WorldWideScience

Sample records for degraded viewing conditions

  1. Material degradation - a nuclear utility's view

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    Degradation of nuclear plant materials has been responsible for major costs and unit outage time. As such, nuclear utilities are important end users of the information produced by R and D on material degradation. This plenary describes the significance of material degradation for the nuclear utilities, and how utilities use information about material degradation in their short, medium and long term planning activities. Utilities invest in R and D programs to assist them in their business objective of operating safely, reliably and cost competitively. Material degradation impacts all three of these business drivers. Utilities make decisions on life cycle planning, unit refurbishment and 'new build' projects on the basis of their understanding of the behaviour of a variety of materials in a broad range of environments. The R and D being carried out today will determine the future business success of the nuclear utilities. The R and D program needs to be broadly based to include a range of materials, environments and time-frames, particularly any new materials proposed for use in new units. The R and D community needs to help the utility managers make choices that will result in an optimized materials R and D program

  2. Modelling sulfamethoxazole degradation under different redox conditions

    Science.gov (United States)

    Sanchez-Vila, X.; Rodriguez-Escales, P.

    2015-12-01

    Sulfamethoxazole (SMX) is a low adsorptive, polar, sulfonamide antibiotic, widely present in aquatic environments. Degradation of SMX in subsurface porous media is spatially and temporally variable, depending on various environmental factors such as in situ redox potential, availability of nutrients, local soil characteristics, and temperature. It has been reported that SMX is better degraded under anoxic conditions and by co-metabolism processes. In this work, we first develop a conceptual model of degradation of SMX under different redox conditions (denitrification and iron reducing conditions), and second, we construct a mathematical model that allows reproducing different experiments of SMX degradation reported in the literature. The conceptual model focuses on the molecular behavior and contemplates the formation of different metabolites. The model was validated using the experimental data from Barbieri et al. (2012) and Mohatt et al. (2011). It adequately reproduces the reversible degradation of SMX under the presence of nitrite as an intermediate product of denitrification. In those experiments degradation was mediated by the transient formation of a diazonium cation, which was considered responsible of the substitution of the amine radical by a nitro radical, forming the 4-nitro-SMX. The formation of this metabolite is a reversible process, so that once the concentration of nitrite was back to zero due to further advancement of denitrification, the concentration of SMX was fully recovered. The forward reaction, formation of 4-nitro SMX, was modeled considering a kinetic of second order, whereas the backward reaction, dissociation of 4-nitro-SMX back to the original compound, could be modeled with a first order degradation reaction. Regarding the iron conditions, SMX was degraded due to the oxidation of iron (Fe2+), which was previously oxidized from goethite due to the degradation of a pool of labile organic carbon. As the oxidation of iron occurred on the

  3. Magnesium degradation under physiological conditions - Best practice.

    Science.gov (United States)

    Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank

    2018-06-01

    This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  4. Method of radiation degradation of PTFE under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com

    2004-10-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  5. Method of radiation degradation of PTFE under vacuum conditions

    Science.gov (United States)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  6. Aggradation, Degradation, and Water Quality Conditions

    National Research Council Canada - National Science Library

    1993-01-01

    The purpose of this study is to compile a record of pertinent data and information relative to aggradation, degradation, and water quality within the system of six Missouri River mainstem reservoirs...

  7. Enrofloxacin degradation in broiler chicken manure under various laboratory conditions.

    Science.gov (United States)

    Slana, Marko; Sollner-Dolenc, Marija

    2016-03-01

    The rate of degradation of enrofloxacin in broiler chicken manure has been characterized in the laboratory according to the CVMP guideline on determining the fate of veterinary medicinal products in manure. Degradation was followed in a flow-through system under aerobic and anaerobic conditions, in the dark and in the presence of light. The rate of degradation of enrofloxacin and the formation of its degradation products are dependent on laboratory conditions. A rapid degradation of enrofloxacin in the dark was noticed, where a shorter degradation half-life under aerobic (DT50 = 59.1 days), comparing to anaerobic conditions (DT50 = 88.9 days), was determined. The presence of light slowed down the enrofloxacin degradation half-life, which was significantly shorter under aerobic (DT50 = 115.0 days), comparing to anaerobic conditions (DT50 = 190.8 days). Desethylene-enrofoxacin was the only degradation product formed, its concentrations ranged from 2.5 to 14.9 %. The concentration of the degradation product was approximately 2.5-fold higher under aerobic conditions. Enrofloxacin degradation in sterile manure incubated under sterile conditions was marginal comparing to non-sterile conditions; after 120 days of incubation, approximately 80 % of enrofloxacin was still present in manure and only 1 % of desethylene-enrofloxacin was formed. The present work demonstrates that enrofloxacin degradation in chicken manure is relatively fast when incubated in the dark under aerobic conditions which is the recommended incubation system for chicken manure according to CVMP guideline.

  8. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  9. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  10. Organic chemical degradation by remote study of the redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  11. Screening of an oil-degrading strain by N+ implantation and the oil degradation conditions

    International Nuclear Information System (INIS)

    Yan Yajuan; Li Zongwei; Qin Guangyong; Liu Jianling

    2008-01-01

    A strain DC-3-2-50 was obtained through N + implanting into Yarrowia lipolytica DC-3-2. An increase of 11.09% in the oil-degradation rate was obtained. The stain has good genetic stability after 10 times of subculture. The culturing condition of DC-3-2-50 was studied. The optimal culture conditions were as follow: initial pH value, 9.0; inoculum size, 3%; temperature, 25-28 degree C; dissolved oxygen, 180-200 rpm; and carbon nutriments soybean salad oil. The off-degradation rate can be up to 87.7%. (authors)

  12. Landform Degradation and Slope Processes on Io: The Galileo View

    Science.gov (United States)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; hide

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  13. Magnesium degradation under physiological conditions – Best practice

    Directory of Open Access Journals (Sweden)

    Jorge Gonzalez

    2018-06-01

    Full Text Available This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  14. Degradation of Poly (lactic acid under Simulated Landfill Conditions

    Directory of Open Access Journals (Sweden)

    Chomnutcha Boonmee

    2017-03-01

    Full Text Available In this study, the physical and chemical properties change of poly(lactic acid after burying in the mixture of soil and sludge under thermophilic (61 °C oxygen limited conditions were investigated using various analytical techniques. The environmental factors under these setting conditions and microbial activities accelerated the degradation process of PLA. Under tested conditions, PLA loss their weight about 90% at the burying time of 90 days. During the degradation process, PLA samples were continuously broken to small fragile fragments and showed the size less than 1 mm at the end of degradation test. Change of the surface morphology change was revealed by scanning electron microscopy (SEM. Many pores, cracks and irregular roughness were presented on the PLA surface. Thermal decomposition was decreased from 387.8 to 289.2 °C. The percentage of carbon content in molecular structure decreased from 49.46% to 45.42%. In addition, the Fourier transformed infrared spectroscopy (FTIR revealed the change of ester bonds. This study can be used for developing PLA waste management process.

  15. Degradation of Zearalenone by Essential Oils under In vitro Conditions

    Science.gov (United States)

    Perczak, Adam; Juś, Krzysztof; Marchwińska, Katarzyna; Gwiazdowska, Daniela; Waśkiewicz, Agnieszka; Goliński, Piotr

    2016-01-01

    Essential oils are volatile compounds, extracted from plants, which have a strong odor. These compounds are known for their antibacterial and antifungal properties. However, data concerning degradation of mycotoxins by these metabolites are very limited. The aim of the present study was to investigate the effect of essential oils (cedarwood, cinnamon leaf, cinnamon bark, white grapefruit, pink grapefruit, lemon, eucalyptus, palmarosa, mint, thymic, and rosemary) on zearalenone (ZEA) reduction under various in vitro conditions, including the influence of temperature, pH, incubation time and mycotoxin and essential oil concentrations. The degree of ZEA reduction was determined by HPLC method. It was found that the kind of essential oil influences the effectiveness of toxin level reduction, the highest being observed for lemon, grapefruit, eucalyptus and palmarosa oils, while lavender, thymic and rosemary oils did not degrade the toxin. In addition, the decrease in ZEA content was temperature, pH as well as toxin and essential oil concentration dependent. Generally, higher reduction was observed at higher temperature in a wide range of pH, with clear evidence that the degradation rate increased gradually with time. In some combinations (e.g., palmarosa oil at pH 6 and 4 or 20°C) a toxin degradation rate higher than 99% was observed. It was concluded that some of the tested essential oils may be effective in detoxification of ZEA. We suggested that essential oils should be recognized as an interesting and effective means of ZEA decontamination and/or detoxification. PMID:27563298

  16. Effects of Different Viewing Conditions on Radiographic Interpretation

    Directory of Open Access Journals (Sweden)

    Mahkameh Moshfeghi

    2016-08-01

    Full Text Available Objectives: Optimum viewing conditions facilitate identification of radiographic details and decrease the need for retakes, patients’ costs and radiation dose. This study sought to evaluate the effects of different viewing conditions on radiographic interpretation.Materials and Methods: This diagnostic study was performed by evaluating radiograph of a 7mm-thick aluminum block, in which 10 holes with 2mm diameters were randomly drilled with depths ranging from 0.05 mm to 0.50mm. The radiograph was viewed by four oral radiologists independently under four viewing conditions, including a white light viewing light box in a lit room, yellow light viewing light box in a lit room, white light viewing light box in a dark room and yellow light viewing light box in a dark room. Number of circular shadows observed on the film was recorded. The data were analyzed by two-way ANOVA.Results: The mean number of detected circular shadows was 6.75, 7.5, 7.25 and 7.75 in white light viewing light box in a lit room, white light viewing light box in a dark room, yellow light viewing light box in a lit room and yellow light viewing light box in a dark room, respectively. Although the surrounding illumination had statistically significant effect on the radiographic details (P≤0.03, the light color of the viewing light box had no significant effect on visibility of the radiographic details.Conclusion: White and yellow light of the viewing light box had no significant effect on visibility of the radiographic details but more information was obtained in a dark room.

  17. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  18. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  19. Renewable Aromatics from the Degradation of Polystyrene under Mild Conditions

    KAUST Repository

    Al Jabri, Nouf M.

    2017-08-01

    Polystyrene (PS) is one of the most important polymers in the plastic sector due to its inexpensive cost as well as many preferred properties. Its international market is expected to achieve $28.2 billion by 2019. Although PS has a high calorific value of 87 GJ tonne-1, there is no a practical method to manage its waste but landfill. As a result, the PS debris in the oceans has reached 70% of the total plastic debris. This issue is considered as the main economical and environmental drivers of converting polystyrene waste into renewable chemical feedstocks. The aim of this work is to develop a catalyst for converting PS into renewable chemicals under mild conditions. We introduce FeCu/Alumina with excellent catalytic activity to fully degrade polystyrene with 66% liquid yield at 250 °C. The GC/MS confirmed that the primary products are in the gasoline range. Next, we present the bimetallic FeCo/Alumina and successfully we have obtained 100% PS conversion and 90% liquid yield with maintaining the products selectivity. Later, the tri-metallic FeCuCo/Alumina was synthesized and showed 100% PS conversion and 91% liquid yield. Surprisingly, ethylbenzene was the major product in which 80 wt. % was achieved with excellent reproducibility. Furthermore, the real waste Styrofoam was thermally and catalytically degraded at 250 °C. Interestingly, a high styrene content of 78 wt. % was recovered after 30 minutes of the reaction under mild conditions. Keeping in mind that a good balance between acidity and basicity is required to convert PS into aromatic under mild reaction conditions catalytically. Finally, the performance of the catalysts was compared to literature reports and showed novel liquid yields. In conclusion, we have synthesized cheap, easy to scale up, and efficient catalysts to fully degrade PS into high liquid yields of aromatics with excellent selectivity.

  20. Evaluation of cable aging degradation based on plant operating condition

    International Nuclear Information System (INIS)

    Kim, Jong-Seog

    2005-01-01

    Extending the lifetime of nuclear power plant [(hereafter referred simply as ''NPP'')] is one of the most important concerns in the world nuclear industry. Cables are one of the long live items which have not been considered to be replaced during the design life of NPP. To extend the cable life beyond the design life, we need to prove that the design life is too conservative compared with the actual aging. Condition monitoring is one of the useful ways for evaluating the aging condition of cable. In order to simulate the natural aging in nuclear power plant, a study on accelerated aging needs to be conducted first. In this paper, evaluations of mechanical aging degradation for cable jacket were performed after accelerated aging under the continuous heating and intermittent heating. Contrary to general expectation, the intermittent heating to cable jacket showed low aging degradation, 50% break-elongation and 60% indenter modulus, compared with continuous heating. With the plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of cable jacket can be extended much longer than estimated through the general EQ (Environmental Qualification) test, which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach which considers the actual environment condition of nuclear power plant is required for determining the life of cables. (author)

  1. Degradation in perovskite solar cells stored under different environmental conditions

    Science.gov (United States)

    Chauhan, Abhishek K.; Kumar, Pankaj

    2017-08-01

    Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47  ±  5%, temperature 23  ±  4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47  ±  5%, temperature 23  ±  4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained  >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the

  2. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  3. Renewable aromatics from the degradation of polystyrene under mild conditions

    Directory of Open Access Journals (Sweden)

    Nouf M. Aljabri

    2017-12-01

    Full Text Available A bimetallic FeCu/alumina catalyst was prepared and characterized. It showed excellent catalytic activity to quantitatively convert polystyrene (PS into aromatics at low temperatures. A clear goldish yellow liquid was produced at 250 °C in a batch reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum conditions to minimize the styrene re-polymerization. The gas chromatography/mass spectrometry (GC/MS analysis confirms that the primary products are styrene, ethylbenzene, cumene, toluene and α-methylstyrene. Keywords: Polystyrene, Bimetallic, Low-temperature, Catalytic degradation

  4. Children's auditory working memory performance in degraded listening conditions.

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R

    2014-08-01

    The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It was hypothesized that stressing the working memory system with the presence of noise would impede working memory processes in real time and result in poorer working memory performance in degraded conditions. Twenty children with typical hearing between 8 and 10 years old were tested using 4 auditory working memory tasks (Forward Digit Recall, Backward Digit Recall, Listening Recall Primary, and Listening Recall Secondary). Stimuli were from the standardized Working Memory Test Battery for Children. Each task was administered in quiet and in 4-talker babble noise at 0 dB and -5 dB signal-to-noise ratios. Children's auditory working memory performance was systematically decreased in the presence of multitalker babble noise compared with quiet. Differences between low-complexity and high-complexity tasks were observed, with children performing more poorly on tasks with greater storage and processing demands. There was no interaction between noise and complexity of task. All tasks were negatively impacted similarly by the addition of noise. Auditory working memory performance was negatively impacted by the presence of multitalker babble noise. Regardless of complexity of task, noise had a similar effect on performance. These findings suggest that the addition of noise inhibits auditory working memory processes in real time for school-age children.

  5. Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective

    International Nuclear Information System (INIS)

    Peng, Weiwen; Li, Yan-Feng; Mi, Jinhua; Yu, Le; Huang, Hong-Zhong

    2016-01-01

    Degradation analysis is critical to reliability assessment and operational management of complex systems. Two types of assumptions are often adopted for degradation analysis: (1) single degradation indicator and (2) constant external factors. However, modern complex systems are generally characterized as multiple functional and suffered from multiple failure modes due to dynamic operating conditions. In this paper, Bayesian degradation analysis of complex systems with multiple degradation indicators under dynamic conditions is investigated. Three practical engineering-driven issues are addressed: (1) to model various combinations of degradation indicators, a generalized multivariate hybrid degradation process model is proposed, which subsumes both monotonic and non-monotonic degradation processes models as special cases, (2) to study effects of external factors, two types of dynamic covariates are incorporated jointly, which include both environmental conditions and operating profiles, and (3) to facilitate degradation based reliability analysis, a serial of Bayesian strategy is constructed, which covers parameter estimation, factor-related degradation prediction, and unit-specific remaining useful life assessment. Finally, degradation analysis of a type of heavy machine tools is presented to demonstrate the application and performance of the proposed method. A comparison of the proposed model with a traditional model is studied as well in the example. - Highlights: • A generalized multivariate hybrid degradation process model is introduced. • Various types of dependent degradation processes can be modeled coherently. • The effects of environmental conditions and operating profiles are investigated. • Unit-specific RUL assessment is implemented through a two-step Bayesian method.

  6. On the Determination of Magnesium Degradation Rates under Physiological Conditions.

    Science.gov (United States)

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-Römer, Regine; Dahms, Michael

    2016-07-28

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.

  7. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Koji [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Milliken, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brigmon, Robin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  8. Dynamics of the near response under natural viewing conditions with an open-view sensor

    Science.gov (United States)

    Chirre, Emmanuel; Prieto, Pedro; Artal, Pablo

    2015-01-01

    We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions. PMID:26504666

  9. A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes

    International Nuclear Information System (INIS)

    Caballé, N.C.; Castro, I.T.; Pérez, C.J.; Lanza-Gutiérrez, J.M.

    2015-01-01

    This paper proposes a condition-based maintenance strategy for a system subject to two dependent causes of failure: degradation and sudden shocks. The internal degradation is reflected by the presence of multiple degradation processes in the system. Degradation processes start at random times following a Non-homogeneous Poisson process and their growths are modelled by using a gamma process. When the deterioration level of a degradation process exceeds a predetermined value, we assume that a degradation failure occurs. Furthermore, the system is subject to sudden shocks that arrive at the system following a Doubly Stochastic Poisson Process. A sudden shock provokes the total breakdown of the system. Thus, the state of the system is evaluated at inspection times and different maintenance tasks can be carried out. If the system is still working at an inspection time, a preventive maintenance task is performed if the deterioration level of a degradation process exceeds a certain threshold. A corrective maintenance task is performed if the system is down at an inspection time. A preventive (corrective) maintenance task implies the replacement of the system by a new one. Under this maintenance strategy, the expected cost rate function is obtained. A numerical example illustrates the analytical results. - Highlights: • A condition-based maintenance model is proposed. • Two dependent causes of failure are considered: deterioration and external shocks. • Deterioration is given by multiple degradation processes growing by a gamma process. • The initiation of degradation processes follows a Non-homogeneous Poisson process. • External shocks arrive at the system by using a Doubly Stochastic Poisson Process

  10. Reforesting degraded lands may not restore hydrological conditions

    Science.gov (United States)

    Balcerak, Ernie

    2013-12-01

    By the 1980s, forest lands in the Himalayas in central Nepal had become severely degraded as people cleared land for pastures. This led to lowered soil infiltration capacities, resulting in increased surface runoff, soil erosion, and flooding during the rainy season.

  11. When seeing depends on knowing: adults with Autism Spectrum Conditions show diminished top-down processes in the visual perception of degraded faces but not degraded objects.

    Science.gov (United States)

    Loth, Eva; Gómez, Juan Carlos; Happé, Francesca

    2010-04-01

    Behavioural, neuroimaging and neurophysiological approaches emphasise the active and constructive nature of visual perception, determined not solely by the environmental input, but modulated top-down by prior knowledge. For example, degraded images, which at first appear as meaningless 'blobs', can easily be recognized as, say, a face, after having seen the same image un-degraded. This conscious perception of the fragmented stimuli relies on top-down priming influences from systems involved in attention and mental imagery on the processing of stimulus attributes, and feature-binding [Dolan, R. J., Fink, G. R., Rolls, E., Booth, M., Holmes, A., Frackowiak, R. S. J., et al. (1997). How the brain learns to see objects and faces in an impoverished context. Nature, 389, 596-599]. In Autism Spectrum Conditions (ASC), face processing abnormalities are well-established, but top-down anomalies in various domains have also been shown. Thus, we tested two alternative hypotheses: (i) that people with ASC show overall reduced top-down modulation in visual perception, or (ii) that top-down anomalies affect specifically the perception of faces. Participants were presented with sets of three consecutive images: degraded images (of faces or objects), corresponding or non-corresponding grey-scale photographs, and the same degraded images again. In a passive viewing sequence we compared gaze times (an index of focal attention) on faces/objects vs. background before and after viewers had seen the undegraded photographs. In an active viewing sequence, we compared how many faces/objects were identified pre- and post-exposure. Behavioural and gaze tracking data showed significantly reduced effects of prior knowledge on the conscious perception of degraded faces, but not objects in the ASC group. Implications for future work on the underlying mechanisms, at the cognitive and neurofunctional levels, are discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment.

    Science.gov (United States)

    Slana, M; Žigon, D; Sollner-Dolenc, M

    2017-05-01

    The rate of degradation of enrofloxacin in broiler chicken manure has been characterised. Its degradation was investigated in manure excreted by broiler chickens in an intensively reared chicken facility; further, the degradation also followed after transfer of the excreta into the natural environment occurred. The effect of enrofloxacin and its degradation products on cucumber and tomato was also investigated. Enrofloxacin degradation was shown to take place within the rearing facility and also continuing after the manure was transferred into the environment. The rates of enrofloxacin degradation and the degree of degradation product formation in the manure heap incubated in the environment were condition specific, both variables depending on the manure sampling depth. The degradation half-lives ranged from 12.7 to 38.1 days for enrofloxacin and from 1.2 to 8.2 days for the main metabolite ciprofloxacin. Only the cucumber showed signs of toxicity when incubated with the composted manure immediately after transfer into field occurred (t = 0). No toxic effects to plants were observed when manure from the last incubation day (60th) of the field study and manure from the last incubation day of the laboratory degradation study were applied. The degradation study under field conditions showed that enrofloxacin and its degradation products degrade fast in the environment. Additionally, the toxic effects to plants decrease with the incubation time of manure containing enrofloxacin residuals.

  13. Study on degrading graphene oxide in wastewater under different conditions for developing an efficient and economical degradation method.

    Science.gov (United States)

    Li, Ting; Zhang, Chao-Zhi; Gu, Chengyue

    2017-12-01

    With popular application of graphene and graphene oxide (GO), they have been discharged into water. Graphene and GO harm organisms. However, an efficient and economical method for removing graphene and GO in wastewater has seldom been reported. Graphene can be oxidized by hydrogen peroxide to give GO; therefore, degradation of graphene oxide is an important step in the procedure of removal of graphene from water. In this paper, GO degradation via photo-Fenton reaction under different conditions was carried out. Experimental results suggested that GO in wastewater can be efficiently and economically degraded into carbon dioxide and H 2 O when pH value is 3, concentration of H 2 O 2 and FeCl 3 are 35 mM and 5 ppm, respectively. Degradation mechanism of GO was suggested based on UV-vis absorption spectra, scanning electron microscopy, X-ray diffraction and liquid chromatography-mass spectra data of degradation intermediates. This paper suggests an efficient and economical degradation way of GO in wastewater.

  14. Bearing Condition Recognition and Degradation Assessment under Varying Running Conditions Using NPE and SOM

    Directory of Open Access Journals (Sweden)

    Shaohui Zhang

    2014-01-01

    Full Text Available Manifold learning methods have been widely used in machine condition monitoring and fault diagnosis. However, the results reported in these studies focus on the machine faults under stable loading and rotational speeds, which cannot interpret the practical machine running. Rotating machine is always running under variable speeds and loading, which makes the vibration signal more complicated. To address such concern, the NPE (neighborhood preserving embedding is applied for bearing fault classification. Compared with other algorithms (PCA, LPP, LDA, and ISOP, the NPE performs well in feature extraction. Since the traditional time domain signal denoising is time consuming and memory consuming, we denoise the signal features directly in feature space. Furthermore, NPE and SOM (self-organizing map are combined to assess the bearing degradation performance. Simulation and experiment results validate the effectiveness of the proposed method.

  15. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  16. Degradation of aromatic compounds in plants grown under aseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mithaishvili, T.; Ugrekhelidze, D.; Tsereteli, B.; Sadunishvili, T.; Kvesitadze, G. [Durmishidze Inst. of Biochemistry and Biotechnology, Academy of Sciences of Georgia, Tbilisi (Georgia); Scalla, R. [Lab. des Xenobiotiques, INRA, Toulouse (France)

    2005-02-01

    The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of {sup 14}C specifically labelled benzene derivatives, [1-6-{sup 14}C]-nitrobenzene, [1-6-{sup 14}C]-aniline, [1-{sup 14}C]- and [7-{sup 14}C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and pumpkin (Cucurbita pepo L.) were studied. After penetration in plants, the above xenobiotics are transformed by oxidative or reductive reactions, conjugation with cell endogenous compounds, and binding to biopolymers. The initial stage of oxidative degradation consists in hydroxylation reactions. The aromatic ring can then be cleaved and degraded into organic acids of the Krebs cycle. Ring cleavage is accompanied by {sup 14}CO{sub 2} evolution. Aromatic ring cleavage in plants has thus been demonstrated for different xenobiotics carrying different substitutions on their benzene ring. Conjugation with low molecular peptides is the main pathway of aromatic xenobiotics detoxification. Peptide conjugates are formed both by the initial xenobiotics (except nitrobenzene) and by intermediate transformation products. The chemical nature of the radioactive fragment and the amino acid composition of peptides participating in conjugation were identified. (orig.)

  17. Determination of degradation conditions of exchange resins containing technetium

    International Nuclear Information System (INIS)

    Rivera S, A.; Monroy G, F.; Quintero P, E.

    2014-10-01

    The quantification of Tc-99 in spent exchange resins, coming from nuclear power plants, is indispensable to define their administration. The Tc-99 is a pure beta emitter of 210000 years of half-life, volatile and of a high mobility in water and soil. For this reason, the objective of this work is to establish a digestion method of ionic exchange resins containing technetium that retains more than 95% of this radioisotope. Mineralization tests were carried out of a resin Amberlite IRN-150 by means of an oxidation heat, in acid medium, varying the resin mass, the medium volume, the media type, the temperature and the digestion time. The digested samples were analyzed by gas chromatography to estimate the grade of their degradation. The 99m Tc was used as tracer to determine the technetium percentage recovered after mineralizing the resin. The digestion process depends on the temperature and the resin mass. At higher temperature better mineralization of samples and to greater resin mass to a constant temperature, less degradation of the resin. The spectra beta of the 99m Tc and 99 Tc are presented. (Author)

  18. The balance of protein expression and degradation: an ESCRTs point of view.

    Science.gov (United States)

    Babst, Markus; Odorizzi, Greg

    2013-08-01

    Endosomal sorting complexes required for transport (ESCRTs) execute the biogenesis of late endosomal multivesicular bodies (MVBs). The ESCRT pathway has traditionally been viewed as a means by which transmembrane proteins are degraded in vacuoles/lysosomes. More recent studies aimed at understanding the broader functions of ESCRTs have uncovered unexpected links with pathways that control cellular metabolism. Central to this communication is TORC1, the kinase complex that controls many of the catabolic and anabolic systems. The connection between TORC1 activity and ESCRTs allows cells to quickly adapt to the stress of nutrient limitations until the longer-term autophagic pathway is activated. Increasing evidence also points to ESCRTs regulating RNA interference (RNAi) pathways that control translation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Conditions for selective degradation of lignin by the fungus Ganoderma australis

    Energy Technology Data Exchange (ETDEWEB)

    Rios, S.; Eyzaguirre, J. (Universidad Catolica de Chile, Santiago (Chile). Lab. de Bioquimica)

    1992-08-01

    The white-rot fungus Ganoderma australis selectively degrades lignin in the ecosystem 'palo podrido'. Using conditions that simulate those of 'palo podrido' in the laboratory, it was found that low nitrogen content and low O{sub 2} tension stimulate the production of manganese peroxidase and lignin degradation, and depress cellulose degradation and cellulase production. The inverse is found at high nitrogen concentration and high O{sub 2} tension. This agrees with previous results indicating that low O{sub 2} tension and low nitrogen stimulate selective lignin degradation by this fungus. (orig.).

  20. Influence of water solubility, side chain degradability and side chain configuration on the degradation of phthalic acid esters under methanogenic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alnervik, M.

    1996-12-31

    Water solubility and degradability of side chains estrifying phthalic acid are factors possible to influence the degradation of phthalic acid esters (PAEs). To investigate the importance of these factors degradation of butyl 2-ethylhexyl phthalate (BEHP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dihexyl phthalate (DHP), dioctyl phthalate (DOP) and didecyl phthalate (DDP) were examined under methanogenic conditions as well as was the degradability of the alcohols estrifying these PAEs. We also investigated if the degradation of resistant PAEs could be stimulated by the addition of a degradable PAE. Synthesis of degradation intermediates and two methods for PAE analyses are presented. The investigation showed that all alcohols were degraded to methane and carbon dioxide and that the degradation of PAE occurred in incubations amended with BBP, BEHP, DHP and DBP, whilst DEHP, DOP and DDP were unaffected throughout the experimental period. BBP added to incubations with DEHP, could not stimulate DEHP degradation. In conclusion, the degradability of alcohols estrifying phthalic acid in this study does not affect the anaerobic degradability of PAEs. Water solubility of a PAE can not be rejected as a factor limiting phthalate degradation under methanogenic conditions. Anaerobic degradation of persistent PAEs can not be stimulated by mixing it with a degradable phthalate. 23 refs, 11 figs, 2 tabs

  1. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Otsuka, Yoshiki; Banba, Tsunetaka

    2007-09-01

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  2. Renewable Aromatics from the Degradation of Polystyrene under Mild Conditions

    KAUST Repository

    Jabri, Nouf M; Lai, Zhiping; Hadjichristidis, Nikolaos; Huang, Kuo-Wei

    2017-01-01

    reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum condition to minimize

  3. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    International Nuclear Information System (INIS)

    Poirier-Larabie, S.; Segura, P.A.; Gagnon, C.

    2016-01-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  4. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poirier-Larabie, S. [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada); Segura, P.A. [Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada); Gagnon, C., E-mail: christian.gagnon@canada.ca [Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment Canada, Montréal, Québec H2Y 2E7 (Canada)

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15 years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4 days, while its concentration only decreased by 42% after 57 days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11 days of exposure to light, while biodegradation decreased its concentration by 33% after 58 days of exposure under aerobic conditions and 5% after 70 days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental

  5. Renewable Aromatics from the Degradation of Polystyrene under Mild Conditions

    KAUST Repository

    Jabri, Nouf M

    2017-05-25

    A bimetallic FeCu/alumina catalyst was prepared and characterized. It showed excellent catalytic activity to quantitatively convert polystyrene (PS) into aromatics at low temperatures. A clear goldish yellow liquid was produced at 250 °C in a batch reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum condition to minimize the styrene re-polymerization. The gas chromatography/ mass spectrometry (GC/MS) analysis confirms that the primary products are styrene, ethylbenzene, cumene, toluene and α-methylstyrene.

  6. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  7. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    Science.gov (United States)

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  8. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    OpenAIRE

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plast...

  9. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions.

    Science.gov (United States)

    Du, Zhe; Chen, Yinguang; Li, Xu

    2017-10-15

    Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy. Keywords: WEIBULL, Photovoltaic, Degradation, Open-circuit, Single-crystal, Silicon

  11. Starch degradation in rumen fluid as influenced by genotype, climatic conditions and maturity stage of maize, grown under controlled conditions

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    Starch is the major component of maize kernels, contributing significantly to the feeding value of forage maize when fed to ruminants. The effects of genotype, climatic conditions and maturity stage on starch content in the kernels and on in vitro starch degradability in rumen fluid were

  12. Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada); Abouatallah, Rami; Beydokhti, Natasha [Hydrogenics Corporation, 5985 McLaughlin Road, Mississauga, Ontario (Canada)

    2008-09-01

    This paper studies the degradation of Gore trademark PRIMEA {sup registered} series 5510 catalyst coated membranes with an ePTFE reinforcement layer under open circuit voltage conditions at 90 C, 75% RH, and no backpressure. Scanning electron microscopy (SEM) imaging of cross-sections revealed extensive cathode-side ionomer degradation and the presence of a platinum band. Cumulative fluoride release measurements show more fluoride exiting with the cathode effluent. Furthermore, both anode and cathode cumulative fluoride release plateau after long degradation times. Open circuit voltage was also monitored and the degradation rate was found to decrease after a long duration. It is proposed that all fluoride species are generated from the cathode-side ionomer degradation process and that the fluoride then diffuses to the anode and cathode channels. Further, once the cathode-side ionomer is consumed the degradation reaction slows as the ''degradation front'' passes through the inert reinforcement layer. This process was modeled using a semi-empirical transient model and compared to experimental results. (author)

  13. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    Science.gov (United States)

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-13

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  14. Multi-technique approach for qualitative and quantitative characterization of furazidin degradation kinetics under alkaline conditions.

