delayed gammas than delayed neutrons and because they are less sensitive to hydrogenous material, high-energy delayed gammas are a solution of interest in order to improve the accuracy of these techniques. In this article, we present new experimental results demonstrating the feasibility of high-energy delayed gamma detection for nuclear waste packages characterization. Experiments have been carried out in the PAA facility called SAPHIR, which is located in CEA Saclay. The most important part of our work has been carried out on an 870 l mock-up package. Some experimental techniques, initially based on delayed neutron detection (altitude scan, photofission tomography), have been successfully applied for the first time using high-energy delayed gamma detection.

  13. Risk-informed criticality analysis as applied to waste packages subject to a subsurface igneous intrusion

    Science.gov (United States)

    Kimball, Darby Suzan

    branches of an event. This method of applying PRA techniques to criticality safety is demonstrated using the example of waste packages in an underground geologic repository during a volcanic event. It is concluded that the current design does not provide adequate subcritical assurance, and recommended that future design modifications focus on mitigating chemical degradation of fuel and metals.

  14. Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX

    Science.gov (United States)

    Simon, Eric; Jallu, Fanny; Pérot, Bertrand; Plumeri, Stéphane

    2016-12-01

    The feasibility of fissile mass quantification in large, long-lived medium activity radioactive waste packages using photofission delayed gamma rays has been assessed with MCNPX. The detection limit achievable is lower than the expected uranium mass in these waste packages, but the important sensibility to the waste matrix density and sample localization imposes to get an accurate measurement of these parameters. An isotope discrimination method based on gamma-ray ratios has been evaluated showing that photofission delayed gamma rays can be used to measure the fissile mass as well as the total uranium mass.

  15. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  16. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  17. Review of waste package verification tests. Semiannual report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1985-07-01

    The potential of WAPPA, a second-generation waste package system code, to meet the needs of the regulatory community is analyzed. The analysis includes an indepth review of WAPPA`s individual process models and a review of WAPPA`s operation. It is concluded that the code is of limited use to the NRC in the present form. Recommendations for future improvement, usage, and implementation of the code are given. This report also describes the results of a testing program undertaken to determine the chemical environment that will be present near a high-level waste package emplaced in a basalt repository. For this purpose, low carbon 1020 steel (a current BWIP reference container material), synthetic basaltic groundwater and a mixture of bentonite and basalt were exposed, in an autoclave, to expected conditions some period after repository sealing (150{sup 0}C, {approx_equal}10.4 MPa). Parameters measured include changes in gas pressure with time and gas composition, variation in dissolved oxygen (DO), pH and certain ionic concentrations of water in the packing material across an imposed thermal gradient, mineralogic alteration of the basalt/bentonite mixture, and carbon steel corrosion behavior. A second testing program was also initiated to check the likelihood of stress corrosion cracking of austenitic stainless steels and Incoloy 825 which are being considered for use as waste container materials in the tuff repository program. 82 refs., 70 figs., 27 tabs.

  18. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  19. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  20. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  1. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  2. Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Pasupathi

    2000-01-28

    Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air. Based on the performance of each candidate against the criteria, the following selections were made: Neutron absorber--Neutronit A978; Thermal shunt--Aluminum 6061 or 6063; and Fill gas--Helium.

  3. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

  4. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  5. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  6. Environmental and economic benefit of recycling model of packaging waste:a case study on aluminum

    Institute of Scientific and Technical Information of China (English)

    Huang Pingsha

    2004-01-01

    In order to achieve sustainable utilization of natural resources, save energy and protect environment and ecosystem, it is important for a region or a nation to develop and implement a viable waste recycling model from both theoretical and practical point of view. Some packaging recycling models operated in developed countries are introduced in this article. Aluminium can recovery and recycling is emphasized. Cost effective, economic and environmental benefit of different models are compared and analyzed. The result shows that all recycling models have their characteristics due to the initial purpose of recovery and the situation of the implementing country. However, all the models contribute to the reduction of municipal solid waste disposal and resources conservation.

  7. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  8. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  9. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  10. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  11. ASSESSING DETOXIFICATION AND DEGRADATION OF WOOD PRESERVING AND PETROLEUM WASTES IN CONTAMINATED SOIL

    Science.gov (United States)

    This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water so...

  12. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    Science.gov (United States)

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  13. Report on task assignment No. 3 for the Waste Package Project; Parts A & B, ASME pressure vessel codes review for waste package application; Part C, Library search for reliability/failure rates data on low temperature low pressure piping, containers, and casks with long design lives

    Energy Technology Data Exchange (ETDEWEB)

    Trabia, M.B.; Kiley, M.; Cardle, J.; Joseph, M.

    1991-07-01

    The Waste Package Project Research Team, at UNLV, has four general required tasks. Task one is the management, quality assurance, and overview of the research that is performed under the cooperative agreement. Task two is the structural analysis of spent fuel and high level waste. Task three is an American Society of Mechanical Engineers (ASME) Pressure Vessel Code review for waste package application. Finally, task four is waste package labeling. This report includes preliminary information about task three (ASME Pressure Vessel Code review for Waste package Application). The first objective is to compile a list of the ASME Pressure Vessel Code that can be applied to waste package containers design and manufacturing processes. The second objective is to explore the use of these applicable codes to the preliminary waste package container designs. The final objective is to perform a library search for reliability and/or failure rates data on low pressure, low temperature, containers and casks with long design lives.

  14. Effects of lignin on the anaerobic degradation of (ligno) cellulosic wastes by rumen microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Camp, H.J.M. op den; Verhagen, F.J.M.; Kivaisi, A.K.; Windt, F.E. de; Lubberding, H.J.; Gijzen, H.J.; Vogels, G.D.

    1988-10-01

    There appeared to be a clear correlation between the lignin content (% of TS) of several waste and natural materials and their degradability by rumen microorgansims. Materials with lignin contents higher than 25% were not degraded within 72 h. The effects of Kraft pine lignin and some lignin momomers on filter paper degradation, methane production and CMCase activity were tested. Testing these compounds in concentrations comparable to natural conditions showed minor effects. At higher concentrations p-coumaric acid strongly inhibited cellulose degradation and methane production in batch cultures. Influence of lignin compounds on degradation is discussed in relation to structural effects and enzyme or growth inhibition.

  15. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  16. Degradation of organic contaminants found in organic waste

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2000-01-01

    In recent years, great interest has arisen in recycling of the waste created by modern society. A common way of recycling the organic fraction is amendment on farmland. However, these wastes may contain possible hazardous components in small amounts, which may prevent their use in farming. The ob...

  17. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage; Les colis de dechets radioactifs stockes au centre de stockage FMA de l'Aube. Une stockage selectif et maitrise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  18. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    Science.gov (United States)

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs.

  19. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  20. Waste Materials from Tetra Pak Packages as Reinforcement of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Martínez-López

    2015-01-01

    Full Text Available Different concentrations (from 1 to 6 wt% and sizes (0.85, 1.40, and 2.36 mm of waste Tetra Pak particles replaced partially silica sand in polymer concrete. As is well known, Tetra Pak packages are made up of three raw materials: cellulose (75%, low density polyethylene (20%, and aluminum (5%. The polymer concrete specimens were elaborated with unsaturated polyester resin (20% and silica sand (80% and irradiated by using gamma rays at 100 and 200 kGy. The obtained results have shown that compressive and flexural strength and modulus of elasticity decrease gradually, when either Tetra Pak particle concentration or particle size is increased, as regularly occurs in composite materials. Nevertheless, improvements of 14% on both compressive strength and flexural strength as well as 5% for modulus of elasticity were obtained when polymer concrete is irradiated.

  1. Effect of Components on the Performance of Asphalt Modiifed by Waste Packaging Polyethylene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Maorong; FANG Changqing; ZHOU Shisheng; CHENG Youliang; YU Ruien; LIU Shaolong; LIU Xiaolong; SU Jian

    2016-01-01

    Waste packaging polyethylene (WPE) was used to modify raw asphalt by melt blending the components at 190℃ for 1 h in a simple mixer and subsequently machining them at 120℃ for 1 h in a high-speed shearing machine. The effect of modiifcation on the degree of the penetration, the softening point and the ductility of the asphalt was studied using lfuorescent microscopy, infrared spectrometry, component changes and various other techniques. The experimental results showed that no chemical reactions took place in the components themselves (saturate, aromatic, asphaltene and resin) during the modifications. The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene, saturate and resin components. In addition, aromatics were identified as having the greatest impact on the ductility of the asphalt.

  2. Non-destructive assay of drum package radioactive wastes utilizing tomographic gamma scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ausbrooks, K. L. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-05-01

    A methodology for nondestructive assay of drum packaged radioactive waste materials is investigated using Emission Computed Tomography procedures. A requirement of this method is accurate gamma attenuation correction. This is accomplished by the use of a constant density distribution for the drum content, thereby requiring the need for a homogeneous medium. The current predominant NDA technique is the use of the Segmented Gamma Scanner. Tomographic Gamma Scanning improves upon this method by providing a low resolution three-dimensional image of the source distribution, yielding both spatial and activity information. Reconstruction of the source distribution is accomplished by utilization of algebraic techniques with a nine by six voxel model with detector information gathered over scanning intervals of ninety degrees. Construction of a linear system to describe the scenario was accomplished using a point-source response function methodology, where a 54 x 120 matrix contained the projected detector responses for each source-detector geometry. Entries in this matrix were calculated using the point-kernal shielding code QAD-CGGP. Validation was performed using the MCNP photon transport code. Solutions to the linear system were determined using the Non-Negative Least Squares (NNLS) algorithm and the LSMOD algorithm. A series of four scans were performed, each reconstructing the source distribution of a mock-up waste package containing a single 73 mCi 137Cs point source. For each scan, the source was located in a different location. Results of the reconstruction routines accurately predict the location and activity of the source. The range of activity calculated using the NNLS routine is 0.2681 mCi with an average value of 77.7995 mCi. The range of values calculated using LSMOD is 5.1843 mCi with an average of 72.8018 mCi.

  3. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  4. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  5. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    Science.gov (United States)

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    Science.gov (United States)

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period.

  7. Long-term effect on the solidified degraded cellulose-based waste slurry in cement matrix

    Directory of Open Access Journals (Sweden)

    Hosam El-Din Mostafa Saleh

    2009-03-01

    Full Text Available The long-term effects on solidification/stabilization (s/s of the secondary wastes, resulting from the oxidative degradation of some solid cellulosic-based wastes, in Portland Cement (CEM I have been investigated by X-ray diffraction (X-RD and Fourier transform infrared spectroscopy (FT-IR techniques. The effect of seven years leaching of the cemented waste forms obtained was carried out to assess the long-term immobilization behavior of the radionuclide in the solidified/stabilized waste that maybe exposed to fresh, ground or sea water.The results of this study confirm our previously published work that the oxidative degradation treatment of some cellulosic-based wastes is essential before incorporating into the cementitious inert matrix. In addition, the release of radionuclides from the cemented waste form is a diffusion controlling process, after the first washing out period lasting for nearly thirty days.Based on the results so far obtained it is concluded that Portland Cement could be considered as a potential inert matrix to immobilize the degraded cellulosic-based wastes for a short or long time of storage or a final disposal.

  8. Assessment of collection schemes for packaging and other recyclable waste in European Union-28 Member States and capital cities.

    Science.gov (United States)

    Seyring, Nicole; Dollhofer, Marie; Weißenbacher, Jakob; Bakas, Ioannis; McKinnon, David

    2016-09-01

    The Waste Framework Directive obliged European Union Member States to set up separate collection systems to promote high quality recycling for at least paper, metal, plastic and glass by 2015. As implementation of the requirement varies across European Union Member States, the European Commission contracted BiPRO GmbH/Copenhagen Resource Institute to assess the separate collection schemes in the 28 European Union Member States, focusing on capital cities and on metal, plastic, glass (with packaging as the main source), paper/cardboard and bio-waste. The study includes an assessment of the legal framework for, and the practical implementation of, collection systems in the European Union-28 Member States and an in depth-analysis of systems applied in all capital cities. It covers collection systems that collect one or more of the five waste streams separately from residual waste/mixed municipal waste at source (including strict separation, co-mingled systems, door-to-door, bring-point collection and civic amenity sites). A scoreboard including 13 indicators is elaborated in order to measure the performance of the systems with the capture rates as key indicators to identify best performers. Best performance are by the cities of Ljubljana, Helsinki and Tallinn, leading to the key conclusion that door-to-door collection, at least for paper and bio-waste, and the implementation of pay-as-you-throw schemes results in high capture and thus high recycling rates of packaging and other municipal waste.

  9. Effects of different packaging atmospheres and injection-enhancement on beef tenderness, sensory attributes, desmin degradation, and display color.

    Science.gov (United States)

    Grobbel, J P; Dikeman, M E; Hunt, M C; Milliken, G A

    2008-10-01

    The objectives were to determine the effects of packaging atmosphere and injection-enhancement on tenderness, sensory traits, desmin degradation, and display color of different beef muscles. Longissimus lumborum (LL; n = 12 pairs), semitendinosus (ST; n = 12 pairs), and triceps brachii (TB; n = 24 pairs; 12 from the same carcasses as the LL and ST and 12 additional pairs) were obtained from the same USDA Select, A-maturity carcasses. On d 7 postmortem, each muscle from one side of the carcass was injection-enhanced, and each muscle from the other side was nonenhanced. Steaks 2.54-cm thick were cut from the muscles and packaged in vacuum packaging (VP), ultra-low oxygen with CO (ULO(2)CO; 0.4% CO/35% CO(2)/69.6% N(2)) modified atmosphere packaging (MAP), or high-oxygen MAP (HiO(2); 80% O(2)/20% CO(2)) and assigned to 14-d tenderness or display followed by 18- or 28-d tenderness measurement. Steaks packaged in HiO(2) MAP were in dark storage (2 degrees C) for 4 d and all other steaks for 14 d. Steaks for Warner-Bratzler shear force, sensory panel (n = 8 trained panelists), and desmin degradation were cooked to 70 degrees C. Steaks were displayed under fluorescent lighting (2,153 lx, 3,000 K) for 7 d. Trained color panelists (n = 10) assigned display color scores. Enhanced steaks had lower (P HiO(2) MAP. The LL and TB were more tender (P HiO(2) MAP were oxidative or rancid. Enhanced steaks had more (P 0.05) by packaging or enhancement. Enhanced steaks were darker (P HiO(2) MAP discolored faster (P HiO(2) MAP.

  10. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    Science.gov (United States)

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  11. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  12. Quantitative assessment of microbiological contributions to corrosion of candidate nuclear waste-package materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.; Jones, D.; Lian, T.; Martin, S.

    1998-10-30

    The U.S. Department of Energy is contributing to the design of a potential nuclear-waste repository at Yucca Mountain, Nevada. A system to predict the contribution of Yucca Mountain (YM) bacteria to overall corrosion rates of candidate waste-package (WP) materials was designed and implemented. DC linear polarization resistance techniques were applied to candidate material coupons that had been inoculated with a mixture of YM-derived bacteria with potentially corrosive activities or left sterile. Inoculated bacteria caused a 5- to 6-fold increase in corrosion rate of carbon steel C1020 (to approximately 7Ð8mm/yr) and an almost 100-fold increase in corrosion rate of Alloy 400 (to approximately 1mm/yr). Microbiologically influenced corrosion (MIC) rates on more resistant materials (CRMs: Alloy 625, Type 304 Stainless Steel, and Alloy C22) were on the order of hundredths of micrometers per year (mm/yr). Bulk chemical and surfacial end-point analyses of spent media and coupon surfaces showed preferential dissolution of nickel from Alloy 400 coupons and depletion of chromium from CRMs after incubation with YM bacteria. Scanning electron microscopy (SEM) also showed greater damage to the Alloy 400 surface than that indicated by electrochemical detection methods.

  13. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  14. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  15. Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders

    Directory of Open Access Journals (Sweden)

    Bettina eNadorp

    2014-02-01

    Full Text Available MicroRNAs (miRNAs can notably control many targets each and regulate entire cellular pathways, but whether miRNAs can regulate complete neurotransmission processes is largely unknown. Here, we report that miRNAs with complementary sequence motifs to the key genes involved in acetylcholine (ACh synthesis and/or packaging show massive overlap with those regulating ACh degradation. To address this topic, we first searched for miRNAs that could target the 3’-untranslated regions of the choline acetyltransferase (ChAT gene that controls ACh synthesis; the vesicular ACh transporter (VAChT, encoded from an intron in the ChAT gene and the ACh hydrolyzing genes acetyl- and/or butyrylcholinesterase (AChE, BChE. Intriguingly, we found that many of the miRNAs targeting these genes are primate-specific, and that changes in their levels associate with inflammation, anxiety, brain damage, cardiac, neurodegenerative or pain-related syndromes. To validate the in vivo relevance of this dual interaction, we selected the evolutionarily conserved miR-186, which targets both the stress-inducible soluble readthrough variant AChE-R and the major peripheral cholinesterase BChE. We exposed mice to predator scent stress and searched for potential associations between consequent changes in their miR-186, AChE-R and BChE levels. Both intestinal miR-186 as well as BChE and AChE-R activities were conspicuously elevated one week post-exposure, highlighting the previously unknown involvement of miR-186 and BChE in psychological stress responses. Overlapping miRNA regulation emerges from our findings as a recently evolved surveillance mechanism over cholinergic neurotransmission in health and disease; and the corresponding miRNA details and disease relevance may serve as a useful resource for studying the molecular mechanisms underlying this surveillance.

  16. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  17. Degradation modeling of the ANL ceramic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Morss, L. R.

