WorldWideScience

Sample records for degraded non-intact fuel

  1. Intact and Degraded Component Criticality Calculations of N Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    L. Angers

    2001-01-01

    The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k eff ) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR

  2. CRITICALITY CALCULATION FOR THE MOST REACTIVE DEGRADED CONFIGURATIONS OF THE FFTF SNF CODISPOSAL WP CONTAINING AN INTACT IDENT-69 CONTAINER

    International Nuclear Information System (INIS)

    D.R. Moscalu

    2002-01-01

    The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins. The configurations have been identified in a previous analysis (CRWMS M andO 1999a) and the present evaluations include additional relevant information that was left out of the original calculations. The additional information describes the exact distribution of fissile material in each container (DOE 2002a). The effects of the changes that have been included in the baseline design of the codisposal WP (CRWMS M andO 2000) are also investigated. The calculation determines the effective neutron multiplication factor (k eff ) for selected degraded mode internal configurations of the codisposal waste package. These calculations will support the demonstration of the technical viability of the design solution adopted for disposing of MOX (FFTF) spent nuclear fuel in the potential repository. This calculation is subject to the Quality Assurance Requirements and Description (QARD) (DOE 2002b) per the activity evaluation under work package number P6212310M2 in the technical work plan TWP-MGR-MD-0000101 (BSC 2002)

  3. Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).

  4. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  5. Performance of intact and partially degraded concrete barriers in limiting fluid flow

    International Nuclear Information System (INIS)

    Walton, J.C.; Seitz, R.R.

    1991-07-01

    Concrete barriers will play a critical role in the long-term isolation of low-level radioactive wastes. Over time the barriers will degrade, and in many cases, the fundamental processes controlling performance of the barriers will be different for intact and degraded conditions. This document examines factors controlling fluid flow through intact and degraded concrete disposal facilities. Simplified models are presented fro predicting build up of fluid above a vault; fluid flow through and around intact vaults, through flaws in coatings/liners applied to a vault, and through cracks in a concrete vault; and the influence of different backfill materials around the outside of the vault. Example calculations are presented to illustrate the parameters and processes that influence fluid flow. 46 refs., 49 figs., 2 tabs

  6. Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation

    International Nuclear Information System (INIS)

    Isenman, L.D.; Dice, J.F.

    1989-01-01

    We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes. We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [ 3 H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides

  7. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Marcos Longo; Michael Keller; Maiza N. dos-Santos; Veronika Leitold; Ekena R. Pinagé; Alessandro Baccini; Sassan Saatchi; Euler M. Nogueira; Mateus Batistella; Douglas C. Morton

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha)...

  8. A High Integrity Can Design for Degraded Nuclear Fuel

    International Nuclear Information System (INIS)

    Holmes, P.A.

    1999-01-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties

  9. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues.

    Science.gov (United States)

    Bahar Halpern, Keren; Itzkovitz, Shalev

    2016-04-01

    A key challenge in mammalian biology is to understand how rates of transcription and mRNA degradation jointly shape cellular gene expression. Powerful techniques have been developed for measuring these rates either genome-wide or at the single-molecule level, however these techniques are not applicable to assessment of cells within their native tissue microenvironment. Here we describe a technique based on single molecule Fluorescence in-situ Hybridization (smFISH) to measure transcription and degradation rates in intact mammalian tissues. The technique is based on dual-color libraries targeting the introns and exons of the genes of interest, enabling visualization and quantification of both nascent and mature mRNA. We present a software, TransQuant, that facilitates quantifying these rates from smFISH images. Our approach enables assessment of both transcription and degradation rates of any gene of interest while controlling for the inherent heterogeneity of intact tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Positive Youth Development, Life Satisfaction and Problem Behaviors of Adolescents in Intact and Non-Intact Families in Hong Kong

    Directory of Open Access Journals (Sweden)

    Daniel Tan Lei Shek

    2013-08-01

    Full Text Available This study investigated whether Chinese adolescents living in intact and non-intact families differed in their positive development, life satisfaction, and risk behavior. A total of 3,328 Secondary 1 students responded to measures of positive youth development (such as resilience and psychosocial competencies, life satisfaction, and risk behavior (substance abuse, delinquency, Internet addiction, consumption of pornographic materials, self-harm, and behavioral intention to engage in problem behavior. Findings revealed that adolescents growing up in intact families reported higher levels of positive developmental outcomes and life satisfaction as compared with adolescents from non-intact families. Adolescents in non-intact families also reported higher levels of risk behaviors than those growing up in intact families.