    Science.gov (United States)

    Bērziņš, Kārlis; Kons, Artis; Grante, Ilze; Dzabijeva, Diana; Nakurte, Ilva; Actiņš, Andris

    2016-09-10

    Degradation of drug furazidin was studied under different conditions of environmental pH (11-13) and temperature (30-60°C). The novel approach of hybrid hard- and soft-multivariate curve resolution-alternating least squares (HS-MCR-ALS) method was applied to UV-vis spectral data to determine a valid kinetic model and kinetic parameters of the degradation process. The system was found to be comprised of three main species and best characterized by two consecutive first-order reactions. Furazidin degradation rate was found to be highly dependent on the applied environmental conditions, showing more prominent differences between both degradation steps towards higher pH and temperature. Complimentary qualitative analysis of the degradation process was carried out using HPLC-DAD-TOF-MS. Based on the obtained chromatographic and mass spectrometric results, as well as additional computational analysis of the species (theoretical UV-vis spectra calculations utilizing TD-DFT methodology), the operating degradation mechanism was proposed to include formation of a 5-hydroxyfuran derivative, followed by complete hydrolysis of furazidin hydantoin ring. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microstructure degradation of LSM-YSZ cathode in SOFCs operated at various conditions

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Thydén, Karl Tor Sune; Chen, Ming

    2012-01-01

    Systematic microstructural analyses have been carried out on a series of technological SOFCs that went through long-term cell tests with various operating parameters including temperature, current load and time length under current. For the LSM-YSZ cathode, a number of microstructure degradation...... mechanisms have been identified. And it has been observed that different mechanisms dominate the degradation process under different test conditions. The severe cathode degradation at 750 °C operation with high current density is attributed to a loss of the cathode/electrolyte interface stability....... For the cells tested at 850 °C, the interface stability is maintained due to further sintering during cell operation. A cell test lasting for 2 years (17500 h) at 850 °C with a moderate current density (not greater than 1 A/cm2) has shown that the cathode microstructure is fairly robust to the degradation...

  16. A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities

    NARCIS (Netherlands)

    Worm, P.; Koehorst, J.J.; Visser, M.; Sedano Nunez, V.T.; Schaap, P.J.; Plugge, C.M.; Sousa, D.Z.; Stams, A.J.M.

    2014-01-01

    In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here

  17. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  18. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    Science.gov (United States)

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  19. Factors affecting degradation of polyethylene terephthalate (PET) during pre-flotation conditioning

    International Nuclear Information System (INIS)

    Caparanga, Alvin R.; Basilia, Blessie A.; Dagbay, Kevin B.; Salvacion, Jonathan W.L.

    2009-01-01

    In general, plastics are exposed to different degrading agents in every procedure involved in their recovery from waste mixture and from subsequent recycling. In this study, two methods of pre-flotation conditioning were used to determine how these methods affect the general properties of the pre-conditioned PET particles to be recovered from the PET-PVC mixture. The first method comprised the conditioning of PET samples using an alkaline solution of nonionic surfactant (Triton X-100) based on the patent by the Goodyear Tire and Rubber Company. The second method, developed in this study, was a conditioning process which used an alkali-less solution of the same nonionic surfactant (Triton X-100) used in the first method. The following analytical methods were used to characterize properties of the pre-conditioned PET samples that were correlated to relative degradation of the samples: differential scanning calorimetry (DSC), for thermal behavior of the samples; FT-IR spectroscopy, for functional groups present in the samples; and, Pohl's method, for carboxyl end-group concentration count. Results show that in addition to water the presence of NaOH in the conditioning solution contributes to the further degradation of the polymer.

  20. Degradation and performance evaluation of PV module in desert climate conditions with estimate uncertainty in measuring

    Directory of Open Access Journals (Sweden)

    Fezzani Amor

    2017-01-01

    Full Text Available The performance of photovoltaic (PV module is affected by outdoor conditions. Outdoor testing consists installing a module, and collecting electrical performance data and climatic data over a certain period of time. It can also include the study of long-term performance under real work conditions. Tests are operated in URAER located in desert region of Ghardaïa (Algeria characterized by high irradiation and temperature levels. The degradation of PV module with temperature and time exposure to sunlight contributes significantly to the final output from the module, as the output reduces each year. This paper presents a comparative study of different methods to evaluate the degradation of PV module after a long term exposure of more than 12 years in desert region and calculates uncertainties in measuring. Firstly, this evaluation uses three methods: Visual inspection, data given by Solmetric PVA-600 Analyzer translated at Standard Test Condition (STC and based on the investigation results of the translation equations as ICE 60891. Secondly, the degradation rates calculated for all methods. Finally, a comparison between a degradation rates given by Solmetric PVA-600 analyzer, calculated by simulation model and calculated by two methods (ICE 60891 procedures 1, 2. We achieved a detailed uncertainty study in order to improve the procedure and measurement instrument.

  1. Mathematic Modeling for Optimum Conditions on Aflatoxin B1 Degradation by the Aerobic Bacterium Rhodococcus erythropolis

    Directory of Open Access Journals (Sweden)

    Jiujiang Yu

    2012-11-01

    Full Text Available Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production.

  2. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  3. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  4. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components

    International Nuclear Information System (INIS)

    Hong, H.P.; Zhou, W.; Zhang, S.; Ye, W.

    2014-01-01

    Components in engineered systems are subjected to stochastic deterioration due to the operating environmental conditions, and the uncertainty in material properties. The components need to be inspected and possibly replaced based on preventive or failure replacement criteria to provide the intended and safe operation of the system. In the present study, we investigate the influence of dependent stochastic degradation of multiple components on the optimal maintenance decisions. We use copula to model the dependent stochastic degradation of components, and formulate the optimal decision problem based on the minimum expected cost rule and the stochastic dominance rules. The latter is used to cope with decision maker's risk attitude. We illustrate the developed probabilistic analysis approach and the influence of the dependency of the stochastic degradation on the preferred decisions through numerical examples

  5. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.

    Science.gov (United States)

    Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M

    2002-08-06

    4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.

  6. Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions.

    Directory of Open Access Journals (Sweden)

    Emeka A Okoroma

    Full Text Available The prion agent is notoriously resistant to common proteases and conventional sterilisation procedures. The current methods known to destroy prion infectivity such as incineration, alkaline and thermal hydrolysis are harsh, destructive, environmentally polluting and potentially hazardous, thus limit their applications for decontamination of delicate medical and laboratory devices, remediation of prion contaminated environment and for processing animal by-products including specified risk materials and carcases. Therefore, an environmentally friendly, non-destructive enzymatic degradation approach is highly desirable. A feather-degrading Bacillus licheniformis N22 keratinase has been isolated which degraded scrapie prion to undetectable level of PrP(Sc signals as determined by Western Blot analysis. Prion infectivity was verified by ex vivo cell-based assay. An enzymatic formulation combining N22 keratinase and biosurfactant derived from Pseudomonas aeruginosa degraded PrP(Sc at 65 °C in 10 min to undetectable level -. A time-course degradation analysis carried out at 50 °C over 2 h revealed the progressive attenuation of PrP(Sc intensity. Test of residual infectivity by standard cell culture assay confirmed that the enzymatic formulation reduced PrP(Sc infectivity to undetectable levels as compared to cells challenged with untreated standard scrapie sheep prion (SSBP/1 (p-value = 0.008 at 95% confidence interval. This novel enzymatic formulation has significant potential application for prion decontamination in various environmentally friendly systems under mild treatment conditions.

  7. Aerobic versus Anaerobic Microbial Degradation of Clothianidin under Simulated California Rice Field Conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Tomco, Patrick L; Howard, Megan W; Schempp, Tabitha T; Stewart, Davis J; Stacey, Phillip M; Ball, David B; Tjeerdema, Ronald S

    2016-09-28

    Microbial degradation of clothianidin was characterized under aerobic and anaerobic California rice field conditions. Rate constants (k) and half-lives (DT50) were determined for aerobic and anaerobic microcosms, and an enrichment experiment was performed at various nutrient conditions and pesticide concentrations. Temperature effects on anaerobic degradation rates were determined at 22 ± 2 and 35 ± 2 °C. Microbial growth was assessed in the presence of various pesticide concentrations, and distinct colonies were isolated and identified. Slow aerobic degradation was observed, but anaerobic degradation occurred rapidly at both 25 and 35 °C. Transformation rates and DT50 values in flooded soil at 35 ± 2 °C (k = -7.16 × 10(-2) ± 3.08 × 10(-3) day(-1), DT50 = 9.7 days) were significantly faster than in 25 ± 2 °C microcosms (k= -2.45 × 10(-2) ± 1.59 × 10(-3) day(-1), DT50 = 28.3 days). At the field scale, biodegradation of clothianidin will vary with extent of oxygenation.

  8. Frequency effect on p-nitrophenol degradation under conditions of strict acoustic and electric control

    Directory of Open Access Journals (Sweden)

    Chang-ping Zhu

    2011-03-01

    Full Text Available The process of decomposing p-nitrophenol (PNP with power ultrasound requires strict control of acoustic and electric conditions. In this study, the conditions, including acoustic power and acoustic intensity, but not ultrasonic frequency, were controlled strictly at constant levels. The absorbency and the COD concentrations of the samples were measured in order to show the variation of the sample concentration. The results show significant differences in the trend of the solution degradation rate as acoustic power increases after the PNP solution (with a concentration of 114 mg/L and a pH value of 5.4 is irradiated for 60 min with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz. The degradation rate of the solution increases with time and acoustic power (acoustic intensity. On the other hand, the degradation rate of the solution is distinctly dependent on frequency when the acoustic power and intensity are strictly controlled and maintained at constant levels. The degradation rate of the PNP solution declines with ultrasonic frequencies of 530.8 kHz, 610.6 kHz, 855.0 kHz, and 1 130.0 kHz; the COD concentration, on the contrary, increase.

  9. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  10. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  11. Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Vange, Jakob; Nielsen, Lene Feldskov

    2014-01-01

    Within recent years, researchers have looked into using polycaprolactone (PCL) as a synthetic biodegradable scaffold for tissue engineering purposes. This study investigated the mechanical properties of an electrospun PCL, while being exposed to physiological fluids at 37C (in vitro conditions) w...... in buffer (pH 12). The accelerated study showed a linear decrease in both elastic modulus and yield stress as a function of degradation time....

  12. Influence of degradation conditions on dentin bonding durability of three universal adhesives.

    Science.gov (United States)

    Sai, Keiichi; Shimamura, Yutaka; Takamizawa, Toshiki; Tsujimoto, Akimasa; Imai, Arisa; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2016-11-01

    This study aims to determine dentin bonding durability of universal adhesives using shear bond strength (SBS) tests under various degradation conditions. G-Premio Bond (GP, GC), Scotchbond Universal (SU, 3M ESPE) and All Bond Universal (AB, Bisco) were compared with conventional two-step self-etch adhesive Clearfil SE Bond (SE, Kuraray Noritake Dental). Bonded specimens were divided into three groups of ten, and SBSs with bovine dentin were determined after the following treatments: 1) Storage in distilled water at 37°C for 24h followed by 3000, 10,000, 20,000 or 30,000 thermal cycles (TC group), 2) Storage in distilled water at 37°C for 3 months, 6 months or 1year (water storage, WS group) and 3) Storage in distilled water at 37°C for 24h (control). SE bonded specimens showed significantly higher SBSs than universal adhesives, regardless of TC or storage periods, although AB specimens showed significantly increased SBSs after 30,000 thermal cycles. In comparisons of universal adhesives under control and degradation conditions, SBS was only reduced in SU after 1year of WS. Following exposure of various adhesive systems to degradation conditions of thermal cycling and long term storage, SBS values of adhesive systems varied primarily with degradation period. Although universal adhesives have lower SBSs than the two-step self-etch adhesive SE, the present data indicate that the dentin bonding durability of universal adhesives in self-etch mode is sufficient for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    International Nuclear Information System (INIS)

    Glaus, M.A.; Van Loon, L.R.

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60 o and 90 o C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 o C and 90 o C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline hydrolysis at the

  14. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  15. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    Science.gov (United States)

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Degradation of sustainable mulch materials in two types of soil under laboratory conditions

    Science.gov (United States)

    Villena, Jaime; González, Sara; Moreno, Carmen; Aceituno, Patricia; Campos, Juan; Meco, Ramón; María Moreno, Marta

    2017-04-01

    Mulching is a technique used in cultivation worldwide, especially for vegetable crops, for reducing weed growth, minimising or eliminating soil erosion, and often for enhancing total yields. Manufactured plastic films, mainly polyethylene (PE), have been widely used for this purpose due to their excellent mechanical properties, light weight and relatively low prices in recent years. However, the use of PE is associated with serious environmental problems related to its petrochemical origin and its long shelf-life, which causes a waste problem in our crop fields. For this reason, the use of biodegradable mulch materials (biopolymers and papers) as alternative to PE is increasing nowadays, especially in organic farming. However, these materials can suffer an undesirable early degradation (and therefore not fulfilling their function successfully), greatly resulting from the type of soil. For this reason, this study aimed to analyse the degradation pattern of different mulch materials buried in two types of soils, clay and sand, under laboratory conditions (25°C, dark surroundings, constant humidity). The mulch materials used were: 1) black polyethylene (15 µm); black biopolymers (15 µm): 2) maize starch-based, 3) potato starch-based, 4) polylactic acid-based, 5) black paper, 85 g/m2. Periodically (every 15-20 days), the weight and surface loss of the different materials were recorded. The results indicate that mulch degradation was earlier and higher in the clay soil, especially in the paper and in the potato starch-based materials, followed by the maize starch-based mulch, while polylactic acid-based suffered the least and the latest degradation. Keywords: mulch, biodegradable, biopolymer, paper, degradation. Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  17. Laboratory test methods to determine the degradation of plastics in marine environmental conditions

    Directory of Open Access Journals (Sweden)

    Maurizio eTosin

    2012-06-01

    Full Text Available In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain. However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation. Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi was shown to degrade (total disintegration achieved in less than 9 months when buried in wet sand (simulation test of the tidal zone, to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years when exposed to sea water in an aquarium (simulation of pelagic domain, and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88% when located at the sediment/sea water interface (simulation of benthic domain. This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  18. Laboratory test methods to determine the degradation of plastics in marine environmental conditions.

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  19. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  20. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However......, the degradation of the film capacitors is a concern in applications exposed to high humidity environments. This paper investigates the degradation of a type of plastic-boxed metallized DC film capacitors under different humidity conditions based on a total of 8700 h of accelerated testing and also post failure...... of interest is also presented. The study enables a better understanding of the humidity-related failure mechanisms and reliability performance of DC film capacitors for power electronics applications....

  1. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  2. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    International Nuclear Information System (INIS)

    Meli, E.; Ridolfi, A.

    2015-01-01

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  3. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  4. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  5. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  6. Differences of accommodative responses between two eyes under binocular viewing condition mediated by polarizing glasses

    Directory of Open Access Journals (Sweden)

    Rui-Qing Wang

    2016-04-01

    Full Text Available AIM:To study the differences of accommodative responses between the two eyes under 3 different polarized viewing conditions. METHODS:Fifteen volunteers with emmetrope were recruited into this study(aged 18~38, 6 males and 9 females. Three different viewing conditions were set up by using polarizing glasses and liquid crystal display:(1right eye could see the visual target on the screen, but left eye cannot see it;(2left eye could see the visual target on the screen, but right eye cannot see it;(3both eyes could see the target. Accommodative responses were measured by infrared auto-refractor when fixating at the target at 5, 2, 1, 0.5 and 0.33m under the above 3 viewing conditions. The differences of accommodative responses under different viewing conditions were compared by using variance analysis of repeated measuring and t test. RESULTS:Significant differences of accommodative responses between the two eyes were found under condition(1and(2at all the fixating distance. The accommodative responses in used eyes which can see the visual target were higher than in non-used eyes which cannot see the visual target(PP>0.05. CONCLUSION:Ciliary muscles in the used eyes were more relatively tonic than non-used eyes under binocular open viewing condition. The imbalance of accommodative responses between two eyes may be one of the risk factors resulting into the occurrence of myopia.

  7. Degradation of materials under conditions of thermochemical cycles for hydrogen production - part III

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Guerout, F.

    2011-01-01

    A capsule method was employed to screen a number of materials for degradation under selected conditions of the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles. A summary of the results of an experimental investigation is given. The recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper chlorine hybrid cycle are presented and discussed with the associated rationale. Some remaining uncertainties are illustrated on the basis of the experimental evidence gathered. (author)

  8. Degradation rates of phorbol esters in Jatropha curcas L. oil and pressed seeds under different storage conditions.

    Science.gov (United States)

    Phasukarratchai, Naphatsarnan; Damrongsiri, Seelawut; Tongcumpou, Chantra

    2017-03-01

    Phorbol esters (PEs), found in Jatropha curcas crude oil (JCO) and J. curcas pressed seeds (JPS), are known as bioactive compounds in agricultural and pharmaceutical applications. The degradation rates of PEs in JCO and JPS under various conditions is important for the utilisation of PEs. Thus the objective of this study was to determine the PE degradation rates in JCO and JPS under different storage conditions. PE degradation rates were found to be first-order reactions. The slowest degradation rate was at 0.9 × 10 -3 d -1 for both JCO and JPS unexposed to light at 4 °C. Light intensity (1097 lx and 4690 lx, representing diffused sunlight and fluorescent lighting, respectively) and temperature (25 to 35 °C) were the significant degradation factors. Light exposure led to 280% to 380% higher degradation rates in JCO than in JPS due to light penetration through the transparent oil. Dried and sterilised JPS showed an 80% to 90% lower PE degradation rate than untreated JPS under all storage conditions since biodegradation was assembly limited. The PEs were unstable under the studied conditions, especially when exposed to light and room temperature. To protect against PE degradation, a material should be stored in a light-protected container and below 4 °C. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  10. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    Science.gov (United States)

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  11. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae was identified as dominant benzene degrader by Stable Isotope Probing (SIP)

    NARCIS (Netherlands)

    Zaan, van der B.M.; Talarico Saia, F.; Plugge, C.M.; Vos, de W.M.; Smidt, H.; Stams, A.J.M.; Langenhoff, A.A.M.; Gerritse, J.

    2012-01-01

    An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a

  12. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Degradation of materials under conditions of thermochemical cycles for hydrogen production

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Stolberg, L.

    2010-01-01

    A capsule method has been developed and employed to measure the degradation rates of selected materials under some of the most challenging conditions relevant to the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles for hydrogen production. The materials tested so far include metals and engineering alloys, structural and functional polymers, elastomers, carbon-based materials, ceramics and glasses, and composites. A number of characterization methods have been used to detect and quantify the degradation of the diverse materials and, when feasible, establish the mode of attack. The paper details the results of this ongoing experimental investigation. The investigation currently focuses on the copper-chlorine hybrid cycle. The environment representative of the conditions in the electrolyser subsystem was approximated with an aqueous solution of hydrochloric acid (13.6 mol/kg), copper(II) chloride (1.36 mol/kg) and copper(I) chloride (1.36 mol/kg) at 160°C and 2.5 MPa (absolute). The current (tentative) recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper-chlorine hybrid cycle, and the associated rationale, are presented and discussed. (author)

  14. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Lazanu, I.; Lazanu, S.

    2004-01-01

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  15. Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions

    Science.gov (United States)

    Gaulupeau, B.; Delobel, B.; Cahen, S.; Fontana, S.; Hérold, C.

    2017-02-01

    The lithium-ion batteries are widely used in rechargeable electronic devices. The current challenges are to improve the capacity and safety of these systems in view of their development to a larger scale, such as for their application in electric and hybrid vehicles. Lithium-ion batteries use organic solvents because of the wide operating voltage. The corresponding electrolytes are usually based on combinations of linear, cyclic alkyl carbonates and a lithium salt such as LiPF6. It has been reported that in abusive thermal conditions, a catalytic effect of the cathode materials lead to the formation fluoro-organics compounds. In order to understand the degradation phenomenon, the study at 240 °C of the interaction between positive electrode materials (LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiMn2O4 and LiFePO4) and electrolyte in dry and wet conditions has been realized by an original method which consists in analyzing by mass spectrometry in real time the volatile molecules produced. The evolution of specific gases channels coupled to the NMR reveal the formation of rarely discussed species such as 2-fluoroethanol and 1,4-dioxane. Furthermore, it appears that the presence of water or other protic impurities greatly influence their formation.

  16. Restoration of longitudinal laser tomography target image from inhomogeneous medium degradation under common conditions.

    Science.gov (United States)

    Yi, WenJun; Wang, Ping; Fu, MeiCheng; Tan, JiChun; Zhu, Jubo; Li, XiuJian

    2017-07-10

    In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

  17. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions

    Science.gov (United States)

    Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu

    2013-06-01

    The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size

  18. Quantifying Permafrost Extent, Condition, and Degradation at Department of Defense Installations in the Arctic

    Science.gov (United States)

    Edlund, C. A.

    2017-12-01

    The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the

  19. Effect of gamma irradiation conditions on the radiation-induced degradation of isobutylene-isoprene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Sen, M. E-mail: msen@hacettepe.edu.tr; Uzun, C.; Kantoglu, Oe.; Erdogan, S.M.; Deniz, V.; Gueven, O

    2003-08-01

    The effect of gamma irradiation conditions on the radiation-induced degradation of uncrosslinked, commercial isobutylene-isoprene rubbers has been investigated in this study. Influence of dose rate and irradiation atmosphere on the degradation of butyl rubber has been followed by viscosimetric and chromatographic analyses. Limiting viscosity number of all butyl rubbers decreased sharply up to 100 kGy and leveled off at around the same molecular weight, independent of dose rate. Slightly higher decrease in viscosity was observed for samples irradiated in air than in nitrogen especially at low dose rate irradiation. Cross-linking G(X), and chain scission G(S) yields of butyl rubbers were calculated by using weight- and number-average molecular weights of irradiated rubber determined by Size Exclusion Chromatography analyses. G-value results showed that chain scission reactions in isobutylene-isoprene rubber in air atmosphere are more favorable than in nitrogen atmosphere, and that lower dose rate enhances chain scission over cross-linking.

  20. Radiation-induced degradation of D-fructose in aerated condition

    International Nuclear Information System (INIS)

    Kito, Yukio; Kawakishi, Shunro; Namiki, Mitsuo

    1981-01-01

    Gamma-radiolysis of fructose in aqueous solution under aerated conditions formed various oxidized products, such as dicarbonyl hexoses, lower molecular aldoses and aldonic acids. Among these radiolytic products, D-arabinohexosulose (1, G = 2.2) and D-threo-2,5-hexodiulose (2, G = 1.5) were identified as major hexose derivatives, and D-threo-2,3-hexodiulose (3) and D-lyxo-hexos-5-ulose (4) as minor products. The radiolytic processes were found to be derived through fructose radicals, similarly to anaerobic radiolysis of fructose. The mechanism of radiolysis was proposed to be initiated by hydrogen abstraction with hydroxyl radical, followed by formation and degradation of fructose hydroperoxy radicals. (author)

  1. The Effects of Involvement, Message Appeal, and Viewing Conditions on Memory and Evaluation of TV Commercials.

    Science.gov (United States)

    Nowak, Glen; Thorson, Esther

    A study tested an information processing model that incorporates the concepts of episodic and semantic memory. The model was designed to provide for the concurrent study of three advertising and communication variables: product involvement, message appeal, and distraction in viewing conditions. Among the five hypotheses being tested were that…

  2. Evaluative Processing of Food Images: A Conditional Role for Viewing in Preference Formation

    Directory of Open Access Journals (Sweden)

    Alexandra Wolf

    2018-06-01

    Full Text Available Previous research suggested a role of gaze in preference formation, not merely as an expression of preference, but also as a causal influence. According to the gaze cascade hypothesis, the longer subjects look at an item, the more likely they are to develop a preference for it. However, to date the connection between viewing and liking has been investigated predominately with self-paced viewing conditions in which the subjects were required to select certain items from simultaneously presented stimuli on the basis of perceived visual attractiveness. Such conditions might promote a default, but non-mandatory connection between viewing and liking. To explore whether the connection is separable, we examined the evaluative processing of single naturalistic food images in a 2 × 2 design, conducted completely within subjects, in which we varied both the type of exposure (self-paced versus time-controlled and the type of evaluation (non-exclusive versus exclusive. In the self-paced exclusive evaluation, longer viewing was associated with a higher likelihood of a positive evaluation. However, in the self-paced non-exclusive evaluation, the trend reversed such that longer viewing durations were associated with lesser ratings. Furthermore, in the time-controlled tasks, both with non-exclusive and exclusive evaluation, there was no significant relationship between the viewing duration and the evaluation. The overall pattern of results was consistent for viewing times measured in terms of exposure duration (i.e., the duration of stimulus presentation on the screen and in terms of actual gaze duration (i.e., the amount of time the subject effectively gazed at the stimulus on the screen. The data indicated that viewing does not intrinsically lead to a higher evaluation when evaluating single food images; instead, the relationship between viewing duration and evaluation depends on the type of task. We suggest that self-determination of exposure duration may

  3. Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions.

    Science.gov (United States)

    Issa, Salah; Wood, Martin

    2005-02-01

    The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.

  4. Tutorial review of spent-fuel degradation mechanisms under dry-storage conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1983-02-01

    This tutorial reviews our present understanding of fuel-rod degradation over a range of possible dry-storage environments. Three areas are covered: (1) why study fuel-rod degradation; (2) cladding-degradation mechanisms; and (3) the status of fuel-oxidation studies

  5. Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions.

    Science.gov (United States)

    Howard, Scarlett R; Avarguès-Weber, Aurore; Garcia, Jair E; Stuart-Fox, Devi; Dyer, Adrian G

    2017-11-29

    How different visual systems process images and make perceptual errors can inform us about cognitive and visual processes. One of the strongest geometric errors in perception is a misperception of size depending on the size of surrounding objects, known as the Ebbinghaus or Titchener illusion. The ability to perceive the Ebbinghaus illusion appears to vary dramatically among vertebrate species, and even populations, but this may depend on whether the viewing distance is restricted. We tested whether honeybees perceive contextual size illusions, and whether errors in perception of size differed under restricted and unrestricted viewing conditions. When the viewing distance was unrestricted, there was an effect of context on size perception and thus, similar to humans, honeybees perceived contrast size illusions. However, when the viewing distance was restricted, bees were able to judge absolute size accurately and did not succumb to visual illusions, despite differing contextual information. Our results show that accurate size perception depends on viewing conditions, and thus may explain the wide variation in previously reported findings across species. These results provide insight into the evolution of visual mechanisms across vertebrate and invertebrate taxa, and suggest convergent evolution of a visual processing solution. © 2017 The Author(s).

  6. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  7. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  8. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  9. Autolytic degradation of skipjack tuna during heating as affected by initial quality and processing conditions.

    Science.gov (United States)

    Stagg, Nicola J; Amato, Penny M; Giesbrecht, Francis; Lanier, Tyre C

    2012-02-01

    Several factors were studied as affecting protein degradation and texture of skipjack tuna muscle following ambient pressure thermal processing (precooking). These included degree of mushy tuna syndrome (MTS) evidenced in the raw meat, raw meat pH, abusive thawing/holding, and precooking temperature/time. Slurries and intact pieces from frozen skipjack tuna, either tempered for 2 h or thawed and held at 25 °C for 22 h (abusive treatment) were heated at temperatures ranging from 40 to 80 °C for up to 2 h, and also at 90 °C for 1 h, with or without prior adjustment of pH to 5 or 7 to favor cathepsin or calpain activity, respectively. Proteolysis of precooked samples was monitored by Lowry assay and SDS-PAGE; cooked texture of intact meat was measured using a Kramer shear press and by sensory profile analysis. Proteolysis maximally occurred in slurries of skipjack tuna muscle that had been abusively stored (22 h at 25 °C) and adjusted to pH 5 prior to heating at 55 °C. Intact pieces of tuna abusively thawed/held for 22 h with subsequent heating at 55 °C also evidenced the most proteolysis and were the least firm in texture. Raw fish that evidenced higher severity of MTS when raw displayed higher levels of proteolysis prior to cooking, which were further increased after cooking at 55 °C. The kinetic data presented here can be used to optimize processing conditions for skipjack tuna canning to minimize textural degradation and optimize quality. © 2012 Institute of Food Technologists®

  10. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks.

    Science.gov (United States)

    Shen, Genxiang; Zhang, Yu; Hu, Shuangqing; Zhang, Hongchang; Yuan, Zhejun; Zhang, Wei

    2018-03-01

    Sulfonamides, one of the commonest antibiotics, were widely used on humans and livestock to control pathema and bacterial infections resulting in further environmental risks. The present study evaluated the adsorption and degradation of sulfadiazine (SDZ) and sulfamethoxazole (SMX) in an agricultural soil system under an anaerobic condition. Low sorption coefficients (K d , 1.22 L kg -1 for SDZ and 1.23 L kg -1 for SMX) obtained from Freundlich isotherms experiment indicated that poor sorption of both antibiotics may pose a high risk to environment due to their high mobility and possibility of entering surface and ground water. Degradation occurred at a lower rate under the anaerobic environment, where both two antibiotics had higher persistence in sterile and non-sterile soils with degradation ratio  20 d. Additionally, the addition of manure slightly increased degradation rates of SDZ and SMX, but there were no significant differences between single and repeated manure application at a later stage (p > 0.05), which suggested that the degradation was affected by both biotic and abiotic factors. Degradation rates would be slower at a higher concentration, indicating that degradation kinetics of SDZ and SMX were dependent on initial concentrations. During the degradation period, the antibiotics removal may change temperature, pH, sulfate and nitrate in soil, which suggested that the variation of antibiotics concentrations was related to the changes of soil physicochemical properties. An equation was proposed to elucidate the link between adsorption and degradation under different conditions, and to predict potential environmental risks of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessment by HPLC of the degradation behavior of acitretin under hydrolytic, oxidative, photolytic and thermal stress conditions

    Directory of Open Access Journals (Sweden)

    Pawan K. Porwal

    2014-12-01

    Full Text Available Acitretin is a photosensitive oral retinoid with very limited data available on its degradation. The official HPLC method for acitretin determination was insufficient to resolve the degradation products generated during stability studies. Therefore, an isocratic RP-HPLC–UV method was developed for the determination of acitretin in the presence of its related impurities and degradation products. Efficient chromatographic separation was achieved on a Thermo beta-basic column C18 (100 mm×4.6 mm, 5 μm with mobile phase containing 0.3% (v/v glacial acetic acid with acetonitrile (ACN and isopropyl alcohol (IPA in an isocratic ratio of 70:30 at a flow rate of 1.0 mL/min with the eluent monitored at 360 nm. The method was validated for specificity, linearity, precision, accuracy and robustness. The calibration plot was linear over the concentration range of 50–150 μg/mL with a correlation coefficient (r2 of 0.999. The proposed method was used to investigate the degradation kinetics of acitretin under the different degradative conditions. The degradation rate constant (K, half-life (t1/2, and t90 were calculated. Degradation of acitretin followed pseudo-first-order kinetics. The drug was found to be less stable under acidic and photolytic degradation conditions: the photolytic degradation constants for acitretin in sunlight and UV light were 0.002698% and 0.0008402% min−1, respectively. The LOD for acitretin and the known impurities were at a level below 0.02%. The method shows consistent recoveries for ACTR (99.8%–101.2% and also for its known impurities (97.2–101.3%. The method was found to be accurate, precise, linear, specific, sensitive, rugged, robust, and useful for characterizing the stability of this chemical.

  12. Long-term degradation of organic polymers under conditions found in deep repositories for low and intermediate-level wastes

    International Nuclear Information System (INIS)

    Warthmann, R.; Mosberger, L.; Baier, U.