    2000-03-28

    A ceramic waste form composed of glass-bonded sodalite is being developed at Argonne National Laboratory (ANL) for immobilization and disposition of the molten salt waste stream from the electrometallurgical treatment process for metallic DOE spent nuclear fuel. As part of the spent fuel treatment program at ANL, a model is being developed to predict the long-term release of radionuclides under repository conditions. Dissolution tests using dilute, pH-buffered solutions have been conducted at 40, 70, and 90 C to determine the temperature and pH dependence of the dissolution rate. Parameter values measured in these tests have been incorporated into the model, and preliminary repository performance assessment modeling has been completed. Results indicate that the ceramic waste form should be acceptable in a repository environment.

  18. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill.

    Science.gov (United States)

    Jiang, Guobin; Liu, Dan; Chen, Weiming; Ye, Zhicheng; Liu, Hong; Li, Qibin

    2017-08-01

    The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.

  19. Small-scale simulation of waste degradation in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.J.; Potts, L.G.A.; Reeves, A. [Nottingham Univ., Chemical Engineering Dept., Nottingham (United Kingdom)

    1997-07-01

    Biogas production from a mixture of food and paper, with additions of inoculum, buffer and nutrient, began after 24 weeks and reached 0.8 vol/vol.day from Week 40 to 51, at 55-65% (v/v) methane. Methanogenesis from a simulated solid waste has not previously been reported. (Author)

  20. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  1. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  2. Status Report - Cane Fiberboard Properties and Degradation Rates for Storage of the 9975 Shipping Package in KAMS

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L.

    2013-01-31

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature < 250 ?F (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight loss and height decrease) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAMS, these models allow development of service life predictions. Some of the predicted degradation rates presented in this report are relatively extreme. However, these relate to environments that do not exist within KAMS, or would be postulated only as upset conditions that would not likely persist for an extended period. For a typical package with ~10 watts internal heat load or less, and ambient temperatures below 90 ?F, the fiberboard experiences storage conditions less severe than any of the aging environments. Little or no degradation of the fiberboard is expected for typical storage conditions. It should be noted that the ultimate service life will be determined by the cumulative effect of degradation from all the conditions these packages might encounter. The assumptions and inputs behind the models in this report should be well understood before attempting to identify an actual service life in KAMS. Additional data continue to be collected to permit future refinements to the models and assumptions. For developing service life predictions, the ambient conditions within KAMS can be reasonably identified, and the temperature profiles within the various packages (with a range of heat loads and at varying locations within an array of packages) can be calculated. However, the humidity within the

  3. Packaging waste prevention in the distribution of fruit and vegetables: An assessment based on the life cycle perspective.

    Science.gov (United States)

    Tua, Camilla; Nessi, Simone; Rigamonti, Lucia; Dolci, Giovanni; Grosso, Mario

    2017-04-01

    In recent years, alternative food supply chains based on short distance production and delivery have been promoted as being more environmentally friendly than those applied by the traditional retailing system. An example is the supply of seasonal and possibly locally grown fruit and vegetables directly to customers inside a returnable crate (the so-called 'box scheme'). In addition to other claimed environmental and economic advantages, the box scheme is often listed among the packaging waste prevention measures. To check whether such a claim is soundly based, a life cycle assessment was carried out to verify the real environmental effectiveness of the box scheme in comparison to the Italian traditional distribution. The study focused on two reference products, carrots and apples, which are available in the crate all year round. An experience of a box scheme carried out in Italy was compared with some traditional scenarios where the product is distributed loose or packaged at the large-scale retail trade. The packaging waste generation, 13 impact indicators on environment and human health and energy consumptions were calculated. Results show that the analysed experience of the box scheme, as currently managed, cannot be considered a packaging waste prevention measure when compared with the traditional distribution of fruit and vegetables. The weaknesses of the alternative system were identified and some recommendations were given to improve its environmental performance.

  4. 食品包装废弃物的综合利用%Comprehensive Utilization of Food Packaging Wastes

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 余丽丽

    2011-01-01

    Food packaging is one of the most important parts in packaging industry,which leads to increasingly serious environment pollution.The contaminations in food packaging were pointed out and the comprehensive utilization of food packaging wastes were also introduced by analyzing many examples of domestic and overseas.It would give reference for the effective utilization of food packaging wastes in China,and alleviation of the resource and environment restriction.%食品包装业是包装工业的重要组成部分,它带来的环境污染问题日益严重.介绍了食品包装材料种类,并结合国内外实例综述了不同种类食品包装废弃物的综合利用,为保障食品包装废弃物资源得到有效利用,以及缓解我国经济社会发展面临的资源与环境制约提供参考.

  5. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  6. Preparation of a Fully Degraded Packaging Material by Using the Mushroom Cultivation Technology%食用菌制全降解包装材料的研究

    Institute of Scientific and Technical Information of China (English)

    尚舒; 牛宏震; 林理量; 苏鑫; 陈万通; 林毅; 曾德芳

    2015-01-01

    In order to diminish the contamination of non -degradable plastic packaging waste on the environment,the straw and wood chips was used as the main raw materials,aided by mushroom cultivation technology,a new type of packaging material which can be completely degraded and is pollution free and cost-effective,was produced.The manufacturing method is simple and suitable for industrialized production. In this experiment,comparison methods are used to study the effect of different ratio of raw materials on my-celial's growth.The result shows that in the ratio of 57% straw,30%wood chips,10% wheat bran,1%gypsum and 2% lime,the mycelium cultivated by pure culture of pleurotus ostreatus is most abundant and has best firmness.By waterproof test and comparing the cushioning property of the materials,we find that the biomass material can totally replace EPS (expanded polystyrene),EPE (expanded polyethylene)and other packaging materials.Meanwhile,the biomass material can be fully degraded in the soil and provide organic fertilizer for soil.%为了解决不可降解的废弃塑料类包装材料对环境的污染,以秸秆和木屑为主要原料,利用食用菌栽培技术制备了一种新型的、可完全降解的包装材料。采用对比实验的方法,研究了不同原料配比对菌丝生长情况的影响,结果表明,在秸秆57%、木屑30%、麸皮10%、石膏1%、石灰2%的配比下,选用平菇菌种栽培的培养基菌丝体含量最多,紧实度最好。通过材料的防水性能测试和缓冲性能比较,表明该生物质材料完全可以替代 EPS(发泡聚苯乙烯)和 EPE (发泡聚乙烯)等包装材料。同时,该生物质材料在土壤中可实现完全降解,为土壤提供有机肥料。

  7. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  8. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  9. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  10. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  11. Degrading and Detoxifying Industrial Waste Water using Bioremediation Approach

    OpenAIRE

    Agrawal, P K; Sangeet Prabha; Shalu Mittal

    2014-01-01

    Bioremediation uses various microorganisms to detoxify or degrade various harmful substances in the nature, particularly soil and water. In the proposed work, five species of micro-organisms were used to analyse their impact on various physico-chemical parameters of water. In the first attempt the actual physico chemical parameters of the collected sample water were noted down (Fresh sample parameters). Then the sample water was treated with micro-organisms (one at a time). The growth of micr...

  12. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    Science.gov (United States)

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation.

  13. Evaluation and compilation of DOE waste package test data; Volume 8: Biannual report, August 1989--January 1990

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (MSEL), Gaithersburg, MD (United States). Metallurgy Div.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices.

  14. Evaluation and compilation of DOE [Department of Energy] waste package test data; Biannual report, February 1988--July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab.

  15. Preparation, Characterization and Hot Storage Stability of Asphalt Modified by Waste Polyethylene Packaging

    Institute of Scientific and Technical Information of China (English)

    Changqing Fang; Ying Zhang; Qian yu; Xing Zhou; Dagang Guo; Ruien Yu; Min Zhang

    2013-01-01

    Waste polyethylene packaging (WPE) was used to modify asphalt,and hot storage stability of the modified asphalt was studied in this paper.The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy,Fourier transform infrared spectroscopy (FT-IR),differential scanning calorimetry (DSC),thermogravimetry (TG) and isolation testing.In addition,the mechanism of the hot storage stability of WPE modified asphalt was discussed.The results showed that the modification of asphalt with WPE was a physical process.It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability.Moreover,the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt.It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%,the service performances of modified asphalt could be better.

  16. W1045 environment surf drip shield and waste package outer barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G

    1999-07-14

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall.

  17. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  18. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  19. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.

  20. Design of a package dedicated to the dismantlement wastes; Conception d'un emballage dedie aux dechets de deconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chazot, M. [Robatel Industries, Genas (France)

    2011-11-15

    A package for nuclear transport has to comply with strict regulations and mechanical testing concerning free fall, overpressure, fire resistance, water immersion.... which makes its design very dependent on what it will contain. The Robatel firm was founded in 1830 and has been working in the nuclear sector for more than 50 years during which it has designed more than 70 different B-type packages and has manufactured more than 500 items. EDF asked the Robatel firm to design a new B-type package, called R73 to carry metal wastes coming from the dismantling of nuclear power plants like Brennilis, Chinon A1, ... This article describes the design stage of R73 from the EDF initial demand to the reception of the agreement. It appears that the design process is more an iterative and cyclic process than a linear one because the different approaches concerning definition, design, safety and compliance to regulations are strongly correlated. (A.C.)

  1. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  2. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  3. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  4. Degrading and Detoxifying Industrial Waste Water using Bioremediation Approach

    Directory of Open Access Journals (Sweden)

    P. K. Agrawal

    2014-06-01

    Full Text Available Bioremediation uses various microorganisms to detoxify or degrade various harmful substances in the nature, particularly soil and water. In the proposed work, five species of micro-organisms were used to analyse their impact on various physico-chemical parameters of water. In the first attempt the actual physico chemical parameters of the collected sample water were noted down (Fresh sample parameters. Then the sample water was treated with micro-organisms (one at a time. The growth of microbes was noted carefully over 96 hours after inoculation. The physico chemical parameters were recorded again and were compared with the fresh sample parameters. The results were analysed for any change and on this basis an impact factor was developed. The study reveals all the selected microbes have a great capacity of degrading and simplifying the complex molecules into simpler ones. Bioremediative treatment further enhances this capacity and therefore this approach can be utilized on large scale to minimize pollution of water bodies.

  5. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.

    Science.gov (United States)

    van der Sloot, H A; Kosson, D S; van Zomeren, A

    2017-05-01

    In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point

  6. Bremsstrahlung information for the non-destructive characterization of radioactive waste packages. Final report; Nutzung von Bremsstrahlungsinformationen fuer die zerstoerungsfreie Charakterisierung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Rohrmoser, B.; Lierse von Gostomski, C.

    2013-04-15

    The report describes a feasibility study on non-destructive characterization of radioactive waste package using bremsstrahlung information within the gamma spectra. A multi-step was developed for the identification of the bremsstrahlung in the measured gamma spectra under defined boundary conditions. The experimental investigations were performed using a stationary HPGe detector system, a mobile HPGe detector system and a mobile gamma scanner. Further studies are necessary with respect to the possible beta emitting radionuclides in a radioactive waste package.

  7. Determing Degradation Of Fiberboard In The 9975 Shipping Package By Measuring Axial Gap

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, E. R.; Dougherty, W. L.; Dunn, K. A.; Stefek, T. M

    2013-08-01

    Currently, thousands of model 9975 transportation packages are in use by the US Department of Energy (DOE); the design of which has been certified by DOE for shipment of Type B radioactive and fissile materials in accordance with Part 71, Title 10 Code of Federal Regulations (CFR), or 10 CFR 71, Packaging and Transportation of Radioactive Material. These transportation packages are also approved for the storage of DOE-STD-3013 containers at the Savannah River Site (SRS). As such, the 9975 has been continuously exposed to the service environment for a period of time greater than the approved transportation service life. In order to ensure the material integrity as specified in the safety basis, an extensive surveillance program is in place in K-Area Complex (KAC) to monitor the structural and thermal properties of the fiberboard of the 9975 shipping packages. The surveillance approach uses a combination of Non-Destructive Examination (NDE) field surveillance and Destructive Examination (DE) lab testing to validate the 9975 performance assumptions. The fiberboard in the 9975 is credited with thermal insulation, criticality control and resistance to crushing. During surveillance monitoring in KAC, an increased axial gap of the fiberboard was discovered on selected items packaged at Rocky Flats Environmental Technology Site (RFETS). Many of these packages were later found to contain excess moisture. Savannah River National Laboratory (SRNL) testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the fiberboard under storage conditions and during transport. In laboratory testing, the higher moisture content has been shown to correspond to higher total compaction of fiberboard material and compaction rate. The fiberboard height is reduced by compression of the layers. This change is observed directly in the axial gap between the flange and the air shield. The axial gap measurement is made during the pre

  8. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    Science.gov (United States)

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg(-1) of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min(-1) kg(-1) aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl(-) ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO2 and Ag nanoparticles at concentrations of 100 mg kg(-1) of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  9. Effect of ultrasonication on anaerobic degradability of solid waste digestate.

    Science.gov (United States)

    Boni, M R; D'Amato, E; Polettini, A; Pomi, R; Rossi, A

    2016-02-01

    This paper evaluates the effect of ultrasonication on anaerobic biodegradability of lignocellulosic residues. While ultrasonication has been commonly applied as a pre-treatment of the feed substrate, in the present study a non-conventional process configuration based on recirculation of sonicated digestate to the biological reactor was evaluated at the lab-scale. Sonication tests were carried out at different applied energies ranging between 500 and 50,000kJ/kg TS. Batch anaerobic digestion tests were performed on samples prepared by mixing sonicated and untreated substrate at two different ratios (25:75 and 75:25 w/w). The results showed that when applied as a post-treatment of digestate, ultrasonication can positively affect the yield of anaerobic digestion, mainly due to the dissolution effect of complex organic molecules that have not been hydrolyzed by biological degradation. A good correlation was found between the CH4 production yield and the amount of soluble organic matter at the start of digestion tests. The maximum gain in biogas production was 30% compared to that attained with the unsonicated substrate, which was tentatively related to the type and concentration of the metabolic products.

  10. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  11. Climate accounting for waste management, Phase I and II. Summary: Phase 1: Glass Packaging, Metal packaging, paper, cardboard, plastic and wet organic waste. Phase 2: Wood waste and residual waste from households; Klimaregnskap for avfallshaandtering, Fase I og II. Sammendrag: Fase 1: Glassemballasje, metallemballasje, papir, papp, plastemballasje og vaatorganisk avfall. Fase 2: Treavfall og restavfall fra husholdninger

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Modahl, Ingunn Saur; Lyng, Kari-Anne

    2009-09-15

    involves the lowest greenhouse gas load for the types of waste glass packaging, metal packaging and plastic packaging. Biological treatment (biogas production) provides the lowest GHG (greenhouse gas) impact for the treatment of wet organic waste. Energy recovery provides the lowest GHG impact for the treatment of paper, cardboard and wood waste. Disposal provides the greatest greenhouse gas load for all the analyzed types of waste, but plastic and glass containers. For waste composition has a major impact on greenhouse gas emissions for the landfill and the energy efficiency of the waste. The composition varies both with the types of waste disposed and with what kind of source separation schemes offered in the various municipalities. This in turn can vary depending on population density (urban areas / cities versus scattered buildings), and motivation of the individual citizen to source sorting. Energy recovery means the lowest greenhouse gas emissions for an 'average composite' residual waste in Norway. Analysis of residual waste should always be considered in context with the total amounts and handling of sorted out waste types, as well as total amounts and composition of residual waste. This is important to achieve a comprehensive assessment and avoid suboptimalization. Transport related greenhouse gas emissions are generally of relatively little importance in relation to the environmental benefits arising from the material and / or energy utilization. 3. The model is used to calculate the net greenhouse gas emissions resulting from disposal of a total of approximately 4.1 million tons of waste from households, industry, construction and service industries. 4. Analysis of a realistic optimal scenario for disposal of household waste show that this system can be virtually carbon-neutral. 5. The choice of which assumptions to be incorporated in this type of analysis depends on the purpose of analysis, in addition to local and geographical conditions. 6. Relevant

  12. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    Science.gov (United States)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  13. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  14. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

  15. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  16. Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation.

    Science.gov (United States)

    Wang, Qun; Chen, Liang; Yu, Daobing; Lin, Hui; Shen, Qi; Zhao, Yuhua

    2017-12-31

    The random disposal and incineration of agricultural residues cause resources waste and environmental pollution. The potential of waste biomass for the production of alternative liquid fuels is increasing and the bioconversion of lignocellulose to fermentable monomeric sugars is essential for second-generation biofuel production. Here, natural and pretreated switch grass or rice straw were fermented by both Trichoderma asperellum T-1 and Trichoderma reesei QM6a, with the fermentation results highlighted the potential of T. asperellum T-1 in the degradation of natural waste lignocellulosic materials. In fermenting different substrates, the filter paper activity, β-glucosidase activity, xylanase activity and carboxymethyl cellulase activity of T-1 can respectively reach 1.88, 8.00, 7.15 and 20.52 times that of QM6a. Although acid pretreatment could improve the enzyme activities of both T-1 and QM6a, its effect on T-1 was much smaller than that on QM6a. Moreover, strain T-1 fermented the natural rice straw better than the pretreated rice straw. Therefore, T-1 is considered to be more suitable for the degradation of natural biomass, especially for the degradation of rice straw. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scanning electron microscopy (SEM) showed that the cellulase series secreted by T. asperellum T-1 was more abundant, and its substrate deconstruction ability was stronger than T. reesei QM6a. All these results suggest the potential of T. asperellum T-1 in the degradation of natural waste lignocellulosic material, with practical benefits in terms of cost and pollution reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The impact of policy interactions on the recycling of plastic packaging waste in Germany

    OpenAIRE

    Gandenberger, Carsten; Orzanna, Robert; Klingenfuß, Sara; Sartorius, Christian

    2014-01-01

    Due to the environmental challenges associated with the strong growth of plastic waste worldwide, the EU Commission recently published a green paper on a European Strategy on Plastic Waste in the Environment (COM (2013), 123 final), which highlights the challenges and opportunities that arise from improving the management of plastic waste in the EU. The European Waste Directive (2008/98/EC) which was transposed into German law through the Kreislaufwirtschaftsgesetz (KrWG) established the so-c...