    2013-06-01

    On behalf of Nagra, the Environmental Biotechnology Section of the Zürich University of Applied Sciences in Wädenswil investigated the potential for microbiological degradation of organic polymers under the conditions found in a deep geological repository for low- and intermediate-level waste (L/ILW). The existing scientific literature on the topic was analysed, some thermodynamic calculations carried out and input was elicited from internationally recognised experts in the field. The study was restricted to a few substances which, in terms of mass, are most significant in the Swiss L/ILW inventory; these are polystyrene (PS), polyvinyl chloride (PVC), other plastics and bitumen. There were no clear indications in the literature that the polymer structure of synthetic polymers is biodegraded under anoxic conditions. However, functional groups of ion exchangers and plasticizers in plastics are considered to be readily available and biodegradable. The greatest obstacle to biological degradation of synthetic polymers is depolymerisation to produce labile monomers. As energy is generally required for such breakdown, the chances of this process taking place outside the cells are very low. In so far as they are present, monomers are, in principle, anaerobically biodegradable. Thermodynamic considerations indicate that degradation of synthetic polymers under repository conditions is theoretically possible. However, the degradation of polystyrene is very close to thermodynamic equilibrium and the usable energy for microorganisms would barely be sufficient. Under high H2 partial pressures, it is predicted that there will be a thermodynamic inhibition of anaerobic degradation, as certain interim steps in degradation are endergonic. The starting conditions for microbial growth in a deep repository are unfavourable in terms of availability of water and prevailing pH values. Practically no known microorganisms can tolerate the combination of these conditions; most known

  13. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Avita Kusuma Wardhani

    2016-10-01

    Full Text Available Utilization of Jatropha curcas seed cake is limited by the presence of phorbol esters (PE, which are the main toxic compound and heat stable. The objective of this research was to optimize the reaction conditions of the enzymatic PE degradation of the defatted Jatropha curcas seed cake (DJSC using the acetone-dried lipase from the germinated Jatropha curcas seeds as a biocatalyst. Response Surface Methodology (RSM using three-factors-three-levels Box-Behnken design was used to evaluate the effects of the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC on PE degradation. The results showed that the optimum conditions of PE degradation were 29.33 h, 51.11 : 6 (mL/g, and 30.10 : 5 (U/g cake for the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC, respectively. The predicted degradation of PE was 98.96% and not significantly different with the validated data of PE degradation. PE content was 0.035 mg/g, in which it was lower than PE in non-toxic Jatropha seeds. The results indicated that enzymatic degradation of PE might be a promising method for degradation of PE.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 22nd December 2015; Revised: 1st April 2016; Accepted: 14th April 2016 How to Cite: Wardhani, A.K., Hidayat, C., Hastuti, P. (2016. Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 346-353 (doi:10.9767/bcrec.11.3.574.346-353 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.574.346-353

  14. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  15. Molecular and Supramolecular Changes in Polybutylene Succinate (PBS and Polybutylene Succinate Adipate (PBSA Copolymer during Degradation in Various Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Michał Puchalski

    2018-03-01

    Full Text Available In this paper, the influence of the various degradation conditions, on the molecular and supramolecular structure of polybutylene succinate (PBS and polybutylene succinate adipate (PBSA copolymer during degradation is described. The experiment was carried out by the use of injection molded samples and normalized conditions of biodegradation in soil, composting and artificial weathering. Materials were studied by size-exclusion chromatography (SEC coupled with multiangle laser light scattering (MALLS detection and wide-angle X-ray diffraction (WAXD. Additionally, the physical and mechanical properties of the samples were determined. The performed experiments clearly show difference impacts of the selected degradation conditions on the macroscopic, supramolecular and molecular parameters of the studied aliphatic polyesters. The structural changes in PBS and PBSA explain the observed changes in the physical and mechanical properties of the obtained injection molded samples.

  16. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions.

    Science.gov (United States)

    Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng

    2017-10-01

    Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.

  17. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  18. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    Science.gov (United States)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  19. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2014-01-01

    Full Text Available Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0 and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C- & 2D (COSY, HSQC, HMBC NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.

  20. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions.

    Science.gov (United States)

    van der Waals, Marcelle J; Pijls, Charles; Sinke, Anja J C; Langenhoff, Alette A M; Smidt, Hauke; Gerritse, Jan

    2018-04-01

    The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.

  1. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  2. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    International Nuclear Information System (INIS)

    Saien, J.; Nejati, H.

    2007-01-01

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO 2 added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L -1 , 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C 10 ) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants

  3. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saien, J. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)], E-mail: saien@basu.ac.ir; Nejati, H. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)

    2007-09-05

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO{sub 2} added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L{sup -1}, 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C{sub 10}) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants.

  4. Degradation of herbicides under different redox conditions in eight Danish aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Mosbæk, Hans; Albrechtsen, Hans-Jørgen

    2000-01-01

    The degradation potential of the herbicides 2,4-D, 2,4,5-T, atrazine, dichlobenil, DNOC, bentazone, DCP (dichloroprop), IPU (isoproturon), MCPA and MCPP (mecoprop) and the degradation product from dichlobenil 2,6-dichlorobenzamide (BAM) were investigated in laboratory incubations with sediment...

  5. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  6. Real-time markerless Augmented Reality for Remote Handling system in bad viewing conditions

    International Nuclear Information System (INIS)

    Ziaei, Z.; Hahto, A.; Mattila, J.; Siuko, M.; Semeraro, L.

    2011-01-01

    Remote Handling (RH) in harsh environments usually has to tackle the lack of sufficient visual feedback for the human operator due to the limited number of on-site cameras, the not optimized position of the cameras, the poor viewing angles, occlusion, failure, etc. Augmented Reality (AR) enables the user to perceive virtual computer-generated objects in a real scene. The most common goals usually include visibility enhancement and provision of extra information, such as positional data of various objects. The proposed AR system first recognizes and locates the markerless object by using a template based matching algorithm, and then augments the virtual model on top of the recognized item. The tracking algorithm is exploited for locating the object in a continuous sequence of frames. Conceptually, the template is found by computing the similarity between the template and the image frame, for all the relevant template poses (rotation and translation). As a case study, AR interface was displaying measured orientation and transformation of the Water Hydraulic Manipulator (WHMAN) Divertor preloading tool, in near real-time tracking. The bad viewing condition implies on the case when the view angle is such that the interesting features of the object are not in the field of view. The method in this paper was validated in concrete operational context at DTP2. The developed method proved to deliver robust positional and orientation information while augmenting and tracking the moving tool object.

  7. 360⁰ -View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States)

    2016-09-02

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360⁰-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The “360⁰” is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360⁰-View sessions focused specifically on younger scientists. The 360⁰-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  8. CARBON FIXING CAPACITY OF AMAZONIAN SOILS IN RELATION TO ITS DEGRADATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Clara Patricia Peña Venegas

    2015-06-01

    Full Text Available Amazonian deforestation and transformation alert about their effects worldwide. One concern is the increase of the Carbon (C levels emitted. Previous works have estimated the fixed C in Amazon forests without including the C stored in soils. Within soil, the organic carbon molecules are highly sensitive to degradation, affecting the natural capacity of soils to fix and store C. The present study evaluates the impact of degradation in the natural capacity of Amazon soils to fix C. Thirty five farms with different typology were selected in Caquetá department which hold the highest deforestation and soil degradation rates in the Colombian Amazon. Soil samples were taken from natural forest relicts, cropping areas and introduced pastures of the farms, in locations with high, intermediate and low soil degradation. Aerial biomass was estimated in pastures with different level of soil degradation. Changes in the labile C stock were estimated from the soil organic carbon and the microbial biomass using substrate induced respiration. Results showed that the main C pool is in the natural forest relicts and the crops of the farms, independently from the size or type of farm sampled. The hills with higher intervention showed the lowest soil C fixation capacities. The soil C fixation capacity was related with changes in the soil microbial composition where conserved soils store preferentially C as fungal biomass while degraded soils store C as bacterial biomass. These estimations contribute to establish the cost of sustainability and soil degradation in the Colombian Amazon.

  9. Analysis of scene distortions in stereoscopic images due to the variation of the ideal viewing conditions

    Science.gov (United States)

    Viale, Alberto; Villa, Dario

    2011-03-01

    Recently stereoscopy has increased a lot its popularity and various technologies are spreading in theaters and homes allowing observation of stereoscopic images and movies, becoming affordable even for home users. However there are some golden rules that users should follow to ensure a better enjoyment of stereoscopic images, first of all the viewing condition should not be too different from the ideal ones, which were assumed during the production process. To allow the user to perceive stereo depth instead of a flat image, two different views of the same scene are shown to the subject, one is seen just through his left eye and the other just through the right one; the vision process is making the work of merging the two images in a virtual three-dimensional scene, giving to the user the perception of depth. The two images presented to the user were created, either from image synthesis or from more traditional techniques, following the rules of perspective. These rules need some boundary conditions to be explicit, such as eye separation, field of view, parallax distance, viewer position and orientation. In this paper we are interested in studying how the variation of the viewer position and orientation from the ideal ones expressed as specified parameters in the image creation process, is affecting the correctness of the reconstruction of the three-dimensional virtual scene.

  10. A gaze-contingent display to study contrast sensitivity under natural viewing conditions

    Science.gov (United States)

    Dorr, Michael; Bex, Peter J.

    2011-03-01

    Contrast sensitivity has been extensively studied over the last decades and there are well-established models of early vision that were derived by presenting the visual system with synthetic stimuli such as sine-wave gratings near threshold contrasts. Natural scenes, however, contain a much wider distribution of orientations, spatial frequencies, and both luminance and contrast values. Furthermore, humans typically move their eyes two to three times per second under natural viewing conditions, but most laboratory experiments require subjects to maintain central fixation. We here describe a gaze-contingent display capable of performing real-time contrast modulations of video in retinal coordinates, thus allowing us to study contrast sensitivity when dynamically viewing dynamic scenes. Our system is based on a Laplacian pyramid for each frame that efficiently represents individual frequency bands. Each output pixel is then computed as a locally weighted sum of pyramid levels to introduce local contrast changes as a function of gaze. Our GPU implementation achieves real-time performance with more than 100 fps on high-resolution video (1920 by 1080 pixels) and a synthesis latency of only 1.5ms. Psychophysical data show that contrast sensitivity is greatly decreased in natural videos and under dynamic viewing conditions. Synthetic stimuli therefore only poorly characterize natural vision.

  11. Comparison of different chlorophenols degradation in aqueous solutions by gamma irradiation under reducing conditions

    International Nuclear Information System (INIS)

    Peng, Yunxia; He, Shijun; Wang, Jianlong; Gong, Wenqi

    2012-01-01

    The reductive degradation of chlorophenols (CPs), including 2-CP, 4-CP and 2,4-DCP by gamma irradiation was investigated and compared. The results showed that the most efficient degradation took place with 2,4-DCP, followed by 2-CP and then 4-CP. This confirmed that the number and position of chlorine atoms existing in the benzene ring have significant impact on dechlorination and decomposition of CPs. The G-values of decomposition of CPs, the formation of intermediate products and chloride ion, and the degradation rate (K CPs and K Cl −1 ) were also determined. - Highlights: ► Reductive degradation of 2-CP, 4-CP and 2,4-DCP by γ radiation was compared. ► Number and position of chlorine affect their dechlorination and decomposition. ► G-values of CPs decomposition, intermediate formation and chloride release were determined.

  12. Material degradation analysis and maintenance decisions based on material condition monitoring during in-service inspections

    International Nuclear Information System (INIS)

    Yacout, A.M.; Orechwa, Y.

    1996-03-01

    The degradation of the material in critical components is shown to be an effective measure which can be used to compute the risk adjusted economic penalty associated with different maintenance decisions. The approach of estimating the probability, with confidence interval, of the time that a prescribed degradation level is exceeded is shown to be practical, as demonstrated in the analysis of irradiated fuel cladding. The methodology for the estimation of the probability is predicated on the existence of a parsimonious and robust mixed-effects model of the evolution of the degradation. This model, in general, relates measured surrogates of the degradation level to computed or measured variables, which characterize the environment during the operating history of the component. We propose and demonstrate the efficacy of using an artificial neural network, constructed via a genetic supervisor, as an aid in developing the requisite mixed-effects model and testing its continued validity as new data are obtained

  13. Varying Conditions for Hexanoic Acid Degradation with BioTigerTM

    International Nuclear Information System (INIS)

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    2016-01-01

    BioTiger TM (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe's vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of

  14. CARBON FIXING CAPACITY OF AMAZONIAN SOILS IN RELATION TO ITS DEGRADATION CONDITIONS

    OpenAIRE

    Clara Patricia Peña Venegas; Edmundo Rafael Mendoza Olmos; Carlos Hernando Rodríguez León; Gladys Inés Cardona Vanegas; Bernardo Eusebio Betancurt Parra; Maolenmarx Tatiana Garzón Gómez

    2015-01-01

    Amazonian deforestation and transformation alert about their effects worldwide. One concern is the increase of the Carbon (C) levels emitted. Previous works have estimated the fixed C in Amazon forests without including the C stored in soils. Within soil, the organic carbon molecules are highly sensitive to degradation, affecting the natural capacity of soils to fix and store C. The present study evaluates the impact of degradation in the natural capacity of Amazon soils to fix C. Thirty five...

  15. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  16. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  17. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2015-09-01

    Full Text Available This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss, degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  18. A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem

    International Nuclear Information System (INIS)

    Park, Taehoon; Park, Won-Kwang

    2015-01-01

    Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation. (paper)

  19. A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem

    Science.gov (United States)

    Park, Taehoon; Park, Won-Kwang

    2015-09-01

    Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.

  20. Degradation tests for C 32/40 concrete used for perimetral wall, reactor base and components of Cernavoda NPP containment, under thermal stress conditions and liner degradation

    International Nuclear Information System (INIS)

    Carlan, P.; Paraschiv, I.; Dinu, A.; Stanciulescu, M.; Olteanu, A. M.; Voica, I.; Stelian, R.; Buc, G.

    2016-01-01

    In order to evaluate the effect of thermal degradation on C 32/40 concrete used in nuclear constructions at Cernavoda NPP, continuous thermal stress tests were performed at 65, 80 and 100°C and cyclic thermal stress tests at 65°C in dry conditions. This paper presents the macroscopic properties of concrete, obtained after these treatments and also the microstructural changes that occur in the cement paste from the concrete composition, which has been tested in the same conditions as the concrete samples. Determinations performed for macroscopic properties of concrete included: compressive strength, loss of density, permeability and modulus of elasticity. Cement paste samples were analysed by XRD (for mineralogical composition) and SEM (for morphology). The obtained results shown an appropriate behaviour of the concrete used in this study; changes are insignificant and follow the normal evolution process of concrete, proving that concrete will preserve its safety functions, as part of the containment structure. (authors)

  1. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  2. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  3. Assessment of the ability of sludge to degrade PCP under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    R. M. L. Bolaños

    2005-12-01

    Full Text Available The capacity of sludge from different sources to degrade pentachlorophenol (PCP was evaluated. Three 2.5 liter reactors (R1, R2, and R3 were inoculated with different anaerobic sludges, semi continuously fed and maintained in orbital motion at 30±1°C. R1 was inoculated with aerobic sludge and river sediment collected downstream from a pulp and paper plant. R2 received sludge from an anaerobic reactor treating effluents from a paper recycling plant and R3 received anaerobic sludge from a biodigestor treating industrial and domestic effluents. The sludges were first acclimatized to a culture medium generally recommended for organochloride anaerobic degradation studies. The reactors were then subjected to increasing concentrations of PCP from 0.05 to 10.0 mg.l-1. PCP degradation and metabolite formation were monitored using gas chromatography, and the effects of PCP on the anaerobic process were verified by monitoring pH, volatile fatty acids, alkalinity, total suspended solids, and chemical oxygen demand. It was found that PCP did not affect reactor performance. All the sludges displayed the best PCP degradation capacity at a concentration of 0.2 mg.l-1, producing fewer chlorinated metabolites than when higher PCP concentrations were applied. R1 consistently produced fewer chlorinated metabolites, confirming the hypothesis that pre exposure to chlorinated compounds improves the sludge's capacity to degrade PCP.

  4. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    Science.gov (United States)

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  5. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    Science.gov (United States)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  6. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  7. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Janning, K.F.; Mesterton, K.; Harremoës, P.

    1997-01-01

    Two experiments were performed in order to investigate the anoxic and the aerobic degradation of filtrated organic matter in a biofilter. In submerged lab: scale reactors with Biocarbone media as filter material, accumulated particulate organic matter from pre-settled wastewater served as the only...

  8. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    -lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively

  9. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  10. Storage and degradation of poly-ß-hydroxybutyrate in activated sludge under aerobic conditions

    DEFF Research Database (Denmark)

    Dircks, Klaus; Henze, Mogens; van Loosdrecht, M.C.M.

    2001-01-01

    This research analyses the accumulation and degradation of poly-b-hydroxybutyrate (PHB) in experiments with pulse addition of acetate to samples of activated sludge from pilot-plant and full-scale wastewater treatment plants. The experiments are divided into two periods: a feast period defined as...

  11. Children's Auditory Working Memory Performance in Degraded Listening Conditions

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R.

    2014-01-01

    Purpose: The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It…

  12. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  13. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    Science.gov (United States)

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to importance of litter as an indicator of site degradation and recovery potential in arid lands.

  14. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  15. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  16. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  17. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Directory of Open Access Journals (Sweden)

    Javier García-Hidalgo

    Full Text Available The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R-3-hydroxybutyrate (PHB degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa , has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131-Asp(209-His(269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt. The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  18. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Science.gov (United States)

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  19. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

    Science.gov (United States)

    He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng

    2018-04-15

    A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Distribution of light in the human retina under natural viewing conditions

    Science.gov (United States)

    Gibert, Jorge C.

    Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject's gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naive subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naive subjects were allowed to gaze freely for all phases. Using the subject's gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ˜15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naive subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some

  1. Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data

    Directory of Open Access Journals (Sweden)

    Jukka Miettinen

    2014-12-01

    Full Text Available In this review paper we present geographical, ecological and historical aspects of Southeast Asia from the perspective of forest degradation monitoring and critically discuss available approaches for large area forest degradation monitoring with satellite remote sensing data at high to medium spatial resolution (5–30 m. Several authors have achieved promising results in geographically limited areas within Southeast Asia using automated detection algorithms. However, the application of automated methods to large area assessments remains a major challenge. To-date, nearly all large area assessments of forest degradation in the region have included a strong visual interpretation component. We conclude that due to the variety of forest types and forest disturbance levels, as well as the variable image acquisition conditions in Southeast Asia, it is unlikely that forest degradation monitoring can be conducted throughout the region using a single automated approach with currently available remote sensing data. The provision of regionally consistent information on forest degradation from satellite remote sensing data remains therefore challenging. However, the expected increase in observation frequency in the near future (due to Landsat 8 and Sentinel-2 satellites may lead to the desired improvement in data availability and enable consistent and robust regional forest degradation monitoring in Southeast Asia. Keywords: Tropical forest disturbance, Selective logging, Shifting cultivation, Satellite data, Indochina peninsula, Maritime continent

  2. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions.

    Science.gov (United States)

    Gągol, Michał; Przyjazny, Andrzej; Boczkaj, Grzegorz

    2018-07-01

    Cavitation has become on the most often applied methods in a number of industrial technologies. In the case of oxidation of organic pollutants occurring in the aqueous medium, cavitation forms the basis of numerous advanced oxidation processes (AOPs). This paper presents the results of investigations on the efficiency of oxidation of the following groups of organic compounds: organosulfur, nitro derivatives of benzene, BTEX, and phenol and its derivatives in a basic model effluent using hydrodynamic and acoustic cavitation combined with external oxidants, i.e., hydrogen peroxide, ozone and peroxone. The studies revealed that the combination of cavitation with additional oxidants allows 100% oxidation of the investigated model compounds. However, individual treatments differed with respect to the rate of degradation. Hydrodynamic cavitation aided by peroxone was found to be the most effective treatment (100% oxidation of all the investigated compounds in 60 min). When using hydrodynamic and acoustic cavitation alone, the effectiveness of oxidation was diversified. Under these conditions, nitro derivatives of benzene and phenol and its derivatives were found to be resistant to oxidation. In addition, hydrodynamic cavitation was found to be more effective in degradation of model compounds than acoustic cavitation. The results of investigations presented in this paper compare favorably with the investigations on degradation of organic contaminants using AOPs under conditions of basic pH published thus far. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition.

    Science.gov (United States)

    Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung

    2017-08-01

    Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Occlusal loading and cross-linking effects on dentin collagen degradation in physiological conditions.

    Science.gov (United States)

    Turco, Gianluca; Frassetto, Andrea; Fontanive, Luca; Mazzoni, Annalisa; Cadenaro, Milena; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2016-02-01

    This study evaluated the ability of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) to improve the stability of demineralized dentin collagen matrices when subjected to mechanical cycling by means of Chewing Simulation (CS). Demineralized dentin disks were randomly assigned to four groups (N=4): (1) immersion in artificial saliva at 37°C for 30 days; (2) pre-treatment with 0.5 M EDC for 60 s, then stored as in Group 1; (3) CS challenge (50 N occlusal load, 30 s occlusal time plus 30 s with no load, for 30 days); (4) pre-treatment with 0.5 M EDC as in Group 2 and CS challenge as in Group 3. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptides. EDC treated specimens showed no significant telopeptides release, irrespective of the aging method. Cyclic stressing of EDC-untreated specimens caused significantly higher ICTP release at day 1, compared to static storage, while by days 3 and 4, the ICTP release in the cyclic group fell significantly below the static group, and then remained undetectable from 5 to 30 days. CTX release in the cyclic groups, on EDC-untreated control specimens was always lower than in the static group in days 1-4, and then fell to undetectable for 30 days. This study showed that chewing stresses applied to control untreated demineralized dentin increased degradation of collagen in terms of CTX release, while collagen crosslinking agents may prevent dentin collagen degradation, irrespective of simulated occlusal function. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    Science.gov (United States)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  6. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  7. Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions

    Science.gov (United States)

    Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y.

    2018-04-01

    Polymer blended nanocomposites based on polylactic acid (PLA) were prepared via a simple melting process and investigated for its biodegradation behaviour. The treated CNTs were surface modified by using acid treatment and characterisations of composites were done by using Fourier Transform Infra-Red (FTIR) and UV-Vis. FTIR spectra and UV-Vis peak confirmed the surface modification of CNTs. The water uptake and weight loss behaviour based on CNTs and m-CNTs loading at different temperatures (25° and 45°C) were studied. It was found that the water absorption and weight loss of nanocomposites increased by the incorporation of CNTs and m-CNTs. Moisture induced degradation of composite samples was significant at elevated temperature. The addition of treated CNTs successfully reduced the water uptake and weight loss of nanocomposites due to less hydrolytic effect of water on nanocomposites. In soil burial test, the weight loss increases with addition of nanofiller. The loading of m-CNT reduced the ability of nanocomposites degradation.

  8. Effect of perfluorosulfonic acid membrane equivalent weight on degradation under accelerated stress conditions

    International Nuclear Information System (INIS)

    Rodgers, Marianne P.; Pearman, Benjamin P.; Mohajeri, Nahid; Bonville, Leonard J.; Slattery, Darlene K.

    2013-01-01

    The equivalent weight of proton exchange membranes has a large effect on their properties and can impact performance and durability in hydrogen fuel cells. For example, increasing the EW increases the crystallinity of perfluorosulfonic acid membranes, while water content and glass transition temperature decrease. The length of the sulfonic acid side chain also impacts membrane properties. Perfluorosulfonic acid membranes with shorter sulfonic acid side chains, though they exhibit similar gas permeability, have been shown to have higher crystallinity, higher glass transition temperature, slightly lower water content, and lower proton conductivity than membranes with longer sulfonic acid side chains for a given EW. Although many reports have investigated cell performance for membranes as a function of low EW and side chains length, their impact on cell durability is not well understood. Because side chain attack by radicals formed during fuel cell operation is a major source of membrane degradation, it is reasonable to hypothesize that membranes with lower EW and, therefore, more sulfonic acid side chains, would have lower durability. This study evaluates membrane degradation for cells containing PFSA membranes with 750 EW, 950 EW, and 1100 EW. The 750 EW membrane contained short sulfonic acid side-chains while the 950 EW and 1100 EW membranes were Nafion ® -based with long sulfonic acid side-chains. Membranes were tested in fuel cells for 100 h under open circuit voltage, at 90 °C and 30% relative humidity. Diagnostic tests conducted on the cells included hydrogen crossover, fluoride emission, catalyst electrochemical surface area, posttest membrane scanning electron microscopy/transmission electron microscopy evaluation, and defect identification in membranes. The 950 EW cell had the highest decay metrics including fluoride emission, voltage decay, loss in ECA, and loss in cell performance. In all cases, the 1100 EW cell showed the lowest degradation. This has

  9. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2......, there is only a slight decrease in open circuit voltage of the fuel cell which implies the membrane is not affected by the test. The electrochemical impedance spectrum measurement shows that the H2 starvation can cause significant increase in the ohmic resistance and charge transfer resistance. By looking...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  10. Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology.

    Science.gov (United States)

    Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F

    2014-05-15

    Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression.

    Science.gov (United States)

    Ferrara, Patrizia; Andermarcher, Elisabetta; Bossis, Guillaume; Acquaviva, Claire; Brockly, Frédérique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2003-03-13

    c-fos gene is expressed constitutively in a number of tissues as well as in certain tumor cells and is inducible, in general rapidly and transiently, in virtually all other cell types by a variety of stimuli. Its protein product, c-Fos, is a short-lived transcription factor that heterodimerizes with various protein partners within the AP-1 transcription complex via leucine zipper/leucine zipper interactions for binding to specific DNA sequences. It is mostly, if not exclusively, degraded by the proteasome. To localize the determinant(s) responsible for its instability, we have conducted a genetic analysis in which the half-lives of c-Fos mutants and chimeras made with the stable EGFP reporter protein were compared under two experimental conditions taken as example of continous and inducible expression. Those were constitutive expression in asynchronously growing Balb/C 3T3 mouse embryo fibroblasts and transient induction in the same cells undergoing the G0/G1 phase transition upon stimulation by serum. Our work shows that c-Fos is degraded faster in synchronous- than in asynchronous cells. This difference in turnover is primarily accounted for by several mechanisms. First, in asynchronous cells, a unique C-terminal destabilizer is active whereas, in serum-stimulated cells two destabilizers located at both extremities of the protein are functional. Second, heterodimerization and/or binding to DNA accelerates protein degradation only during the G0/G1 phase transition. Adding another level of complexity to turnover control, phosphorylation at serines 362 and 374, which are c-Fos phosphorylation sites largely modified during the G0/G1 phase transition, stabilizes c-Fos much more efficiently in asynchronous than in serum-stimulated cells. In both cases, the reduced degradation rate is due to inhibition of the activity of the C-terminal destabilizer. However, in serum-stimulated cells, this effect is partially masked by the activation of the N-terminal destabilizer and

  12. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    Science.gov (United States)

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  13. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions

    International Nuclear Information System (INIS)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-01-01

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO 2 catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO 2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater

  14. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} nanoparticles in dark at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang, E-mail: chiyanghe@hotmail.com

    2015-08-30

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO{sub 2} nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater.

  15. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  16. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    Science.gov (United States)

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  18. Long-term degradation of organic polymers under conditions found in deep repositories for low and intermediate-level wastes; Langzeit-Degradation von organischen Polymeren unter SMA-Tiefenlagerbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Warthmann, R.; Mosberger, L.; Baier, U.

    2013-06-15

    On behalf of Nagra, the Environmental Biotechnology Section of the Zürich University of Applied Sciences in Wädenswil investigated the potential for microbiological degradation of organic polymers under the conditions found in a deep geological repository for low- and intermediate-level waste (L/ILW). The existing scientific literature on the topic was analysed, some thermodynamic calculations carried out and input was elicited from internationally recognised experts in the field. The study was restricted to a few substances which, in terms of mass, are most significant in the Swiss L/ILW inventory; these are polystyrene (PS), polyvinyl chloride (PVC), other plastics and bitumen. There were no clear indications in the literature that the polymer structure of synthetic polymers is biodegraded under anoxic conditions. However, functional groups of ion exchangers and plasticizers in plastics are considered to be readily available and biodegradable. The greatest obstacle to biological degradation of synthetic polymers is depolymerisation to produce labile monomers. As energy is generally required for such breakdown, the chances of this process taking place outside the cells are very low. In so far as they are present, monomers are, in principle, anaerobically biodegradable. Thermodynamic considerations indicate that degradation of synthetic polymers under repository conditions is theoretically possible. However, the degradation of polystyrene is very close to thermodynamic equilibrium and the usable energy for microorganisms would barely be sufficient. Under high H2 partial pressures, it is predicted that there will be a thermodynamic inhibition of anaerobic degradation, as certain interim steps in degradation are endergonic. The starting conditions for microbial growth in a deep repository are unfavourable in terms of availability of water and prevailing pH values. Practically no known microorganisms can tolerate the combination of these conditions; most known

  19. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions

    Directory of Open Access Journals (Sweden)

    Zucca Paolo

    2012-12-01

    Full Text Available Abstract Background Synthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen. Results IPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase. Conclusions On the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts.

  20. Kinetics of ascorbic acid degradation in un-pasteurized Iranian lemon juice during regular storage conditions.

    Science.gov (United States)

    Abbasi, A; Niakousari, M

    2008-05-15

    The aim of this research was to determine shelf life stability of un-pasteurized lemon juice filled in clear or dark green glass bottles. Presence of light, time and temperature affect the ascorbic acid retention in citrus juices. Bottles were stored at room temperature (27 +/- 3 degrees C) and in the refrigerator (3 +/- 1 degrees C). Total soluble solids, total titrable acidity and pH value were measured every three weeks and analysis was carried out on ascorbic acid content by means of titration method in the presence of 2,6-dichlorophenol indophenol. The study was carried out for 12 weeks after which slight changes in color, taste and apparent texture in some samples were observed and ascorbic acid content reduced by 50%. Soluble solids content, pH value and total acidity were 5.5 degrees Brix, 2.73 and 5 g/100 mL, respectively which appeared not to be significantly influenced by storage time or conditions. Ascorbic acid content initially at 38.50 mg/100 mL was sharply reduced to about 22 mg/100 mL within the first three weeks of storage. The final ascorbic acid content of all samples was about 15 mg/100 mL. The deteriorative reaction of ascorbic acid in the juice at all conditions followed a first-order kinetic model with activation energy of 137 cal mol(-1).

  1. Visibility Enhancement of Scene Images Degraded by Foggy Weather Conditions with Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Farhan Hussain

    2016-01-01

    Full Text Available Nowadays many camera-based advanced driver assistance systems (ADAS have been introduced to assist the drivers and ensure their safety under various driving conditions. One of the problems faced by drivers is the faded scene visibility and lower contrast while driving in foggy conditions. In this paper, we present a novel approach to provide a solution to this problem by employing deep neural networks. We assume that the fog in an image can be mathematically modeled by an unknown complex function and we utilize the deep neural network to approximate the corresponding mathematical model for the fog. The advantages of our technique are as follows: (i its real-time operation and (ii being based on minimal input, that is, a single image, and exhibiting robustness/generalization for various unseen image data. Experiments carried out on various synthetic images indicate that our proposed technique has the abilities to approximate the corresponding fog function reasonably and remove it for better visibility and safety.

  2. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  3. Degradation of mechanical properties of CrMo creep resistant steel operating under conditions of creep

    Directory of Open Access Journals (Sweden)

    J. Michel

    2012-01-01

    Full Text Available Mechanical properties of a steam tube made of CrMo creep resistant steel are analysed in this contribution after up to 2,6•105 hours service life in creep conditions at temperature 530 °C and calculated stress level in the tube wall 46,5 MPa. During service life there were in the steel gradual micro structure changes, fi rst pearlite spheroidization, precipitation, coaugulation and precipitate coarsening. Nevertheless the strength and deformation properties of the steel (Re, Rm, A5, Z, and the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2,1•105 hours in service. The steam tube is now in service more than 2,6•105 h.

  4. Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions.