  18. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  19. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

  20. The adsorption and degradation of chlorpyriphos-methyl, pendimethalin and metalaxyl in solid urban waste compost.

    Science.gov (United States)

    Baglieri, Andrea; Gennari, Mara; Arena, Maria; Abbate, Cristina

    2011-01-01

    To evaluate the feasibility of using compost to prepare substrates for the disposal of pesticide residues, adsorption and degradation studies were carried out on three widely used agricultural pesticides: chlorpyriphos-methyl, pendimethalin and metalaxyl. Obtained from solid urban waste, this compost has been shown to be able to adsorb high levels of chlorpyriphos-methyl and pendimethalin (85%, 100%) whereas metalaxyl was only adsorbed at a level of 37%. However, adding smectite to the compost increased the adsorption of metalaxyl by 117%. Chlorpyriphos-methyl and pendimethalin degraded quickly with half-lives of 1.7 and 14.5 days, respectively, whereas metalaxyl proved more persistent (a half-life of 84 days). Adding ammonium nitrate to the compost accelerated metalaxyl degradation to a half-life of 15 days.

  1. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  2. Particle passage kinetics and neutral detergent fiber degradability of silage of pineapple waste (aerial parts) under different packing densities

    OpenAIRE

    Graciele Araújo de Oliveira Caetano; Severino Delmar Junqueira Villela; Margarida Maria Nascimento Figueiredo de Oliveira; Fernando de Paula Leonel; Wagner Pessanha Tamy

    2014-01-01

    The objective of this study was to determine the kinetics of in situ degradability parameters of the dry matter (DM) and neutral detergent fiber (NDF) and the passage of materials originating from the ensilage of the waste from pineapple cultivation (aerial parts). The four treatments utilized were silage of pineapple waste compacted at 600, 700, 900 and 1000 kg/m³. After ensiling the material from the pineapple cultivation, the particle-transit and rumen-degradation kinetics were analyzed. F...

  3. Techno-economic assessment of central sorting at material recovery facilities - the case of lightweight packaging waste

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Wenzel, Henrik;

    2016-01-01

    by documenting typical steps taken in a techno-economic assessment of MRFs, using the specific example of lightweight packaging waste (LWP) sorting in Germany. Thus, the study followed the steps of dimensioning of buildings and equipment, calculation of processing costs and projections of revenues from material...... 7 to 21 million EUR and the yearly operational expenditure grew by a factor of 2.4 from 2 to 4.7 million EUR. As a result, specific unit processing cost decreased from 110 to 70 EUR/tonne. Material sales and disposal costs summed to between a net cost of 25 EUR/tonne and net revenue of 50 EUR....../tonne. Measured as total materials recovery, the difference between optimal and typical operation was approximately 15% points. The complex nature of LWP waste combined with challenging processing conditions were identified as important factors explaining the relatively low overall recovery efficiencies achieved...

  4. Evaluation and compilation of DOE waste package test data; Biannual report, February 1989--July 1989: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (IMSE), Gaithersburg, MD (United States). Metallurgy Div.

    1991-12-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, February through July 1989. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Outlines for planned interpretative reports on the topics of aqueous corrosion of copper, mechanisms of stress corrosion cracking and internal failure modes of Zircaloy cladding are included. For the publications reviewed during this reporting period, short discussions are given to supplement the completed reviews and evaluations. Included in this report is an overall review of a 1984 report on glass leaching mechanisms, as well as reviews for each of the seven chapters of this report.

  5. Crude oil degradation potential of bacteria isolated from oil-polluted soil and animal wastes in soil amended with animal wastes

    Directory of Open Access Journals (Sweden)

    Voke O. Urhibo

    2017-03-01

    Full Text Available The influence of animal wastes on crude oil degradation potential of strains of Proteus vulgaris and Bacillus subtilis isolated from animal wastes (poultry and pig droppings and petroleum-polluted soil was compared in laboratory studies. Both bacterial strains were selected for high crude oil degradation ability after screening many isolates by the 2,6-dichlorophenol indophenol method. Analyses by gas chromatography (GC showed that degradation of crude oil was markedly enhanced (88.3–97.3% vs 72.1–78.8% in soil amended with animal wastes as indicated by the reduction of total petroleum hydrocarbon (TPH. TPH reduction by animal waste bacterial strains in animal waste-amended soil was more than the reduction by strains from soil contaminated with petroleum (P < 0.001. The greatest reduction of TPH (96.6–97.3% vs 80.4–95.9% was by poultry waste strains and it occurred in soil amended with poultry waste. GC analyses of n-alkanes showed that although shorter chains were preferentially degraded [32.0–78.5% (C8–23 vs 6.3–18.5% (C24–36] in normal soil, biodegradation of longer chains increased to 38.4–46.3% in animal waste-amended soil inoculated with the same animal wastes’ strains. The results indicate that these animal waste strains may be of potential application for bioremediation of oil-polluted soil in the presence of the wastes from where they were isolated.

  6. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.

  7. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  8. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. C., LLNL

    1998-02-26

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  9. Waste package degradation expert elicitation panel: input on corrosion of CRM alloy C-22

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. C.,LLNL

    1998-03-30

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 1O. Exposed patches of the CRM could see this environment.

  10. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively.

  11. The paradox of packaging optimization – a characterization of packaging source reduction in the Netherlands

    NARCIS (Netherlands)

    van Sluisveld, M.A.E.; Worrell, E.

    2013-01-01

    The European Council Directive 94/62/EC for Packaging and Packaging Waste requires that Member States implement packaging waste prevention measures. However, consumption and subsequently packaging waste figures are still growing annually. It suggests that policies to accomplish packaging waste preve

  12. The radiation characteristics of the transport packages with vitrified high-level waste

    Science.gov (United States)

    Bogatov, S. A.; Mitenkova, E. F.; Novikov, N. V.

    2015-12-01

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  13. The radiation characteristics of the transport packages with vitrified high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bogatov, S. A. [JSC VNIPIpromtechnologii (Russian Federation); Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2015-12-15

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  14. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    National Research Council Canada - National Science Library

    Martínez-Barrera, Gonzalo; Barrera-Díaz, Carlos E; Cuevas-Yañez, Erick; Varela-Guerrero, Víctor; Vigueras-Santiago, Enrique; Ávila-Córdoba, Liliana; Martínez-López, Miguel

    2015-01-01

    ... for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete...

  15. Studies on Thermal Degradation Behavior of Siliceous Agriculture Waste (Rice Husk, Wheat Husk and Bagasse

    Directory of Open Access Journals (Sweden)

    Javed Syed H.

    2015-09-01

    Full Text Available Various siliceous agriculture waste (SAW such as rice husk, wheat husk and bagasse have been investigated to study their thermal degradation behavior using Thermogravimetric Analyzer (TGA technique. The focus of this research is to conduct TGA of raw and acid treated (20% HCl & 1M H2SO4 SAW at heating rate 10°C/min in the atmosphere of nitrogen. The results were analyzed on the basis of thermograms and it was inferred that 24 hours soaking with 20% HCl prior to thermal degradation enhanced the percent weight loss. The process also improved the percentage of residual weight of SAW indicating the extraction of amorphous silica with increased purity. The effect of acid treatment was verified by determining chemical composition of SAW samples before and after soaking with 20% HCl. Proximate analysis, thermal degradation temperature ranges and percentage of residual weight at 800°C for each of rice husk, wheat husk and bagasse were also quantified to observe the thermal degradation behavior. XRF analysis was performed to observe the effect of acid treatment for extraction of pure silica.

  16. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  17. Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    Shelton-Davis, C.V.

    2003-09-26

    The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

  18. Vendor Assessment for the Waste Package Closure System (Yucca Mtn. Project)

    Energy Technology Data Exchange (ETDEWEB)

    Colleen Shelton-Davis

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

  19. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Stephen P.; Chamness, Mickie A.

    2007-12-14

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  20. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  1. Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent.

    Science.gov (United States)

    Pirkanniemi, Kari; Metsärinne, Sirpa; Sillanpää, Mika

    2007-08-17

    Fenton's process was used in oxidative degradation of ethylediaminetetraacetic acid (EDTA) and novel complexing agents, namely BCA5 and BCA6, in distilled water and spiked samples of integrated pulp and paper mill waste water and ECF-pulp bleaching effluent. In waste water, over 90% of EDTA was degraded within 3 min when temperature was 60 degrees C, pH 4, and molecular ratio of H2O2:Fe2+:EDTA was 70:2:1 (0.26 mM EDTA) or higher. In spiked ECF bleaching effluent up to 42% of EDTA was degraded in similar reaction conditions, still higher than published results indicate biological waste water treatment of pulp and paper mill waste water being capable of. In pH 3, EDTA proved readily degradable by Fenton's process in otherwise similar conditions. According to these results, Fenton's process could be used as a pre-treatment method for EDTA-containing bleaching effluents prior to the biological waste water treatment. In addition, BCA5 and BCA6 proved their superiority in terms of degradability also by Fenton's process in both pH 3 and 4.

  2. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  3. Rehabilitation with forage grasses of an area degraded by urban solid waste deposits

    Directory of Open Access Journals (Sweden)

    Vanessa Soares Miranda

    2012-01-01

    Full Text Available Dry matter yield and chemical composition of forage grasses harvested from an area degraded by urban solid waste deposits were evaluated. A split-plot scheme in a randomized block design with four replicates was used, with five grasses in the plots and three harvests in the subplots. The mineral content and extraction and heavy metal concentration were evaluated in the second cut, using a randomized block design with five grasses and four replicates. The grasses were Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, Brachiaria brizantha cv. Marandu and cv. Xaraés, and Panicum maximum cv. Tanzânia, cut at 42 days of regrowth. The dry matter yield per cut reached 1,480 kg ha-1; the minimum crude protein content was 9.5% and the average neutral detergent fiber content was 62.3%. The dry matter yield of grasses was satisfactory, and may be an alternative for rehabilitating areas degraded by solid waste deposits. The concentration of heavy metals in the plants was below toxicity levels; the chemical composition was appropriate, except for phosphorus. The rehabilitated areas may therefore be used for grazing.

  4. Production of activated carbon by waste tire thermochemical degradation with CO2.

    Science.gov (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón

    2009-09-15

    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  5. Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site, Waste Site Reclassification Form 2007-030

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2008-03-19

    The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  6. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  7. CH Packaging Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  8. THE PROCESS OF WASTE MANAGEMENT IN POST-CONSUMER PACKAGING: CASE STUDY MCDONALD'S

    Directory of Open Access Journals (Sweden)

    Robson dos Santos

    2013-09-01

    Full Text Available This research considers the increasing concern of society in general environmental issues, shows the importance of an Environmental Management System to improve the image of a company towards society in which it is embedded. Shows that proper waste management can result in financial and environmental benefits for companies that practice. To address the practical issues of the theme, was chosen the company McDonald's, as a service company fast food, that have a quantity of waste, and creates conditions for application of the techniques of environmental management in this sector. Thus, this article aims to demonstrate through case study and descriptive research, the commitment that this large network of fast-food has with the preservation of the environment through its waste management and investments in economic, social and environmental the country.

  9. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  10. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    Energy Technology Data Exchange (ETDEWEB)

    Husain, A.; Lewis, Brent J.

    2003-02-27

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing

  11. 10 CFR 60.135 - Criteria for the waste package and its components.

    Science.gov (United States)

    2010-01-01

    ... reactions, corrosion, hydriding, gas generation, thermal effects, mechanical strength, mechanical stress... for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste... containment of HLW (because of chemical interactions or formation of pressurized vapor) or result in spillage...

  12. DOE Waste Package Project. Quarterly progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-05-01

    Research progress is reported on the design of containers for high-level radioactive wastes to be emplaced at the Yucca Mountain underground repository. Tasks included: temperature distribution and heat flow around the containers; failure possibility due to mechanical stresses and pitting corrosion; robotic manipulation of the containers; and design requirements of rock tunnel drift for long term storage.

  13. Extended producer responsibility for packaging waste in South Africa: Current approaches and lessons learned

    CSIR Research Space (South Africa)

    Nahman, Anton

    2010-01-01

    Full Text Available Extended producer responsibility (EPR) is a policy concept aimed at extending producers’ responsibility for their products to the post-consumer stage of their products’ life cycle. One of the outcomes of an effective EPR programme is to move waste...

  14. Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt

    Directory of Open Access Journals (Sweden)

    Zeinat K. Mohamed

    2010-04-01

    Full Text Available Efficiencies of local bacterial isolates in malathion degradation were investigated. Five bacterial isolates obtained from agricultural waste water were selected due to their ability to grow in minimal salt media, supplied with 250 ppm malathion as sole source of carbon and phosphorus. The purified bacterial isolates (MOS-1, MOS-2, MOS-3, MOS-4 and MOS-5 were characterised and identified using a combination of cellular profile (SDS-PAGE, genetic make up profile (RAPD-PCR, and morphological and biochemical characteristics. Four bacterial isolates (MOS-1, MOS-2, MOS-3 and MOS-4 with identical genetic characteristics were identified as Enterobacter aerogenes, whereas isolate MOS-5 was identified as Bacillus thuringiensis. The degradation rate of malathion in liquid culture was estimated during 15 days of incubation for the isolate MOS-5 of B. thuringiensis. Slightly more than 50% of the initial malathion was decomposed within 3 days. The malathion concentration decreased to almost 17% in the inoculated medium after 10 days incubation, while more than 91% of the initial malathion was degraded after 15 days.

  15. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G. [Daniel B. Stephens & Associates, Inc., Richland, WA (United States)

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  16. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-01-01

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  17. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-12-31

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  18. Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Thermal degradation behavior of waste video cards using thermogravimetric analysis and pyrolysis gas chromatography/mass spectrometry techniques.

    Science.gov (United States)

    Duan, Huabo; Li, Jinhui

    2010-05-01

    The thermal degradation characteristics of a printed circuit board assembly (PCBA), specifically video cards from waste computers, was studied using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and thermogravimetric analysis (TGA). The video-card waste was dismantled into substrate, integrated circuits (ICs), and plastic slots for comparable investigation. The results by TGA revealed that the initial temperature at which degradation began was 300 degrees C for substrate, but it was 330 degrees C for ICs and plastic slots. For a given type of scrap, the initial temperature leading to degradation is the same under air and N2 atmosphere. However, the degradation rate was lower using air than N2 during the weight-loss stage. Further Py-GC/MS application revealed that pyrolysis products derived from substrate consisted mainly of acetone, bromotoluene, and phenol that came from the brominated epoxy resins present in substrate. Unlike substrate, the relative amounts of some products (e.g., phenol) were higher in the ICs, and cyclotetrasiloxane was released; these were released from the phenolic resins and Si mixture present in that type of waste. Benzoic acid, rather than acetone or phenol, was the main product released from plastic slots. It was proved that this scrap was a mixture of various polyesters, cracking of which predicatively generated aromatic products. The results will be useful in developing pyrolysis or starved-air incineration systems for thermosetting plastic and PCBA waste and helpful to control pollution during the treatment of this waste.

  20. Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.

    Science.gov (United States)

    Ramaswamy, Kadari; Radha, Velchuri; Malathi, M; Vithal, Muga; Munirathnam, Nagegownivari R

    2017-02-01

    The disposal and reuse of waste printed circuit boards have been the major global concerns. Printed circuit boards, a form of Electronic waste (hereafter e-waste), have been chemically processed, doped with Ag(+), Cu(2+) and Sn(2+), and used as visible light photocatalysts against the degradation of methylene blue and methyl violet. The elemental analyses of pristine and metal doped printed circuit board were obtained using energy dispersive X-ray fluorescence (EDXRF) spectra and inductively coupled plasma optical emission spectroscopy (ICP-OES). The morphology of parent and doped printed circuit board was obtained from scanning electron microscopy (SEM) measurements. The photocatalytic activity of parent and metal doped samples was carried out for the decomposition of organic pollutants, methylene blue and methyl violet, under visible light irradiation. Metal doped waste printed circuit boards (WPCBs) have shown higher photocatalytic activity against the degradation of methyl violet and methylene blue under visible light irradiation. Scavenger experiments were performed to identify the reactive intermediates responsible for the degradation of methylene blue and methyl violet. The reactive species responsible for the degradation of MV and MB were found to be holes and hydroxyl radicals. A possible mechanism of degradation of methylene blue and methyl violet is given. The stability and reusability of the catalysts are also investigated.

  1. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome.

  2. Dual Use Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA calculation that over a kg of packaging waste are generated per day for a 6 member crew. This represents over 1.5 metric tons of waste during a Mars mission....