    Science.gov (United States)

    de Roffignac, Laure; Cattan, Philippe; Mailloux, Julie; Herzog, David; Le Bellec, Fabrice

    2008-12-01

    After the rinsing of spray equipment, the rinsing water contains polluting products. One way to avoid pollution is to bring the rinsing water over a purification system, a biological bed. The system consists of an impermeable tub filled with a biomix substrate that facilitates biodegradation of pesticides. Usually, straw is one component of the biomix. The objective of this study was to assess the efficiency of an unusual substrate, bagasse, a residue of sugar cane, for the degradation of three pesticides, glyphosate, malathion and lambda-cyhalothrin. Results showed that more than 99% of malathion and glyphosate were degraded in 6 months. In the biological bed, the DT(50) value for malathion was 17 days, for glyphosate 33 days and for lambda-cyhalothrin 43 days. The degradation rate of aminomethylphosphonic acid (AMPA) residues from the degradation of glyphosate was slower than that of the other pesticides (DT(50) 69 days). Finally, the innocuousness of the biomix after 6 months of degradation was confirmed by biological tests. Although the degradation rates of the three pesticides in the present bagasse-based system were similar to those under temperate conditions, the degradation conditions were improved by comparison with those in soil under the given tropical conditions. Further benefits of this system are pesticide confinement, to avoid their dispersion in the environment by liquids or solids, and a lower overall cost. Finally, possibilities for optimising the bagasse-based system (e.g. management of the water content and nature of the biomix) are discussed.

  5. Coolability of degraded core under reflooding conditions in Nordic boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I; Pekkarinen, E [VTT Energy, Espoo (Finland); Nilsson, L [Studsvik EcoSafe AB, Nykoeping (Sweden); Sjoevall, H [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1995-09-01

    Present work is part of the first phase of subproject RAK-2.1 of the new Nordic Co-operative Reactor Safety Program, NKS. The first phase comprises reflooding calculations for the boiling water reactors (BWRs) TVO I/II in Finland and Forsmark 3 in Sweden, as a continuation of earlier severe accident analyses which were made in the SIK-2 project. The objective of the core reflooding studies is to evaluate when and how the core is still coolable with water and what are the probable consequences of water cooling. In the following phase of the RAK-2.1 project, recriticality studies will be performed. Conditions for recriticality might occur if control rods have melted away with the fuel rods intact in a shape that critical conditions can be created in reflooding with insufficiently borated water. Core coolability was investigated for two reference plants, TVO I/II and Forsmark 3. The selected accident cases were anticipated station blackout with or without successful depressurization of reactor coolant system (RCS). The effects of the recovery of emergency core cooling (ECC) were studied by varying the starting time of core reflooding. The start of ECC systems were assigned to reaching a maximum cladding temperature: 1400 K, 1600 K, 1800 K and 2000 K in the core. Cases with coolant injection through the downcomer were studied for TVO I/II and both downcomer injection and core top spray were investigated for Forsmark 3. Calculations with three different computer codes: MAAP 4, MELCOR 1.8.3 and SCDA/RELAP5/MOD 3.1 for the basis for the presented reflooding studies. Presently, and experimental programme on core reflooding phenomena has been started in Kernforschungszentrum Karlsruhe in QUENCH test facility. (EG) 17 refs.

  6. Degradation of Antibiotics in Wastewater during Sonolysis, Ozonation, and Their Simultaneous Application: Operating Conditions Effects and Processes Evaluation

    Directory of Open Access Journals (Sweden)

    Vincenzo Naddeo

    2012-01-01

    Full Text Available Pharmaceutical drugs frequently found in treated effluents, lakes and rivers, can exhibit adverse effects on aquatic organisms. The present study focuses on the application of advanced oxidation processes as ozonation (O3, sonolysis (US, and their combined application (US+O3 for the degradation of diclofenac in wastewater. Under the applied conditions, all three systems proved to be able to induce diclofenac oxidation, leading to 22% of mineralization for O3 and 36% for US process after 40 min of treatment. The synergy observed in the combined schemes, mainly due to the effects of US in enhancing the O3 decomposition, led to a higher mineralization (about 40% for 40-minute treatment and to a significantly higher mineralization level for shorter treatment duration.

  7. Reaction kinetics of hydrazine neutralization in steam generator wet lay-up solution: Identifying optimal degradation conditions

    International Nuclear Information System (INIS)

    Schildermans, Kim; Lecocq, Raphael; Girasa, Emmanuel

    2012-09-01

    During a nuclear power plant outage, hydrazine is used as an oxygen scavenger in the steam generator lay-up solution. However, due to the carcinogenic effects of hydrazine, more stringent discharge limits are or will be imposed in the environmental permits. Hydrazine discharge could even be prohibited. Consequently, hydrazine alternatives or hydrazine degradation before discharge is needed. This paper presents the laboratory tests performed to characterize the reaction kinetics of hydrazine neutralization using bleach or hydrogen peroxide, catalyzed with either copper sulfate (CuSO 4 ) or potassium permanganate (KMnO 4 ). The tests are performed on two standard steam generator lay-up solutions based on different pH control agents: ammonia or ethanolamine. Different neutralization conditions are tested by varying temperature, oxidant addition, and catalyst concentration, among others, in order to identify the optimal parameters for hydrazine neutralization in a steam generator wet lay-up solution. (authors)

  8. Residues and Analysis of Degradation of Novel Fungicide Picoxystrobin in Cucumber and Soil Under Field Conditions

    Directory of Open Access Journals (Sweden)

    SUN Yang

    2014-10-01

    Full Text Available The analytical method for the residues of picoxystrobin in cucumber vegetable and soil matrices was developed and the dissipation of picoxystrobin under field conditions was studied. The limit of detection(LODof picoxystrobin was 3.5×10 -11 g and the limit of quantifica-tion(LOQwas found to be 0.005 mg·kg -1 in cucumber and soil. At three different spiking levels(0.005, 0.05, 0.25 mg·kg -1, mean recoveries and relative standard deviation(RSDfrom fortified samples in five replicated experiments for each matrix were in the range of 68.61%-122.4% and 1.06%-17.2%, respectively. The results showed that the half-lives of picoxystrobin in cucumber and soil from Tianjin City were 5.71 d and 12.9 d, respectively, the half-lives of picoxystrobin in cucumber and soil from Shandong Province were 2.70 d and 10.3 d, respec-tively, and the half-lives of picoxystrobin in cucumber and soil from Jiangsu Province were 9.76 d and 14.9 d, respectively. The maximum residual concentration of picoxystrobin on the 5th day after the last application was 0.014 mg· kg -1, much lower than the Maximum Residue Limits(MRLsfor picoxystrobin in cucumber according to the standards of EU(0.05 mg·kg-1.

  9. Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions

    Energy Technology Data Exchange (ETDEWEB)

    Potter, C.L.; Glaser, J.A.; Chang, L.W.; Meier, J.R.; Dosani, M.A.; Herrmann, R.F. [US Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1999-05-15

    Polycyclic aromatic hydrocarbons are a concern at many sites, including wood-treating facilities and manufactured gas plants. This research sought to evaluate the relationship between aerobic biomass development and removal of 19 individual PAHs and toxicity from field soil during the composting process in in-vessel reactors located at the US Environmental Protection Agency (EPA) Test & Evaluation (T & E) Facility in Cincinnati, OH. Five compost amendment conditions were formulated from different nutrients or amendments to the reactor mixtures. Operating parameters of interest included aeration, moisture dynamics, and heat production. Toxicity tests were conducted to evaluate the effect of composting on soil toxicity. Seed germination and root elongation tests were evaluated in lettuce and oats, and genotoxicity (mitotic abberations) testing was performed on Allium cepa (onion). Composting of PAH contaminated soil decreased toxicity to earthworms and oat roots but had no significant effect on lettuce root toxicity. Untreated soil evoked genotoxicity in the Allium assay. After composting, no significant genotoxicity was observed in Reilly soil. 35 refs., 5 figs., 7 tabs.

  10. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L. van; Hummel, W.

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu 2+ and Ni 2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu 3+ showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs

  11. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  12. Pendimethalin and oxyfluorfen degradation under two irrigation conditions over four years application.

    Science.gov (United States)

    Alister, Claudio A; Gomez, Patricio A; Rojas, Sandra; Kogan, Marcelo

    2009-05-01

    A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha(-1), respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.

  13. Doctors' views of working conditions in rural hospitals in the Western ...

    African Journals Online (AJOL)

    management support impact negatively on doctors' views of working in district hospitals. Unless these ... and skills gap of district hospital practitioners in .... or tertiary hospitals, were highly regarded as a means of updating skills. Practical hands-on training was preferred to lectures. Lack of time, need for locums, remoteness.

  14. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  15. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco, horseradish peroxidase (HRP, hemoglobin (Hb], and two pepsin resistant proteins [lipid transfer protein (LTP and soybean trypsin inhibitor (STI]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to

  16. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2

    International Nuclear Information System (INIS)

    Galenda, A.; Crociani, L.; Habra, N. El; Favaro, M.; Natile, M.M.; Rossetto, G.

    2014-01-01

    Highlights: • Boron and/or nitrogen-doped TiO 2 for photocatalytic wastewater treatment. • Methyl red degradation/mineralisation as a function of pH, acids and dopants. • Adsorption time influence on photocatalytic process. • Recovery of worn-out catalyst. - Abstract: Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO 2 -based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV–vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage

  17. Conditional conservatism and value relevance of financial reporting: A study in view of converging accounting standards

    NARCIS (Netherlands)

    Thijssen, Maximiliaan Willem Pierre; Iatridis, George Emmanuel

    2016-01-01

    This study examines the relationship between conditional conservatism and value relevance in the EU and US. Specifically, it investigates whether this relationship differs under US GAAP and IFRS compliance. In addition, this study examines the trend in value relevance, conditional conservatism and

  18. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    Science.gov (United States)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation

  19. 360°-View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    International Nuclear Information System (INIS)

    Cheng, Hai-Ping

    2016-01-01

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360°-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The ''360°'' is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360°-View sessions focused specifically on younger scientists. The 360°-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  20. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  1. A thermodynamic view of tracer plume evolution: Complete mixing condition evaluation

    Directory of Open Access Journals (Sweden)

    Constain A.

    2013-05-01

    Full Text Available One of most controversial issues of modern tracer theory is the “complete mixing condition” because of its importance in evolution of hazardous solutes in natural flows. This condition named also as “Mixing length” measures the distance from pouring point when tracer particles have spread uniformly on cross section of stream. The point is that until now there is no rational, complete and easy to use formula to calculate it. Rather, this condition is evaluated mostly by means of empirical relationships; among them Ruthven's is one of current usage. Also there are statistical methods that applied by software packages allow to characterize this condition. However a new focus on this issue is important, because is necessary to tie together, generality, easiness and accuracy. This paper puts on discussion a thermodynamics method to understand when a tracer is in this remarkable condition. Herein it is developed the conditions when this method may be applied. It is shown also how the resulting formula is convergent with Ruthven's equation. An experimental demonstration is presented.

  2. Aquatic degradation of Cry1Ab protein and decomposition dynamics of transgenic corn leaves under controlled conditions.

    Science.gov (United States)

    Böttger, Rita; Schaller, Jörg; Lintow, Sven; Gert Dudel, E

    2015-03-01

    The increasing cultivation of genetically modified corn plants (Zea mays) during the last decades is suggested as a potential risk to the environment. One of these genetically modified variety expressed the insecticidal Cry1Ab protein originating from Bacillus thuringiensis (Bt), resulting in resistance against Ostrinia nubilalis, the European corn borer. Transgenic litter material is extensively studied regarding the decomposition in soils. However, only a few field studies analyzed the fate of the Cry1Ab protein and the impact of green and senescent leaf litter from corn on the decomposition rate and related ecosystem functions in aquatic environments. Consequently, a microbial litter decomposition experiment was conducted under controlled semi-natural conditions in batch culture using two maize varieties: one variety with Cry1Ab and another one with the appertaining Iso-line as control treatment. The results showed no significant differences between the treatment with Cry1Ab and the Iso-line regarding loss of total mass in dry weight of 43% for Iso-line and 45% for Bt-corn litter, lignin content increased to 137.5% (Iso-line) and 115.7% (Bt-corn), and phenol loss decreased by 53.6% (Iso-line), 62.2% (Bt-corn) during three weeks of the experiment. At the end of the experiment Cry1Ab protein was still detected with 6% of the initial concentration. A slightly but significant lower cellulose content was found for the Cry1Ab treatment compared to the Iso-line litter at the end of the experiment. The significant higher total protein (25%) and nitrogen (25%) content in Bt corn, most likely due to the additionally expression of the transgenic protein, may increase the microbial cellulose degradation and decrease microbial lignin degradation. In conclusion a relevant year by year input of protein and therefore nitrogen rich Bt corn litter into aquatic environments may affect the balanced nutrient turnover in aquatic ecosystems. Copyright © 2014 Elsevier Inc. All rights

  3. A review on self-healing in reinforced concrete structures in view of serving conditions.

    NARCIS (Netherlands)

    Huang, H.; Ye, G.

    2014-01-01

    In this paper, different mechanisms of self-healing, i.e. self-healing based on adhesive agents, self-healing based on bacteria, self-healing based on autogenous self-healing were described. Their required conditions were summarized. The previous investigations showed that all mechanisms of

  4. Degradation and residues of trifluralin and metalaxyl in soils treated with 14C-trifluralin and 14C-metalaxyl, under laboratory conditions

    International Nuclear Information System (INIS)

    Musumeci, M.R.; Ruegg, E.F.

    1986-01-01

    The behavior of the herbicide 14 C-trifluralin and the fungicide 14 C-metalaxyl was studied under laboratory conditions in Red Latosol and Yellow Red Podzol soils in samples Kept flooded, sterilized and with humidity equivalent to 60% of the water field capacity. The degradation of both pesticides is discussed. (M.A.C.) [pt

  5. Health Conditions Prior to Imprisonment and the Impact of Prison on Health: Views of Detained Women.

    Science.gov (United States)

    Alves, Joana; Maia, Ângela; Teixeira, Filipa

    2016-05-01

    Detained women have certain health conditions prior to incarceration and these conditions can improve, worsen, or remain the same in prison, depending on the prisoner's background, the characteristics of the prison, and the arrest experience. This study investigated the health of detained women and the influence of incarceration from their perspective. Three focus groups were conducted among 15 inmates, and data were analyzed according to thematic analysis procedures. Detainer's health backgrounds varied with regard to their level of health concerns, contact with health services, and health behaviors. A positive influence of incarceration was described by patients with chronic illness, patients with drug addiction, and victims of interpersonal violence. Among women with mental illnesses or those without previous health problems, reports do not reveal benefits of imprisonment for mental health. These data emphasize the importance of specialized health care and the need to invest in mental health care in corrective institutions. © The Author(s) 2015.

  6. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  7. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  8. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    OpenAIRE

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degra...

  9. On the influence of fusion reactor conditions on optical properties of metallic plasma-viewing mirrors

    International Nuclear Information System (INIS)

    Voitsenya, V.S.; Gritsyna, V.I.; Konovalov, V.G.; Ruzhitskij, V.V.; Shapoval, A.N.; Orlinskij, D.V.

    1997-01-01

    This paper presents the results of imitation experiments concerning the effects of fusion reactor conditions on the properties of mirrors made of stainless steel, copper and beryllium. The neutron irradiation was imitated using MeV energy range ions. To imitate the effects of charge exchange atoms (CXA) bombardment, keV energy range D + and He + ions were used. From the data obtained it was concluded that not only the reflectivity but also the resistance to CXA sputtering have to be taken into account when choosing the materials for the first mirrors of a fusion reactor. (orig.)

  10. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    Science.gov (United States)

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  11. Economic analysis of sunflower production in the view of orobanche resistance conditions

    International Nuclear Information System (INIS)

    Semerci, A.

    2013-01-01

    The objective of this research is to determine the use of production factors in 3 different types of sunflower production with respect to orobanche resistance in the agricultural enterprises in Thrace Region which is located at European continent of Turkey. The data used in this research have been obtained through questionnaire technique from 571 agricultural enterprises which were determined by Stratified Random Sampling Method in 2009. It has been reached to the highest yield by 189.30 kg da-1 and the highest gross profit by 37.91 US$ da-1 in the production of sunflower, resistant to orobanche. In the research, it has been determined that the rate of soil testing among the sunflower producers is considerably low and almost the whole of the production has been made under rainfed conditions. As a result of the research, it has been concluded that orobanche resistant sunflower, which has higher water productivity than other cultivars by 367.13 g m/sup 3/, will have a higher proportion in the sunflower cultivation areas in future because of its higher contribution to producer welfare. (author)

  12. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor--1 alpha protein in hypoxic conditions.

    Science.gov (United States)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG-HIF-1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Studies on the Conditioning Methods of Spent Tri-butyl Phosphate/Kerosene and its Degradation Product in Different Matrices

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-sourougy, M.R.; Abed El-Aziz, M.M.; Aly, H.F.

    1999-01-01

    The destruction of spent TBP/Kerosene (odourless Kerosene (OK)) with potassium permanganate have been investigated. Comparative studies on the immobilization of spent TBP/Kerosene and its degradation product into different matrices have been carried out. The matrices used include, ordinary Portland cement, silica fume, treated fly ash, epoxy resin and cement mixed with epoxy resin.The different factors affecting solidified waste forms such as, compressive strength, water resistance, thermal stability, chemical resistance, radiological stability and leachability have been investigated. It was found that, epoxy resin and cement mixed with 5,10,20, and 50% of epoxy resin enhance the compressive strength of the solidified waste forms with spent TBP/OK more than that obtained from degradation products. The leaching rates of 152 and 154 Eu and 181 Hf from waste forms containing TBP/OK was found lower than that with degradation product

  14. Degradation of 14C - DDT in soils under moist and flooded conditions with rice straw and green manure amendments

    International Nuclear Information System (INIS)

    Dubey, S.; Dubey, P.S.; Kale, S.P.; Murthy, N.B.K.

    2001-01-01

    Degradation of 14 C - DDT in moist and flooded soils was studied with rice straw and green manure amendments for 100 days. The mineralization of DDT was not significantly influenced by any of the treatments. Rice straw and green manure in flooded soil brought about decrease in extractable 14 C - residues with concomitant increase in soil bound residues. DDT has a very short residence in flooded soils though radiocarbon was more in extractable residues. DDD is the major degradation product in flooded soils. (author)

  15. Optimization of culturing conditions for isolated Arthrobacter sp. ZXY-2, an effective atrazine-degrading and salt-adaptive bacterium

    NARCIS (Netherlands)

    Zhao, X.; Wang, Li; Du, Linna; Yang, Jixian; Dong, Jing; Ma, Fang

    2017-01-01

    The increasing salinity in aquatic environments has had a negative impact on the biodegradation of atrazine, an extensively used herbicide which has been proven to pollute soil and water ecosystems. In the present study, a novel atrazine-degrading strain (ZXY-2) was isolated from industrial

  16. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  17. Transmutation of All German Transuranium under Nuclear Phase Out Conditions – Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509

  18. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  19. Information to licensees regarding two NRC Inspection Manual sections on resolution of degraded and nonconforming conditions and on operability (Generic Letter 91-18)

    International Nuclear Information System (INIS)

    Partlow, J.G.

    1992-01-01

    The NRC staff has issued two sections to be included in Part 9900, Technical Guidance, of the NRC Inspection Manual. The first is, ''Resolution of Degraded and Nonconforming Conditions.'' The second is, ''Operable/Operability: Ensuring the Functional Capability of a System or Component.'' Copies of the additions to the NRC Inspection Manual are provided for information only. No specific licensee actions are required. The additions to the NRC Inspection Manual are based upon previously issued guidance. However, because of the complexity involved in operability determinations and the resolution of degraded and nonconforming conditions, there have been differences in application by NRC staff during past inspection activities. Thus, the purpose of publishing this guidance is to ensure consistency in application of this guidance by the NRC. Regional inspection personnel have been briefed on this guidance. The NRC will conduct further training on these topics to ensure uniform staff understanding

  20. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E.; Hatzinger, Paul B.; Condee, Charles W.; Chu, Kung-Hui

    2015-01-01

    Highlights: • SIP characterized RDX-degrading communities under different e-accepting conditions. • Dominant RDX degradation pathways differed under different e-accepting conditions. • More complete detoxification of RDX occurred under methanogenic and sulfate-reducing conditions than under manganese(IV) and iron(III)-reducing conditions. - Abstract: This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using 13 C and 15 N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with 13 C 3 - or ring- 15 N 3 -, nitro- 15 N 3 -, or fully-labeled 15 N 6 -RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the 13 C-DNA fractions. A total of twenty seven sequences were derived from different 15 N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled 13 C or 15 N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that 13 C- and 15 N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions

  1. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition.

    Science.gov (United States)

    O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R

    2016-01-15

    Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.

    Science.gov (United States)

    Bence, Melinda; Jankovics, Ferenc; Lukácsovich, Tamás; Erdélyi, Miklós

    2017-04-01

    Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in nonplant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unraveling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa. © 2017 Federation of European Biochemical Societies.

  3. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  4. Recovery of Areas Degraded by Mining Within the Amazon Forest: Interaction of the Physical Condition of Soil and Biological Activity

    Science.gov (United States)

    Ribeiro, A. I.; Mello, G. F.; Longo, R. M.; Fengler, F. H.; Peche Filho, A., Sr.

    2017-12-01

    One of the greatest natural riches of Brazil is the Amazon rainforest. The Amazon region is known for its abundance of mineral resources, and may include topaz, oil, and especially cassiterite. In this scope, the mining sector in Brazil has great strategic importance because it accounts for approximately 30% of the country's exports with a mineral production of 40 billion dollars (Brazilian Mining Institute, 2015). In this scenario, as a consequence of mining, the Amazonian ecosystem has been undergoing a constant process of degradation. An important artifice in the exploitation of mineral resources is the rehabilitation and/or recovery of degraded areas. This recovery requires the establishment of degradation indicators and also the quality of the soil associated with its biota, since the Amazonian environment is dynamic, heterogeneous and complex in its physical, chemical and biological characteristics. In this way, this work presupposes that it is possible to characterize the different stages of recovery of tillage floor areas in deactivated cassiterite mines, within the Amazonian forest, in order to evaluate the interactions between the level of biological activity (Serrapilheira Height, Coefficient Metabolic, Basal Breath) and physical soil characteristics (aggregate DMG, Porosity, Total Soil Density, Moisture Content), through canonical correlation analysis. The results present correlations between the groups of indicators. Thus, from the use of the groups defined by canonical correlations, it was possible to identify the response of the set of physical and biological variables to the areas at different stages of recovery.

  5. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions.

    Science.gov (United States)

    Koskela, Harri; Anđelković, Boban

    2017-10-01

    The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Dissipation and degradation of /sup 14/C-DDT in Potohar area Islamabad soil under field conditions

    International Nuclear Information System (INIS)

    Hussain, A.; Asi, M.R.; Iqbal, Z.; Muhammad, A.; Khan, T.A.

    2002-01-01

    An experiment was conducted in Potohar area, Islamabad for one and half year period to investigate the dissipation and degradation of /sup 14/C-DDT in soil The study revealed that binding of /sup 14/C-DDT to the soil increased gradually with the passage of time. The extractable residues decreased in the same period. Results also indicated that /sup 14/C-DDT dissipated more rapidly in this environment as compared to the temperate regions. The overall half-life of DDT was 260 days. (author)

  7. Aging precursors and degradation effects of SiC-MOSFET modules under highly accelerated power cycling conditions

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    A highly accelerated power cycling test platform using current source converter for SiC-MOSFET power modules is proposed. The control principles of delta and average junction temperatures are introduced. By using isolated thermal fibers, the junction temperature (Tj) variations can be monitored...... and compared. As a result, the effects of degradation on the static and dynamic characteristics during conventional operation are discussed. Finally, the research results can help examine the failure precursors and then estimate the remaining useful lifetime of SiC MOSFET modules....

  8. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    Science.gov (United States)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  9. How depositional conditions control input, composition, and degradation of organic matter in sediments from the Chilean coastal upwelling region

    DEFF Research Database (Denmark)

    Niggemann, Jutta; Ferdelman, Timothy G.; Lomstein, Bente Aagaard

    2007-01-01

    investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (d13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained...... m‑2 d‑1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23°S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004‑0.0022 yr‑1) showed...... a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003‑0.0014 yr‑1). Both, kSRR and kTOC, reflect differences in OM composition. At 36°S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23°S they were related to the freshness...

  10. Determination of degradation conditions of exchange resins containing technetium; Determinacion de condiciones de degradacion de resinas de intercambio conteniendo tecnecio

    Energy Technology Data Exchange (ETDEWEB)

    Rivera S, A.; Monroy G, F.; Quintero P, E., E-mail: aa_1190@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The quantification of Tc-99 in spent exchange resins, coming from nuclear power plants, is indispensable to define their administration. The Tc-99 is a pure beta emitter of 210000 years of half-life, volatile and of a high mobility in water and soil. For this reason, the objective of this work is to establish a digestion method of ionic exchange resins containing technetium that retains more than 95% of this radioisotope. Mineralization tests were carried out of a resin Amberlite IRN-150 by means of an oxidation heat, in acid medium, varying the resin mass, the medium volume, the media type, the temperature and the digestion time. The digested samples were analyzed by gas chromatography to estimate the grade of their degradation. The {sup 99m}Tc was used as tracer to determine the technetium percentage recovered after mineralizing the resin. The digestion process depends on the temperature and the resin mass. At higher temperature better mineralization of samples and to greater resin mass to a constant temperature, less degradation of the resin. The spectra beta of the {sup 99m}Tc and {sup 99}Tc are presented. (Author)

  11. Compressibilidade de um Argissolo Vermelho fisicamente degradado e recuperado Compressibility of a Acrisol in physically degraded and reclaimed conditions

    Directory of Open Access Journals (Sweden)

    Vera R. M. Macedo

    2010-01-01

    Full Text Available A reconstituição da qualidade de solos fisicamente degradados tem sido feita por sistemas de manejos conservacionistas; no entanto, a melhoria da estrutura do solo o torna muito suscetível à compactação quando sofre compressões pela mecanização. A compressibilidade de amostras de um Argissolo Vermelho fisicamente degradado e recuperado, coletadas na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, em Eldorado do Sul, RS, foi avaliada com ensaios de compressão uniaxial, em duas umidades. A curva de compressão do solo, porosidade, densidade do solo e a resistência à penetração foram determinadas. Amostras de solo recuperado mostraram-se mais compressíveis, principalmente em umidade mais elevada. Após a compressão com pressões entre 25 e 500 kPa, o solo recuperado apresentou-se fisicamente muito semelhante ao solo degradado. A baixa resistência a compressão do solo recupe­rado torna evidente a dificuldade de compatibilizar o manejo do solo após o uso de sistemas conservacionistas e recuperadores de estrutura com a mecanização, tal como é hoje praticada, o que indica a necessidade de se encontrar alternativas que diminuam as pressões compressivas aplicadas ao solo ou que o condicionem a oferecer maior resistência à compressão.The reclaimation of physically degraded soils has been done using conservationist systems. However, improvement of soil structure makes then very susceptible to intense deformation when bearing compression through mechanization. The compressibility of a Acrisol, physically degraded and reclaimed, collected in the Agricultural Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, RS, in two moisture levels, was evaluated with uniaxial compression tests. The soil compression curve, porosity, soil density and resistance to penetration were determined. The physically reclaimed soil samples were more compressible, noteably at higher

  12. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  13. Fate of organic microcontaminants in wastewater treatment and river systems: An uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability.

    Science.gov (United States)

    Aymerich, I; Acuña, V; Ort, C; Rodríguez-Roda, I; Corominas, Ll

    2017-11-15

    The growing awareness of the relevance of organic microcontaminants on the environment has led to a growing number of studies on attenuation of these compounds in wastewater treatment plants (WWTP) and rivers. However, the effects of the sampling strategies (frequency and duration of composite samples) on the attenuation estimates are largely unknown. Our goal was to assess how frequency and duration of composite samples influence uncertainty of the attenuation estimates in WWTPs and rivers. Furthermore, we also assessed how compound consumption rate and degradability influence uncertainty. The assessment was conducted through simulating the integrated wastewater system of Puigcerdà (NE Iberian Peninsula) using a sewer pattern generator and a coupled model of WWTP and river. Results showed that the sampling strategy is especially critical at the influent of WWTP, particularly when the number of toilet flushes containing the compound of interest is small (≤100 toilet flushes with compound day -1 ), and less critical at the effluent of the WWTP and in the river due to the mixing effects of the WWTP. For example, at the WWTP, when evaluating a compound that is present in 50 pulses·d -1 using a sampling frequency of 15-min to collect a 24-h composite sample, the attenuation uncertainty can range from 94% (0% degradability) to 9% (90% degradability). The estimation of attenuation in rivers is less critical than in WWTPs, as the attenuation uncertainty was lower than 10% for all evaluated scenarios. Interestingly, the errors in the estimates of attenuation are usually lower than those of loads for most sampling strategies and compound characteristics (e.g. consumption and degradability), although the opposite occurs for compounds with low consumption and inappropriate sampling strategies at the WWTP. Hence, when designing a sampling campaign, one should consider the influence of compounds' consumption and degradability as well as the desired level of accuracy in

  14. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.

    Science.gov (United States)

    Gamboa-Santos, Juliana; Megías-Pérez, Roberto; Soria, A Cristina; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2014-06-15

    In this paper, a study on the usefulness of the determination of vitamin C together with indicators of the initial steps of Maillard reaction (2-furoylmethyl amino acids, 2-FM-AA) during the convective drying of strawberries has been carried out for the first time, paying special attention to the kinetics of degradation and formation, respectively, of both parameters. Formation of 2-FM-AA of Lys, Arg and GABA and vitamin C loss increased with time and temperature following, respectively, a zero and first-order kinetics. As supported by its lower activation energy, 2-FM-GABA (55.9 kJ/mol) and 2-FM-Lys+2-FM-Arg (58.2 kJ/mol) were shown to be slightly more sensitive indicators than vitamin C (82.1 kJ/mol). The obtained results, together with a complementary study on the rehydration ability and sensorial attributes of samples, pointed out the suitability of the convective drying system to obtain dried strawberries of high nutritive quality and bioactivity and good consumer acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Laboratory degradation studies of 14C-atrazine and -isoproturon in soil from sugarcane cultivated fields under Kenyan tropical conditions.

    Science.gov (United States)

    Getenga, Z M; Dörfler, U; Schroll, R

    2009-06-01

    A study to compare the degradation rates of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diammine) and isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] in soils from sugarcane fields with different practices of herbicides application was carried out. (14)C-atrazine was poorly mineralized to (14)CO(2) (1.10% +/- 0.22%) after 139 days of incubation in soil without previous exposure to atrazine. In the same soil also with no previous isoproturon exposure isoproturon was mineralized to (14)CO(2) by 7.70% +/- 0.94%. Atrazine mineralization after 98 days was 13.4% +/- 0.30% in soil which discontinued the use of atrazine in 1997 while it was 89.9% +/- 1.23% in soil in which atrazine is currently being used. The isoproturon mineralization values were 7.24% +/- 0.85% and 22.97% +/- 0.96% in soil which discontinued atrazine and soil currently using atrazine, respectively.

  16. SYVN1, an ERAD E3 Ubiquitin Ligase, Is Involved in GABAAα1 Degradation Associated with Methamphetamine-Induced Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Dong-Liang Jiao

    2017-10-01

    Full Text Available Abuse of methamphetamine (METH, a powerful addictive amphetamine-type stimulants (ATS, is becoming a global public health problem. The gamma-aminobutyric acid (GABAergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr, however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1, an endoplasmic reticulum (ER-associated degradation (ERAD E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS-associated Glucose-regulated protein 78 (GRP78 and C/EBP homologous protein (CHOP increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.

  17. Use of Highways in the Sky and a virtual pad for landing Head Up Display symbology to enable improved helicopter pilots situation awareness and workload in degraded visual conditions.

    Science.gov (United States)

    Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Allison, Craig K

    2017-12-15

    Flight within degraded visual conditions is a great challenge to pilots of rotary-wing craft. Environmental cues typically used to guide interpretation of speed, location and approach can become obscured, forcing the pilots to rely on data available from in-cockpit instrumentation. To ease the task of flight during degraded visual conditions, pilots require easy access to flight critical information. The current study examined the effect of 'Highways in the Sky' symbology and a conformal virtual pad for landing presented using a Head Up Display (HUD) on pilots' workload and situation awareness for both clear and degraded conditions across a series of simulated rotary-wing approach and landings. Results suggest that access to the HUD lead to significant improvements to pilots' situation awareness, especially within degraded visual conditions. Importantly, access to the HUD facilitated pilot awareness in all conditions. Results are discussed in terms of future HUD development. Practitioner Summary: This paper explores the use of a novel Heads Up Display, to facilitate rotary-wing pilots' situation awareness and workload for simulated flights in both clear and degraded visual conditions. Results suggest that access to HUD facilitated pilots' situation awareness, especially when flying in degraded conditions.

  18. Degradation pattern of black phosphorus multilayer field-effect transistors in ambient conditions: Strategy for contact resistance engineering in BP transistors

    Science.gov (United States)

    Lee, Byung Chul; Kim, Chul Min; Jang, Ho-Kyun; Lee, Jae Woo; Joo, Min-Kyu; Kim, Gyu-Tae

    2017-10-01

    Black phosphorus (BP) has been proposed as a future optoelectronic material owing to its direct bandgap with excellent electrical performances. However, oxygen (O2) and water (H2O) molecules in an ambient condition can create undesired bubbles on the surface of the BP, resulting in hampering its excellent intrinsic properties. Here, we report the electrical degradation pattern of a mechanically exfoliated BP field-effect transistor (FET) in terms of the channel and contact, separately. Various electrical parameters such as the threshold voltage (VTH), carrier mobility (μ), contact resistance (RCT) and channel resistance (RCH) are estimated by the Y function method (YFM) with respect to time (up to 2000 min). It is found that RCT reduces and then, increases with time; whereas, the behavior of RCH is vice versa in ambient conditions. We attribute these effects to oxygen doping at the contact and the surface oxidation effects on the surface of the BP, respectively.

  19. Effect of environmental conditions on the mechanical properties and fungal degradation of polycaprolactone/microcrystalline cellulose/wood flour composites

    Science.gov (United States)

    Ronald Sabo; Liwei Jin; Nicole Stark; Rebecca E. Ibach

    2013-01-01

    Polycaprolactone (PCL) filled with microcrystalline cellulose (MCC), wood flour (WF), or both were characterized before and after exposure to various environmental conditions for 60 days. PCL/WF composites had the greatest tensile strength and modulus compared to neat PCL or PCL composites containing MCC. Electron microscopy indicated better adhesion between WF...

  20. Productivity, fertilizer responses and nutrient balances of farming systems in central Tigray, Ethiopia: a multi-perspective view in relation to degradation.

    Science.gov (United States)

    Kraaijvanger, Richard; Veldkamp, Tom; Nyssen, Jan

    2014-05-01

    In many rural livelihoods in sub-Saharan Africa, crop productivity plays an important role since it links with food insecurity, which again is a major constraining factor in livelihood development. Sustainable livelihood development and land degradation are closely connected: lacking sustainability often results in land degradation, whereas the incidence of land degradation frequently frustrates sustainable development. Important forms of land degradation are soil erosion and nutrient depletion, both often being attributed to exhaustive land use practices and both having a direct and major impact on crop productivity. Application of nutrients is an important way to increase productivity. In our study area, central Tigray, development agents recommend the application of fertilizers at high rates in order to boost productivity and to deal with nutrient depletion. In the discussion about the use of fertilizers different perspectives can be taken, in which especially responses and nutrient balances are important issues, linking respectively with socio-economic and agro-ecological livelihood aspects. Ethiopian soils for example are, based on large scale nutrient balances, considered to be depleted, at field scale fertilizer responses are frequently disappointing and achieving sustainable nutrient balances at farm level seems difficult. At a temporal scale however, agricultural systems remained almost unchanged for over 2500 years, suggesting at least some degree of sustainability. With respect to productivity data resulting from on-farm experimentation with natural and artificial fertilizers in 26 sites, we took four perspectives, different in ownership and scale, on nutrient related land degradation and its assumed impact on crop productivity. Taking a farmer perspective we found no significant difference between responses to recommended and current farmer based practices. Taking a more scientific perspective highlighted that, based on the positive correlation between

  1. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    International Nuclear Information System (INIS)

    W. L. Poe, Jr.; P.F. Wise

    1998-01-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage

  2. Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions.

    Science.gov (United States)

    Sun, Caixia; Cang, Tao; Wang, Zhiwei; Wang, Xinquan; Yu, Ruixian; Wang, Qiang; Zhao, Xueping

    2015-05-01

    The health risk to humans of pesticide application on minor crops, such as strawberry, requires quantification. Here, the dissipation and residual levels of three fungicides (pyraclostrobin, myclobutanil, and difenoconazole) were studied for strawberry under greenhouse conditions using high-performance liquid chromatography (HPLC)-tandem mass spectrometry after Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. This method was validated using blank samples, with all mean recoveries of these three fungicides exceeding 80%. The residues of all three fungicides dissipated following first-order kinetics. The half-lives of pyraclostrobin, myclobutanil, and difenoconazole were 1.69, 3.30, and 3.65 days following one time application and 1.73, 5.78, and 6.30 days following two times applications, respectively. Fungicide residue was determined by comparing the estimated daily intake of the three fungicides against the acceptable daily intake. The results indicate that the potential health risk of the three fungicides was not significant in strawberry when following good agricultural practices (GAP) under greenhouse conditions.

  3. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    performance loss caused by CO poisoning can be alleviated by the presence of water vapor. The CO oxidation via the water gas shift reaction is the main reason for the mitigated CO poisoning with the presence of water vapor. Meanwhile, the CO poisoning can deteriorate with the presence of CO2, although the CO2...... for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  4. Studies on dissipation and degradation of 14 C-DDT and 14 C-parathion in egyptian soil under field conditions

    International Nuclear Information System (INIS)

    Ezz El-Arab, A.; Mostafa, I.Y.

    1991-01-01

    The rates of dissipation and degradation of the insecticides DDT and parathion were studied under field conditionsm using 14 C-labelled chemicals. Over a period of 12 weeks, extractable, soil-bound and total 14 C-activity were recorded. In case of DDT, dissipation of 14 C-activity from soil showed a continuous and gradual increase reaching about 30% after 8 weeks and remained constant up to 12 weeks. The formation of DDE as a principal metabolite seems to be increasing with time ans accounted for approximately 25% of the extractable residues after 12 weeks. There was also a gradual significant increase in the formation of soil 14 C-bound residues which reached 12% of the total residues after the same period. On the other hand, parathion dissipation from the soil under the same conditions did not exceed 10% up to 12 weeks. The amount of 14 C-bound residues was found to contribute 33% of the applied dose. Analysis of the extractable fraction revealed that parathion was partly degraded by soil microorganisms into p-amino phenol, p-nitrophenol, paraoxon, amino parathion and aminoparaoxon in different percentages depending on the depth of soil. 2 fig.,1 tab

  5. Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific

    Directory of Open Access Journals (Sweden)

    Chunhua Zhang

    2014-11-01

    Full Text Available Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (Rhizophora mangle, the black (Avicennia germinans and the white (Laguncularia racemosa mangrove. Moreover, large patches of poor condition black and red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves were collected from this forest representing all of the aforementioned species and conditions. The leaves were then transported to a laboratory for spectral measurements using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA. R2 plot, principal components analysis and stepwise discriminant analyses were then used to select wavebands deemed most appropriate for further mangrove classification. Specifically, the wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the spectrum. The classification and validation indicate that these wavebands are capable of identifying mangrove species and mangrove conditions common to this degraded forest with an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although lower in accuracy, the classifications of the stressed (poor condition and dwarf mangroves were found to be satisfactory with accuracies higher than 80%. The results of this study indicate that it could be possible to apply laboratory hyperspectral data for classifying mangroves, not only at the species level, but also according to their health conditions.

  6. Simulation of the degradation of a concrete/clay interface: influence of temperature, unsaturated conditions and porosity variations

    International Nuclear Information System (INIS)

    Burnol, A.; Dupros, F.; Spycher, N.; Xu, T.; Gaucher, E.C.

    2006-01-01

    For long-lived intermediate-level radioactive waste, the use of concrete as engineering barrier and Callovian-Oxfordian clay as geological barrier at a depth of 500 m is considered in the French disposal concept (ANDRA, 2005). Upon emplacement, initially unsaturated concrete is expected to experience coupled processes involving heating, re-saturation with groundwater from the clay formation, gas exchanges and geochemical reactions. After an early period of re-saturation, solute transport is supposed to be diffusion-controlled because of the extremely low permeability of the two media. These coupled processes may lead to changes in the porosity of the concrete or clay barriers. In the present paper, a fully coupled Thermo-Hydro-Chemical (THC) response of a two-phase (gas and solution) mass-transfer model was evaluated and tested by a sensitivity analysis. This study is an extension of a previous model applied to an isothermal and fully saturated concrete/clay interface (Burnol et al., 2005); it investigated the coupled effect of temperature and unsaturated conditions assuming no production of H2(g). The system was simulated for a 2000-year period, which covers the most predominant thermal perturbation

  7. Seismic soil–structure interaction analysis of a nuclear power plant building founded on soil and in degraded concrete stiffness condition

    International Nuclear Information System (INIS)

    Farahani, Reza V.; Dessalegn, Tewodros M.; Vaidya, Nishikant R.; Bazan-Zurita, Enrique

    2016-01-01

    Highlights: • Three dimensional finite element modeling of a Nuclear Power Plant (NPP) building founded on soil is described. • A simplified technique to consider degraded stiffness of concrete members in seismic analysis of NPP buildings is presented. • The effect of subsurface profiles on the seismic response of a NPP building is investigated. - Abstract: This study describes three-dimensional (3-D) finite element (FE) modeling and seismic Soil-Structure Interaction (SSI) analysis of a Nuclear Power Plant (NPP) Diesel Generator Building (DGB) that is founded on soil in degraded concrete stiffness condition. A new technique is presented that uses two horizontal and vertical FE models to consider the concrete stiffness reduction of NPP buildings subjected to orthogonal ground motion excitations, in which appropriate stiffness reduction factors, based on the input motion orientation, are applied. Seismic SSI analysis is performed for each model separately, and dynamic responses are calculated in the three global directions. The results of the analysis for the two FE models are then combined, using the square-root-of-the-sum-of-squares (SRSS) combination rule. A sensitivity analysis is also performed to investigate the subsurface profile effect on the In-Structure (acceleration) Response Spectra (ISRS) of the building when subjected to site-specific Foundation Input Response Spectra (FIRS) that exhibit high spectral amplifications in the high-frequency range. The sensitivity analysis considers three strain-compatible subsurface profiles that represent Lower-Bound (LB), Best-Estimate (BE), and Upper-Bound (UB) conditions at the DGB site. The sensitivity analysis results indicate that the seismic response of the DGB founded on soil highly depends on the subsurface profile; i.e., each of the LB, BE, and UB subsurface profiles can maximize building seismic response when subjected to FIRS that exhibit high spectral amplifications in the high-frequency range

  8. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions

    Science.gov (United States)

    Taguas, E. V.; Arroyo, C.; Lora, A.; Guzmán, G.; Vanderlinden, K.; Gómez, J. A.

    2015-11-01

    Spontaneous grass covers are an inexpensive soil erosion control measure in olive orchards. Olive farmers allow grass to grow on sloping terrain to comply with the basic environmental standards derived from the Common Agricultural Policy (CAP, European Commission). However, to date there are few studies assessing the environmental quality considering such covers. In this study, we measured biodiversity indices for spontaneous grass cover in two olive orchards with contrasting site conditions and management regimes in order to evaluate the potential for biodiversity metrics to serve as an indicator of soil degradation. In addition, the differences and temporal variability of biodiversity indicators and their relationships with environmental factors such as soil type and properties, precipitation, topography and soil management were analysed. Different grass cover biodiversity indices were evaluated in two olive orchard catchments under conventional tillage and no tillage with grass cover, during 3 hydrological years (2011-2013). Seasonal samples of vegetal material and photographs in a permanent grid (4 samples ha-1) were taken to characterize the temporal variations of the number of species, frequency of life forms, diversity and modified Shannon and Pielou indices. Sorensen's index showed strong differences in species composition for the grass covers in the two olive orchard catchments, which are probably linked to the different site conditions. The catchment (CN) with the best site conditions (deeper soil and higher precipitation) and most intense management presented the highest biodiversity indices as well as the highest soil losses (over 10 t ha-1). In absolute terms, the diversity indices of vegetation were reasonably high for agricultural systems in both catchments, despite the fact that management activities usually severely limit the landscape and the variety of species. Finally, a significantly higher content of organic matter in the first 10 cm of soil

  9. An Analysis Of American Social Condition In THE Middle Of 20Th Century Viewed In Harper Lee’s Novel To Kill A Mockingbird

    OpenAIRE

    Saragih, Dix Wendy

    2010-01-01

    Skripsi ini berjudul The Analysis of American Social Condition in the Middle of Twentieth Century Viewed in Harper Lee’s Novel To Kill A Mockingbird. Yaitu suatu analisis mengenai kondisi sosial masyarakat di Amerika Serikat pada pertengahan abad 20 yang terlihat dalam novel To Kill A Mockingbird karya dari Harper Lee. Dalam analisis ini, penulis menggunakan pendekatan historis mengenai sejarah Amerika pada pertengahan abad keduapuluh. Adapun metode yang digunakan adalah metode deskriptif ...

  10. Effect of biosolids application on the growth of Jacaranda mimosifolia (Gualanday) and under physical and chemical conditions of a degraded soil

    International Nuclear Information System (INIS)

    Ramirez, R; Velasquez, D C; Acosta, E

    2007-01-01

    The biosolids are organic materials, derived from wastewater treatment of domestic and industrial sewage. one of the main problems of wastewater treatment plants is the final destination of the biosolids, their deposit in sanitary fillers, the incineration and land application are the main methods of dispose; the first two methods are expensive, while the last one, is gaining acceptance, because the biosolids are a resource that can be used as supplementary organic fertilizer. furthermore, land application of biosolids can help to improve declined soil fertility in degraded soils, but it can be generated contamination problems. the aims of this study were to investigate the effect of biosolids application on the growth of Jacaranda mimosifolia (Gualanday) and the changes on physical and chemical conditions of a degraded soil. this arboreal specie was planted in a degraded soil amended with biosolids, and was grown in a greenhouse. the treatments corresponded to contents of organic matter in the mixture (soil-biosolid) of 0 %, 2 %, 4 % and 8 %, in a completely randomized design with four treatments and ten replications. monthly samplings were realized to get information about the variables: survival height and diameter of stem, and number of leaves. the dry biomass was evaluated at the end of the study. the physical and chemical analyses were made at the beginning of the experiment and three months later. the chemical analyses included ph, oxidable organic carbon, Al, Ca, Mg, K, Fe, Mn, Cu, Zn, P, S, B, N0 3 , NH 4 + , and the physical analyses included aggregate stability, bulk density, real water retention. the statistical analysis between treatments was realized every month, by analysis of variance and Duncan's multiple range test, using a 95 % confidence level. the treatment with a 2 % of organic matter was not affected the plant growth and was similar with the untreated control. The treatments with a 4 % and 8 % of organic matter caused a lower survival a lower

  11. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  12. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.; Laube, A.; Stallone, S.

    1999-01-01

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  13. Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage. Final Report of a Coordinated Research Project 2011-2015

    International Nuclear Information System (INIS)

    2015-12-01

    This publication reports on the work carried out in 2011–2015 in the coordinated research project (CRP) on the evaluation of conditions for hydrogen induced degradation of zirconium alloys during fuel operation and storage. The CRP was carried out to evaluate the threshold condition for delayed hydride cracking (KIH) in pressurized water reactors and zircaloy-4 and E635M fuel claddings, with application to in-pile operation and spent fuel storage. The project consisted of adding hydrogen to samples of cladding and measuring K IH by one of four methods. The CRP was the third in the series, of which the results of the first two were published in IAEA-TECDOC-1410 and IAEA-TECDOC-1649, in 2004 and 2010, respectively. This publication includes all of the research work performed in the framework of the CRP, including details of the experimental procedures that led to a set of data for tested materials. The research was conducted by representatives from 13 laboratories from all over the world. In addition to the basic goal to transfer the technology of the testing techniques from experienced laboratories to those unfamiliar with the methods, the CRP was set up to develop experimental procedures to produce consistent sets of data, both within a single laboratory and among different laboratories. The material condition and temperature history were prescribed, and laboratories chose one or two of four methods of loading that were recommended in an attempt to develop standard sets of experimental protocols so that consistent results could be obtained. Experimental discrepancies were minimized through careful attention to details of microstructure, temperature history and stress state in the samples, with the main variation being the mode of loading

  14. Financial – Accounts View on the Governmental Expenses and the Autonomy Administration in the Conditions of the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Marián Kočner

    2014-01-01

    Full Text Available The extension of state activities currently raises the need to fund specific public projects in the area of the infrastructure, ecology, or the entire expenditure programs in the field of education, health and social care and culture. Into the accounts methodology of the national and autonomy administration were introduced the transfers which represent prevalent expenses, capital expenditures, grants, subsidies and contributions. From an accounting perspective views there is an important fact from which the transfer passes, respectively whether the transfer is provided by the founder, the transfer by another entity within the public administration, or the transfer goes from an entity outside of the public administration. Watching transfers is important for the subsequent preparation of consolidated financial statements and summary financial statements of the public administration. The aggregate accounts of government administration in 2012 expanded by another group of accounting entities namely the state enterprises, RSR, Eximbanka and other public entities.

  15. Optimalization studies concerning volume reduction and conditioning of radioactive waste in view of storage and disposal (geological disposal into clay)

    International Nuclear Information System (INIS)

    Dejonghe, P.; Van De Voorde, N.; Bonne, A.

    1984-01-01

    Volume reduction of low-level and medium-level wastes, and simultaneous optimization of the quality of the conditioned end-product is a major challenge in the management of radioactive wastes. Comments will be given on recent achievements in treatment of non-high-level liquid and solid wastes from power reactors and low-level plutonium contaminated wastes. The latter results can contribute to an overall optimization of a radioactive waste management scheme, including the final disposal of the conditioned materials. Some detailed results will be given concerning volume reduction, decontamination factors, degree of immobilization of the contained radioelements, and cost considerations

  16. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 77 FR 5990 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane, Pilot-Compartment View Through...

    Science.gov (United States)

    2012-02-07

    ..., and the FAA must issue a finding of regulatory adequacy pursuant to Sec. 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR 11.19, in... novel or unusual design features: The Model LJ-200-1A10 airplane flight deck design incorporates a...

  18. A Chinese View on the Cultural Conditionality of Logic and Epistemology: Zhang Dongsun’s Intercultural Methodology

    Directory of Open Access Journals (Sweden)

    Jana Rošker

    2010-12-01

    Full Text Available Recognizing the fact that comprehension, analysis and transmission of reality are based on diversely structured socio-political contexts as well as on different categorical and essential postulates, offers a prospect of enrichment. Thus, this article presents an analysis and interpretation of one of the first Chinese theoreticians, working in the field of intercultural methodology. Although Zhang Dongsun (1886–1973 can be considered as one of the leading Chinese philosophers of the 20th Century, his criticism of Sinicized Marxist ideologies marked him as a political dissident and he was consequently consigned to oblivion for several decades; only recently has his work been rediscovered by a number of younger Chinese theorists, who have shown a growing interest in his ideas. Although he is still relatively unknown in the West, Zhang definitely deserves to be recognized for his contributions to Chinese and comparative philosophy. The present article focuses on his extraordinary ability to introduce Western thought in a way which was compatible with the specific methodology of traditional Chinese thought. According to such presumptions, culture is viewed as an entity composed of a number of specific discourses and relations. The article shows how the interweaving and interdependence of these discourses form different cultural backgrounds, which manifest themselves in the specific, culturally determined structures of language and logic. It also explains the role of traditional elements in his cultural epistemology.

  19. Cross-sectional survey of older patients' views regarding multidisciplinary care for chronic conditions in general practice.

    Science.gov (United States)

    Bonney, Andrew; Magee, Christopher; Pearson, Russell

    2014-01-01

    The ageing population and increasing prevalence of chronic illness have contributed to the need for significant primary care reform, including increased use of multidisciplinary care and task substitution. This cross-sectional study explores conditions under which older patients would accept having health professionals other than their general practitioner (GP) involved in their care for chronic disease management (CDM). Ten practices were randomly sampled from a contiguous major city and inner regional area. Questionnaires were distributed to consecutive patients aged 60 years and over in each practice. Agency theory was used to inform analyses. Statistical analysis was undertaken using Wald's test, growth modelling and linear regression, controlling for the clustered design. The response rate was 53% (n=272). Most respondents (79%) had at least one chronic health condition. Respondents were more comfortable with GP than with practice nurse management in the CDM scenario (Wald's test=105.49, P<0.001). Comfort with practice nurse CDM was positively associated with increased contact with their GP at the time of the visit (β=0.41, P<0.001), negatively associated with the number of the respondent's chronic conditions (β=-0.13, P=0.030) and not associated with the frequency of other health professional visits. Agency theory suggests that patients employ continuity of care to optimise factors important in CDM: information symmetry and goal alignment. Our findings are consistent with the theory and lend support to ensuring that interpersonal continuity of care is not lost in health care reform. Further research exploring patients' acceptance of differing systems of care is required.

  20. Managing the demands of the preregistration mental health nursing programme: The views of students with mental health conditions.

    Science.gov (United States)

    Ramluggun, Pras; Lacy, Mary; Cadle, Martha; Anjoyeb, Mahmood

    2018-05-30

    An increasing number of students with a pre-existing mental health condition are enrolling on preregistration mental health nursing programmes. The challenges faced by these students in managing the demands of the programme have not been fully explored. Mental health and well-being is an integral part of providing a healthy university in which students can flourish. The purpose of the study was to explore how students with an underlying mental health issue manage the demands of the mental health nursing programme. The outcomes of the study are aimed at informing inclusive teaching and learning and current student support provision. Ethics approval was given. Students from two universities in South East England who met the criterion of having a pre-existing mental health condition when enrolling on the mental health preregistration nursing programme were invited to take part. Nine students took part in the study. Using an interpretative descriptive design, 1:1 face-to-face, audio-taped, semistructured interviews were undertaken. The data were analysed using a framework approach, and this revealed four main themes: timing of disclosure; managing lived experience in learning environments; students' coping mechanisms, and experience of support. Recommendations for practice was that approved education institutes (AEIs) should ensure they have a robust, inclusive practice by implementing strategies to develop these students' resilience, and enhance their learning and the current support provisions. This will ensure the barriers to disclosing their mental health conditions are recognized and minimized to enable these students to fully contribute to their own learning and teaching experience. © 2018 Australian College of Mental Health Nurses Inc.

  1. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    International Nuclear Information System (INIS)

    Singh, Ritu; Misra, Virendra; Mudiam, Mohana Krishna Reddy; Chauhan, Lalit Kumar Singh; Singh, Rana Pratap

    2012-01-01

    Highlights: ► This study explores the potential of CMC-Pd/nFe 0 to degrade γ-HCH in spiked soil. ► Sorption–desorption characteristics and partitioning of γ-HCH is investigated. ► Three degradation pathways has been proposed and discussed. ► γ-HCH degradation mechanism and kinetics is elucidated. ► Activation energy reveals that γ-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe 0 bimetallic nanoparticles (CMC-Pd/nFe 0 ). GC–MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe 0 within 6 h of incubation. The surface area normalized rate constant (k SA ) was found to be 7.6 × 10 −2 L min −1 m −2 . CMC-Pd/nFe 0 displayed ∼7-fold greater efficiency for γ-HCH degradation in comparison to Fe 0 nanoparticles (nFe 0 ), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe 0 loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe 0 has been discussed.

  2. Effects of fabrication requirements on fuel performance in relation to operating conditions. The views of Electricite de France (EDF)

    International Nuclear Information System (INIS)

    Ponticq, M.; Richer, P.; Scribe, G.

    1979-01-01

    Because of the operational constraints relating to fuel behaviour, imperfect knowledge of the behaviour of a defective fuel assembly and, in the near future, the need to adapt reactor power to grid following (load following and remote control), EDF is aiming to reduce the present rate of fuel failure. While the phenomena affecting fuel behaviour have now been listed and analysed, the efforts at reducing their consequences have yet to be completed. This can be achieved, firstly, by reducing or eliminating fabrication defects, which are responsible for failure at the beginning of fuel life, through establishment of a good quality assurance organization and the search for still higher efficiency of quality control and fabrication equipment, and secondly, by developing fabrication techniques minimizing in particular cladding-pellet interactions and the stress corrosion of the cladding, which are responsible for fuel failure as from mid-life. However, the reactor operating conditions likely to apply in the near future may lead, for a given fuel configuration, to a re-evaluation of the fabrication parameters of cladding and UO 2 pellets. (author)

  3. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  4. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  5. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  6. Experimental study of the simulated process of degradation of polycarbonate- and D,L-lactide-based polyurethane elastomers under conditions mimicking the physiological environment

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Serkis, Magdalena; Poreba, Rafal; Machová, Luďka; Hodan, Jiří; Kredatusová, Jana; Kubies, Dana; Zhigunov, Alexander

    2016-01-01

    Roč. 125, March (2016), s. 115-128 ISSN 0141-3910 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane * elastomer * hydrolytic degradation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.386, year: 2016

  7. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    Science.gov (United States)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2018-02-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  8. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  9. LabVIEW aplicado al diagnóstico de estado en tiempo real de transformadores de potencia; LabVIEW apply to diagnostic that assess the condition in real time of the power transfor

    Directory of Open Access Journals (Sweden)

    Eliezer Fernández Padrón

    2014-04-01

    Full Text Available Este trabajo está dirigido al rediseño del Sistema de Adquisición y Procesamiento de Datos de la Estación para el Diagnóstico de Estado en Tiempo Real del Autotransformador de Potencia No. 2 de 100MVA, de la Subestación Barquisimeto de Venezuela, a partir de controladores embebidos en tiempo real de la familia cRIO de National Instruments y las técnicas de programación que ofrece la plataforma NI LabVIEW, con la finalidad de integrar un sistema único (software-hardware que permita aumentar la calidad en las mediciones, el procesamiento de los datos, la interface hombre-máquina, su capacidad de expansión y reproducibilidad. El mismo puede ser accedido mediante navegadores Web de Internet y transferir datos en tiempo real a través de la red, además es capaz de trabajar autónomo presentando respaldo en comunicación y alimentación de energía eléctrica, logrando un mejor servicio de diagnóstico continuo en dicho autotransformador.  This work is focused on the redesign of the Acquisition System and Processing Data of the Station for the Diagnostic that Assess the Condition in Real Time of the 100MVA Power Autotransformer No. 2 of the Substation Barquisimeto from Venezuela with the embedded controllers in real time of the cRIO technology of the National Instruments and the programming techniques supported by the NI LabVIEW platform with the purpose of integrating an unique system (hardware-software that allows to improve the quality in the measurements, the processing data, the man-machine interface, its expansion capability and reproduction. This system can be obtained by the internet web browser and it can transfer data in real time through the network, it is also able to work autonomous having a back in communicating and electrical energy feeding, getting a better continuous diagnostic service and the autotransformer.

  10. LabVIEW aplicado al diagnóstico de estado en tiempo real de transformadores de potencia LabVIEW apply to diagnostic that assess the condition in real time of the power transformers

    Directory of Open Access Journals (Sweden)

    Eliezer Fernández Padrón

    2012-02-01

    Full Text Available Este trabajo está dirigido al rediseño del Sistema de Adquisición y Procesamiento de Datos de la Estación para el Diagnóstico de Estado en Tiempo Real del Autotransformador de Potencia No. 2 de 100MVA, de la Subestación Barquisimeto de Venezuela, a partir de controladores embebidos en tiempo real de la familia cRIO de National Instruments y las técnicas de programación que ofrece la plataforma NI LabVIEW, con la finalidad de integrar un sistema único (software-hardware que permita aumentar la calidad en las mediciones, el procesamiento de los datos, la interface hombre-máquina, su capacidad de expansión y reproducibilidad. El mismo puede ser accedido mediante navegadores Web de Internet y transferir datos en tiempo real a través de la red, además es capaz de trabajar autónomo presentando respaldo en comunicación y alimentación de energía eléctrica, logrando un mejor servicio de diagnóstico continuo en dicho autotransformador.This work is focused on the redesign of the Acquisition System and Processing Data of the Station for the Diagnostic that Assess the Condition in Real Time of the 100MVA Power Autotransformer No. 2 of the Substation Barquisimeto from Venezuela with the embedded controllers in real time of the cRIO technology of the National Instruments and the programming techniques supported by the NI LabVIEW platform with the purpose of integrating an unique system (hardware-software that allows to improve the quality in the measurements, the processing data, the man-machine interface, its expansion capability and reproduction. This system can be obtained by the internet web browser and it can transfer data in real time through the network, it is also able to work autonomous having a back in communicating and electrical energy feeding, getting a better continuous diagnostic service and the autotransformer.

  11. Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel

    OpenAIRE

    Akhlaghi, Shahin; Pourrahimi, A. M.; Christian, Sjöstedt; Martin, Bellander; Mikael S., Hedenqvist; Ulf W., Gedde

    2017-01-01

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the cross...

  12. Attitudinal effects of degrading themes and sexual explicitness in video materials.

    Science.gov (United States)

    Golde, J A; Strassberg, D S; Turner, C M; Lowe, K

    2000-07-01

    This study examined the independent and interactive effects of sexual explicitness and degrading themes toward women on mens' attitudes following exposure to video presentations of male-female interactions. Subjects were 83 male college students who viewed video vignettes under one of four stimulus conditions: (a) sexually explicit/degrading, (b) sexually explicit/nondegrading, (c) nonexplicit/degrading, and (d) nonexplicit/nondegrading. Results revealed that men exposed to degrading material, regardless of explicitness, were significantly more likely to express attitudes supportive of rape, while explicitness had no significant main or interactive effect on these attitudes. Further, the interaction of explicitness with degradation was found to impact scores on a measure of sexual callousness. Theoretical and clinical implications of these findings are discussed.

  13. Studies on the radiation chemistry of biomolecules in aqueous solution with specific objective of minimizing their radiolytic degradation. Coordinated programme for Asia and the Pacific Region on radiation sterilization practices significant to local medical supplies and conditions

    International Nuclear Information System (INIS)

    Narayana Rao, K.

    1979-01-01

    As part of a study of radiolytic degradation of pharmaceuticals during radiosterilization, the basic radiation chemistry of the B-group vitamins, nicotinamide, pyridoxin, riboflavin and thiamine, and the reaction of hydrogen peroxide with these same materials has been investigated. The various aspects studied were - radiolysis under controlled conditions, effects of phase, temperature, pH and nature and concentration of additives. Some of the conclusions are: 1) with oxygen saturated aqueous solutions containing glucose, the radiolytic degradation of the vitamins is reduced: 2) results a similar for N 2 O saturated aqueous solutions; 3) in glucose-containing solutions, the protective effect is considerably modified at higher temperatures; and 4) irradiation of air-saturated aqueous solutions in the frozen state leads to reduced decomposition. It is concluded that in the presence of oxygen, in frozen matrices at low temperature, it appears possible to reduce the radiolytic breakdown of vitamins to low levels

  14. Evolution of Terms of Activity of Enterprises as Pre-condition of Choice of System of Corporate Management: Historical Retrospective View and Modern Tendencies

    OpenAIRE

    Korenev Emil N.

    2012-01-01

    The historical retrospective view of evolution of the systems of corporate management in accordance with the gradual increase of level of instability of external environment is investigated. Description of modern conditions of functioning of enterprises in the context of their influence on the choice of the effective system of corporate management is presented.Исследована историческая ретроспектива эволюционирования систем корпоративного управления в соответствии с постепенным увеличением уро...