  3. An approach to study the corrosion behaviour of stainless steel containers for packaging of intermediate level radioactive waste during atmospheric storage

    Energy Technology Data Exchange (ETDEWEB)

    Padovani, C.G.; Wood, P. [Nuclear Decommissioning Authority (United Kingdom); Smart, N.R.; Winsley, R.J. [Serco Technical and Assurance Services (United Kingdom); Charles, A.; Albores-Silva, O. [Newcastle upon Tyne Univ. (United Kingdom); Krouse, D. [Industrial Research Limited (New Zealand)

    2009-07-01

    Full text of publication follows: In the UK, intermediate level radioactive waste (ILW) arising from the decommissioning of power stations and other nuclear installations is generally encapsulated in cement waste forms and packaged within stainless steel containers. The function of the waste package is to immobilise and physically contain the waste in a stable form and to allow its safe storage, transport, handling and eventual disposal in a geological disposal facility. Given such a function, it is important to ensure that the corrosion resistance of the waste container is sufficient to ensure its integrity for long times. This paper discusses the expected corrosion behaviour of ILW containers manufactured in stainless steel 304L and 316L within the current disposal concept, with specific focus on the behaviour of the material during atmospheric storage. In an indoor atmosphere, localised corrosion and stress corrosion cracking may develop on waste containers only if aggressive hygroscopic salts (e.g. MgCl{sub 2}) accumulate on the container surfaces in certain quantities and in certain humidity ranges. Experimental observation is being carried out in order to better identify conditions in which corrosion damage develops. This type of analysis, together with laboratory and field observation, is being used to identify suitable storage conditions for the packages. On the other hand, extrapolation of short-term data on pit depth in aggressive environments (e.g. marine atmospheres) suggests that penetration of the container walls by pitting over long-time scales is unlikely. Experimental observation and modelling are progressing in order to better understand the mechanistic aspects of propagation and to evaluate whether container penetration by pitting may occur over long timescales. Outstanding uncertainties (e.g. related to the effect of ionising radiation on the atmospheric corrosion behaviour of the packages) will also be outlined.

  4. The effect of the packaging system and storage time on myofibrillar protein degradation and oxidation process in relation to beef tenderness.

    Science.gov (United States)

    Moczkowska, Małgorzata; Półtorak, Andrzej; Montowska, Magdalena; Pospiech, Edward; Wierzbicka, Agnieszka

    2017-03-18

    This study investigated the impact of packaging systems on the degradation and oxidation of beef proteins regarding beef tenderness of longissimus lumborum (LL) and biceps femoris (BF) muscles stored in vacuum skin packaging (VSP), a modified atmosphere with high oxygen concentration (MAP), and combined of these two methods (VSP+MAP). A significant decrease in the Warner-Bratzler shear force (WBSF) in VSP at D14 and D28 for LL was observed compared to BF. A significant effect of packaging system on troponin-T (Tn-T) and desmin degradation was shown (p≤0.001). A high concentration of oxygen in MAP and VSP+MAP affected protein oxidation, which was reflected in myosin oxidative cross-linking. An increase of WBSF values detected in steaks packed in VSP and VSP+MAP systems could be caused by the intensification of protein oxidation. Furthermore, BF was more susceptible to oxidation compared to LL. The VSP+MAP packaging system has resulted in the maintenance of a bright, red color, however has not improved the beef tenderness.

  5. Degradation of industrial waste waters on Fe/C-fabrics. Optimization of the solution parameters during reactor operation.

    Science.gov (United States)

    Bozzi, A; Yuranova, T; Lais, P; Kiwi, J

    2005-04-01

    This study addresses the pre-treatment of toxic and recalcitrant compounds found in the waste waters arriving at a treating station for industrial effluents containing chlorinated aromatics and non-aromatic compounds, anilines, phenols, methyl-tert-butyl-ether (MTBE). By reducing the total organic carbon (TOC) of these waste waters the hydraulic load for the further bacterial processing in the secondary biological treatment is decreased. The TOC decrease and discoloration of the waste waters was observed only under light irradiation in the reactor by immobilized Fenton processes on Fe/C-fabrics but not in the dark. The energy of activation for the degradation of the waste waters was of 4.2 kcal/mol. The degradation of the waste waters was studied in the reactor as a function of (a) the amount of oxidant used (H2O2), (b) the recirculation rate, (c) the solution pH and (d) the applied temperature. With these parameters taken as input factors, statistical modeling allows one to estimate the most economic use of the oxidant and electrical energy to degrade these waste waters. The concentration of the most abundant organic pollutants during waste waters degradation was followed by gas chromatography/mass spectrometry (GC-MS). The ratio of the biological oxygen demand to the total organic carbon BOD5/TOC increased significantly due to the Fe/C-fabric catalyzed treatment from an initial value of 2.03 to 2.71 (2 h). The reactor results show that the recirculation rate has no influence on the TOC decrease of the treated waters but affects the BOD increase of these solutions.

  6. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  7. Energy and Exergy Analysis of a Novel Efficient Combined Process by Hydrothermal Degradation and Superheated Steam Drying of Degradable Organic Wastes

    Institute of Scientific and Technical Information of China (English)

    Shuqing GUO; Yunhan XIAO; Wendong TIAN; Zhedian ZHANG

    2006-01-01

    This paper considers the combination of hydrothermal degradation (HTD) and superheated steam (SHS) drying in disposal and processing of degradable organic wastes in municipal solid wastes (MSW). In SHS drying, a fraction of dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTD operating temperature. Both energy and exergy analysis are applied to the combined process. The analysis covers ranges of dryer inlet temperatures of 202.38-234.19℃ and feed water content of 32.5-65%. Thermal energy analysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency (TES)by manipulating process variables. The exergy analysis indicates the location, type, and magnitude of the exergy losses during the whole process by applying the second law of thermodynamics.

  8. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds.

    Science.gov (United States)

    Sinha, S; Chand, S; Tripathi, P

    2014-01-01

    Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanase and food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.

  9. Effect of ionizing radiation on the waste package environment; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T. [Argonne National Lab., IL (USA); Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  10. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. (Lawrence Livermore National Lab., CA (USA)); Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  11. [Concentrations, distribution characteristics and electron beam radiolysis degradation of PCDD/Fs in waste water from a paper mill].

    Science.gov (United States)

    Qing, Xian; Huang, Jin-Qiong; Yu, Xiao-Wei; Zhang, Su-Kun; Yang, Yan-Yan; Ren, Ming-Zhong; Wen, Yu-Long

    2014-07-01

    Concentrations and distribution characteristics of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (2,3,7,8-PCDD/Fs) were analyzed in waste water from a paper mill. And concentrations of 2,3,7,8-PCDD/Fs in waste water before and after electron beam irradiation with different doses were compared. The feasibility, mechanism and rates of 2,3,7,8-PCDD/Fs degradation were discussed. The PCDD/Fs concentrations and corresponding I-TEQ (toxic equivalent quantity) values were 239 pg x L(-1) and 41.0 pg x L(-1), respectively, in the waste water. The concentrations of total 2,3,7,8-PCDD/Fs decreased after electron beam radiolysis at a dose of 30 kGy and 60 kGy with degradation rates of 5.27% and 23.6%, respectively.

  12. PHYTOREMEDIATION ASSISTED DEGRADED LAND USING CLOSED CYCLE ORGANIC WASTE MATTER IN NATURE

    Directory of Open Access Journals (Sweden)

    Wioleta Stępień

    2017-10-01

    Full Text Available The thesis has evaluated the impact of the composition of the compost mixture containing sewage sludge, grass and organic fraction of municipal waste, on the effectiveness of the composting process as well as the influence of the obtained composts on the effectiveness of soil phytoremediation. In the first stage, the composting process was carried out and in the second stage of the research, a pot experiment was conducted and the soil supplements were gradually applied, then their influence on the process of degraded soil renourishment was evaluated. During the research, the physical and chemical properties of the soils after the use of resources such as compost and bio-fertilizer gained from the processing of sewage sludge during the process of assisted phytoremediation of highly degraded soil (high content of heavy metals were assessed. The composting process was carried out in two stages, the first of which lasted for four weeks and was carried out in a closed bioreactor with a flow of added oxygen. The second stage, on the other hand, included so-called ripening. This process lasted for six weeks and it also included the flow of added oxygen. By the end of the process, both mixtures were characterized by high content of nutrients and low content of heavy metals which qualified them to be used in the process of renourishment of degraded soils. The conducted research confirms the possibility of using the obtained composts for fertilization. Moreover, the granulate obtained from the processing of the sewage sludge showed positive influence on the examined soil. All of the supplements increased the increment of the obtained biomass, introducing the missing nutrients into the soil.

  13. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  14. Geologic Data Package for 2001 Immobilized Low-Activity Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    SP Reidel; DG Horton

    1999-12-21

    This database is a compilation of existing geologic data from both the existing and new immobilized low-activity waste disposal sites for use in the 2001 Performance Assessment. Data were compiled from both surface and subsurface geologic sources. Large-scale surface geologic maps, previously published, cover the entire 200-East Area and the disposal sites. Subsurface information consists of drilling and geophysical logs from nearby boreholes and stored sediment samples. Numerous published geological reports are available that describe the subsurface geology of the area. Site-specific subsurface data are summarized in tables and profiles in this document. Uncertainty in data is mainly restricted to borehole information. Variations in sampling and drilling techniques present some correlation uncertainties across the sites. A greater degree of uncertainty exists on the new site because of restricted borehole coverage. There is some uncertainty to the location and orientation of elastic dikes across the sites.

  15. REGULATED DEGRADABILITY OF COMPOSITE BIOBASED FILMS

    Directory of Open Access Journals (Sweden)

    Volodymyr M. Isaenko

    2008-02-01

    Full Text Available  Degradable biobased (derived from agriculture composites are emerging materials that offer benefits to the environment thus minimizing waste that would be otherwise deposited in landfills. Single-use primary packaging materials have been identified as suitable items to be replaced by biodegradable materials from renewable resources. Materials composed of starch, soy protein and polyvinylalcohol, modified by hydrophobic fatty acids, are evaluated in terms of water resistance as promising substitutes for packaging materials.

  16. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Khalid, Azeem; Qadeer, Samia; Miandad, Rashid

    2017-09-01

    Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20-50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l(-1)) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m(3) t(-1)substrate compared with 57.35 m(3) t(-1)substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.

  17. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  18. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Wataru [Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Iwasa, Kengo [Japan Nuclear Cycle Development Inst., Tokyo Office, Tokyo (Japan)

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  19. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.

    Science.gov (United States)

    Thiagamani, Senthil Muthu Kumar; Nagarajan, Rajini; Jawaid, Mohammad; Anumakonda, Varadarajulu; Siengchin, Suchart

    2017-07-31

    As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effort of Increasing Production of Livestock Feed out of Cassava Waste by Identifying the more Suitable Cellulotic Degrading Fungi

    Directory of Open Access Journals (Sweden)

    Yani Suryani

    2012-09-01

    Full Text Available In the bioethanol production process, as much as 90% of waste was produced. The availability of waste production is very important since waste can be processed to become livestock feed. The solid bioethanol waste contains cyanide (HCN 5.8177 mg/kg, water 95,21%, ash 0,39%, protein 8,16%, crude fiber 5,45%, crude fat 2.06%, and carbohydrates 83,94%. Processing bioethanol solid waste into livestock feed can be done by utilizing the existing fungi on bioethanol solid waste. Crude fiber (cellulose and carbohydrates are a source of cellulolytic fungi. Cellulolytic fungi can degrade the role of organic materials contained in bioethanol solid waste, so that it can be made as a source of highly nutritious livestock feed. This study aims to determine the types of cellulolytic fungal isolates contained in bioethanol solid waste which is potentially processed to become livestock woof. Descriptive analysis was employed as a method of the study. Furthermore, Potato Dextrose Agar (PDA was used as a medium for culturing and isolating the fungus. Dilution series and pour plate method were employed to isolate the fungus. And, Moist Chamber method was employed to identify it. In addition, Carboxy Methyl Cellulose (CMC was used as medium to identify cellulolytic fungi. The process was carried out up to the level of genus based on macroscopic and microscopic characterization. 10 fungal isolates from the genus of Aspergillus sp 1, Aspergillus sp 2, Aspergillus sp 3, Aspergillus niger, Cladosporium sp, Mucor sp, Penicillium sp 1, Penicillium sp 2, Rhizopus sp and Trichoderma viride were yielded in this study. The results of examining cellulose enzyme activity revealed that 9 of 10 isolates of the fungus were capable of degrading cellulose. Isolates yielding the largest cellulose enzyme were Trichoderma viride, Penicillium sp 1, Cladosporium sp and Aspergillus niger.

  1. HOW THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE DEVELOPED A NEW WASTE PACKAGE USING A POLYUREA COATING THAT IS SAFELY AND ECONOMICALLY ELIMINATING SIZE REDUCTION OF LARGE ITEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Hogue, Richard S.; Kimokeo, Margaret K.

    2003-02-27

    One of the major challenges involved in closing the Rocky Flats Environmental Technology Site (RFETS) is the disposal of extremely large pieces of contaminated production equipment and building debris. Past practice has been to size reduce the equipment into pieces small enough to fit into approved, standard waste containers. Size reducing this equipment is extremely expensive, and exposes workers to high-risk tasks, including significant industrial, chemical, and radiological hazards. RFETS has developed a waste package using a Polyurea coating for shipping large contaminated objects. The cost and schedule savings have been significant.

  2. Waste Receiving and Packaging, Module 2A, Supplemental Design Requirements Document

    Energy Technology Data Exchange (ETDEWEB)

    Lamberd, D.L.; Boothe, G.F.; Hinkle, A.L.; Horgos, R.M.; LeClair, M.D.; Nash, C.R.; Ocampo, V.P.; Pauly, T.R.; Stroup, J.L.; Weingardt, K.M.

    1994-04-26

    The Supplemental Design Requirements Document (SDRD) is used to communicate plant design information from Westinghouse Hanford Company (WHC) to the US Department of Energy (DOE) and the cognizant Architect Engineer (A/E). Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in a Functional Design Criteria (FDC) report; and to serve as a means of change control for design commitments in the Conceptual Design Report. The mission of WRAP 2A on the Hanford site is the treatment of contact handled low level mixed waste (MW) for final disposal. The overall systems engineering steps used to reach construction and operation of WRAP 2A are depicted in Figure 1. The WRAP 2A SDRD focuses on the requirements to address the functional analysis provided in Figure 1. This information is provided in sections 2 through 5 of this SDRD. The mission analysis and functional analysis are to be provided in a separate supporting document. The organization of sections 2 through 5 corresponds to the requirements identified in the WRAP 2A functional analysis.

  3. Technical assessment of processing plants as exemplified by the sorting of beverage cartons from lightweight packaging wastes.

    Science.gov (United States)

    Feil, A; Thoden van Velzen, E U; Jansen, M; Vitz, P; Go, N; Pretz, T

    2016-02-01

    The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis. Since the particle size of beverage cartons is larger than 120mm, a modified sampling plan was implemented and targeted multiple sampling (3-11 individual samplings) and a total sample size of respectively 1200l (ca. 60kg) for the BC-products and of about 2400l (ca. 120kg) for material-heterogeneous mixed plastics (MP) and sorting residue products. The results infer that the quantification of the beverage carton yield in the process, i.e., by including all product-containing material streams, can be specified only with considerable fluctuation ranges. Consequently, the total assessment, regarding all product streams, is rather qualitative than quantitative. Irregular operation conditions as well as unfavorable sampling conditions and capacity overloads are likely causes for high confidence intervals. From the results of the current study, recommendations can basically be derived for a better sampling in LP-processing plants. Despite of the suboptimal statistical results, the results indicate very clear that the plants show definite optimisation potentials with regard to the yield of beverage cartons as well as the required product purity. Due to the test character of the sorting trials the plant parameterization was not ideal for this sorting task and consequently the results should be interpreted with care.

  4. DEGRADATION OF PETROLEUM REFINERY WASTE BY A CONSORTIUM OF HYDROCARBONOCLASTIC BACTERIA ON SEVERAL C:N:P RATIO

    Directory of Open Access Journals (Sweden)

    Syukria I Zam

    2012-01-01

    Full Text Available Bioremediation is an alternative method to treat petroleum waste using microorganism into nontoxic end product. The method is relatively cheap, effective, and environmental friendly. A key factor influencing bioremediation process for petroleum refinery waste treatment is C:N:P ratio of bacterial growth medium. The objective of this research was to obtain C:N:P ratio of Stone Mineral Salt Solution (SMSS medium that allow optimal degradation of petroleum refinery waste by consortium of hydrocarbonoclastic bacteria. C:N:P ratio of SMSS medium was adjusted to ratio of 100:10:1, 100:10:0.5, 100:5:1, and 100:5:0.5. We demonstrate that optimal degradation of petroleum refinery waste by a consortium of hydrocarbonoclastic bacteria was achieved in SMSS medium with C:N:P ratio of 100:5:1. It allowed 66.55% degradation of total petroleum hydrocarbon (TPH and 85.18 % decrease of chemical oxygen demand (COD value.

  5. Maximising municipal solid waste--legume trimming residue mixture degradation in composting by control parameters optimization.

    Science.gov (United States)

    Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J

    2013-10-15

    Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  7. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  8. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.

    Science.gov (United States)

    Brandstätter, Christian; Laner, David; Fellner, Johann

    2015-06-01

    Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO2 and CH4) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg(-1) dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg(-1) dry waste). Compared to that, aeration led to threefold decrease in TOC (32-36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances. The source of anaerobic degradation could be identified mainly as cellulose which played a minor role during aerobic degradation in the experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Møller, S.; Molin, S.

    1997-01-01

    A biological trickling filter for treatment of toluene-containing waste gas was studied. The overall kinetics of the biofilm growth was followed in the early growth phase. A rapid initial colonization took place during the first three days. The biofilm thickness increased exponentially, whereas...... the increase of active biomass and polymers was linear. In order to investigate the toluene degradation, various toluene degraders from the multispecies biofilm were isolated, and a Pseudomonas putida was chosen as a representative of the toluene-degrading population. A specific rRNA oligonucleotide probe...... was used to follow the toluene-degrading P. putida in the multispecies biofilm in the filter by means of number and cellular rRNA content. P. putida appeared to detach from the biofilm during the first three days of growth, after which P. putida was found at a constant level of 10% of the active biomass...