  15. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  16. Solid lipid particles for oral delivery of peptide and protein drugs III - the effect of fed state conditions on the in vitro release and degradation of desmopressin

    DEFF Research Database (Denmark)

    Christophersen, Philip C; Vaghela, Dimple; Müllertz, Anette

    2014-01-01

    The effect of food intake on the release and degradation of peptide drugs from solid lipid particles is unknown and was therefore investigated in vitro using different fed state media in a lipolysis model. Desmopressin was used as a model peptide and incorporated into solid lipid particles...... and the protease or desmopressin. Addition of a medium chain triglyceride, trilaurin, in combination with drug-loaded lipid particles diminished the food effect on the TG18 particles, and trilaurin is therefore proposed to be a suitable excipient for reduction of the food effect. Overall, the present study shows...... that strategies to reduce food effect, such as adding trilaurin, for lipid particle formulations should be considered as drug release from such formulations might be influenced by the presence of food in the gastrointestinal tract....

  17. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  18. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  19. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  20. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  1. Microbial degradation of 15N-labeled rice residues in soil during two years' incubation under flooded and upland conditions, (1)

    International Nuclear Information System (INIS)

    Kanazawa, Shinjiro; Yoneyama, Tadakatsu.

    1980-01-01

    The decay of rice residue was investigated after incubation periods of from 1 to 24 months at 30 0 C under both blooded and upland soil conditions. Tops and roots of rice plants were cut into about 10-mm length, and separately incorporated in soil which had been passed through a 0.5-mm sieve. Plant debris were fractionated physically according to their sizes and divided into five groups (> 4 mm, 4 - 2 mm, 2 - 1 mm, 1 - 0.5 mm, and 0.5 - 0.25 mm). Carbon loss from the soils amended with rice residues and decrease in the weight of total plant debris proceeded at a rapid speed in the early periods (around 4 months) and then at a slow speed in the subsequent periods under both flooded and upland soil conditions. The distribution of the plant debris in the decomposition processes differed under flooded and upland conditions. Under flooded conditions, 2 - 4 mm-sized plant debris were retained for a long period with slow transformation into the smaller fractions. In contrast, under upland conditions, change of plant debris from large to small size fractions proceeded gradually. This continuous change could be attributed to the high decomposing activities of fungi under upland conditions. (author)

  2. Operationalizing measurement of forest degradation

    DEFF Research Database (Denmark)

    Dons, Klaus; Smith-Hall, Carsten; Meilby, Henrik

    2015-01-01

    . In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human......Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities...

  3. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  4. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  5. Conditioned to eat while watching television? Low-income caregivers' perspectives on the role of snacking and television viewing among pre-schoolers.

    Science.gov (United States)

    Blaine, Rachel E; Fisher, Jennifer Orlet; Blake, Christine E; Orloski, Alexandria; Younginer, Nicholas; Bruton, Yasmeen; Ganter, Claudia; Rimm, Eric B; Geller, Alan C; Davison, Kirsten K

    2016-06-01

    Although television (TV) viewing is frequently paired with snacking among young children, little is known about the environment in which caregivers promote this behaviour. We describe low-income pre-schoolers' snacking and TV viewing habits as reported by their primary caregivers, including social/physical snacking contexts, types of snacks and caregiver rationales for offering snacks. These findings may support the development of effective messages to promote healthy child snacking. Semi-structured interviews assessed caregiver conceptualizations of pre-schoolers' snacks, purpose of snacks, snack context and snack frequency. Interviews occurred in Boston, Massachusetts and Philadelphia, Pennsylvania, USA. Forty-seven low-income multi-ethnic primary caregivers of children aged 3-5 years (92 % female, 32 % Hispanic/Latino, 34 % African American) described their child's snacking in the context of TV viewing. TV viewing and child snacking themes were described consistently across racial/ethnic groups. Caregivers described snacks offered during TV viewing as largely unhealthy. Labels for TV snacks indicated non-nutritive purposes, such as 'time out', 'enjoyment' or 'quiet.' Caregivers' primary reasons for providing snacks included child's expectations, behaviour management (e.g. to occupy child) and social time (e.g. family bonding). Some caregivers used TV to distract picky children to eat more food. Child snacking and TV viewing were contextually paired by providing child-sized furniture ('TV table') specifically for snacking. Low-income caregivers facilitate pre-schoolers' snacking and TV viewing, which are described as routine, positive and useful for non-nutritive purposes. Messages to caregivers should encourage 'snack-free' TV viewing, healthy snack options and guidance for managing children's behaviour without snacks or TV.

  6. Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions.

    Science.gov (United States)

    Kumar, Vineet; Chandra, Ram

    2018-02-02

    Maillard reactions products (MRPs) are a major colorant of distillery effluent. It is major source of environmental pollution due to its complex structure and recalcitrant nature. This study has revealed that sucrose glutamic acid-Maillard reaction products (SGA-MRPs) showed many absorption peaks between 200 and 450 nm. The absorption maximum peak was noted at 250 nm in spectrophotometric detection. This indicated the formation of variable molecular weight Maillard products during the SGA-MRPs formation at high temperature. The identified aerobic bacterial consortium consisting Klebsiella pneumoniae (KU726953), Salmonella enterica (KU726954), Enterobacter aerogenes (KU726955), Enterobacter cloaceae (KU726957) showed optimum production of MnP and laccase at 120 and 144 h of growth, respectively. The potential bacterial consortium showed decolourisation of Maillard product up to 70% in presence of glucose (1%), peptone (0.1%) at optimum pH (8.1), temperature (37 °C) and shaking speed (180 rpm) within 192 h of incubation. The reduction of colour of Maillard product correlated with shifting of absorption peaks in UV-Vis spectrophotometry analysis. Further, the changing of functional group in FT-IR data showed appearance of new peaks and GC-MS analysis of degraded sample revealed the depolymerisation of complex MRPs. The toxicity evaluation using seed of Phaseolus mungo L. showed reduction of toxicity of MRPs after bacterial treatment. Hence, this study concluded that developed bacterial consortium have capability for decolourisation of MRPs due to high content of MnP and laccase.

  7. Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    pressures, 0.1 (1 atm) and 10 MPa (100 atm), and 2 temperature conditions, 30 and 10 degrees C. The results suggest that thraustochytrids found in such particulate organic matter may actively contribute to decomposition processes not only in the surface...

  8. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  9. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  10. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  11. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  12. Effect of synthesis conditions on the photocatalytic property of multiferroic BiFeO{sub 3} towards the degradation of phenol red

    Energy Technology Data Exchange (ETDEWEB)

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Giridharan, N. V., E-mail: giri@nitt.edu [Advanced Functional Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620 015 (India)

    2016-05-23

    Multiferroic BiFeO{sub 3} has been synthesized through hydrothermal route under different reaction conditions. From the basic characterization such as of X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group. Photodegradation studies of toxic dye phenol red have been investigated under visible light irradiation. Vibrating sample magnetometer (VSM) analysis has been carried out to identify the magnetic properties and recycle ability photocatalysts.

  13. Physico-chemical study of the thermal degradation of ions exchange resins of nuclear origin: research of conditions to limit the pollution transfer, application to electric cables

    International Nuclear Information System (INIS)

    Antonetti, P.

    1999-01-01

    The ions exchange resins are one solid form of radioactive wastes. They are found mainly during the demineralization operations of the water from reactors cooling systems. This study aims to determine the conditions of a thermal processing leading to the production of a smaller residue, containing the whole activity. A protocol is proposed and validated on resins allowing a decrease of the volume of 63% for 99,93% of the activity. (A.L.B.)

  14. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    Science.gov (United States)

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  15. Thunderstorm activity in early Earth: same estimations from point of view a role of electric discharges in formation of prebiotic conditions

    Science.gov (United States)

    Serozhkin, Yu.

    2008-09-01

    Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes

  16. The Effect of Different Delivery Conditions on the Accelerated Degradation of Structural Steel in the Coal Mine Environment / Wpływ Różnego Stanu Dostawy Na Przyspieszoną Degradację Stali Konstrukcyjnej W Środowisku Kopalnianym

    Science.gov (United States)

    Pawłowski, Bogdan; Bała, Piotr

    2012-12-01

    The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.

  17. Experimental analysis of upward vertical two-phase flow in four-cusp channels simulating the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident

    International Nuclear Information System (INIS)

    Assad, A.C.A.

    1984-01-01

    The present work deals with an experimental analysis of upward vertical two-phase flow in channels with circular and four-cusp cross-sections. The latter simulates the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident. Simultaneous flow of air and water has been employed to simulate adiabatic steam-water flow. The installation of air-water separators helped eliminate instabilities during pressure-drop measurements. The gamma ray attenuation was utilized for the void fraction determination. For the four-cusp geommetry, new criteria for two-phase flow regime transitions have been determined, as well as new correlatins for pressure drop and void fraction, as function of the Lockhart-Martinelli factor and vapour mass-fraction, respectively. (Author) [pt

  18. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  19. Evaluation of Pt/C catalyst degradation and H2O2 formation changes under simulated PEM fuel cell condition by a rotating ring-disk electrode

    International Nuclear Information System (INIS)

    Ono, Kenshiro; Yasuda, Yuki; Sekizawa, Koshi; Takeuchi, Norimitsu; Yoshida, Toshihiko; Sudoh, Masao

    2013-01-01

    Potential cycling tests using 42.2 wt% and 19.1 wt% Pt/C catalysts were conducted by the RRDE technique to evaluate the changes in the electrochemical surface area (ECSA) and H 2 O 2 formation ability of the catalysts. As the typical operating conditions of a proton exchange membrane fuel cell (PEMFC), square wave potential cycling (0.7–0.9 V) was applied to the catalysts for 150,000 cycles in an O 2 -saturated 0.1 M HClO 4 electrolyte. During the potential cycling test, electrochemical measurements were carried out to characterize the ECSA, oxygen reduction reaction (ORR) activity and H 2 O 2 formation. After 150,000 potential cyclings, while the ECSA of the 42.2 wt% Pt/C dropped by 35%, the ECSA loss for the 19.1 wt% Pt/C was 55%. This result implies that the Pt content in the cathode catalyst affects the ECSA loss during the long-term PEMFC operation. Additionally, the H 2 O 2 formation ratio obviously increased with the potential cycling only in the case of the 19.1 wt% Pt/C. In order to verify the H 2 O 2 formation dependence on the ECSA, four types of catalysts, which included different Pt loading amounts (42.2, 28.1, 19.1 and 9.5 wt% Pt/C), were evaluated, and these results explained the relationship between the ECSA decay and H 2 O 2 formation increase in the durability tests

  20. Recovering of images degraded by atmosphere

    Science.gov (United States)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  1. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies.

    Science.gov (United States)

    Lovato, María E; Fiasconaro, María L; Martín, Carlos A

    2017-02-01

    This research investigated the discoloration and mineralization of Reactive Blue 19 (RB19) anthraquinone dye by single ozonation, single UV radiation and ozonation jointed with UV radiation (O 3 /UV). The problem was approached from two points of view: with the objective of color removal or the mineralization of solution. In each case, the optimum operating conditions were different. Ozonation was the most effective treatment for color removal, while the combined O 3 /UV treatment was for mineralization. Major intermediates of the dye degradation were identified by gas chromatography/mass spectrometry and a degradation pathway was proposed. In addition, a clear decrease of the toxicity of the dye was achieved at the end of the experiments. The effect of initial dye concentration, pH, ozone dose, and UV radiation on the degradation of the dye and decrease of total organic carbon was investigated, in order to establish the optimal operating conditions to achieve discoloration, mineralization or a combination of both.

  2. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Ecosystemic approaches to land degradation

    Energy Technology Data Exchange (ETDEWEB)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-07-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to integrate them in a unique process. One of the objectives of De Survey project is designing and implementing operational procedures for desertification surveillance, including land degradation. A strategic report was compiled and reproduced here for selecting the most appropriate approaches to the project conditions. The report focuses on using attributes of ecosystem maturity as a natural way to integrate the different drivers of land degradation in simple indices. The review surveys different families of attributes concerned with water and energy fluxes through the ecosystem, its capacity to sustain biomass and net primary productivity, and its capacity to structure the space. Finally, some conclusions are presented about the choice criteria of the different approaches in the framne of operational applications. (Author) 20 refs.

  4. Ecosystemic approaches to land degradation

    International Nuclear Information System (INIS)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-01-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to integrate them in a unique process. One of the objectives of De Survey project is designing and implementing operational procedures for desertification surveillance, including land degradation. A strategic report was compiled and reproduced here for selecting the most appropriate approaches to the project conditions. The report focuses on using attributes of ecosystem maturity as a natural way to integrate the different drivers of land degradation in simple indices. The review surveys different families of attributes concerned with water and energy fluxes through the ecosystem, its capacity to sustain biomass and net primary productivity, and its capacity to structure the space. Finally, some conclusions are presented about the choice criteria of the different approaches in the framne of operational applications. (Author) 20 refs.

  5. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  6. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  7. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra

    2014-03-01

    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  8. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  9. Experience of the metal condition examination after 200 thousand hours of operation in view of an opportunity of service life extension

    International Nuclear Information System (INIS)

    Abagyan, A.; Bakirov, M.; Kamyshnikov, O.; Potapov, V.; Ivanenko, I.; Frolov, I.; Zabruskov, N.

    2002-01-01

    In the report the methods and technologies for non-destructive testing of mechanical properties are considered, used by the VNIIAES for the examination of metal condition of elements after 200 thousand hours of operation and within the Program for Life Extension of the units 3 and 4 of the Novo Voronezh NPP and units 1 and 2 of the Kola NPP. The results of the experimental investigations od metal of piping and components by destructive and specimen-free non-destructive methods with the purpose to assess the variation of physical and mechanical properties of steel during extended period after long-term operation are also discussed. The results of the non-destructive analysis allow to expand essentially the scope of examined elements and to obtain data for the assessment of the technical condition and the residual lifetime of piping and components and the investigated units

  10. Emotional processes in patients undergoing coronary artery bypass graft surgeries with extracorporeal circulation in view of selected indicators of the inflammatory condition.

    Science.gov (United States)

    Płotek, Włodzimierz; Pielok, Joanna; Cybulski, Marcin; Samborska, Regina

    2015-01-09

    The aim of this study was to describe positive and negative emotions in patients undergoing coronary artery bypass graft (CABG) surgeries with extracorporeal circulation and the correlations between emotions and basic indicators of the inflammatory condition: C-reactive protein (CRP) concentration, body temperature, and leukocyte count. Standardized tools were used to select 52 patients (aged 47-63 years, 6 women--11.5% and 46 men--88.5%) without dementia or depression. The Positive and Negative Affect Schedule (PANAS) was used to examine positive affect (PA) and negative affect (NA) and the State-Trait Anxiety Inventory (STAI X1 and X2) was used to examine the anxiety level. The patients underwent CABG surgery according to a common anesthesia protocol and for 5 consecutive days they were observed in the ward, where selected indicators of the inflammatory condition were monitored. A detailed description of the results of examinations of emotions was presented. The patients with low PA-trait level, high NA-trait level, and high anxiety-trait level (STAI X2) exhibited statistically significantly higher body temperatures than the other patients in the postoperative period. The patients with high NA-trait and anxiety-state levels (STAI X1) had statistically significantly lower CRP levels in the postoperative period than the patients with low NA-trait and anxiety-state levels (STAI X1). Patients undergoing CABG operations express both positive and negative affects. The changes in the inflammatory markers are expressed mostly by CRP concentration. There exist relationships between the result of tests assessing emotions and the markers of the inflammatory condition.

  11. Discrepancies in assessing home care workers' working conditions in a Norwegian home care service: differing views of stakeholders at three organizational levels.

    Science.gov (United States)

    Andersen, Gunn Robstad; Westgaard, Rolf H

    2015-07-25

    The present study is a follow-up study of factors contributing to an undesirable quality of work environment and sick leave rate in the home care services in a Norwegian municipality. The underlying assumption is that organizational discrepancies in the perceptions and appraisals of significant factors and processes in an organization have detrimental effects on the management of the organization and on work environment conditions. Thus, the study aim is to explore potential organizational discrepancies in the appraisals of factors relating to home care workers' working conditions. The study, using a mixed-methods design, comprised six home care units. It included survey responses of home care workers (80 respondents, response rate 54 %) and qualitative descriptions of stakeholders' appraisals of organizational issues gathered through semi-structured interviews (33 interviews with stakeholders at three organizational levels). Employees at different organizational levels in the home care services expressed divergent appraisals of factors related to the working conditions of home care workers, including impact of organizational measures (i.e. time pressure, work tasks, a new work program, organizational changes, budget model, budget allocation and coping strategies). Survey responses supported interview descriptions by home care workers. Results suggest that organizational discrepancy serve as an important barrier to a sustainable, well-functioning organization in general and to quality-enhancing changes to work procedures in particular. It is recommended to improve communication channels and facilitate the exchange of information across levels to ensure a common understanding of matters significant to the organization of the home care services and to the work environment of home care workers. The prevalence and impact of organizational discrepancy should be included in organization research, particularly when exploring explanatory factors of an unhealthy

  12. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  13. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  14. In-flight interband calibration on AVHRR data by a cloud-viewing technique

    OpenAIRE

    Wald , Lucien

    1997-01-01

    ISBN 90-5410-933-5; International audience; A significant degradation in the responsivity of the AVHRR radiometers aboard the NOAA satellite series, affects the index vegetation (NDVI), which is an important source of information for monitoring vegetation conditions on regional and global scales. Many studies have been carried out which use the viewing Earth calibration approach in order to provide accurate calibration correction coefficients for the computation of the vegetation index using ...

  15. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space

    Science.gov (United States)

    Choi, Yunsoo; Souri, Amir Hossein

    2015-04-01

    annual TCO (∼0.59 ± 0.56 DU yr-1) but decreases in minimum annual TCO (∼-0.42 ± 0.60 DU yr-1) caused by an increase in NO2 species and annual CO (∼-0.95 ± 0.41 × 1016 molec./cm2 yr-1) partly resulting from the transport of reduced CO. The time series of the HCHO/NO2 column ratio (a proxy for the chemical conditions) indicated that during the last decade, the cities of Tehran, Ahvaz, and Isfahan exhibited steady chemical conditions while Tabriz and Mashhad exhibited a change from NOx-saturated/mixed to more NOx-sensitive chemical conditions.

  16. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  17. Zograscopic viewing

    NARCIS (Netherlands)

    Koenderink, J.; Wijntjes, M.; Van Doorn, A.

    2013-01-01

    The “zograscope” is a “visual aid” (commonly known as “optical machine” in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates

  18. Soil degradation in Pakistan

    International Nuclear Information System (INIS)

    Khan, M.R.

    2005-01-01

    This paper diagnoses the issues involved behind the current state, usage, interactions and linkages in the soils in Pakistan. The condition of soils is deteriorating due to developmental and environmental factors such as soil degradation, water pollution, fauna degeneration etc. Issues, problems and constraints faced in the management and usage of soils are diagnosed at different levels in the ecosystems predominant in Pakistan. The research questions propose effective solutions, types of instruments, methods or processes to resolve the issues within the various areas or ecosystems in the most sustainable and effective manner [23]. Biological solutions and methods can be applied at the sub-system level by private individuals or communities at a lower cost, and at a more localized level than engineering methods. Engineering methods may be suited for interventions at a system level rather than at a sub-system level; but even at this level they will be complementary with biological methods. (author)

  19. On an orthotropic model for progressive degradation

    DEFF Research Database (Denmark)

    Hammer, Velaja B.; Pedersen, Pauli

    1999-01-01

    Progressive degradation in orthotropic materials is modelled from a smear-out point of view, and physical measurable quantities are used as the describing parameters. Evolution of stiffness and evolution of strength are kept uncoupled. For plane problems the stiffness evolution is modelled...

  20. Maintenance Operations Degradation of Airfield Pavement Markings

    Science.gov (United States)

    2012-03-01

    DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this article are those of the author and...DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GEM/ENV/12-M09 MAINTENANCE OPERATIONS DEGRADATION OF...placement, color, and style (Federal Aviation Adminstration (FAA), 2010). However, regulations and standards do not make good asset management plans

  1. Soil degradation in Sub-Saharan Africa

    NARCIS (Netherlands)

    Hartemink, A.E.; Keulen, van H.

    2005-01-01

    Soil degradation in Sub-Sahara Africa has been much debated in the past decades. Although there are many different views, at the extremes there are those who are of the opinion that the problem is very serious and the main cause for the poverty and food crises and those that are convinced that it is

  2. "Right to recommend, wrong to require"- an empirical and philosophical study of the views among physicians and the general public on smoking cessation as a condition for surgery.

    Science.gov (United States)

    Björk, Joar; Juth, Niklas; Lynøe, Niels

    2018-01-08

    In many countries, there are health care initiatives to make smokers give up smoking in the peri-operative setting. There is empirical evidence that this may improve some, but not all, operative outcomes. However, it may be feared that some support for such policies stems from ethically questionable opinions, such as paternalism or anti-smoker sentiments. This study aimed at investigating the support for a policy of smoking cessation prior to surgery among Swedish physicians and members of the general public, as well as the reasons provided for this. A random sample of general practitioners and orthopaedic surgeons (n = 795) as well as members of the general public (n = 485) received a mail questionnaire. It contained a vignette case with a smoking 57-year old male farmer with hip osteoarthritis. The patient had been recommended hip replacement therapy, but told that in order to qualify for surgery he needed to give up smoking four weeks prior to and after surgery. The respondents were asked whether making such qualifying demands is acceptable, and asked to rate their agreement with pre-set arguments for and against this policy. Response rates were 58.2% among physicians and 53.8% among the general public. Of these, 83.9% and 86.6%, respectively, agreed that surgery should be made conditional upon smoking cessation. Reference to the peri-operative risks associated with smoking was the most common argument given. However, there was also strong support for the argument that such a policy is mandated in order to achieve long term health gains. There is strong support for a policy of smoking cessation prior to surgery in Sweden. This support is based on considerations of peri-operative risks as well as the general long term risks of smoking. This study indicates that paternalistic attitudes may inform some of the support for peri-operative smoking cessation policies and that at least some respondents seem to favour a "recommendation strategy" vis-à-vis smoking

  3. Zograscopic viewing.

    Science.gov (United States)

    Koenderink, Jan; Wijntjes, Maarten; van Doorn, Andrea

    2013-01-01

    The "zograscope" is a "visual aid" (commonly known as "optical machine" in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates the physiological cues (binocular disparity, vergence, accommodation, movement parallax, and image blur) that might indicate the flatness of the picture surface. The spatial structure of pictorial space is due to the remaining pictorial cues. As a consequence, many (or perhaps most) observers are aware of a heightened "plasticity" of the pictorial content for zograscopic as compared with natural viewing. We discuss the optics of the zograscope in some detail. Such an analysis is not available in the literature, whereas common "explanations" of the apparatus are evidently nonsensical. We constructed a zograscope, using modern parts, and present psychophysical data on its performance.

  4. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  5. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  6. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  7. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages

  8. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  9. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  10. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  11. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  12. Ways of Viewing Pictorial Plasticity.

    Science.gov (United States)

    Wijntjes, Maarten W A

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  13. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  14. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Zhang, Liwen; Petersen, Elijah J.; Habteselassie, Mussie Y.; Mao, Liang; Huang, Qingguo

    2013-01-01

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14 C-labeled MWCNTs into 14 CO 2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14 C-labeled multiwall carbon nanotubes can be degraded to 14 CO 2 and other byproducts by a bacteria community under natural conditions

  15. HIV is Now a Manageable Long-Term Condition, But What Makes it Unique? A Qualitative Study Exploring Views About Distinguishing Features from Multi-Professional HIV Specialists in North West England.

    Science.gov (United States)

    Jelliman, Pauline; Porcellato, Lorna

    HIV is evolving from a life-threatening infection to a long-term, manageable condition because of medical advances, radical changes in health and social care policy, and the impact of an aging population. However, HIV remains complex, presenting unique characteristics distinguishing it from other long-term conditions (LTCs). Our aim in this qualitative descriptive study was to identify and explore these features in the context of LTCs. A focus group (FG) method was used to gather the views and experiences of multi-professional HIV specialists who worked in North West England. Twenty-four staff participated in FGs (n = 3), which were audio recorded, manually transcribed, and thematically analyzed. We found four main themes: (a) stigma, (b) challenges faced by HIV specialists, (c) lack HIV-related knowledge, and (d) unique features, termed "stand alone." We concluded that these distinguishing features hindered full recognition and acceptance of HIV as an LTC. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process.

    Science.gov (United States)

    Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D

    2018-05-03

    Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.

  17. Watershed health assessment to monitor land degradation

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Hazbavi, Zeinab; Cerdà, Artemi

    2017-04-01

    Land degradation is a worldwide issue that affects the Planet and the fate of the humankind (Cerdà et al., 2009; Choudhury et al., 2016; Fernández et al., 2016; Ferreira et al., 2016). Several processes affect the sustainability of the ecosystems, from soil erosion to soil compation, deforestation, Climate Change or water, soil and air pollution (Sadeghi et al., 2015a; 2015b; Gómez-Acanta et al., 2016; Mengistu et al., 2016; Mukai, 2016). Several ecosystem theories have been presented in the scientific literatures to monitor land degradation (Cerdà et al., 2016; Davudirad et al., 2016; Fava et al., 2016; Mahyou et al., 2016; Soulard et al., 2016). Besides the scientific tasks of improving the indication, the conviction of the potential users to change their concepts toward a higher consideration of ecosystem attributes, and toward a fruitful application of the health or integrity concepts, will be a main task of future activities. Reliability, resilience and vulnerability (R-R-V) indicators are often used in combination for quantifying risk and decision making in many systems. However, the use of hydrological series data for R-R-V computations has been rather limited. Toward this, the overall objective of this paper is to conduct a risk assessment analysis on stream flow discharge from Shazand Watershed located in the south western of Markazi Province in Iran for the period of 1972-2014 using R-R-V indicators. Based on the R-R-V analysis conducted in this study, the stream flow discharge of the study region followed a cyclic pattern with a decreasing trend. The results further showed a decreasing trend in reliability and resilience and an increasing trend in vulnerability in the Shazand Watershed. It may be concluded that the Shazand Watershed was in overall in unhealthy condition from view of stream flow discharge. Acknowledgements This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant no. 603498 (RECARE Project

  18. The Use of Radiation-Induced Degradation in Controlling Molecular Weights of Polysaccharides : The Effect of Humidity

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    Better understanding of chemistry of radiation-induced degradation is becoming of increasing importance on account of the utilization of polymeric materials in a variety of radiation environments as well as beneficial uses of degraded polymers. It is very well known that polysaccharides in dry form or in solution degrade when exposed to ionizing radiation. In this study degrading effect of radiation has been considered from the point of view of controlling the molecular weights of kappa- and iota-carrageenans and sodium alginate irradiated under varying environmental conditions. The humidity equilibrated polymer samples kept over saturated aqueous salt solutions of NaCl, NaNO 3 and MgCl 2 were irradiated in a Gammacell 220 at room temperature. The degradation was investigated in detail by a careful Gel Permeation Chromatographic analysis of their respective molecular weights before and after irradiation Alexander-Charlesby-Ross equation was used in determining their radiation-chemical yields. Degradation yield is the highest for dry irradiated kappa- (G(S) = 0.73) and iota-carrageenans (G(S) = 2.43) and with small amount of water taken up from surrounding humidity degradation becomes less pronounced and G(S) values show a decrease down to G(S) = 0.16 and 0.87 at 75 % relative humidity, respectively. At very high water contents degradation effect again becomes more effective. Sodium alginate has fount to be less sensitive to the effect of humidity. When there is small amount of water in the polysaccharide structure, it is unlikely to expect an indirect effect of radiation. The water located in between the polymer chains however can give enough mobility to kappa and iota karrageenans chains, plastifying effect, which may enhance the radical-radical combinations thus lowering the rate of degradation hence reducing G(S) values

  19. Radiation degradation of alginate and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Mitomo, Hiroshi [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Alginate and chitosan were irradiated in solid or aqueous solution condition with Co{sup 60} gamma rays in the dose range of 20 to 500 kGy. Degradation was observed both in solid and solution conditions. The degradation in solution was remarkably greater than that in solid. For example, the molecular weight of alginate in 4%(w/v) solution decreased from 2 x 10{sup 5} for 0 kGy to 6 x 10{sup 3} for 50 kGy irradiation while the equivalent degradation by solid irradiation required 500 kGy. The activated species from irradiated water must be responsible for the degradation in solution. The degradation was also accompanied with the color change of alginate: the color became deep brown for highly degraded alginate. UV spectra showed a distinct absorption peak at 265 nm for colored alginates, increasing with dose. The fact that discoloration of colored alginate was caused on exposure to ozone suggests a formation of double bond in pyranose-ring by scission of glycosidic bond. Degradation behavior of chitosan in irradiation was almost the same as that of alginate. (author)

  20. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  1. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  2. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories

    Directory of Open Access Journals (Sweden)

    Eduardo Cebollero

    2012-01-01

    Full Text Available During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.

  3. Comprehensive study of the influence of different environments on degradation processes in F8BT: Correlating optoelectronic properties with Raman measurements

    International Nuclear Information System (INIS)

    Linde, Sivan; Shikler, Rafi

    2013-01-01

    There is a growing interest in conjugated polymers from both industrial and academic points of views. The reasons are their tunable optoelectronic properties, ease of production, and excellent mechanical properties. However, the ease with which their optoelectronic properties are tunable make devices based on them prone to fast degradation and therefore, short life time. The issue of degradation of organic based optoelectronic devices is the topic of many ongoing researches. However, much less attention is given to degradation processes of the individual components of the devices and their dependence on the environmental conditions. In this work, we report on the degradation of a film of a polyfluorene block copolymer F8BT that is used in a variety of optoelectronic devices under different environments: Sun exposure, heating, and UV exposure in inert and ambient conditions. Degradation was observed in most of the optoelectronic properties of the film. Topographic measurements did not show observable changes of the film morphology following degradation. However, Raman spectroscopy measurements show changes that indicate degradation in one of the building blocks of the copolymer that is associated with electron's conduction. The absolute value of the correlation coefficient between the decrease in the Raman signal and the decrease in the optoelectronic properties is larger than 0.95 under sun exposure it is larger than 0.8 under all other ambient exposures and smaller than 0.65 under inert conditions. These results support the assumption that Oxygen, not necessarily through photo-oxidation, and also water play an important role in the degradation process and indicate the part of the polymer that is most susceptible to degradation

  4. Atmospheric degradation mechanism of organic sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T; Arsene, C

    2002-02-01

    In the present work a detailed product study has been performed on the OH radical initiated oxidation of dimethyl sulphide and dimethyl sulphoxide, under different conditions of temperature, partial pressure of oxygen and NO{sub x} concentration, in order to better define the degradation mechanism of the above compounds under conditions which prevail in the atmosphere. (orig.)

  5. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  6. Updating Recursive XML Views of Relations

    DEFF Research Database (Denmark)

    Choi, Byron; Cong, Gao; Fan, Wenfei

    2009-01-01

    This paper investigates the view update problem for XML views published from relational data. We consider XML views defined in terms of mappings directed by possibly recursive DTDs compressed into DAGs and stored in relations. We provide new techniques to efficiently support XML view updates...... specified in terms of XPath expressions with recursion and complex filters. The interaction between XPath recursion and DAG compression of XML views makes the analysis of the XML view update problem rather intriguing. Furthermore, many issues are still open even for relational view updates, and need...... to be explored. In response to these, on the XML side, we revise the notion of side effects and update semantics based on the semantics of XML views, and present effecient algorithms to translate XML updates to relational view updates. On the relational side, we propose a mild condition on SPJ views, and show...

  7. Environmental Degradation: Causes and Consequences

    Directory of Open Access Journals (Sweden)

    Swati Tyagi

    2014-08-01

    Full Text Available The subject of environmental economics is at the forefront of the green debate: the environment can no longer be viewed as an entity separate from the economy. Environmental degradation is of many types and have many consequences. To address this challenge a number of studies have been conducted in both developing and developed countries applying different methods to capture health benefits from improved environmental quality. Minimizing exposure to environmental risk factors by enhancing air quality and access to improved sources of drinking and bathing water, sanitation and clean energy is found to be associated with significant health benefits and can contribute significantly to the achievement of the Millennium Development Goals of environmental sustainability, health and development. In this paper, I describe the national and global causes and consequences of environmental degradation and social injustice. This paper provides a review of the literature on studies associated with reduced environmental risk and in particular focusing on reduced air pollution, enhanced water quality and climate change mitigation.

  8. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  9. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  10. Impact of Sensor Degradation on the MODIS NDVI Time Series

    Science.gov (United States)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  11. Simulated degradation of biochar and its potential environmental implications

    International Nuclear Information System (INIS)

    Liu, Zhaoyun; Demisie, Walelign; Zhang, Mingkui

    2013-01-01

    A simulated oxidation technique was used to examine the impacts of degradation on the surface properties of biochar and the potential implications of the changes in biochar properties were discussed. To simulate the short- and long-term environmental degradation, mild and harsh degradation were employed. Results showed that after mild degradation, the biochar samples showed significant reductions in surface area and pore volumes. After harsh degradation, the biochar samples revealed dramatic variations in their surface chemistry, surface area, pore volumes, morphology and adsorption properties. The results clearly indicate that changes of biochar surface properties were affected by biochar types and oxidative conditions. It is suggested that biochar surface properties are likely to be gradually altered during environmental exposure. This implies that these changes have potential effects for altering the physicochemical properties of biochar amended soils. -- Highlights: •Mild and harsh degradation were employed to simulate natural degradation of biochar. •Mild degradation could reduce the surface area and micropore volumes of biochar. •Harsh degradation caused severe changes of all of the biochar surface properties. •Biochar types and oxidative conditions may dominate the changes of its properties. -- The simulated degradation of biochar in this study could provide a mechanism for forecasting short- or long-term environmental degradation of biochar

  12. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MSn and their effects on environmental bacteria.

    Science.gov (United States)

    Trautwein, Christoph; Kümmerer, Klaus

    2012-03-15

    The search for environmental transformation products of organic pollutants (like drugs) is a difficult task and usually only few compounds are detected. This might be due to effective degradation but could also be a result of analytical deficits dealing with complex matrices. Especially transformation products of very low concentrations in sludge were difficult to identify so far. Additionally, the use of standard separation techniques might lead to the loss of isomeric compounds, which possess identical spectroscopic and spectrometric properties. To date no complete study investigating the environmental fate of any tricyclic antipsychotic drug has been reported. Therefore, this study investigated the popular neuroleptic drug chlorpromazine and its potential transformation by all main environmental pathways: aerobic and anaerobic biodegradation as well as abiotic photolytic degradation by sunlight. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass-spectrometry (HPLC-MS(n)) allowed the detection of numerous compounds. Further, the use of a special software allowed distinguishing between transformation products of small intensities and background "noise" caused by sludge or matrix. Three aerobic tests of different bacterial density (the Closed Bottle test, OECD 301D; the Manometric Respiratory test, OECD 301F; the modified Zahn-Wellens test, 302B; one anaerobic test (a modified anaerobic degradation test according to ISO 11734) as well as a photodegradation test were performed in the present study. According to the individual test guidelines, chlorpromazine had to be classified as not biodegradable in all of the biodegradation tests. However, a special chromatographic column and gradient along with mass spectrometric fragmentation experiments of higher order uncovered the presence of a total of 61 abiotic and biotic transformation products which where formed during the course of the tests. The structures of three

  14. Land degradation and integrated watershed management in India

    OpenAIRE

    Suraj Bhan

    2013-01-01

    In view of the stagnating productivity levels of irrigated agriculture, the contribution from rainfed agriculture should be increased to meet the requirements from the ever growing human and animal population of India. Land degradation is a major threat to our food and environment security and the extent of degradation problems are more pronounced in rainfed regions. Large potential of rainfed agriculture is untapped largely due to lack of enabling policy support and investments. In drought-p...

  15. Early detection of materials degradation

    Science.gov (United States)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  16. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  17. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  18. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  19. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O

    2004-01-01

    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...... in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs....... The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  20. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  1. Liquid chromatography and liquid chromatography-mass spectrometry analysis of donepezil degradation products

    Directory of Open Access Journals (Sweden)

    Mladenović Aleksandar R.

    2015-01-01

    Full Text Available This study describes the investigation of degradation products of donepezil (DP using stability indicating RP-HPLC method for determination of donepezil, which is a centrally acting reversible acetylcholinesterase inhibitor. In order to investigate the stability of drug and formed degradation products, a forced degradation study of drug sample and finished product under different forced degradation conditions has been conducted. Donepezil hydrochloride and donepezil tablets were subjected to stress degradation conditions recommended by International Conference on Harmonization (ICH. Donepezil hydrochloride solutions were subjected to acid and alkali hydrolysis, chemical oxidation and thermal degradation. Significant degradation was observed under alkali hydrolysis and oxidative degradation conditions. Additional degradation products were observed under the conditions of oxidative degradation. The degradation products observed during forced degradation studies were monitored using the high performance liquid chromatography (HPLC method developed. The parent method was modified in order to obtain LC-MS compatible method which was used to identify the degradation products from forced degradation samples using high resolution mass spectrometry. The mass spectrum provided the precise mass from which derived molecular formula of drug substance and degradation products formed and proved the specificity of the method unambiguously. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  2. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  3. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  4. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  5. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  6. Degradation of chlorpyrifos in tropical rice soils.

    Science.gov (United States)

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  8. Thermal degradation of deoxynivalenol during maize bread baking.

    Science.gov (United States)

    Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H

    2012-01-01

    The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.

  9. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  10. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    could potentially improve bioremediation of BAM. An important prerequisite for bioaugmentation is the potential to produce the degrader strain at large quantities within reasonable time. The aim of manuscript II, was to optimize the growth medium for Aminobacter MSH1 and to elucidate optimal growth...

  11. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  12. Effects of Electron Acceptors, Reducing Agents, and Toxic Metabolites on Anaerobic Degradation of Heterocyclic Compounds

    DEFF Research Database (Denmark)

    Licht, Dorthe; Ahring, Birgitte Kiær; Arvin, Erik

    1996-01-01

    Degradation of four heterocyclic compounds was examined under nitrate-reducing, sulphate-reducing and methanogenic conditions. Soil samples from a creosote-polluted site in Denmark were used as inoculum. Indole and quinoline were degraded under all redox conditions with the highest degradation...... of quinoline under sulphate-reducing conditions which was inhibited by sulphide at concentrations above 0.8 mM. Degradation of quinoline under methanogenic conditions was also inhibited by 3.2 mM sulphide used as a reducing agent, but sulphide had no inhibitory effect on the degradation of indole...... in methanogenic and sulphate-reducing soil slurries...

  13. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  14. Biochemical activities of 1,2-dichloroethane (DCA) degrading bacteria

    African Journals Online (AJOL)

    Five indigenous DCA degrading bacterial isolates capable of completely degrading DCA under aerobic conditions recently isolated from South African waste water treatment facilities, were found to belong to the genus Ancylobacter. The specific activities of the enzymes in DCA catabolism were compared with previously ...

  15. Study on the degradation of chitosan slurries

    Directory of Open Access Journals (Sweden)

    Benjamin Martini

    2016-01-01

    Full Text Available In the present work, we measured the degradation rate of different chitosan slurries. Several parameters were monitored such as temperature (25 °C, 37 °C, 50 °C; chitosan concentration (1% and 2% (w/V; and polymer molecular weight. The samples were tested in dynamic sweep test mode. This test is able to provide a reliable estimation of viscosity variations of the slurries; in turn, these variations could be related to degradation rate of the system in the considered conditions. The resulting information is particularly important especially in applications in which there is a close relationship between physical properties and molecular structure.

  16. Photo catalytic degradation of m-cresol

    International Nuclear Information System (INIS)

    Chavarria C, N.; Jimenez B, J.; Garcia S, I.; Valenzuela, M.A.

    2002-01-01

    The degradation of m-cresol was studied, a persistent organic compound that is consider a pollutant of residual water. There for a photo catalysis system was used, which consists in a glass reactor where is placed an aqueous solution of m-cresol and a semiconductor is added, in this case, titanium oxide. The solutions were irradiated with ultraviolet light and the surplus m-cresol was measured by UV vis spectrometry. The results indicate that the m-cresol is degraded until a 40% after 5 hours of irradiation in such conditions. (Author)

  17. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  18. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  19. Chronic Conditions Dashboard

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Chronic Conditions Dashboard presents statistical views of information on the prevalence, utilization and Medicare spending for Medicare beneficiaries with...

  20. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  1. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  2. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    material system (structural polymer and degradation agent ) for producing a high strength, non-corroding, highly inert, environmentally safe, extended...polymer sites in the active enzyme center differs dramatically between alkyl and aromatic polyesters. More specifically, as the degree of backbone...capped and centrifuged at 3,000 g. This procedure was repeated twice. To the remaining biomass pellet 15 mL of 1 mg/mL solution of N-ethyl-N- nitrosourea

  3. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  4. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  5. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  6. Mineral induced mechanochemical degradation: the imazaquin case.

    Science.gov (United States)

    Nasser, Ahmed; Buchanovsky, Nadia; Gerstl, Zev; Mingelgrin, Uri

    2009-03-01

    The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.

  7. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  8. Chapter 5: Organopollutant Degradation by Wood Decay Basidiomycetes

    Science.gov (United States)

    Yitzhak Hadar; Daniel Cullen

    2013-01-01

    Wood decay fungi are obligate aerobes, deriving nutrients from the biological ‘combustion’ of wood, using molecular oxygen as terminal electron acceptor (Kirk and Farrell 1987; Blanchette 1991). Non-specific extracellular enzymes are generally viewed as key components in lignin depolymerization. The major enzymes implicated in lignin degradation are lignin peroxidase (...

  9. Degradation of chlorobenzoates and chlorophenols by methanogenic consortia

    NARCIS (Netherlands)

    Ennik-Maarsen, K.

    1999-01-01

    Pollution of the environment with chlorinated organic compounds mainly results from (agro)industrial activity. In many studies, biodegradation is examined under anaerobic conditions, because highly chlorinated compounds are more easily degradable under anaerobic than under aerobic

  10. Optimization of process variables for the microbial degradation of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The optimum process conditions for maximizing phenol degradation (removal) ... cellular maintenance requirements on temperature makes it an important ..... the International Foundation for Science (IFS) for the financial ...

  11. Fault Management: Degradation Signature Detection, Modeling, and Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault to Failure Progression (FFP) signature modeling and processing is a new method for applying condition-based signal data to detect degradation, to identify...

  12. 3D View of Grand Canyon, Arizona

    Science.gov (United States)

    2000-01-01

    well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  13. The characterisation of two different degradable polyethylene (PE) sacks

    International Nuclear Information System (INIS)

    Davis, G.

    2006-01-01

    The compostability of two different polyethylene (PE) products on the UK market under open-windrow composting conditions is explored within this paper. Chemical analysis of the PE bags has established their constituents in order to examine how the PE bags have an increased degradability depending on additives. Weight loss of the two different PE products within open-windrow composting conditions was recorded in order to establish the percentage weight loss as an indication of the degradability of the two products and their relative suitability for open-windrow composting. Scanning electron microscopy (SEM) of the PE products over the composting duration established the degradation processes for the PE products within the compost. These analyses concluded that one of the PE product mixes was more degradable than the other. However, neither product completed degraded within the timeframe of 12-14 weeks generally accepted for open-windrow composting in the UK

  14. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  15. "Slight" of hand: the processing of visually degraded gestures with speech.

    Science.gov (United States)

    Kelly, Spencer D; Hansen, Bruce C; Clark, David T

    2012-01-01

    Co-speech hand gestures influence language comprehension. The present experiment explored what part of the visual processing system is optimized for processing these gestures. Participants viewed short video clips of speech and gestures (e.g., a person saying "chop" or "twist" while making a chopping gesture) and had to determine whether the two modalities were congruent or incongruent. Gesture videos were designed to stimulate the parvocellular or magnocellular visual pathways by filtering out low or high spatial frequencies (HSF versus LSF) at two levels of degradation severity (moderate and severe). Participants were less accurate and slower at processing gesture and speech at severe versus moderate levels of degradation. In addition, they were slower for LSF versus HSF stimuli, and this difference was most pronounced in the severely degraded condition. However, exploratory item analyses showed that the HSF advantage was modulated by the range of motion and amount of motion energy in each video. The results suggest that hand gestures exploit a wide range of spatial frequencies, and depending on what frequencies carry the most motion energy, parvocellular or magnocellular visual pathways are maximized to quickly and optimally extract meaning.

  16. Using data visualization tools to support degradation assessment in nuclear piping

    International Nuclear Information System (INIS)

    Jyrkama, M.I.; Pandey, M.D.

    2012-01-01

    Nuclear utilities collect a vast amount of in-service inspection data as part of periodic inspection plans and the detailed assessment and monitoring of various degradation mechanisms, such as fretting, corrosion, and creep. In many cases, the focus is primarily on ensuring that the observed minimum or maximum values are within the acceptable regulatory limits, while the rest of the (often costly) surveillance data remains unused and unanalyzed. The objective of this study is to illustrate how data visualization tools can be used effectively to analyze and consider all of the in-service inspection data, and hence provide valuable support for the degradation assessment in nuclear piping. The 2D and 3D visualization tools discussed in this paper were developed mainly in the context of flow accelerated corrosion (FAC) assessment in feeder piping, where the complex pipe geometries and flow conditions have a significant impact on the ultrasonic (UT) wall thickness measurements. The visualization of eddy current inspection results from the assessment of pitting corrosion of steam generator tubing will also be discussed briefly. The visualization tools provide a more comprehensive view of the degree and extent of degradation, and hence directly support the planning of future inspection of critical components by identifying key locations and areas for detailed monitoring. The results furthermore increase the confidence and reliability of fitness-for-service (FFS) assessments and life cycle management (LCM) planning decisions with respect to component repair or replacement. (author)

  17. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    Colin, E.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  19. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  20. Chemical degradation of pentachlorophenol

    International Nuclear Information System (INIS)

    Shukla, S.S.; Shukla, A.; Chandrasekharaiah, M.S.

    1992-01-01

    Industry produces a large volume of hazardous wastes containing pentachlorophenol, a U.S. EPA priority hazardous organic material. The environmentally safe disposal of these PCP-contaminated wastes is a serious problem for the waste management authorities as the current treatment processes are unsatisfactory. In this paper, the results of a feasibility study of chemical degradation and/or solidification methods for PCP-containing wastes. The photochemical decomposition of the PCP in a microemulsion or in micellar media obtained with the help of SDS or CTAB show the greatest promise

  1. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  2. Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways.

    Science.gov (United States)

    Nie, Er; Yang, Mo; Wang, Dong; Yang, Xiaoying; Luo, Xingzhang; Zheng, Zheng

    2014-10-01

    Diclofenac (DCF) is a widely used anti-inflammatory drug found in various water bodies, posing threats to human health. In this research, the effects of ultrasonic irradiation at 585kHz on the degradation of DCF were studied under the air, oxygen, argon, and nitrogen saturated conditions. First, the dechlorination efficiencies under the air, oxygen, argon, and nitrogen saturated conditions were calculated to be 67%, 60%, 53% and 59%. Second, there was full mineralization of nitrogen during DCF degradation under the air, oxygen, and argon saturated conditions, but no mineralization of nitrogen under the nitrogen-saturated condition. Different from nitrogen, only partial mineralization of carbon occurred under the four gas-saturated conditions. Third, OH scavengers were added to derive the rate constants in the three reaction zones: cavitation bubble, supercritical interface, and bulk solution. Comparison of the constants indicated that DCF degradation was not limited to the bulk solution as conventionally assumed. Oxidation in the supercritical interface played a dominant role under the air and oxygen saturated conditions, while OH reactions in the cavitation bubble and/or bulk solution were dominant under the nitrogen and argon saturated conditions. After the addition of H2O2, reactions in the cavitation bubble and bulk solution kept their dominant roles under the nitrogen and argon saturated conditions, while reaction in the supercritical interface decreased under the air and oxygen saturated conditions. Finally, LC-MS analysis was used to derive the by-products and propose the main pathways of DCF degradation by ultrasonic irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration.

    Science.gov (United States)

    Tian, Jiangnan; Zhao, Jixiang; Olajuyin, Ayobami Matthew; Sharshar, Moustafa Mohamed; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-08-01

    Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.

  4. Degradation of hydrocarbons in arctic areas

    International Nuclear Information System (INIS)

    Hundahl Pedersen, M.; Grau-Hansen, B.; Watson Nielsen, T.; Jensen, L.

    1999-12-01

    on a range of factors - thus the most vital factors are temperatures- and precipitation as well as the composition of oil and the geological conditions. Mainly the bio-degradation is controlled by temperatures, soil humidity, redox conditions, nutrients and pH. The contribution of the oil contamination of Marraq varies from disposal site to disposal site. However, some superior characteristics have been stated in the degradation grade and the concentration ratio - seemingly related to some ulterior environmental factors. At some locations relatively high concentrations of degraded gas oil was measured at the surface and accordingly the content of oil is decreasing in lower depths. An explanation based on this observation may be that gas oil only to some extent is degraded by microbial activities and consequently is only exposed to weathering processes (evaporation and washing-out). Another possibility may be that the oil composition inhibited the biological degradation. At other barrel deposit sites a relatively low concentration of oil was observed at the surface and partly consisted of degraded gas oil. Approx. 0,5 m below surfaces the concentration was remarkable higher. Subsequently, the content of gas oil in the soil decreased in lower beds (>0,5 m below surface). A possible explanation to this phenomenon may be due to the larger microbiological activity at the surface, which benefits from the larger soil humidity as a result of long term snow caused by snow drifting. Yet another possibility is that the gas oil may have different chemical composition. (EHS)

  5. Degradation study of different brands of paracetamol by UV spectroscopy

    Directory of Open Access Journals (Sweden)

    Safila Naveed

    2016-05-01

    Full Text Available Objective: To investgate the forced degradation study for the determination of degradation of the drug substance. Methods: Paracetamol was exposed to different conditions according to International Conference on Harmonization guideline. The amount of degradation product can be calculated with the help of UV spectrophotometer. The official test limits according to British Pharmacopoeia/United States Pharmacopoeia should not less than and should not more than lapelled amount. Forced degradation of drug substance was exposed to acidic and basic medium of panadol. Forced degradation of drug substance of panadol, disprol and calpol were also observed negligible difference in availability on exposure to UV and heat. This method can be used successfully for studying the stress degradation factors. Because this method is less time consuming and simple and cost effective also. Results: The brands i.e. calpol, panadol and disprol, when they come in contact with different degradation parameters (before, acid, base, heat and UV treatments according to statistical analysis, the result showed significant values (P < 0.05 which indicated that there was no degradation in any of the brand. Conclusions: The result indicated there is no degradation found in these brands.

  6. Degradation of diuron in aqueous solution by dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jingwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China); Zheng Zheng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China)], E-mail: zzheng@nju.edu.cn; Sun Yabing; Luan Jingfei; Wang Zhen; Wang Lianhong; Feng Jianfang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China)

    2008-06-15

    Degradation of diuron in aqueous solution was conducted in a dielectric barrier discharge (DBD) reactor and the proposed degradation mechanism was investigated in detail. The factors that affect the degradation of diuron were examined. The degradation efficiency of diuron and the removal of total organic carbon (TOC) increased with increasing input power, and the degradation of diuron by DBD fitted first-order kinetics. Both strong acidic and alkaline solution conditions could improve diuron degradation efficiency and TOC removal rate. Degradation of diuron could be accelerated or inhibited in the presence of H{sub 2}O{sub 2} depending on the dosage. The degradation efficiency increased dramatically with adding Fe{sup 2+}. The removal of TOC and the amount of the detected Cl{sup -}, NO{sub 3}{sup -} and NH{sub 4}{sup +} were increased in the presence of Fe{sup 2+}. The concentrations of oxalic and acetic acids were almost the same in the absence and presence of Fe{sup 2+}, but high concentration of formic acid was accumulated in the presence of Fe{sup 2+}. The main degradation pathway of diuron by DBD involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes.

  7. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng, E-mail: jchen@zjut.edu.cn

    2016-03-05

    Highlights: • A novel efficient DMS-degrading bacterium Alcaligenes sp. SY1 was identified. • A RSM was applied to optimize incubation condition of Alcaligenes sp. SY1. • SIP was applied as C{sup 13} labelled DMS to trace intermediates during DMS degradation. • Kinetics of DMS degradation via batch experiment was revealed. • Carbon and sulfur balance were analyzed during DMS degradation process. - Abstract: Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03 °C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography–mass spectrometry (GC–MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane–Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h{sup −1} and 0.63 gs gx{sup −1} h{sup −1}. A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.

  8. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  9. Prognostics and Condition-Based Maintenance: A New Approach to Precursive Metrics

    International Nuclear Information System (INIS)

    Jarrell, Donald B.; Sisk, Daniel R.; Bond, Leonard J.

    2004-01-01

    The assumptions used in the design basis of process equipment have always been as much art as science. The usually imprecise boundaries of the equipments' operational envelope provide opportunities for two major improvements in the operations and maintenance (O and M) of process machinery: (a) the actual versus intended machine environment can be understood and brought into much better alignment and (b) the end goal can define O and M strategies in terms of life cycle and economic management of plant assets.Scientists at the Pacific Northwest National Laboratory (PNNL) have performed experiments aimed at understanding and controlling aging of both safety-specific nuclear plant components and the infrastructure that supports essential plant processes. In this paper we examine the development of aging precursor metrics and their correlation with degradation rate and projected machinery failure.Degradation-specific correlations have been developed at PNNL that will allow accurate physics-based diagnostic and prognostic determinations to be derived from a new view of condition-based maintenance. This view, founded in root cause analysis, is focused on quantifying the primary stressor(s) responsible for degradation in the component of interest and formulating a deterministic relationship between the stressor intensity and the resulting degradation rate. This precursive relationship between the performance, degradation, and underlying stressor set is used to gain a first-principles approach to prognostic determinations. A holistic infrastructure approach, as applied through a conditions-based maintenance framework, will allow intelligent, automated diagnostic and prognostic programming to provide O and M practitioners with an understanding of the condition of their machinery today and an assurance of its operational state tomorrow

  10. QlikView scripting

    CERN Document Server

    Floyd, Matt

    2013-01-01

    This mini book offers information about QlikView scripting written in an easy-to-understand manner, and covers QlikView scripting from basic to advanced features in a compact format.If you are a basic orintermediate developer with some knowledge of QlikView applications and a basic understanding of QlikView scripting and data extraction and manipulation, this book will be great for you. If you are an advanced user, you can also use this book as a reference guide and teaching aid. If you are a QlikView project team member such as a business user, data/ETL professional, project manager, orsystem

  11. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Science.gov (United States)

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  12. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method

    Directory of Open Access Journals (Sweden)

    Md. Sarowar Jahan

    2014-01-01

    Full Text Available A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH. For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8 and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS, 150 × 4.6 mm, 5 μm, Phenomenex Inc. column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient ( R 2 values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient ( R 2 > 0.995. The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%. Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH, while paracetamol showed <20% degradation in oxidation and basic condition.

  13. A Study of Method Development, Validation, and Forced Degradation for Simultaneous Quantification of Paracetamol and Ibuprofen in Pharmaceutical Dosage Form by RP-HPLC Method.

    Science.gov (United States)

    Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma

    2014-01-01

    A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed degradation in oxidation and basic condition.

  14. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  15. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  16. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  17. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Use of biolog methodology for optimizing the degradation of hydrocarbons by bacterial consortia.

    Science.gov (United States)

    Ambrosoli, R; Bardi, L; Minati, J L; Belviso, S; Ricci, R; Marzona, M

    2003-01-01

    Biolog methodology was used for the preliminary screening of different cultural conditions in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of hydrocarbons. Two microbial consortia were tested for their activity on 2 hydrocarbons (nonadecane and eicosane) in presence of the following cultural coadjuvants: vegetal oil, beta-cyclodextrine, sodium acetate, mineral solution. Tests were conducted in Biolog MT plates, where only the redox indicator of microbial growth (tetrazolium violet) and no carbon sources are provided. The microwells were filled with various combinations of hydrocarbons, microbial inoculum and coadjuvants. Blanks were prepared with the same combinations but without hydrocarbons. The results obtained show the suitability of the methodology developed to identify the most active consortium and the conditions for its best degradation performance. The efficacy of Biolog methodology (Biolog Inc., USA) for the characterization of microbial communities on the basis of the metabolic profiles obtained on specific carbon sources in the microwells of Elisa-type plates, is widely acknowledged (Garland, 1997; Pietikäinen et al., 2000; Dauber and Wolters, 2000). Due to its aptitude to simultaneously evaluate multiple microbial responses and directly organize the results, it can be adapted to meet specific study purposes (Gamo and Shji, 1999). In the present research Biolog methodology was fitted for the preliminary screening of different cultural conditions, in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of aliphatic hydrocarbons, in view of their utilization for the bioremediation of polluted sites.

  19. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  20. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  1. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  2. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    Full Text Available This article explores that to successfully combat land degradation on lands occupied in agriculture, it is necessary to conduct complex soil conservation measures constitute a single interconnected system and protect soil from degradation. Found that rotation – a reasonable compromise between the main requirements of production, organization of territory and environment, placing crops in view of a favorable combination; compliance with acceptable saturation parameters optimally varying cultures, and thus the possible timing of a return to their previous cultivation while taking into account the duration of the accepted rotation. Determined that the implementation and observance of crop rotation and better ensure the replenishment of nutrients of the soil, improving and maintaining its favorable physical properties, prevent the emergence of weeds, pests and pathogens cultivated crops and preventing the depletion of soil degradation processes and development. Found that scientifically based crop rotation is the basis for the use of all complex farming practices, differentiated cultivation, rational use of fertilizers and caring for plants. Rotation is correct – it agroecosystem, which created the best conditions for growth and development of various crops, thus providing a growing high and stable yields, obtaining high quality products. Soil and climatic conditions, specialty farms, crops structure and their biological characteristics defined as the type of crop rotation and crop rotation order. Each rotation should be selected such status, which would provide the greatest yield per unit area of rational use of all land. Therefore, proper placement crops in crop rotation must necessarily take into account the requirements of crops to their predecessor, thus it must evaluate not only the direct action of the first culture, but also take into account the impact of the latter on the following crops rotation. On unproductive and degraded lands is

  3. The accuracy of linear measurements of maxillary and mandibular edentulous sites in cone-beam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Rumpa; Ramesh, Aruna; Pagni, Sarah [Tufts University School of Dental Medicine, Boston (United States)

    2016-06-15

    The objective of this study was to investigate the effect of varying resolutions of cone-beam computed tomography images on the accuracy of linear measurements of edentulous areas in human cadaver heads. Intact cadaver heads were used to simulate a clinical situation. Fiduciary markers were placed in the edentulous areas of 4 intact embalmed cadaver heads. The heads were scanned with two different CBCT units using a large field of view (13 cm×16 cm) and small field of view (5 cm×8 cm) at varying voxel sizes (0.3 mm, 0.2 mm, and 0.16 mm). The ground truth was established with digital caliper measurements. The imaging measurements were then compared with caliper measurements to determine accuracy. The Wilcoxon signed rank test revealed no statistically significant difference between the medians of the physical measurements obtained with calipers and the medians of the CBCT measurements. A comparison of accuracy among the different imaging protocols revealed no significant differences as determined by the Friedman test. The intraclass correlation coefficient was 0.961, indicating excellent reproducibility. Inter-observer variability was determined graphically with a Bland-Altman plot and by calculating the intraclass correlation coefficient. The Bland-Altman plot indicated very good reproducibility for smaller measurements but larger discrepancies with larger measurements. The CBCT-based linear measurements in the edentulous sites using different voxel sizes and FOVs are accurate compared with the direct caliper measurements of these sites. Higher resolution CBCT images with smaller voxel size did not result in greater accuracy of the linear measurements.

  4. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  5. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  6. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  7. Radiation-induced degradation of organic pollutants in wastewater

    International Nuclear Information System (INIS)

    Bagyo, A.N.M.; Lindu, W.A.; Sadjirun, S.; Winarno, E.K.; Widayat, E.; Aryanti; Winarno, H.

    2001-01-01

    The degradation and decolouration of organic pollutants, i.e. dye stuffs and phenolic compounds, by gamma irradiation have been studied. First, samples from effluent of textile industry were taken to be irradiated at a certain condition. Irradiation was done after dissolving the samples five times with distilled water in laboratory scale, followed by upscaling those samples into 5 litre in volume. Irradiation was done at a dose of 0- 25 kGy, aerated and a dose rate of 5 kGy/h. The parameters examined were the change of absorption spectra. COD (Chemical Oxygen Demand), the percentage of the degradation, the change of pH and degradation product using HPLC. It was demonstrated that the dilution of sample enhanced the degradation and decreased the COD values. The degradation product of textile wastewater is mainly oxalic acid. Second, the effects of radiation on aerated phenolic compounds mixture, i.e. resorcinol, o-cresol and m- cresol were done. Individual phenol was studied followed by mixture of the phenolic compounds. Irradiation was done in aerated condition with doses of 0-10 kGy, dose rate of 5 kGy/h and pH range from 3 to 12. The initial concentration of resorcinol, o-cresol and w-cresol were 50 ppm and 60 ppm for phenolic compounds mixture, respectively. Parameters examined were absorption spectrum, pH, and degradation products. The uv-vis absorption of the solution were observed before and after irradiation. HPLC was used to determine the products of degradation. Degradation of resorcinol, w-cresol and o-cresol could be achieved at dose of 6 kGy at pH 9, while o-cresol in acid condition (pH 3). The degree of degradation for resorcinol, w-cresol and o-cresol at above conditions were 90%, 88% and 45%, respectively. Degradation of phenolic compound mixture occurred at a dose of 7.5 kGy and pH 9', at this condition almost 99% of phenolic compounds degraded. Oxalic acid was the main degradation product. (author)

  8. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  9. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  10. Gamma Radiolytic Degradation of Heptachlor in Methanol and Monitoring of Degradation by HPLC

    International Nuclear Information System (INIS)

    Riaz, M.; Butt, S.B.

    2014-01-01

    Removal of known insecticide Heptachlor (HPTC) in methanol solution by gamma-rays under varied experimental conditions has been optimized. Air saturated solution of HPTC was irradiated at x-rays dose from 1 to 10 kGys. The extent of radiolytic degradation was monitored by reversed phase high performance liquid chromatography (HPLC) coupled with UV detector. At dose of 10 kGys gamma 98 % of HPTC was degraded. The degradation of HPTC occurs by CH/sub 3/O and CH/sub 2/OH radicals generated by methanol radiolysis. It is concluded that gamma-rays can remove Persistent Organic Pollutants (POPs) form environmental matrices. It can decrease the harmful properties of these POPs by their transformation into less resistant fragments to biological / natural elimination in the aquatic atmosphere. (author)

  11. Dutch radiodiagnostics viewed internationally

    International Nuclear Information System (INIS)

    Valois, J.C. de

    1990-01-01

    Dutch radiodiagnostics viewed internationally. - A quantitative description of diagnostic radiology is given in terms of radiological density (the number of radiological examinations per 1000 inhibitants), consumptions of roentgen film and contrast media. The data concerning examinations were recorded by a yearly inquiry system addressing all Dutch radiologists. The consumption of film and contrast media were derived from the data banks of the industries. In comparing these data with the data for Western Europe, Japan and the United States it is remarkable that diagnostic radiology scores lowest in regard to density, film consumption and use of contrast media. Only in the use of 35 mm cinefilm (coronary angiography) is The Netherlands number 2 on the list preceded by the United States. As a consequence radiation exposure of the population caused by diagnostic radiology is low in The Netherlands. Although the technical condition of the equipment is good due to regular and preventive service the life-span of the radiological equipment is gradually increasing beyond the limits of the normal economic depreciation. Growing arrears are found in the application of new technology: ultrasound, computer tomography and magnetic resonance imaging. The substitution of high osmolar contrast media by low osmolar media is also laggin gbehind. (author). 10 refs.; 1 fig.; 4 tab

  12. Mining Views : database views for data mining

    NARCIS (Netherlands)

    Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.

    2008-01-01

    We present a system towards the integration of data mining into relational databases. To this end, a relational database model is proposed, based on the so called virtual mining views. We show that several types of patterns and models over the data, such as itemsets, association rules and decision

  13. Mining Views : database views for data mining

    NARCIS (Netherlands)

    Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.; Nijssen, S.; De Raedt, L.