  10. Development of a method to determine the nuclide inventory in bituminized waste packages; Entwicklung eines Verfahrens zur Bestimmung des Nuklidinventars in bituminierten Abfallgebinden

    Energy Technology Data Exchange (ETDEWEB)

    Mesalic, E.; Kortman, F.; Lierse von Gostomski, C. [Technische Univ. Muenchen, Garching (Germany). Zentrale Technisch-Wissenschaftliche Betriebseinheit Radiochemie Muenchen (RCM)

    2014-01-15

    Until the 1980s, bitumen was used as a conditioning agent for weak to medium radioactive liquid waste. Its use can be ascribed mainly to the properties that indicated that the matrix was optimal. However, fires broke out repeatedly during the conditioning process, so that the method is meanwhile no longer permitted in Germany. There are an estimated 100 waste packages held by the public authorities in Germany that require a supplementary declaration. In contrast to the common matrices, such as for example resins or sludges, there is still no standardized technology for taking samples and subsequently determining the radio-nuclide for bitumen. Aspects, such as the thermoplastic behaviour, make determining the nuclide inventory more difficult in bituminized waste packages. The development of a standardized technology to take samples with a subsequent determination of the radio-nuclide analysis is the objective of a project funded by the BMBF. Known, new methods, specially developed for the project, are examined on inactive bitumen samples and then transferred to active samples. At first non-destructive methods are used. The resulting information forms an important basis to work out and apply destructive strategy for sampling and analysis. Since the project is on-going, this report can only address the development of the sampling process. By developing a sampling system, it will be possible to take samples from an arbitrary selected location of the package across the entire matrix level and thus gain representative analysis material. The process is currently being optimized. (orig.)

  11. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water.

    Science.gov (United States)

    Novak, Domen; Franke-Whittle, Ingrid H; Pirc, Elizabeta Tratar; Jerman, Vesna; Insam, Heribert; Logar, Romana Marinšek; Stres, Blaž

    2013-07-01

    In contrast to the general aerobic detoxification of industrial effluents containing cyanide, anaerobic cyanide degradation is not well understood, including the microbial communities involved. To address this knowledge gap, this study measured anaerobic cyanide degradation and the rearrangements in bacterial and archaeal microbial communities in an upflow anaerobic sludge blanket (UASB) reactor biomass treating brewery waste water using bio-methane potential assays, molecular profiling, sequencing and microarray approaches. Successful biogas formation and cyanide removal without inhibition were observed at cyanide concentrations up to 5 mg l(-1). At 8.5 mg l(-1) cyanide, there was a 22 day lag phase in microbial activity, but subsequent methane production rates were equivalent to when 5 mg l(-1) was used. The higher cumulative methane production in cyanide-amended samples indicated that part of the biogas was derived from cyanide degradation. Anaerobic degradation of cyanide using autoclaved UASB biomass proceeded at a rate more than two times lower than when UASB biomass was not autoclaved, indicating that anaerobic cyanide degradation was in fact a combination of simultaneous abiotic and biotic processes. Phylogenetic analyses of bacterial and archaeal 16S rRNA genes for the first time identified and linked the bacterial phylum Firmicutes and the archaeal genus Methanosarcina sp. as important microbial groups involved in cyanide degradation. Methanogenic activity of unadapted granulated biomass was detected at higher cyanide concentrations than reported previously for the unadapted suspended biomass, making the aggregated structure and predominantly hydrogenotrophic nature of methanogenic community important features in cyanide degradation. The combination of brewery waste water and cyanide substrate was thus shown to be of high interest for industrial level anaerobic cyanide degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  13. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances).

    Science.gov (United States)

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf

    2013-08-15

    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.

  14. Particle passage kinetics and neutral detergent fiber degradability of silage of pineapple waste (aerial parts under different packing densities

    Directory of Open Access Journals (Sweden)

    Graciele Araújo de Oliveira Caetano

    2014-01-01

    Full Text Available The objective of this study was to determine the kinetics of in situ degradability parameters of the dry matter (DM and neutral detergent fiber (NDF and the passage of materials originating from the ensilage of the waste from pineapple cultivation (aerial parts. The four treatments utilized were silage of pineapple waste compacted at 600, 700, 900 and 1000 kg/m³. After ensiling the material from the pineapple cultivation, the particle-transit and rumen-degradation kinetics were analyzed. For the analysis of particle transit, chromium was utilized as a marker to mark the fiber. Passage rates were determined by retrieving the markers in the feces of the animals. In the degradation assay, samples were incubated in nylon bags for 0, 6, 18, 48 and 96 hours. The behavior observed in the regression curves of the variables analyzed describes high correlation between them, i.e., the time during which the silage is retained in the rumen influences its digestibility and its degradation rate. Although the silage compacted at 900 kg/m³ shows a larger potentially digestible fraction, it is recommended that it be ensiled at a compaction density of approximately 750 kg/m³ due to the lower cost and shorter mean retention time in the rumen-reticulum and rumen fill, thereby increasing the ruminal degradation and passage dynamics.

  15. Optimized production of extracellular proteases by Bacillus subtilis from degraded abattoir waste

    Directory of Open Access Journals (Sweden)

    PALLAVI BADHE

    2016-04-01

    Full Text Available Proteases are ubiquitous in occurrence and are found in all living organisms. These are essential for cell growth and differentiation. The extracellular proteases are of a high commercial value and find multiple applications in various industrial sectors. The present study describes the screening of protease producing bacteria from a hitherto unexplored source i.e. degraded waste from abattoir. Three isolates were found namely yellow, white and orange coloured bacteria. Amongst them, white colored colony was found to be more suitable for protease production. The morphological, cultural, biochemical and 16S rRNA confirmed that the isolate was Bacillus subtilis. Physical and chemical parameters were optimized for maximum protease production and optimum temperature and pH was found to be 40oC at pH 14. Glucose as a carbon source and yeast extract as a nitrogen source further stimulated the production process giving maximum protease activity to be 20.74 U/ml and 20.67 U/ml. The applications of protease in detergent and solvent industry were tested and it was revealed that the purified enzyme can be used as an additive in detergent industry.

  16. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    Science.gov (United States)

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  17. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    Science.gov (United States)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, José Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60—GAMMACELL type, with 5×10 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  18. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon.

    Science.gov (United States)

    González, Yovana Sander; Costa, Carlos; Márquez, M Carmen; Ramos, Pedro

    2011-03-15

    A comparative study of thermal and catalytic degradation of polyethylene wastes has been carried out with the aim of obtaining chemical compounds with potential use in the chemical industry and the energy production. Polyethylene wastes were obtained from polyethylene bags used in supermarkets. Catalysts utilized in the study were silica gel, 5A molecular sieve and activated carbon. The pyrolysis was performed in a batch reactor at 450, 500 and 700 °C during 2h for each catalyst. The ratio catalyst/PE was 10% w/w and the solid and gaseous products were analyzed by gas chromatography and mass spectrometry. The optimum operation temperature and the influence of the three catalysts are discussed with regards to the products formed. The best temperature for degradation with silica gel and activated carbon as catalysts was 450 °C and with 5A molecular sieve was 700 °C. Degradation products of PE (solid fraction and gas fraction) are depending on temperature and catalyst used. External surface and structure of catalysts were visualized by Scanning Electron Microscopy (SEM) and the contribution on product distribution is commented. All products from different degradations could be used as feed stocks in chemical industry or in energy production based on the value of heat of combustion for solid fraction (45000 J/g), similar to the heat of combustion of commercial fuels.

  19. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  20. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil.

    Science.gov (United States)

    Han, Xuemei; Hu, Hangwei; Shi, Xiuzhen; Zhang, Limei; He, Jizheng

    2017-04-01

    Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders.

  1. Characterization of Bacteria Found in Metal-Working Fluids and the Waste Treatment System Involved in Degradation of Waste Water

    Science.gov (United States)

    1991-01-01

    ii-- - "f - I S’ a a I 0-i 1-111 9 L._ * CJ JIL ----- , * I * 13 chemical components in the waste ) IVF . The waste then goes through another clarifier...hydroxide is added to buffer the carbon dioxide produced during tha carbonaceous oxidation and also to buffer the hydrogen ions produced during the...Doudoroff [19]. This medium conaisted of X/30 NaK phosphate buffer pH 6.8, NH 4Cl (0.1%), XSSO 4*7H2 (0.05%), ferric ammonium citrate (0.005%), CaCl 2

  2. Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test.

    Science.gov (United States)

    Arenales Rivera, Jorge; Pérez López, Virginia; Ramos Casado, Raquel; Sánchez Hervás, José-María

    2016-01-01

    In this survey, a refuse derived fuel (RDF) was produced from paper industry wastes through a mechanical treatment (MT). The two main wastes generated from a recovered paper mill were rejects and de-inking sludge, which were produced principally in the pulping and de-inking processes, respectively. This work presents raw wastes characterization, fuel preparation and gasification tests performed in a circulating fluidized bed (CFB) gasifier pilot plant. The characterization was carried out by proximate and ultimate analysis. Several blends of pre-conditioned rejects and de-inking sludge were densified by means of pelletizing, studying the energy consumption and its quality properties. Besides, thermal degradation of blends was studied under thermogravimetric analysis (TGA). The experimental runs were made from 30 to 900°C in nitrogen atmosphere at three heating ranges, β=5, 10 and 20°C/min. Two thermal stages were identified during the thermal degradation, which are linked to cellulose and plastic degradation. In addition, kinetics parameters were estimated by the application of non-isothermal methods: Kissinger-Akahira-Sunose (KAS), Flynn-Ozawa-Wall (FOW) and Coats and Redfern. The activation energy values were about 140-160 kJ/mol and 60-80 kJ/mol for plastic and cellulosic materials, respectively. Regarding waste valorisation, a blend composed of 95% of rejects and 5% of de-inking sludge was selected for gasification tests. The energy consumption during the preparation was recorded and a gasification tests were done to prove the usability of these pellets in a CFB gasifier. The main results were a net calorific value (NCV) of 5 MJ/Nm(3) and a total tar content of 11.44 g/Nm(3) at an equivalence ratio (ER) of 0.3.

  3. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    Science.gov (United States)

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  4. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  5. Degradation Products of Adenine Nucleotide in Rainbow Trout (Oncorhynchus mykiss) Stored in Ice and in Modified Atmosphere Packaging

    OpenAIRE

    ÖZOĞUL, Yeşim; Özoğul, Fatih

    2002-01-01

    The breakdown products of adenosine triphosphate (ATP) were separated using a rapid HPLC method. The K-value, Ki-value and H-value were also determined as a means of evaluating the quality of rainbow trout held in ice and modified atmosphere packaging comparing with sensory and microbiological analysis in terms of fresh fish quality. Results from the present research indicated that modified atmosphere did not extend the shelf life of trout but inhibited microbial growth compared to ice storag...

  6. Solid waste reclamation and recycling: Packaging and containers. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning techniques and management of packaging and container recycling. References discuss recycling of tin and aluminum cans, reverse vending machines, reusable packaging and containers, and the future of containers. Environmental aspects, government programs, and development of recycling markets are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  8. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  9. PHOTOCATALYTIC DEGRADATION OF INDIGO CARMINE BY TiO2/ACTIVATED CARBON DERIVED FROM WASTE COFFEE GROUNDS

    Directory of Open Access Journals (Sweden)

    Irwan Irwan

    2016-03-01

    Full Text Available TiO2/activated carbon derived from waste coffee grounds (TiO2/WCGAC has been prepared by a sol gel method . Waste coffee ground was chemically activated using hydrochloric acid 0.1 M solution and modified with titanium tetraisopropoxide as TiO2 precursor. The structural features of the photocatalyst was investigated by X-ray diffraction (XRD, scanning electron microscope energy dispersive X-ray spectroscopy (SEM EDX,  Fourier transform infrared spectroscopy (FT-IR and nitrogen adsorption-desorption. The XRD results showed that TiO2 is anatase and rutile phase, while FTIR spectra confirmed the presence of  Ti-O groups. The specifics surface area of TiO2/WCGAC was higher than that of activated carbon derived from waste coffee grounds. The photocatalytic activity of TiO2/WGCAC has been evaluated for degradation of indigo carmine solution under UV and solar light irradiation. It was found that degradation percentage of indigo carmine under solar light was higher than that of under UV light.

  10. Assessment of Gardening Wastes as a Co-Substrate for Diapers Degradation by the Fungus Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Rosa María Espinosa-Valdemar

    2015-05-01

    Full Text Available Waste with high biomass content generated in cities in developing countries is sent to landfills or open dumps. This research aims to degrade biomass content in urban waste through cultivation, at pilot scale, of the edible mushroom Pleurotus ostreatus. First, the number of diapers used by one baby per week was measured with a survey in day care facilities. Then, cellulose content of diapers was assessed. Finally, cultivation of P. ostreatus was carried out using as substrate a mixture of diapers with gardening waste, a co-substrate readily available at urban settings. The factors assessed were strain of P. ostreatus (grey BPR-81, white BPR-5, conditioning of the substrate (diapers with and without plastic and co-substrate (wheat straw, grass, and withered leaves. Results show that diapers are a valuable source of biomass, as generation of diapers with urine is 15.3 kg/child/month and they contain 50.2% by weight of cellulose. The highest reductions in dry weight and volume (>64% of substrates was achieved with the substrate diaper without plastic and co-substrate wheat straw. Although diapers with plastic and grass and leaves showed lower degradation, they achieved efficiencies that make them suitable as a co-substrate (>40%, considering that their biomass is currently confined in landfills.

  11. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (México).

    Science.gov (United States)

    Hernández-Berriel, Ma C; Márquez-Benavides, L; González-Pérez, D J; Buenrostro-Delgado, O

    2008-01-01

    The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").

  12. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  13. Status Report - Cane Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-22

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 10 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAC, these models allow development of service life predictions.

  14. Status Report - Softwood Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-22

    Thermal, mechanical and physical properties have been measured on softwood fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and preliminary aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with acceptance criteria and an estimate of the actual conditions the fiberboard experiences in KAC, these models allow development of service life predictions.

  15. Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt); Eskander, S.B. [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt)

    2012-11-15

    Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 {+-} 5 Degree-Sign C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.

  16. Proceedings of the 6th Annual Meeting for Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and WasteTreatment, Storage and Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J

    2005-06-30

    The sixth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held November 15-17, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, and Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 55 Russian attendees from 16 different Russian organizations and four non-Russian attendees from the US. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C. The 16 different Russian design, industrial sites, and scientific organizations in attendance included staff from Rosatom/Minatom, Federal Nuclear and Radiation Safety Authority of Russia (GOSATOMNADZOR, NIERA/GAN), All Russian Designing & Scientific Research Institute of Complex Power Technology (VNIPIET), Khlopin Radium Institute (KRI), A. A. Bochvar All Russian Scientific Research Institute of Inorganic Materials (VNIINM), All Russian & Design Institute of Production Engineering (VNIPIPT), Ministry of Atomic Energy of Russian Federation Specialized State Designing Institute (GSPI), State Scientific Center Research Institute of Atomic Reactors (RIAR), Siberian Chemical Combine Tomsk (SCC), Mayak PO, Mining Chemical Combine (MCC K-26), Institute of Biophysics (IBPh), Sverdlosk Scientific Research Institute of Chemical Machine Building (SNIIChM), Kurchatov Institute (KI), Institute of Physical Chemistry Russian Academy of Science (IPCh RAS) and Radon PO-Moscow. The four non-Russian attendees included

  17. Shorten fungal treatment of lignocellulosic waste with additives to improve rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2014-01-01

    Selective lignin degrading fungi can be used as pre-treatment to make cellulose in plant cell walls accessible for rumen microbes. According to previous studies, Ceriporiopsis subvermispora and Lentinula edodes can increase the in vitro rumen degradability of lignocellulosic biomass in 7 to 8 weeks.

  18. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low

  19. 3RD WP PROBABILISTIC CRITICALITY ANALYSIS: METHODOLOGY FOR BASKET DEGRADATION WITH APPLICANTION TO COMMERICAL SNF

    Energy Technology Data Exchange (ETDEWEB)

    P. Goulib

    1997-09-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance. The degradation of principal concern is the borated stainless steel absorber plates which are part of the waste package basket and which constitute a major part of the waste package criticality control. The degradation (corrosion, dissolution) of this material will result in the release of most of the boron from the waste package and increase the possibility of criticality. The results of this evaluation will be expressed in terms of the fraction of the PWR SNF which can exceed a given k{sub eff}, as a function of time and the peak value of that fraction over a time period up to several hundred thousand years. The ultimate purpose of this analysis is to support the waste package design which defines waste packages to cover a range of SNF characteristics. In particular, with respect to PWR criticality the current categories are: (1) no specific criticality control material, (2) borated stainless steel plates in the waste package basket, and (3) zirconium clad boron carbide control rods (Ref. 5.4). The results of this analysis will indicate the coverage provided by the first two categories. With these results, this study will provide the first quantitative estimate of the benefit expected from the control measure consisting of borated stainless steel plates. This document is the third waste package probabilistic criticality analysis. The first two (Ref. 5.12 for the first and Ref. 5.15 for the second) analyses were based primarily on the

  20. The function of a toluene-degrading bacterial community in a waste gas trickling filter

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1999-01-01

    oligonucleotide 16S ribosomal RNA probe targeting the toluene-degrading species Pseudomonas putida, and by computer simulations (AQUASIM) of the biofilm growth based on a food web model. Biofilms were taken from a lab-scale trickling filter for treatment of toluene-polluted air. The biofilm growth......The function of a community of toluene-degrading bacteria in a biofilm system was investigated with regard to growth and toluene degradation in order to investigate substrate interactions in the community. This was done by the combination of experimental observations using a specific...... and the activity of P. putida, a representative of the toluene-degrading species in the biofilm which have been described previously (Pedersen et al., 1997) were simulated. The simulation indicated that the volume fraction of the toluene degraders in the biofilm decreased from 12% to only 2% (11% of dry weight...

  1. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    Science.gov (United States)

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation.

  2. Kinetics of transit and degradation of the fiber from guinea grass silages enriched with waste from soybean pre-cleaning

    Directory of Open Access Journals (Sweden)

    Filipe Ton Fialho

    2015-06-01

    Full Text Available The objective was to study the kinetics of transit and degradation of the fiber from guinea grass and the waste from soybean pre-cleaning (WSPC, ensiled with different proportions of mass (0, 100, 150, and 200 g WSPC/kg total mass. Four crossbred (Gyr × Holstein, fistulated cattle with an average body mass of 400±50 kg were organized in a 4 × 4 Latin square experimental design. The fiber utilized in the study of the transit kinetics was stained with chromium mordant, whereas the in situ technique was adopted for the degradation kinetics. The level of inclusion of WSPC only affected the true digestibility and the mean retention time. The addition of waste from soybean pre-cleaning to the silage of guinea grass is beneficial, in terms of kinetics of digestion and passage, at up to levels close to 100 g/kg, because after this quantity the fiber digestion and passage in and through the reticulo-rumen are impaired and there may be alterations in the ruminal environment that will affect the use of silage by animals.

  3. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  4. Vegetation Cover and Long-Term Conservation of Radioactive Waste Packages: The Case Study of the CSM Waste Disposal Facility (Manche District, France)

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  5. Packaging design criteria for the Hanford Ecorok Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, M.S.

    1996-01-19

    The Hanford Ecorok Packaging (HEP) will be used to ship contaminated water purification filters from K Basins to the Central Waste Complex. This packaging design criteria documents the design of the HEP, its intended use, and the transportation safety criteria it is required to meet. This information will serve as a basis for the safety analysis report for packaging.

  6. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA)); Weiss, H. (Lawrence Livermore National Lab., CA (USA))

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  7. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    Science.gov (United States)

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere.

    Science.gov (United States)

    Kwon, Eilhann; Castaldi, Marco J

    2009-08-01

    The thermal decomposition of waste tires has been characterized via thermo-gravimetric analysis (TGA) tests, and significant mass loss has been observed between 300 and 500 degrees C. A series of gas chromatography-mass spectrometer (GC-MS) measurements, in which the instrument was coupled to a TGA unit, have been carried out to investigate the thermal degradation mechanisms as well as the air pollutant generation including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in a nitrogen atmosphere. In order to understand fundamental information on the thermal degradation mechanisms of waste tires, the main constituents of tires, poly-isoprene rubber (IR) and styrene butadiene rubber (SBR), have been studied under the same conditions. All of the experimental work indicated that the bond scission on each monomer of the main constituents of tires was followed by hydrogenation and gas phase reactions. This helped to clarify the independent pathways and species attributable to IR and SBR during the pyrolysis process. To extend that understanding to a more practical level, a flow-through reactor was used to test waste tire, SBR and IR samples in the temperature range of 500-800 degrees C at a heating rate of approximately 200 degrees C. Lastly, the formation of VOCs (approximately 1-50 PPMV/10 mg of sample) and PAHs (approximately 0.2-7 PPMV/10 mg of sample) was observed at relatively low temperatures compared to conventional fuels, and its quantified concentration was significantly high due to the chemical structure of SBR and IR. The measurement of chemicals released during pyrolysis suggests not only a methodology for reducing the air pollutants but also the feasibility of petrochemical recovery during thermal treatment.

  9. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    Science.gov (United States)

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR.

  10. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.

    1998-03-14

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  11. Waste package degradation expert elicitation panel: Input on the corrosion of CRM alloy C-22. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.

    1998-02-26

    The overall electrolyte concentration in the NFE environment is expected to be somewhere between 1X and saturated J-13 well water. This covers more than three orders-of-magnitude in chloride anion concentration. The pH of this solution is expected to be somewhere between 5 and 10. Exposed patches of the CRM could see this environment.

  12. Treatment, conditioning and packaging for final disposal of low and intermediate level waste from Cernavoda: a techno-economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Suryanarayan, S.; Husain, A. [Kinectrics Inc., Toronto, ON (Canada); Fellingham, L.; Nesbitt, V. [Nuvia Ltd., Didcot, Oxfordshire (United Kingdom); Toro, L. [Mate-fin, Bucharest (Romania); Simionov, V.; Dumitrescu, D. [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2011-07-01

    National Nuclearelectrica Society (SNN) owns and operates two CANDU-6 plants at Cernavoda in Romania. Two additional units are expected to be built on the site in the future. Low and intermediate level short-lived radioactive wastes from Cernavoda are planned to be disposed off in a near-surface repository to be built at Saligny. The principal waste streams are IX resins, filters, compactable wastes, non-compactables, organic liquids and oil-solid mixtures. Their volumetric generation rates per reactor unit are estimated to be: IX resins (6 m{sup 3}/y), filters (2 m{sup 3}/y), compactables (23 m{sup 3}/y) and non-compactables (15 m{sup 3}/y). A techno-economic assessment of the available options for a facility to treat and condition Cernavoda's wastes for disposal was carried out in 2009 based on projected waste volumes from all four units. A large number of processes were first screened to identify viable options. They were further considered to develop overall processing options for each waste stream. These were then consolidated to obtain options for the entire plant by minimizing the number of unit operations required to process the various waste streams. A total of 9 plant options were developed for which detailed costing was undertaken. Based on a techno-economic assessment, two top ranking plant options were identified. Several scenarios were considered for implementing these options. Amongst them, a contractor run operation of a facility located on the Cernavoda site was considered to be more cost effective than operating the facility using SNN personnel. (author)

  13. Suspended solids moderate the degradation and sorption of waste water-derived pharmaceuticals in estuarine waters.

    Science.gov (United States)

    Aminot, Yann; Fuster, Laura; Pardon, Patrick; Le Menach, Karyn; Budzinski, Hélène

    2017-08-26

    This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks, Waste Site Reclassification Form 2008-002

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2008-01-31

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. Modeling for speciation of radionuclides in waste packages with high-level radioactive wastes; Modellierung zur Speziation von Radionukliden in Abfallgebinden mit hoch radioaktiven Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Weyand, Torben; Bracke, Guido; Seher, Holger

    2016-10-15

    Based on a literature search on radioactive waste inventories adequate thermodynamic data for model inventories were derived for geochemical model calculations using PHREEQC in order to determine the solid phase composition of high-level radioactive wastes in different containers. The calculations were performed for different model inventories (PWR-MOX, PWR-UO2, BWR-MOX, BMR-UO2) assuming intact containers under reduction conditions. The effect of a defect in the container on the solid phase composition was considered in variation calculations assuming air contact induced oxidation.

  16. Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Carlson

    2006-04-24

    The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  17. Degradation of toxaphene by Bjerkandera sp. strain BOL13 using waste biomass as a cosubstrate.

    Science.gov (United States)

    Lacayo Romero, Martha; Terrazas, Enrique; van Bavel, Bert; Mattiasson, Bo

    2006-07-01

    The white-rot fungus Bjerkandera sp. strain BOL13 was capable of degrading toxaphene when supplied with wood chips, wheat husk or cane molasses as cosubstrates in batch culture experiments. Approximately 85% of toxaphene was removed when wheat husk was the main substrate. The production of lignin peroxidase was only stimulated when wheat husk was present in the liquid medium. Although xylanase was always detected, wheat husk supported the highest xylanase production. A negligible amount of beta-glucosidase and cellulase were found in the batch culture medium. To the best of our knowledge, this is the first reported case of toxaphene degradation by white-rot fungi.

  18. Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-11-17

    The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Final evaluation report for Westinghouse Hanford Company, WRAP-1,208 liter waste drum, docket 94-35-7A, type A packaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L., Westinghouse Hanford

    1996-06-12

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company, Waste Receiving and Processing Facility, Module 1 (WRAP-1) Drum. The WRAP-1 Drum was tested for DOE-HQ in August 1994, by Los Alamos National Laboratory, under docket number 94-35-7A. Additionally, comparison and evaluation of the approved, as-tested packaging configuration was performed by WHC in September 1995. The WRAP-1 Drum was evaluated against the performance of the DOT-17C, 208 1 (55-gal) steel drums tested and evaluated under dockets 89-13-7A/90-18-7A and 94-37-7A.

  1. Degradation of mecoprop in polluted landfill leachate and waste water in a moving bed biofilm reactor.

    Science.gov (United States)

    Escolà Casas, Mònica; Nielsen, Tue Kjærgaard; Kot, Witold; Hansen, Lars Hestbjerg; Johansen, Anders; Bester, Kai

    2017-09-15

    Mecoprop is a common pollutant in effluent-, storm- and groundwater as well as in leachates from derelict dumpsites. Thus, bioremediation approaches may be considered. We conducted batch experiments with moving bed biofilm (MBBR)-carriers to understand the degradation of mecoprop. As a model, the carriers were incubated in effluent from a conventional wastewater treatment plant which was spiked to 10, 50 and 100 μg L(-1) mecoprop. Co-metabolic processes as well as mineralization were studied. Initial mecoprop concentration and mecoprop degradation impacted the microbial communities. The removal of (S)-mecoprop prevailed over the (R)-mecoprop. This was associated with microbial compositions, in which several operational taxonomic units (OTUs) co-varied positively with (S)-mecoprop removal. The removal-rate constant of (S)-mecoprop was 0.5 d(-1) in the 10 μg L(-1) set-up but it decreased in the 50 and 100 μg L(-1) set-ups. The addition of methanol prolonged the removal of (R)-mecoprop. During mecoprop degradation, 4-chloro-2-methylphenol was formed and degraded. A new metabolite (4-chloro-2-methylphenol sulfate) was identified and quantified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Science.gov (United States)

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  3. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  4. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    Science.gov (United States)

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, (H)NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and (H)NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 基于连锁超市的包装废弃物回收模型%Recycling Model of Waste Packaging Materials for Chain Supermarkets

    Institute of Scientific and Technical Information of China (English)

    黄勇; 邱丽艳

    2013-01-01

    阐述了包装废弃物回收的意义,基于资源整合与共享的理论思想,提出连锁超市的回收模式,即基于连锁超市的配送体系,在连锁超市合理选址的基础上,依超市建立回收站点,集中回收可再利用的包装;充分利用配送中心的网络资源,建立以达到降低物流成本,实现资源再利用为目的的模型.最后用模糊综合评价法对其进行了评价.%In this paper, we introduced the significance of the recycling of waste packaging materials and on the basis of the ideas of resource integration and sharing, proposed the recycling model of the chain supermarkets, which, on the basis of the reasonable location of the supermarkets, recycled reusable packaging materials in a centralized way and made full use of the network resource of the distribution centers to reduce logistics cost and realize resource reclamation. At the end, we evaluated the model using fuzzy comprehensive evaluation method.

  6. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo

    2014-05-20

    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. Solid-Phase Photocatalytic Degradation of Waste Plastics%固相光催化降解废弃塑料

    Institute of Scientific and Technical Information of China (English)

    杨昌军; 彭天右; 邓克俭; 昝菱

    2011-01-01

    White pollution has become a global environmental issue in recent years. Composite plastics embedding photocatalysts into ploymer matrix has excellent photocatalytic degradation activity. It could be degraded effectively in ambient air under sunlight exposure. So it is an eco-friendly disposal of polymer wastes, and provides a promising way to solve white pollution. In this paper, the latest research progress in solid-phase photocatalytic degradation of waste plastics is reviewed. The solid-phase photocatalytic activity of TiO2, ZnO, α-FeOOH and H3PW12O40, as well as the photocatalytic degradation mechanism of various composite plastics are introduced.Many new methods have been used to enhance the solid-phase photocatalytic degradation activity of composite plastics and the utilization efficiency of sunlight. For example, surface modifying photocatalyst by branched macromolecule is used to improve the dispersion of photocatalyst in polymer matrix, modifying photocatalyst by metal ion doping or dye sensitization is used to broaden the region of photoresponse and enhance the visible light activity of photocatalyst. At last, the potential application prospects for photodegradable composite plastics in the field of waste plastic treatment is discussed.%"白色污染"已成为目前普遍关注的一个全球性环保课题.将光催化剂掺入到塑料中制备出环境友好的可光降解复合塑料,利用其光催化活性可以使废弃塑料在太阳光的照射下发生有效降解,是解决"白色污染"问题的有效途径之一.本文综述了近年来固相光催化降解废弃塑料的研究进展,介绍了光催化剂TiO、ZnO、а-FeOOH和HPWO加对废弃塑料的固相光催化降解效率及各种复合塑料的光催化降解机理,阐述了对光催化剂进行表面改性可以改善其在聚合物中的分散性,以及对光催化剂进行修饰可以提高其对可见光的吸收,从而提高复合塑料的固相光催化降解活性及对

  8. Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris, Waste Site, Waste Site Reclassification Form 2008-027

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-16

    The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites.

    OpenAIRE

    Walton, B T; Anderson, T A

    1990-01-01

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere tha...

  10. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively.

  11. Bacterial degradation of styrene in waste gases using a peat filter

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M.; Reittu, A. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Wright, A. von; Suihko, M.L. [VTT Biotechnology and Food Research (Finland); Martikainen, P.J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences]|[National Public Health Inst., Lab. of Environmental Microbiology, Kuopio (Finland)

    1997-12-31

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m{sup -3} h{sup -1} (max. 30 g m{sup -3} h{sup -1}). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 C, but the styrene removal was still satisfactory at 12 C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the {gamma} group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. (orig.)

  12. Recycling of Plastic Packaging Wastes%塑料包装废弃物的再生利用

    Institute of Scientific and Technical Information of China (English)

    贺全国; 聂立波

    2011-01-01

    塑料包装在整个包装产业中占有极大比例,其废弃物的处理给国际社会减碳减排发展带来了巨大挑战。结合国内外对塑料包装废弃物的管理现状,分析了塑料包装废弃物的来源、分类和化学组成,阐述了国外塑料包装废弃物的回收分离技术和设备及国内相应研究现状;对塑料包装废弃物的再生利用途径进行深入解析,较全面地阐述了塑料包装废弃物再生利用的原理与研究现状;提出了塑料包装废弃物再生利用的基本策略建议。%The plastic packaging accounts for a very great proportion in the packaging industry,and the plastic packaging wastes(PPW) disposal brings great confrontation and challenge for global carbon emission reduction development.Based on the international practical PPW management,analyzes the source,classification and chemical composition for PPW and expounds the recycling separation technology and apparatus at aboard and the domestic research status;Resolves various PPW disposal approaches and elaborates comprehensively PPW regeneration principles and practices;Presents strategic suggestions on recycling and utilization of PPW.

  13. Addition of Urban Waste to Semiarid Degraded Soil: Long-term Effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, β-glucosidase, and N-α-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg-1 soil with the highest MSW doses,compared to 4.30 g kg-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as

  14. Efficiency of bacterial protein synthesis during anaerobic degradation of cattle waste.

    OpenAIRE

    Mackie, R I; Bryant, M. P.

    1990-01-01

    The rate of [15N]ammonia (15NH3) uptake or incorporation into bacterial cells was studied, using stirred, 3-liter benchtop digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C and at four different loading rates (3, 6, 9, and 12 g of volatile solids per liter of reactor volume per day). The rate of NH3-N incorporation for the period 1 to 5 h after feeding at the four different loading rates was 0.49, 0.83, 1.05, and 1.08 mg/liter...

  15. Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2007-12-03

    The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, D L

    2001-10-15

    This report documents the U.S. Department of Transportation Specification 7A Type A compliance test and evaluation results of the Standard Waste Box. Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters, Office of Safety, Health and Security (EM-5), Germantown, Maryland. Duratek Federal Services, Inc., Northwest Operations performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  17. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  18. Dechlorane Plus in house dust from E-waste recycling and urban areas in South China: sources, degradation, and human exposure.

    Science.gov (United States)

    Wang, Jing; Tian, Mi; Chen, She-Jun; Zheng, Jing; Luo, Xiao-Jun; An, Tai-Cheng; Mai, Bi-Xian

    2011-09-01

    Dechlorane Plus (DP) was measured in house dust from e-waste recycling and from urban and rural areas of South China, with geometric mean concentrations of 604, 14.5, and 2.89 ng/g, respectively. Dechlorane Plus in house dust in the e-waste area originated from e-waste recycling activities, whereas household appliances served as a major source of DP in urban house dust. The isomer ratios (f(anti) ) of DP in most dust samples from the e-waste area were significantly lower than those in the urban and rural dust samples and the commercial mixture. Several [-1Cl + H] and [-2Cl + 2H] dechloro-DPs were identified in house dust from the e-waste area, and an a-Cl(11) DP was qualified with concentrations of <55.1 ng/g. Photolytic degradation experiments were conducted by exposing anti-DP, syn-DP, and commercial DP solutions to ultraviolet (UV) light. The slight difference in isomeric half-life derived by photodegradation, as well as the lower f(anti) values in the e-waste combusted residue, suggest a significant influence of isomer-specific thermal degradation of DP during e-waste burning on isomer composition in house dust in the e-waste area. The average estimated daily intakes (EDIs) of DP via house dust ranged from 0.06 to 30.2 ng/d for adults and 0.14 to 121 ng/d for toddlers in the studied area. The average EDIs of a-Cl(11) DP for adults and toddlers in the e-waste area were 0.07 and 0.18 ng/d, respectively.