    2007-01-01

    We propose a relational database model towards the integration of data mining into relational database systems, based on the so called virtual mining views. We show that several types of patterns and models over the data, such as itemsets, association rules, decision trees and clusterings, can be

  14. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Butt, S.B.; Masood, M.N.

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  15. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  16. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi.

    Science.gov (United States)

    Matavulj, M; Molitoris, H P

    1992-12-01

    The current problems with decreasing fossile resources and increasing environmental pollution by petrochemical-based plastics have stimulated investigations to find biosynthetic materials which are also biodegradable. Bacterial reserve materials such as polyhydroxyalkanoates (PHA) have been discovered to possess thermoplastic properties and can be synthesized from renewable resources. Poly-beta-hydroxybutyric acid (PHB) is at present the most promising PHA; and BIOPOL, its copolymer with poly-beta-hydroxy-valerate (PHV), is already industrially produced (ICI, UK), and used as packaging material (WELLA, FRG). According to the literature, PHA degradation has so far mainly been observed in bacteria; only under certain environmental conditions has fungal degradation of PHAs been indicated. Since fungi constitute an important part of microbial populations participating in degradation processes, a simple screening method for fungal degradation of BIOPOL, a PHA-based plastic, was developed. Several media with about 150 fungal strains from different terrestrial environments and belonging to different systematic and ecological groups were used. PHA depolymerization was tested on three PHB-based media, each with 0.1% BIOPOL or PHB homopolymer causing turbidity of the medium. The media contained either a comparatively low or high content of organic carbon (beside PHA) or were based on mineral medium with PHA as the principal source of carbon. The degradation activity was detectable due to formation of a clear halo around the colony (Petri plates) or a clear zone under the colony (test tubes).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The workplace window view

    DEFF Research Database (Denmark)

    Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik

    2015-01-01

    Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance...... satisfaction, and that high view satisfaction was related to high work ability and high job satisfaction. Furthermore, the results indicated that job satisfaction mediated the effect of view satisfaction on work ability. These findings show that a view of a green outdoor environment at the workplace can...... be an important asset in workforce work ability and job satisfaction....

  18. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  19. PEG-based degradable networks for drug delivery applications

    Science.gov (United States)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  20. Degradation of Polyesteramides during Composting under Standard and Isothermal Conditions

    Czech Academy of Sciences Publication Activity Database

    Brožek, J.; Šašek, Václav; Prokopová, I.; Chromcová, D.; Náhlík, J.; Erbanová, Pavla

    2009-01-01

    Roč. 54, č. 5 (2009), s. 451-456 ISSN 0015-5632 R&D Projects: GA ČR GA106/09/1378 Institutional research plan: CEZ:AV0Z50200510 Keywords : epsilon caprolapsam * contamined soil * polymerization Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  1. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  2. Useful field of view test.

    Science.gov (United States)

    Wood, Joanne M; Owsley, Cynthia

    2014-01-01

    The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel

  3. Polycarbonate radiolytic degradation and stabilization

    International Nuclear Information System (INIS)

    Araujo, E.S. de

    1994-01-01

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  4. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  5. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  6. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  7. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Robertson, G.P.; Spindler, M.W.; Harrison, W.N.; Somers, P.J.

    1993-07-01

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  8. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  9. Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation.

    Science.gov (United States)

    Nair, Nimisha R; Sekhar, Vini C; Nampoothiri, K Madhavan

    2016-03-01

    Bioplastics are eco-friendly and derived from renewable biomass sources. Innovation in recycling methods will tackle some of the critical issues facing the acceptance of bioplastics. Polylactic acid (PLA) is the commonly used and well-studied bioplastic that is presumed to be biodegradable. Considering their demand and use in near future, exploration for microbes capable of bioplastic degradation has high potential. Four PLA degrading strains were isolated and identified as Penicillium chrysogenum, Cladosporium sphaerospermum, Serratia marcescens and Rhodotorula mucilaginosa. A consortium of above strains degraded 44 % (w/w) PLA in 30 days time in laboratory conditions. Subsequently, the microbial consortium employed effectively for PLA composting.

  10. Designs for degraded Trbovlje

    Directory of Open Access Journals (Sweden)

    Naja Marot

    2005-01-01

    Full Text Available As an introduction, two degraded urban areas are presented. The first, planning unit seven, is situated in the southeastern part of Trbovlje town. The other, called Speke, lies to the south of Liverpool. The basis for the concept and context of urban renewal model are given by comparison between the newest Slovene and British spatial planning legislation, analyses of the Design management plan Nasipi and Supplementary Planning Document Edge Lane West, and review of different approaches to local communities’ involvement. Based on all the thus far collected data, a questionnaire about quality of living, knowledge of planning system and area perception was produced. Initially, it was used in a pilot residential area Žabjek, and afterwards, a shortened version was carried out in units lying in other parts of the town. Other stakeholders also expressed their ideas about how to develop planning unit seven. Speke Garston as another example of successful urban renewal is given. In conclusion guidelines for method and context development of urban renewal are given for planning unit seven, with emphasis on the Žabjek estate.

  11. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Prognostics and Condition Based Maintenance: A New Approach to Precursive Metrics

    International Nuclear Information System (INIS)

    Jarrell, Donald B.; Sisk, Daniel R.; Bond, Leonard J.

    2002-01-01

    Scientists at the Pacific Northwest National Laboratory (PNNL) have examined the necessity for understanding and controlling the aging process of both safety-specific plant components and the infrastructure that supports these processes. In this paper we examine the preliminary development of aging precursor metrics and their correlation with degradation rate and projected machine failure. Degradation specific correlations are currently being developed at PNNL that will allow accurate physics-based diagnostic and prognostic determinations to be derived from a new view of condition based maintenance. This view, founded in root cause analysis, is focused on quantifying the primary stressor(s) responsible for degradation in the component of interest. The derivative relationship between the performance, degradation and the underlying stressor set is used to gain a first principles approach to prognostic determinations. The assumptions used for the design basis of process equipment have always been as much art as science and for this reason have been misused or relegated into obscurity in all but the nuclear industry. The ability to successfully link degradation and expected equipment life to stressor intensity level is valuable in that it quantifies the degree of machine stress for a given production level. This allows two major improvements in the O and M of process machinery: (1) the actual versus intended machine environment can be understood and brought into much better alignment, and (2) the end goal can define operations and maintenance strategies in terms of life cycle and economic management of plant assets. A holistic infrastructure approach, as applied through a CBM framework, will allow intelligent, automated diagnostic and prognostic programs to provide O and M practitioners with an understanding of the condition of their machinery today and an assurance of its operational state tomorrow

  13. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Directory of Open Access Journals (Sweden)

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed. Keywords: Doxorubicin, TOF, Forced degradation, Liquid chromatography, Degradation product, Mass fragmentation pattern

  14. New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger

    Science.gov (United States)

    Elzainy, T. A.; Hassan, M. M.; Allam, A. M.

    1973-01-01

    A new nonphosphorylative pathway for gluconate degradation was found in extracts of a strain of Aspergillus niger. The findings indicate that gluconate is dehydrated into 2-keto-3-deoxy-gluconate (KDG), which then is cleaved into glyceraldehyde and pyruvate. 6-Phosphogluconate was not degraded under the same conditions. In addition, KDG was formed from glyceraldehyde and pyruvate. Very weak activity was obtained when glyceraldehyde 3-phosphate replaced glyceraldehyde in this reaction. PMID:4698214

  15. Furfural stability in various conditions

    OpenAIRE

    Oreiro Muzas, Olaya

    2011-01-01

    The topic of this thesis is the study of the furfural stability to determine the influence of some conditions in furfural degradation. The aim of the study is to decrease furfural degradation and thus improve furfural yield in furfural production. The thesis consists of a literature review and laboratory experiments. Attention has been paid to the furfural description and properties as well as the background of the research and traditional methods to produce furfural. In the experiments, w...

  16. Mastering QlikView

    CERN Document Server

    Redmond, Stephen

    2014-01-01

    If you are a business application developer or a system analyst who has learned QlikView and Qlik Sense and now want to take your learning to a higher level, then this book is for you.It is assumed that you are aware of the fundamentals of QlikView and have working knowledge of development and in-memory analytics.

  17. VMware horizon view essentials

    CERN Document Server

    von Oven, Peter

    2014-01-01

    If you are a desktop administrator or an end user of a computing project team looking to speed up to the latest VMware Horizon View solution, then this book is perfect for you. It is your ideal companion to deploy a solution to centrally manage and virtualize your desktop estate using Horizon View 6.0.

  18. Drupal 7 Views Cookbook

    CERN Document Server

    Green, J Ayen

    2012-01-01

    This is a cookbook containing plenty of easy-to-follow practical recipes with screenshots that will help you in mastering the Drupal Views module. Drupal 7 Views Cookbook is for developers or technically proficient users who are fairly comfortable with the concepts behind websites and the Drupal environment.

  19. Hierarchical Linked Views

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robert; Frincke, Deb

    2007-07-02

    Coordinated views have proven critical to the development of effective visualization environments. This results from the fact that a single view or representation of the data cannot show all of the intricacies of a given data set. Additionally, users will often need to correlate more data parameters than can effectively be integrated into a single visual display. Typically, development of multiple-linked views results in an adhoc configuration of views and associated interactions. The hierarchical model we are proposing is geared towards more effective organization of such environments and the views they encompass. At the same time, this model can effectively integrate much of the prior work on interactive and visual frameworks. Additionally, we expand the concept of views to incorporate perceptual views. This is related to the fact that visual displays can have information encoded at various levels of focus. Thus, a global view of the display provides overall trends of the data while focusing in on individual elements provides detailed specifics. By integrating interaction and perception into a single model, we show how one impacts the other. Typically, interaction and perception are considered separately, however, when interaction is being considered at a fundamental level and allowed to direct/modify the visualization directly we must consider them simultaneously and how they impact one another.

  20. Condition based spare parts supply

    NARCIS (Netherlands)

    Lin, X.; Basten, Robertus Johannes Ida; Kranenburg, A.A.; van Houtum, Geert-Jan

    2012-01-01

    We consider a spare parts stock point that serves an installed base of machines. Each machine contains the same critical component, whose degradation behavior is described by a Markov process. We consider condition based spare parts supply, and show that an optimal, condition based inventory policy

  1. Status of degraded core issues. Synthesis paper prepared by G. Bandini in collaboration with the NEA task group on degraded core cooling

    International Nuclear Information System (INIS)

    2001-02-01

    The in-vessel evolution of a severe accident in a nuclear reactor is characterised, generally, by core uncover and heat-up, core material oxidation and melting, molten material relocation and debris behaviour in the lower plenum up to vessel failure. The in-vessel core melt progression involves a large number of physical and chemical phenomena that may depend on the severe accident sequence and the reactor type under consideration. Core melt progression has been studied in the last twenty years through many experimental works. Since then, computer codes are being developed and validated to analyse different reactor accident sequences. The experience gained from the TMI-2 accident also constitutes an important source of data. The understanding of core degradation process is necessary to evaluate initial conditions for subsequent phases of the accident (ex-vessel and within the containment), and define accident management strategies and mitigative actions for operating and advanced reactors. This synthesis paper, prepared within the Task Group on Degraded Core Cooling (TG-DCC) of PWG2, contains a brief summary of current views on the status of degraded core issues regarding light water reactors. The in-vessel fission product release and transport issue is not addressed in this paper. The areas with remaining uncertainties and the needs for further experimental investigation and model development have been identified. The early phase of core melt progression is reasonably well understood. Remaining uncertainties may be addressed on the basis of ongoing experimental activities, e.g. on core quenching, and research programs foreseen in the near future. The late phase of core melt progression is less understood. Ongoing research programs are providing additional valuable information on corium molten pool behaviour. Confirmatory research is still required. The pool crust behaviour and material relocation into the lower plenum are the areas where additional research should

  2. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    Science.gov (United States)

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (pdegradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the

  3. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwayne C. Kicker

    2001-09-28

    A statistical description of the probable block sizes formed by fractures around the emplacement drifts has been developed for each of the lithologic units of the repository host horizon. A range of drift orientations with the drift azimuth varied in 15{sup o} increments has been considered in the static analysis. For the quasi-static seismic analysis, and the time-dependent and thermal effects analysis, two drift orientations have been considered: a drift azimuth of 105{sup o} and the current emplacement drift azimuth of 75{sup o}. The change in drift profile resulting from progressive deterioration of the emplacement drifts has been assessed both with and without backfill. Drift profiles have been determined for four different time increments, including static (i.e., upon excavation), 200 years, 2,000 years, and 10,000 years. The effect of seismic events on rock fall has been analyzed. Block size distributions and drift profiles have been determined for three seismic levels, including a 1,000-year event, a 5,000-year event, and a 10,000-year event. Data developed in this modeling and analysis activity have been entered into the TDMS (DTN: MO0109RDDAAMRR.003). The following conclusions have resulted from this drift degradation analysis: (1) The available fracture data are suitable for supporting a detailed key block analysis of the repository host horizon rock mass. The available data from the north-south Main Drift and the east-west Cross Drift provide a sufficient representative fracture sample of the repository emplacement drift horizon. However, the Tptpln fracture data are only available from a relatively small section of the Cross Drift, resulting in a smaller fracture sample size compared to the other lithologic units. This results in a lower degree of confidence that the key block data based on the Tptpln data set is actually representative of the overall Tptpln key block population. (2) The seismic effect on the rock fall size distribution for all events

  4. Human-Induced Vegetation Degradation in a Semi-Arid Rangeland

    Science.gov (United States)

    Jackson, Hasan

    Current assessments of anthropogenic land degradation and its impact on vegetation at regional scales are prone to large uncertainties due to the lack of an objective, transferable, spatially and temporally explicit measure of land degradation. These uncertainties have resulted in contradictory estimates of degradation extent and severity and the role of human activities. The uncertainties limit the ability to assess the effects on the biophysical environment and effectiveness of past, current, and future policies of land use. The overall objective of the dissertation is to assess degradation in a semi-arid region at a regional scale where the process of anthropogenic land degradation is evident. Net primary productivity (NPP) is used as the primary indicator to measure degradation. It is hypothesized that land degradation resulting from human factors on the landscape irreversibly reduces NPP below the potential set by environmental conditions. It is also hypothesized that resulting reductions in NPP are distinguishable from natural, spatial and temporal, variability in NPP. The specific goals of the dissertation are to (1) identify the extent and severity of degradation using productivity as the primary surrogate, (2) compare the degradation of productivity to other known mechanisms of degradation, and (3) relate the expression of degradation to components of vegetation and varying environmental conditions. This dissertation employed the Local NPP Scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland (14 million hectares), Australia from 2000 to 2013. The method started with land classification based on the environmental factors presumed to control NPP to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference, in units of mass of carbon fixed in NPP per unit area per monitoring interval and

  5. A cost effective degradation-based maintenance strategy under imperfect repair

    International Nuclear Information System (INIS)

    Wu, Fan; Niknam, Seyed A.; Kobza, John E.

    2015-01-01

    An optimization model is developed to minimize the total cost of imperfect degradation-based maintenance by determining an optimal interval of condition monitoring and the degradation level after imperfect preventive repairs. The decision model is based on a novel cost model that considers functional relationship between the expected degradation reduction and the cost of preventive repairs. The decision model is applied to simulated vibration signals with a variety of specifications of cost values and degradation model parameters. This study has initiated a new area for the research of cost effective maintenance strategies. The results clearly indicate the significance of the proposed model and the decision variables under the objective of minimal cost. For instance, the results indicate direct relationship between the optimal length of monitoring interval and the monitoring cost. However, longer monitoring interval increases the risk of failure, and therefore, more degradation reduction is needed. By increasing the slope of cumulative degradation, the cost effective strategy advocates taking more frequent monitoring. The optimal degradation level after each preventive repair is not so sensitive to the change in the degradation slope due to the uncertainty associated with degradation patterns. - Highlights: • Discuss the relationship of degradation reduction and maintenance cost. • Determine the optimal interval of condition monitoring with minimal cost. • Identify the optimal degradation level after imperfect preventive repairs. • Discuss the effects of change in the slope of cumulative degradation.

  6. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. Published by Elsevier Ltd.

  7. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  8. An Operational Framework for Defining and Monitoring Forest Degradation

    Directory of Open Access Journals (Sweden)

    Ian D. Thompson

    2013-06-01

    Full Text Available Forest degradation is broadly defined as a reduction in the capacity of a forest to produce ecosystem services such as carbon storage and wood products as a result of anthropogenic and environmental changes. The main causes of degradation include unsustainable logging, agriculture, invasive species, fire, fuelwood gathering, and livestock grazing. Forest degradation is widespread and has become an important consideration in global policy processes that deal with biodiversity, climate change, and forest management. There is, however, no generally recognized way to identify a degraded forest because perceptions of forest degradation vary depending on the cause, the particular goods or services of interest, and the temporal and spatial scales considered. Here, we suggest that there are types of forest degradation that produce a continuum of decline in provision of ecosystem services, from those in primary forests through various forms of managed forests to deforestation. Forest degradation must be measured against a desired baseline condition, and the types of degradation can be represented using five criteria that relate to the drivers of degradation, loss of ecosystem services and sustainable management, including: productivity, biodiversity, unusual disturbances, protective functions, and carbon storage. These criteria are not meant to be equivalent and some might be considered more important than others, depending on the local forest management objectives. We propose a minimum subset of seven indicators for the five criteria that should be assessed to determine forest degradation under a sustainable ecosystem management regime. The indicators can be remotely sensed (although improving calibration requires ground work and aggregated from stand to management unit or landscape levels and ultimately to sub-national and national scales.

  9. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.

    Science.gov (United States)

    Oyama, Hideko T; Tanishima, Daisuke; Ogawa, Ryohei

    2017-04-10

    Although poly(l-lactic acid) (PLLA) is reputed to be biodegradable in the human body, its hydrophobic nature lets it persist for ca. 5.5 years. This study demonstrates that biologically safe lactide copolymers, poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML), dispersed in the PLLA function as detonators (triggers) for its hydrolytic degradation under physiological conditions. The copolymers significantly enhance hydrolysis, and consequently, the degradation rate of PLLA becomes easily tunable by controlling the amounts of PAL and PML. The present study elucidates the effects of uniaxial drawing on the structural development, mechanical properties, and hydrolytic degradation under physiological conditions of PLLA blend films. At initial degradation stages, the mass loss was not affected by uniaxial drawing; however, at late degradation stages, less developed crystals as well as amorphous chains were degradable at low draw ratio (DR), whereas not only highly developed crystals but also the oriented amorphous chains became insensitive to hydrolysis at high DR. Our work provides important molecular level results that demonstrate that biodegradable materials can have superb mechanical properties and also disappear in a required time under physiological conditions.

  10. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  11. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  12. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans

    Science.gov (United States)

    Wang, Zhao-Qiang; Hu, Chang-Hua; Si, Xiao-Sheng; Zio, Enrico

    2018-02-01

    Current degradation modeling and remaining useful life prediction studies share a common assumption that the degrading systems are not maintained or maintained perfectly (i.e., to an as-good-as new state). This paper concerns the issues of how to model the degradation process and predict the remaining useful life of degrading systems subjected to imperfect maintenance activities, which can restore the health condition of a degrading system to any degradation level between as-good-as new and as-bad-as old. Toward this end, a nonlinear model driven by Wiener process is first proposed to characterize the degradation trajectory of the degrading system subjected to imperfect maintenance, where negative jumps are incorporated to quantify the influence of imperfect maintenance activities on the system's degradation. Then, the probability density function of the remaining useful life is derived analytically by a space-scale transformation, i.e., transforming the constructed degradation model with negative jumps crossing a constant threshold level to a Wiener process model crossing a random threshold level. To implement the proposed method, unknown parameters in the degradation model are estimated by the maximum likelihood estimation method. Finally, the proposed degradation modeling and remaining useful life prediction method are applied to a practical case of draught fans belonging to a kind of mechanical systems from steel mills. The results reveal that, for a degrading system subjected to imperfect maintenance, our proposed method can obtain more accurate remaining useful life predictions than those of the benchmark model in literature.

  13. Dual action of vitamin C versus degradation and supplementation

    OpenAIRE

    Katarzyna Kaliś

    2015-01-01

    The article discusses vitamin C from the point of view of its supplementation with food and in the form of oral supplements. The dual action of vitamin C is connected with the presence of oxygen, which may reduce the amount of the vitamin in food products, influence thermal resistance, cause degradation and show an antioxidation effect. Vitamin C stimulates the immune cells and collagen synthesis. It may protect the LDL fraction against oxidation, and therefore it is interesting for cosmetolo...

  14. Dissection of membrane protein degradation mechanisms by reversible inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.

    1988-01-01

    The degradation of slowly turning over 125I-lactoperoxidase-labeled plasma membrane polypeptides in response to reversible temperature and lysosomotropic inhibitors was studied in rat hepatoma cultures. Cells were radiolabeled and left for 24 h to allow the removal of rapidly degraded proteins. Remaining trichloroacetic acid-precipitable protein was degraded (t 1/2 = 40-68 h) by an apparent first order process 60-86% sensitive to 10 mM NH4Cl or 5 mM methylamine and greater than 95% inhibited by temperature reduction to 18 degrees C. Thus, membrane proteins are selected for degradation in a time-dependent manner by a system which is sensitive to both 18 degrees C and to lysosomotropic amines. When inhibitory conditions were removed after 40-48 h, degradation of 125I-labeled protein resumed at the same rate as that seen in their absence. Since membrane proteins do not exhibit accelerated degradation after removal of inhibitory conditions, there can be no marking or sorting of those proteins destined for degradation during the 40-h exposure to inhibitory conditions. Exposure to amines or 18 degrees C did not affect the position of two-dimensionally resolved labeled polypeptides. Fractionation of labeled cells on Percoll gradients after 40 h of exposure to low temperature or amines showed that labeled protein remained in the plasma membrane fractions of the gradient although shifted to a slightly lower buoyant density in the presence of amines. These results support the notion that selection of plasma membrane proteins for degradation requires their internalization into acidic vesicles. Lysosomotropic amines and reduced temperature interfere with the selection process by preventing membrane fusion events

  15. Studies on Post-Irradiation DNA Degradation in Micrococcus Radiodurans, Strain RII51

    DEFF Research Database (Denmark)

    Auda, H.; Emborg, C.

    1973-01-01

    The influence of irradiation condition on post-irradiation DNA degradation was studied in a radiation resistant mutant of M. radiodurans, strain ${\\rm R}_{{\\rm II}}5$. After irradiation with 1 Mrad or higher more DNA is degraded in cells irradiated in wet condition than in cells irradiated with t...

  16. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    Science.gov (United States)

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Photochemically enhanced microbial degradation of environmental pollutants

    International Nuclear Information System (INIS)

    Katayama, A.; Matsumura, F.

    1991-01-01

    Biodegradation of persistent halogenated organic pollutants is of great interest from the viewpoint of its potential use to cleanup the contaminated sites and industrial waste streams on-site (i.e., in situ remediation). Recent studies have shown that lignin-degrading white rot fungi possess capabilities to degrade a variety of highly recalcitrant and toxic compounds. On the other hand, photodegradation by sunlight or ultraviolet light (UV) has not been considered as a potential technology to detoxify the contaminated sites, in spite of the availability of extensive research data, because of its limited reaching ability to subsurface locations. In view of the urgent needs for the development of technology to deal with mounting problems of toxic wastes, the authors have decided to experiment with the ideas of combining photochemical and microbial technologies. The main obstacle in developing such simultaneous combination systems has been the susceptibilities of microorganisms in general to UV irradiation. To overcome this problem, the authors have developed an ultraviolet- and fungicide-resistant strain of white rot fungus and now report their results

  18. Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks

    International Nuclear Information System (INIS)

    Parhizkar, Tarannom; Roshandel, Ramin

    2017-01-01

    Highlights: • A degradation based optimization framework is developed. • The cost of electricity based on degradation of solid oxide fuel cells is minimized. • The effects of operating conditions on degradation mechanisms are investigated. • Results show 7.12% lower cost of electricity in comparison with base case. • Degradation based optimization is a beneficial concept for long term analysis. - Abstract: The main objective of this work is minimizing the cost of electricity of solid oxide fuel cell stacks by decelerating degradation mechanisms rate in long term operation for stationary power generation applications. The degradation mechanisms in solid oxide fuel cells are caused by microstructural changes, reactions between lanthanum strontium manganite and electrolyte, poisoning by chromium, carburization on nickel particles, formation of nickel sulfide, nickel coarsening, nickel oxidation, loss of conductivity and crack formation in the electrolyte. The rate of degradation mechanisms depends on the cell operating conditions (cell voltage and fuel utilization). In this study, the degradation based optimization framework is developed which determines optimum operating conditions to achieve a minimum cost of electricity. To show the effectiveness of the developed framework, optimization results are compared with the case that system operates at its design point. Results illustrate optimum operating conditions decrease the cost of electricity by 7.12%. The performed study indicates that degradation based optimization is a beneficial concept for long term performance degradation analysis of energy conversion systems.

  19. Influence of the diluent on the radiolytic degradation of TBP in TBP systems, 30% (V/V) - diluent-nitric acid

    International Nuclear Information System (INIS)

    Rubenich, M.N.

    1976-03-01

    The influence of the diluent on the degradation of TBP was studied by a gas chromatographic technique. The results obtained have shown that the aromatic diluents decrease markedly the HDBP production in the radiolysis of TBP, while n-dodecane, which is being used as diluent, promotes this radiolysis. However, the influence of the diluent become not too significant on the total (radiolysis + hydrolysis) solutions containing nitric acid. In view of foreseeing applications of aromatic diluents or their mixtures with aliphatic diluents on nuclear fuel reprocessing, it would be advisable to carry out more research on the system TBP/diluent, particularly on the kinetics of the hydrolysis of TBP and the influence of the diluent on the TBP degradation under conditions similar to those verified in the Purex Process [pt

  20. to view fulltext PDF

    Indian Academy of Sciences (India)

    12 Routers in Internetworks. N Pon Saravanan. How Data Travels Through the Internet. Prashant Bharadwaj. 26 Biodiversity and Biological Degradation of Soil. Upasana Mishra and Dolly Wattal Dhar. 34 Nuclear Magnetic Resonance Spectroscopy. Susanta Das. 50 Beyond Brownian Motion: A Levy Flight in. Magic Boots.

  1. Material aging and degradation detection and remaining life assessment for plant life management

    International Nuclear Information System (INIS)

    Ramuhalli, P.; Henager, C.H. Jr.; Griffin, J.W.; Meyer, R.M.; Coble, J.B.; Pitman, S.G.; Bond, L.J.

    2012-01-01

    One of the major factors that may impact long-term operations is structural material degradation. Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long-term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided. (author)

  2. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  3. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  4. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  5. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  6. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    International Nuclear Information System (INIS)

    Ha, Gayeon; Heo, Gyunyoung; Song, Seok Yoon

    2016-01-01

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed

  7. Classification of Feedwater Heater Performance Degradation Using Residual Sign Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Gayeon; Heo, Gyunyoung [Kyung Hee University, Seoul (Korea, Republic of); Song, Seok Yoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Since a performance of Feedwater Heater (FWH) is directly related to the thermodynamic efficiency of Nuclear Power Plants (NPPs), performance degradation of FWH results in loss of thermal power and ultimately business benefit. Nevertheless, it is difficult to diagnose its degradation of performance during normal operation due to its minor changes in process parameters, for instance, pressure, temperature, and flowrate. In this paper, six degradation modes have been analyzed and the performance indices for FWH such as Terminal Temperature Difference (TTD) and Drain Cooling Approach (DCA) have been used to diagnose degradation modes. PEPSE (Performance Evaluation of Power System Efficiencies) simulation, which is a plant simulation software simulating plant static characteristic and building energy balance model, has been used to generate the data of performance indices of FWH and actual measurements of FWH from NPPs was used to validate the classification model. In this paper, six degradation modes have been analyzed and the performance indices for FWH have been used to diagnose what degradation mode occurs. The RSM was proposed as a trend identifier of variables. Using RSM, it is possible to obtain appropriate information of the variables in noise environment since noise can be compressed while the original information is being converted to a trend. The SVC has been performed to classify the degradation mode of FWH, and then actual measurements of FWH from NPPs was used to validate the classification model. Performance indices under various leakage conditions show different patterns. In further study, tube leakage simulations for the various cases will be needed.

  8. Studies on the physiology of microbial degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Valo, R.; Apajalahti, J.; Salkinoja-Salonen, M.

    1985-03-01

    The requirements and conditions for pentachlorophenol (PCP) biodegradation by a mixed bacterial culture was studied. The effects of oxygen, nutrients, additional carbon sources, pH and temperature are described. Up to 90% of PCP was degraded into CO/sub 2/ and inorganic chloride in 1 week at an input concentration of <600 ..mu..M. Degradation continued when pO/sub 2/ was lowered to 0.0002 atm but ceased when pO/sub 2/ was further decreased to 0.00002 atm. Supplementary carbon sources, such as phenol, hydroxybenzoic acids or complex nutrients did not affect the biodegradation, but the presence of ammonium salts enhanced the rate of PCP degradation without affecting the yield of CO/sub 2/. The degrading organisms were shown to be procaryotic mesophiles; no degradation was shown at temperatures below +8/sup 0/ and above +50/sup 0/C. The optimum pH for degradation was from 6.4 to 7.2 and at higher pH value (8.4) degradation was inhibited more than at lower pH (5.6).

  9. Hot carrier injection degradation under dynamic stress

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under V g = 0 V and V d = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under V g = −1.8 V and V d = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  11. "Private Views" Ungaris

    Index Scriptorium Estoniae

    1999-01-01

    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis". Kuraatorid Pam Skelton, Mare Tralla. Osalejad.

  12. "Private Views" Ungaris

    Index Scriptorium Estoniae

    1999-01-01

    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis" Kuraatorid Pam Skelton, Mare Tralla. Osalejad

  13. Japanese views on ASSET

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, M [Department of Reactor Safety Research, Japan Atomic Energy Research Inst. (Japan)

    1997-10-01

    The presentation briefly reviews the following aspects directed to ensuring NPP safety: Japanese participation in ASSET activities; views to ASSET activities; recent operating experience in Japan; future ASSET activities.

  14. BPMN process views construction

    NARCIS (Netherlands)

    Yongchareon, S.; Liu, Chengfei; Zhao, X.; Kowalkiewicz, M.; Kitagawa, H.; Ishikawa, Y.

    2010-01-01

    Process view technology is catching more attentions in modern business process management, as it enables the customisation of business process representation. This capability helps improve the privacy protection, authority control, flexible display, etc., in business process modelling. One of

  15. Competing views on cancer

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... 'system' (or 'network'); it is, rather, between views that are. 'cell-based' and ... In the spirit of the meeting that provided the motivation for bringing out ..... of applications usually reward applications that abide by the. 'consensus'.

  16. Television viewing and snacking.

    Science.gov (United States)

    Gore, Stacy A; Foster, Jill A; DiLillo, Vicki G; Kirk, Kathy; Smith West, Delia

    2003-11-01

    With the rise in obesity in America, the search for potential causes for this epidemic has begun to include a focus on environmental factors. Television (TV) viewing is one such factor, partially due to its potential as a stimulus for eating. The current study investigated the relationship between food intake and self-reported TV viewing in an effort to identify the impact of TV viewing on specific eating behaviors. Seventy-four overweight women seeking obesity treatment completed questionnaires assessing dietary habits and TV viewing behaviors. Results suggest that snacking, but not necessarily eating meals, while watching TV is associated with increased overall caloric intake and calories from fat. Therefore, interventions targeting stimulus control techniques to reduce snacking behavior may have an impact on overall caloric intake.

  17. Japanese views on ASSET

    International Nuclear Information System (INIS)

    Hirano, M.

    1997-01-01

    The presentation briefly reviews the following aspects directed to ensuring NPP safety: Japanese participation in ASSET activities; views to ASSET activities; recent operating experience in Japan; future ASSET activities

  18. to view fulltext PDF

    Indian Academy of Sciences (India)

    which encompasses India, Australia, a major portion of the .... Nepal earthquake in which many buildings and structures went ... The 1970 version (same as Figure 3) of code ... The nati