  19. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    A complex mixture of chlorinated organic compounds is located in an unconfined carbonated bedrock aquifer with low permeability in a former industrial area next to Barcelona (NE Spain). The site exhibited an especially high complexity due to the presence of multiple contaminant sources, wide variety of pollutants (mainly chlorinated ethenes but also chlorinated methanes) and unknown system of fractures (Palau et al., 2014). Interception trenches were installed in the place of the removed pollution sources and were filled with construction wastes with the aim of retaining and treating the accumulated contaminated recharge water before reaching the aquifer. Recycled concrete-based aggregates from a construction and demolition waste recycling plant were used to maintain alkaline conditions in the water accumulated in the trenches (pH 11.6±0.3) and thus induce chloroform (CF) degradation by alkaline hydrolysis. An efficacy of around 30-40% CF degradation in the interception trenches was calculated from the significant and reproducible CF carbon isotopic fractionation (-53±3o obtained in batch experiments (Torrentó et al., 2014). Surprisingly, although hydrolysis of carbon tetrachloride (CT) is extremely slow, a significant CT carbon isotopic enrichment was also observed in the trenches. The laboratory experiments verified the low capability of concrete to hydrolyze the CT and showed the high adsorption of CT on the concrete particles (73% after 50 days) with invariability in its δ13C values. Therefore, the significant CT isotopic fractionation observed in the interception trenches could point out the occurrence of other degradation processes distinct than alkaline hydrolysis. Geochemical speciation modelling using the code PHREEQC showed that water collected at the trenches is supersaturated with respect to several iron oxy-hydroxides and therefore, CT degradation processes related to these iron minerals cannot be discarded. In addition, the combination of alkaline

  20. Sustainable (food) packaging--an overview.

    Science.gov (United States)

    Russell, David A M

    2014-01-01

    Packaging has an increasingly essential role to play in preserving the value invested in products by ensuring that they can deliver their designed service with minimum wastage. Food contact materials that deliver more units of service with increasingly fewer inputs of energy and materials, and increasingly fewer negative social, economic and environmental impacts, e.g., from emission of wastes, will be more sustainable both in the food processing machines of the industrial system and as packaging for food. Buzz words, whether bio-, nano-, degradable, or whatever comes next, must be critically examined per unit of service delivered to determine if, over the whole life cycle of the products to which they are applied, energy and resource use are minimised, pollution is reduced (not relocated), ecological benefits are created, and social and economic well-being are increased. Only when this caution is applied can a new solution be described as more sustainable.

  1. A waste characterisation procedure for ADM1 implementation based on degradation kinetics.

    Science.gov (United States)

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Steyer, J-P; Sadowski, A G; Béline, F

    2012-09-01

    In this study, a procedure accounting for degradation kinetics was developed to split the total COD of a substrate into each input state variable required for Anaerobic Digestion Model n°1. The procedure is based on the combination of batch experimental degradation tests ("anaerobic respirometry") and numerical interpretation of the results obtained (optimisation of the ADM1 input state variable set). The effects of the main operating parameters, such as the substrate to inoculum ratio in batch experiments and the origin of the inoculum, were investigated. Combined with biochemical fractionation of the total COD of substrates, this method enabled determination of an ADM1-consistent input state variable set for each substrate with affordable identifiability. The substrate to inoculum ratio in the batch experiments and the origin of the inoculum influenced input state variables. However, based on results modelled for a CSTR fed with the substrate concerned, these effects were not significant. Indeed, if the optimal ranges of these operational parameters are respected, uncertainty in COD fractionation is mainly limited to temporal variability of the properties of the substrates. As the method is based on kinetics and is easy to implement for a wide range of substrates, it is a very promising way to numerically predict the effect of design parameters on the efficiency of an anaerobic CSTR. This method thus promotes the use of modelling for the design and optimisation of anaerobic processes.

  2. STUDY ON THE FENTON REACTION FOR DEGRADATION OF REMAZOL RED B IN TEXTILE WASTE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Henry Setiyanto

    2016-11-01

    Full Text Available Remazol Red B is a reactive dye that is often used in the textile industry. The dye can cause serious problems in the environmental / water because it is difficult to be degraded by microorganisms. Decolorization of reactive azo dyes (Remazol Red B before being discharged into the environment is an important aspect in creating technology (method that are environmentally friendly. The method chosen for this decolorization is Advanced Oxidation Process (AOP using the Fenton reaction. The optimum conditions for this reaction is 25 mg/L H2O2 and 1.25 mg/L of Fe2+ to Remazol Red B with initial concentration at 83 mg/L ( with ratio [H2O2]/[Fe2+] = 20. The optimum conditions of this reaction were obtained at pH 3 and temperature of 27 0C, with decolorization efficiency up to 100% for a reaction time of 60 minutes. The kinetic model of dye decoloritation follow the second order reaction. Some of the metal ions were added i.e. Cu2+, Pb2+ and Zn2+ , given no significant impact on the degradation performed.

  3. Conceptual model for concrete long time degradation in a deep nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B.; Traegaardh, J. [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1994-02-01

    This report is mainly a state-of-the-art report of concrete long time durability in the environment expected in a deep site underground nuclear waste repository in Swedish crystalline bedrock. The report treats how the concrete and the surrounding groundwater will interact and how they will be affected by cement chemistry, type of aggregate etc. The different mechanisms for concrete alteration treated include sulphate attack, carbonation, chloride attack, alkali-silica reaction and leaching phenomena. In a long time perspective, the chemical alterations in concrete is mainly governed by the surrounding groundwater composition. After closure the composition of the groundwater will change character from a modified meteoric to a saline composition. Therefore two different simulated groundwater compositions have been used in modelling the chemical interaction between concrete and groundwater. The report also includes a study of old and historical concrete which show observations concerning recrystallization phenomena in concrete. 72 refs, 39 figs.

  4. Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bidus Kanti [Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India); Roy, Shantonu [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India); Dev, Subhabrata [Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India); Das, Debabrata [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India); Bhattacharya, Jayanta, E-mail: jayantaism@gmail.com [Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India); School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 (India)

    2015-12-30

    Highlights: • Sweetmeat waste (SMW) as a nutrient supplement in the SO{sub 4}{sup 2−} reduction system. • COD/SO{sub 4}{sup 2−} ratio of 4 was found suitable for SO{sub 4}{sup 2−} removal. • Sulfate reducing and acidogenic bacteria were dominant microbes in the system. • Microbial diversities were almost remained unaltered at different COD/SO{sub 4}{sup 2−} ratios. - Abstract: External dosing of sweetmeat waste (SMW) dosing into exhausted upflow packed bed bioreactor (PBR) resulted in prompt reactivation of SO{sub 4}{sup 2−} removal. Different SMW concentrations in terms of chemical oxygen demand (COD)/SO{sub 4}{sup 2−} ratios (1, 2, 4 and 8) were introduced into four identical PBR where process stability was found within 3 weeks of operation. SO{sub 4}{sup 2−} removal was proportional to COD/SO{sub 4}{sup 2−} ratios up to 4 at which maximum sulfate removal (99%) was achieved at a rate of 607 mg/d. The value of COD {sub consumption}:SO{sub 4}{sup 2−}{sub removal} was much higher at ratio 4 than 8 whereas, ratio 2 was preferred over all. Net effluent acetate concentration profile and total microbial population attached to the reactor matrices were corresponding to COD/SO{sub 4}{sup 2−} ratio as 4 > 8 > 2 >> 1. Sulfate reducing bacteria (SRB) population was found to be inversely proportional to COD/SO{sub 4}{sup 2−} ratio in which acetate oxidizing SRB and fermentative bacteria were the dominant.

  5. Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2007-04-26

    The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  6. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station, Waste Site Reclassification Form 2005-033

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Carlson

    2006-05-09

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  7. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water

    Science.gov (United States)

    Wu, Zhi-Chuan; Zhang, Yong; Tao, Ting-Xian; Zhang, Lifeng; Fong, Hao

    2010-11-01

    Herein we report that a new photo-catalyst of silver nanoparticles attached on the surface of amidoxime fibers was developed and evaluated. The nanoparticles had different sizes from tens to hundreds of nanometers and varied shapes of cube, plate, and sphere; and there were coordination interactions between the nanoparticles and the amidoxime fibers. The developed photo-catalyst demonstrated high activities for degradation of an organic dye of methyl orange, particularly under sunlight; and the catalyst could be re-activated for several times by simple tetrahydrofuran treatment. The results also suggested that the silver nanoparticles initiated and/or mediated the photo-oxidation reaction of methyl orange through localized surface plasmon resonance under sunlight, and the photo-catalytic activities were primarily determined by sizes and/or surface-to-mass ratios instead of shapes of the silver nanoparticles.

  8. Lignin degradation in waste water of paper mill industry by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Santos, W. de los; Poznyak, T.; Chairez, I.

    2009-07-01

    The objective of the present work is to investigate the lignin degradation in residual water of the paper industry by an outline treatment that includes two stages: chemical coagulation and simple onization. In the previous coagulation we use sulfuric acid as coagulant to promote the sulfo lignin formation, which is broadly used in the industry of additives and of cement. Two different coagulations were made, taking the pH value as parameter of the same one; those were pH 1 with a concentration of acid of 2.25% vol. and pH 3 with a concentration of acid of 1.0125% vol. In this first treatment stage, we achieved to reduce the initial chemical oxygen demand (COD) in 77%, (up 7000 to 1599 mg/L). (Author)

  9. Evaluation on radioactive waste disposal amount of Kori Unit 1 reactor vessel considering cutting and packaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Jong; Lee, Seong Cheol; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-06-15

    Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation.

  10. Remaining Sites Verification Package for the 128-F-2, 100-F Burning Pit Waste Site, Waste Site Reclassification Form 2008-031

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-12-01

    The 128-F-2 waste site consisted of multiple burn and debris filled pits located directly east of the 107-F Retention Basin and approximately 30.5 m east of the northeast corner of the 100-F Area perimeter road that runs along the riverbank. The burn pits were used for incinerating nonradioactive, combustible materials from 1945 to 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  11. Chemical composition, anti-oxidative activity and in vitro dry matter degradability of Kinnow mandarin fruit waste

    Directory of Open Access Journals (Sweden)

    Ravleen Kour

    2014-10-01

    Full Text Available Aim: Fruit processing and consumption yield a significant amount of by-products as waste, which can be used as potential nutrient suppliers for livestock. “Kinnow” (Citrus nobilis Lour x Citrus deliciosa Tenora is one of the most important citrus fruit crops of North Indian States. Its residues are rich in carbohydrates but poor in protein and account for approximately 55-60% of the raw weight of the fruit. Present study assessed the chemical composition and anti-oxidative activity of Kinnow mandarin fruit waste (KMW and scrutinized the impact of dietary incorporation of variable levels of KMW on in vitro dry matter digestibility (IVDMD. Materials and Methods: Sun dried and ground KMW was analyzed for proximate composition, fibre fractions and calcium and phosphorus content. Antioxidant potential of KMW as total phenolic count and 1-diphenyl-2-picrylhydrazyl (DPPH scavenging activity was assayed in an alcoholic extract of KMW. The effect of inclusion of KMW at variable levels (0-40% in the isonitrogenous concentrate mixtures on in vitro degradability of composite feed (concentrate mixture:Wheat straw; 40:60 was also carried out. Results: KMW after sun-drying contained 92.05% dry matter. The crude protein content of 7.60% indicates it being marginal in protein content, whereas nitrogen free extract content of 73.69% suggests that it is primarily a carbonaceous feedstuff. This observation was also supported by low neutral detergent fiber and acid detergent fiber content of 26.35% and 19.50%, respectively. High calcium content (0.92% vis-à-vis low phosphorus content (0.08%, resulted in wide Ca:P ratio (11.5 in KMW. High anti-oxidative potential of KMW is indicated by total phenolic content values of 17.1±1.04 mg gallic acid equivalents/g and DPPH free radicle scavenging activity 96.2 μg/ml (effective concentration 50. Mean IVDMD% of all the composite rations was found to be comparable (p>0.05 irrespective of the level of KMW inclusion

  12. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gin, Stephane [CEA Marcoule, DTCD SECM, Bagnols-sur-Ceze (France); Inagaki, Yaohiro [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoda (Japan)

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  13. STARCH/PULP-FIBER BASED PACKAGING FOAMS AND CAST FILMS CONTAINING ALASKAN FISH BY-PRODUCTS (WASTE

    Directory of Open Access Journals (Sweden)

    Syed H. Imam

    2008-08-01

    Full Text Available Baked starch/pulp foams were prepared from formulations containing zero to 25 weight percent of processed Alaskan fish by-products that consisted mostly of salmon heads, pollock heads, and pollock frames (bones and associated remains produced in the filleting operation. Fish by-products thermoformed well along with starch and pulp fiber, and the foam product (panels exhibited useful mechanical properties. Foams with all three fish by-products, ranging between 10 and 15 wt%, showed the highest flexural modulus (500-770 Mpa. Above 20% fiber content, the modulus dropped considerably in all foam samples. Foam panels with pollock frames had the highest flexural modulus, at about 15% fiber content (770 Mpa. Foams with salmon heads registered the lowest modulus, at 25% concentration. Attempts were also made to cast starch-glycerol-poly (vinyl alcohol films containing 25% fish by-product (salmon heads. These films showed a tensile strength of 15 Mpa and elongation at break of 78.2%. All foams containing fish by-product degraded well in compost at ambient temperature (24oC, loosing roughly between 75-80% of their weight within 7 weeks. The films degraded at a much higher rate initially. When left in water, foams prepared without fish by-product absorbed water much more quickly and deteriorated faster, whereas, water absorption in foams with fish by-product was initially delayed and/or slowed for about 24 h. After this period, water absorption was rapid.

  14. Remaining Sites Verification Package for the 126-F-2, 183-F Clearwells, Waste Site Reclassification Form 2006-017

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Carlson

    2006-05-04

    The 126-F-2 site is the clearwell facility formerly used as part of the reactor cooling water treatment at the 183-F facility. During demolition operations in the 1970s, potentially contaminated debris was disposed in the eastern clearwell structure. The site has been remediated by removing all debris in the clearwell structure to the Environmental Restoration Disposal Facility. The results of radiological surveys and visual inspection of the remediated clearwell structure show neither residual contamination nor the potential for contaminant migration beyond the clearwell boundaries. The results of verification sampling at the remediation waste staging area demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  15. Application of contact glow discharge electrolysis method for degradation of batik dye waste Remazol Red by the addition of Fe2+ ion

    Science.gov (United States)

    Saksono, Nelson; Puspita, Indah; Sukreni, Tulus

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) has been shown to degrade much weight organic compounds such as dyes because the production of hydroxil radical (•OH) is excess. This research aims to degrade batik dye waste Remazol Red, using CGDE method with the addition of Fe2+ ion. The addition of iron salt compounds has proven to increase process efficiency. Dye degradation is known by measure its absorbances with Spectrophotometer UV-Vis. The result of study showed that percentage degradation was 99.92% in 20 minutes which obtained by using Na2SO4 0.01 M, with addition FeSO4 0,1 gram, applied voltage 860 volt, and 1 wolfram anode 5 mm depth.

  16. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature...... on packaging design and processing fluency, our aim is to define and conceptualise packaging fluency. We stress the important role of packaging fluency since it is anticipated that a fluent package would influence the evaluative judgments for a product. We conclude this paper by setting the research agenda...

  17. Isolation and characterization of feather degrading enzymes from Bacillus megaterium SN1 isolated from Ghazipur poultry waste site.

    Science.gov (United States)

    Agrahari, S; Wadhwa, N

    2012-01-01

    The SN1 strain of Bacillus megaterium, isolated from soil of Ghazipur poultry waste site (India) produced extracellular caseinolytic and keratinolytic enzymes in basal media at 30 degrees C, 160 rpm in the presence of 10% feather. Feathers were completely degraded after 72 h of incubation. The caesinolytic enzyme was separated from the basal media following ammonium sulphate precipitation and ion exchange chromatography. We report 29.3-fold purification of protease after Q Sepharose chromatography. The molecular weight of this enzyme was estimated to be 30 kDa as shown by SDS-PAGE and zymography studies. Protease activity increased by 2-fold in presence of 10 mM Mn2+ whereas Ba2+ and Hg2+ inhibited it. Ratio of milk clotting activity to caseinolytic was found to be 520.8 activity for the 30-60% ammonium sulphate fraction in presence of Mn2+ ion suggesting potential application in dairy industry. Keratinase was purified to 655.64 fold with specific activity of 544.7 U/mg protein and 12.4% recovery. We adopted the strategy of isolating the keratinolytic and caesinolytic producing microorganism by its selective growing in enriched media and found that feather protein can be metabolized for production of animal feed protein concentrates.

  18. Study of the degradation of liquid-organic radioactive wastes by electrochemical methods; Estudio de la degradacion de desechos liquidos-organicos radiactivos mediante metodos electroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, J. I.

    2015-07-01

    In this study degradation studies were performed on blank samples, in which two electrochemical cells with different electrodes were used, the first is constituted by mesh electrodes Ti/Ir-Ta/Ti and the second by rod electrodes Ti/Ddb, using as reference an electrolytic medium of scintillation liquid and scintillation liquid more water, applying different potentials ranging from 1 to 25 V. After obtaining the benchmarks, the treatment was applied to samples containing organic liquid radioactive waste, in this case a short half-life radioisotope as Sulfur-35, the degradation characterization of organic compounds was performed in infrared spectrometry. (Author)

  19. Remaining Sites Verification Package for the 100-F-50 Stormwater Runoff Culvert, Waste Site Reclassification Form 2007-001

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-04-15

    The 100-F-50 waste site, part of the 100-FR-2 Operable Unit, is a steel stormwater runoff culvert that runs between two railroad grades in the south-central portion of the 100-F Area. The culvert exiting the west side of the railroad grade is mostly encased in concrete and surrounded by a concrete stormwater collection depression partially filled with soil and vegetation. The drain pipe exiting the east side of the railroad grade embankment is partially filled with soil and rocks. The 100-F-50 stormwater diversion culvert confirmatory sampling results support a reclassification of this site to no action. The current site conditions achieve the remedial action objectives and corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  20. Remaining Sites Verification Package for the 100-F-50 Stormwater Runoff Culvert, Waste Site Reclassification Form 2007-001

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-04-15

    The 100-F-50 waste site, part of the 100-FR-2 Operable Unit, is a steel stormwater runoff culvert that runs between two railroad grades in the south-central portion of the 100-F Area. The culvert exiting the west side of the railroad grade is mostly encased in concrete and surrounded by a concrete stormwater collection depression partially filled with soil and vegetation. The drain pipe exiting the east side of the railroad grade embankment is partially filled with soil and rocks. The 100-F-50 stormwater diversion culvert confirmatory sampling results support a reclassification of this site to no action. The current site conditions achieve the remedial action objectives and corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  1. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature on pac...

  2. Microelectronic packaging

    CERN Document Server

    Datta, M; Schultze, J Walter

    2004-01-01

    Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization.Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impac

  3. Borehole Data Package for 1998 Wells Installed at Single-Shell Tank Waste Management Area TX-TY

    Energy Technology Data Exchange (ETDEWEB)

    DG Horton; FN Hodges

    1999-03-23

    Four new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) TX-TY during August through November of 1998 in fi,dfillment of Tri-Party Agreement (Eoology 1996) milestone M-24-38. The wells are 299-W1O-26, 299-W14-13, 299-W14-14, and 299-W15-40. Well 299-W1O-26 is located outside the east fence of the TY tank farm and replaces downgradient well299-W1O-18; well 299-W14-13 is located along the east fence near the northeast corner of the TX tank f- and replaces downgradient well 299-W14-12; well 299-W14-14 is located outside the east fence in the south ha.lfof the TX tank fiirm and is anew downgradient well; and well 299-W15-40 is located on the west side of the TX tank farm and is anew upgradient well. The locations of all wells in the monitoring network are shown on Figure 1. The groundwater monitoring plan for WMA TX-TY (Caggiano and Goodwin 1991) describes the hydrogeology of the 200 West Area and WMA TX-TY. An Interim Change Notice to the groundwater monitoring plan provides justification for the new wells. The new wells were constructed to the speciii- cations and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303. This document compiles &fiormation on the drilling and construction, well development pump instal- latio~ groundwater sampling, and sediment testing applicable to wells 299-W1O-26, 299-W14-13, 299-W14-14, and 299-W15-40. Appendix A contains the geologist's log, the Well Construction Sum- mary Repo~ and Well Summary Sheet (as-built diagram); Appendix B contains results of laboratory analyses of particle size distribution, p~ conductivity, calcium carbonate conten~ major cation and anion concentrations from 1:1 water: sediment extracts, and moisture conten~ Appendix C contains geophysical logs; and Appendix D contains the analytical results from groundwater samples obtained during well construction. Aqutier tests (slug

  4. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  5. Degradation Modes of Alloy 22 in Yucca Mountain Repository Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, F; Gordon, G M; Mon, K G; Rebak, R B

    2005-11-05

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  6. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  7. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fangbai [Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650 (China); Jiang, Longfei [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Yan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation.

  8. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2016-01-01

    Full Text Available Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE and plastic film waste constituting the following percentages of polyolefin polymers (wt.%: LLDPE (46%, low density polyethylene (LDPE, 51%, high density polyethylene (HDPE, 1%, and polypropylene (PP, 2%. Compounded blends were evaluated for their mechanical and physical (optical properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (% and light transmission (% decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers.

  9. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Zhi, E-mail: cdz@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Sun, Yi-Ming; Han, Li-Mei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen, Jing [College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004 (China); Ye, Jie-Xu; Chen, Jian-Meng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2016-01-25

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h{sup −1}; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S{sup 0}, SO{sub 4}{sup 2−}, and CO{sub 2}. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m{sup 3} PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m{sup 3} isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  10. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation.

    Science.gov (United States)

    Miran, Waheed; Nawaz, Mohsin; Kadam, Avinash; Shin, Seolhye; Heo, Jun; Jang, Jiseon; Lee, Dae Sung

    2015-09-01

    The expansion in knowledge of the microbial community structure can play a vital role in the electrochemical features and operation of microbial fuel cells (MFCs). In this study, bacterial community composition in a dual chamber MFC fed with brewery waste was investigated for simultaneous electricity generation and azo dye degradation. A stable voltage was generated with a maximum power density of 305 and 269 mW m(-2) for brewery waste alone (2000 mg L(-1)) and after the azo dye (200 mg L(-1)) addition, respectively. Azo dye degradation was confirmed by Fourier transform infrared spectroscopy (FT-IR) as peak corresponding to -N=N- (azo) bond disappeared in the dye metabolites. Microbial communities attached to the anode were analyzed by high-throughput 454 pyrosequencing of the 16S rRNA gene. Microbial community composition analysis revealed that Proteobacteria (67.3 %), Betaproteobacteria (30.8 %), and Desulfovibrio (18.3 %) were the most dominant communities at phylum, class, and genus level, respectively. Among the classified genera, Desulfovibrio most likely plays a major role in electron transfer to the anode since its outer membrane contains c-type cytochromes. At the genus level, 62.3 % of all sequences belonged to the unclassified category indicating a high level of diversity of microbial groups in MFCs fed with brewery waste and azo dye. • Azo dye degradation and stable bioelectricity generation was achieved in the MFC. • Anodic biofilm was analyzed by high-throughput pyrosequencing of the 16S rRNA gene. • Desulfovibrio (18.3 %) was the dominant genus in the classified genera. • Of the genus, 62.3 % were unclassified, thereby indicating highly diverse microbes. Graphical Abstract A schematic diagram of a dual chamber microbial fuel cell for azo dye degradation and current generation (with microbial communities at anode electrode).

  11. Study on Biological Degradation of Industrial Organic Waste Residue with surface Soil%土壤有机废渣的生物降解研究

    Institute of Scientific and Technical Information of China (English)

    齐向阳; 周波

    2011-01-01

    [ Objective ] The study aimed to discuss the influencing factors and effective measures for the biological degradation of chemicalindustrial waste residue with the soil microbial. [ Method ] In testing area the soil samples were taken from the surface soil in 20cm with quartering method and the burning weightlessness of unit quality was detected resp., and then the different waste residue was applied in the each experimental plot and the their burning weightlessness were determined after taking the samples in the interval of 5 d, thus the degradation data of organic waste residue in each block of soil was acquired. [ Result ] The biological degradation of organic waste residue with the soil microbial was effected by the waste residue property and surface area, soil oxygenation content, soil pH, soil moisture content and soil temperatures. The aerobic degradation of organic matter was much faster and fuller than the anaerobic degradation. As the soil pH affected the microbial activities, it should be maintained at 7~9. Controlling the soil moisture content of 50%~60% was the best condition of microbial activity. When the soil temperature was below zero, the biological degradation stopped basically. [ Conclusion ] In the actual application of industrially processing the organic waste residue, the some soil texture and some kinds of wasted residue still needed for further research so as to control the biodegradation rate and degree and its management measures. texture.%[目的]探讨土壤微生物降解化工废渣的影响因素及有效措施.[方法]在试验区用四分法在地表20cm内取土壤样品,分别测出单位质量的燃烧失重,再向每块试验区施入不同的废渣,每隔5d取样后,测定其燃烧失重,获得各块土壤有机废渣随时间的降解数据.[结果]土壤有机废渣的生物降解受废渣性质、废渣表面积、土壤含氧量、土壤pH、含湿量和土壤温度的影响.有机物的

  12. MEMS packaging

    CERN Document Server

    Hsu , Tai-Ran

    2004-01-01

    MEMS Packaging discusses the prevalent practices and enabling techniques in assembly, packaging and testing of microelectromechanical systems (MEMS). The entire spectrum of assembly, packaging and testing of MEMS and microsystems, from essential enabling technologies to applications in key industries of life sciences, telecommunications and aerospace engineering is covered. Other topics included are bonding and sealing of microcomponents, process flow of MEMS and microsystems packaging, automated microassembly, and testing and design for testing.The Institution of Engineering and Technology is

  13. Underwater behaviour of bitumen coated radioactive wastes: experimental validation of the Colonbo degradation model; Comportement sous eau des dechets radioactifs bitumes: validation experimentale du modele de degradation Colonbo

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, B

    2004-03-01

    In the release scenario considered for geologic repository, water is thought to be the main aggressive agent with regards to bituminized radioactive waste (composed in general of 60 weight % of bitumen, 40% of soluble/insoluble salts and a few ppm of radionuclides). Since liquid water can diffuse in pure bitumen, leaching of bituminized waste results in the dissolution of the most soluble salts and leads to the development of a more or less concentrated saline solution-filled pore structure (called permeable layer). In consequence of the generation of a porous layer in the bituminized waste, leaching of salts and radionuclides can then take place. Research performed at the Atomic Energy Commission (CEA) aims therefore at understanding the consequences of ground-water immersion on the transport properties and radionuclides leaching of bituminized waste materials. To this end, a constitutive model (called COLONBO) which describes mathematically the leaching of bituminized waste has been developed. The COLONBO model is based on the following assumptions: 1. Water and dissolved salts migrate in the permeable layer according to Fick's first law. The diffusion of water and salts are quantified by effective diffusion coefficients which are unknown. 2. The mechanical properties of the bitumen matrix are not considered during leaching (free swelling). Up to now, the COLONBO model has been used only to model experimental water uptake and salt leach curves, leading (theoretical) estimates of the effective diffusion coefficients of water and salts in the permeable layer. The aim of this work was to validate experimentally the numerical results obtained with the COLONBO model. First, the correspondence between experimental and simulated water uptake and salt leach rates obtained on various bituminized waste materials is checked, leading estimates of the effective diffusion coefficients of water and salts in the permeable layer. Second, the evolution of the thickness and of

  14. The potential of glycerol in freezing preservation of turbine oil-degrading bacterial consortium and the ability of the revised consortium to degrade petroleum wastes

    OpenAIRE

    Kurachi, Kumiko; Hosokawa, Reia; Takahashi, Marina; Okuyama, Hidetoshi

    2014-01-01

    The turbine oil (TuO)-degrading bacterial consortium Tank-2 (original Tank-2) was preserved as a glycerol stock at -80 degrees C from 2009 to 2012. Storage methods have been unavailable so far for any TuO-degrading bacterial consortia or isolates. To evaluate the usefulness of glycerol stock, the original Tank-2 consortium frozen in glycerol at -80 degrees C was thawed and then revived by repeated culture in mineral salts medium (MSM) containing 0.5% (w/w) TuO (revived Tank-2). The revived Ta...

  15. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  16. Radiological characterization of the standard package of compacted wastes - CSD{sub C}; Caracterisation radiologique du colis standard de dechets compactes - CSD{sub C}

    Energy Technology Data Exchange (ETDEWEB)

    Gain, T. [Cogema, Etablissement de la Hague, 50 - Beaumont Hague (France)

    2001-07-01

    In order to reduce the volume of radioactive waste, Cogema has studied the compacting of waste coming from fuel structure, zirconium claddings, but on these wastes there is no knowledge about irradiation characteristics. A large program of of qualification has been made relative to every element of the system: measurement cells, standardization, configuration, algorithm and a phase of active qualification. (N.C.)

  17. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil.

    Science.gov (United States)

    Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs).

  18. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS.

    Science.gov (United States)

    Alin, Jonas; Hakkarainen, Minna

    2011-05-25

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  19. Bioplastics and food packaging: A review

    Directory of Open Access Journals (Sweden)

    Nafisa Jabeen

    2015-12-01

    Full Text Available Food packaging as a vital part of the subject of food technology is involved with protection and preservation of all types of foods. Due to economical abundance, petrochemical plastics have been largely used as packaging material due to their desirable properties of good barrier properties towards O2, aroma compounds, tensile strength and tear strength. Meanwhile, they have many disadvantages like very low water vapour transmission rate and the major disadvantage is that they are non-biodegradable and result in environmental pollution. Keeping in view the non-renewable nature and waste disposal problem of petroleum, newer concept of use of bioplastics came into existence. Bioplastics of renewable origin are compostable or degradable by the enzymatic action of micro-organisms. Generally biodegradable polymers get hydrolysed into CO2, CH4, inorganic compounds or biomass. The use of bio-origin materials obtained through microbial fermentations, starch and cellulose has led to their tremendous innovative uses in food packaging in the last few years.

  20. Examination of SR101 shipping packages

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Four SR101 shipping packages were removed from service and provided for disassembly and examination of the internal fiberboard assemblies. These packages were 20 years old, and had experienced varying levels of degradation. Two of the packages were successfully disassembled and fiberboard samples were removed from these packages and tested. Mechanical and thermal property values are generally comparable to or higher than baseline values measured on fiberboard from 9975 packages, which differs primarily in the specified density range. While baseline data for the SR101 material is not available, this comparison with 9975 material suggests that the material properties of the SR101 fiberboard have not significantly degraded.

  1. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  2. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  3. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective.

    Science.gov (United States)

    Bernstad, A; la Cour Jansen, J

    2012-05-01

    Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4kg NO(3)(-)eq/ton food waste), acidification potential (-0.4 to -1.0kg SO(2)(-)eq/ton food waste), global warming potential (-790 to -960kg CO(2)(-)eq/ton food waste) and primary energy use (-1.7 to -3.6GJ/ton food waste). Collection with vacuum system results in the largest net avoidence of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidence of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  4. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  5. RH Packaging Program Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to

  6. Leachate from Municipal Waste Landfill and Its Natural Degradation-A Case Study of Zubří, Zlín Region.

    Science.gov (United States)

    Václavík, Vojtěch; Ondrašiková, Ivana; Dvorský, Tomáš; Černochová, Kateřina

    2016-09-01

    This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality.

  7. Microbial degradation of chlorinated compounds. Application of specialized bacteria in the treatment of contaminated soil and waste water.

    NARCIS (Netherlands)

    Oldenhuis, Roelof

    1992-01-01

    The development of (aerobic) treatment technologies for polluted environments and waste streams will require an understanding of the microbial potential and the ecophysiology of the most suitable organisms. Therefore, we have studied physiological pathways and some kinetic aspects of the

  8. Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia.

    Science.gov (United States)

    Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa

    2016-05-01

    Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar.

  9. Prototype of thermal degradation for radioactive wastes of low and intermediate level; Prototipo de degradacion termica para desechos radiactivos de nivel bajo e intermedio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz A, L.V.; Pacheco S, J.O.; Pacheco P, M.; Monroy G, F.; Emeterio H, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: lauradiazarch@yahoo.com.mx

    2005-07-01

    At the present time, the scientific, academic, industrial and technological activities, generate great quantity of radioactive wastes of low and intermediate level (DRNBI). For to assure an appropriate final disposal of these, it is intended their treatment and vitrification by means of thermal plasma. This alternative offers multiple advantages in an only process: elevated energy density (105W/cm{sup 3}), high enthalpy (1400 kJ/mol), elevated chemical reactivity, quick quenching (106K/s) and operation temperatures of 4000 to 15000K; this allows the treatment of a great diversity of waste. Those reactors are compact and they work to atmospheric pressure and reduced thermal inertia. This technology allows to degrade DRNBI and to contain them in a vitreous matrix by means of a system made up of a reactor, canyon of plasma, of monitoring, of washing of gases and of control. Besides the design and general characteristics of the Prototype of Thermal Degradation of DRNBI, they are reported in this work the advances achieved in the selection of the ceramic material for the vitrification. Their characterization was carried out by means of SEM and XRD. With the preliminary results it can discern that the material but appropriate to be used as vitreous matrix is a ceramic clay. With the development of the proposed technology and the material for the vitreous matrix, it will be to treat DRNBI. (Author)

  10. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste.

    Science.gov (United States)

    Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L

    2004-05-01

    A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.

  11. Isolation and characterization of dimethyl sulfide (DMS)-degrading bacteria from soil and biofilter treating waste gas containing DMS from the laboratory and pulp and paper industry.

    Science.gov (United States)

    Giri, Balendu Shekher; Juwarkar, Asha A; Satpute, D B; Mudliar, S N; Pandey, R A

    2012-07-01

    Dimethyl sulfide (DMS) is one of the sulfurous pollutants present in the waste gas generated from the pulp and paper industry. DMS has environmental health implications; therefore, it is necessary to treat the waste gas containing DMS prior to discharge into the environment. A bench-scale biofilter was operated in the laboratory as well as in a pulp and paper industry for the treatment of DMS. Both the biofilters were packed with pre-sterilized wood chips and cow dung/compost of the same origin seeded with biomass developed from garden soil enriched with DMS. The biofilters were operated for the generation of process parameters, and the potential microorganisms isolated from both the biofilters have been purified and characterized for degradation of DMS. Further, these cultures were purified on a basal medium using DMS as a sole carbon source for the growth. Further, the purif