  11. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada)

    2008-01-21

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes. (author)

  12. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Science.gov (United States)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  13. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell

    International Nuclear Information System (INIS)

    Perrot, C.

    2006-11-01

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H 2 O 2 in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  14. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  15. Tutorial review of spent-fuel degradation mechanisms under dry-storage conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1983-02-01

    This tutorial reviews our present understanding of fuel-rod degradation over a range of possible dry-storage environments. Three areas are covered: (1) why study fuel-rod degradation; (2) cladding-degradation mechanisms; and (3) the status of fuel-oxidation studies

  16. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  17. Non-intact zona improves development of murine preimplantation ...

    African Journals Online (AJOL)

    ajl5

    2012-09-25

    Sep 25, 2012 ... 2College of Animal Science and Technology, Northwest A & F University, Yangling, ... Key words: Mouse, non-intact zona embryos, adenovirus vector with green fluorescent protein (pAd-GFP), .... Based on microscopic examination, the ZP of some ..... permeable structure of ZP that allowed penetration of.

  18. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss.

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F; McAlpine, Rachel P; Abdi, Hervé

    2017-03-01

    Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/-B/aa or/-B/az). The items started with an easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/-B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same-as opposed to different-responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/-B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz-as opposed to az- responses in the audiovisual than auditory mode. Performance in the audiovisual mode showed more same

  19. Visual Speech Alters the Discrimination and Identification of Non-Intact Auditory Speech in Children with Hearing Loss

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Hervé

    2017-01-01

    Objectives Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Methods Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/–B/aa or /–B/az). The items started with an easy-to-speechread /B/ or difficult-to-speechread /G/ onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/–B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same—as opposed to different—responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g., /–B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory mode. Results

  20. Degradation mechanisms of sulfonated poly-aromatic membranes in fuel cell; Mecanismes de degradation des membranes polyaromatiques sulfonees en pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, C

    2006-11-15

    Fuel cell development requires an improvement in the electrode-membrane assembly durability which depends on both the polymer used and the fuel cell operating conditions. The origin of the degradation can be either electrochemical, chemical and/or mechanical. This study deals with the understanding of alternative membranes ageing mechanisms, i.e. non fluorinated membranes, such as sPEEK and sPI. For this kind of membranes, the first process is chemical. Understanding these mechanisms is the first essential step to develop more stable structures. An original approach is developed to overcome the analytical difficulties encountered with polymers. It consists in studying the degradation mechanism on model structures. Ageing are carried out in water, with H{sub 2}O{sub 2} in some cases (identified as a cause of membrane chemical ageing in the fuel cell system), and at different temperatures. The approach consists in separating the different products formed by chromatography. Then they are identified (NMR, IR, MS) and quantified. This method allows us to establish the ageing mechanism. We show that the ageing of a sPEEK structure mainly results from an attack by end chains which spreads to the whole. This mechanism is confirmed on ex-situ and in-situ aged membranes. These two kinds of ageing lead to an important decrease in polymerisation degree (determined by SEC). Formation of the same degradation products is observed. In fuel cells, a heterogeneous degradation is noticed. It takes place mainly on the cathode side. sPI are known for their high sensitivity to hydrolysis. Nevertheless, we highlight a limited degradation at 80 Celsius degrees due to the recombination of hydrolyzed species at this temperature. (author)

  1. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  2. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  3. Conductive hearing loss with an intact tympanic membrane due to non-inflammatory causes.

    Science.gov (United States)

    Choi, Jin Hyuk; Lee, Min Young; Park, Ji Hye; Lee, Kyu-Yup; Lee, Sang Heun; Jang, Jeong Hun

    2016-04-01

    We analyzed audiologic and surgical findings in patients with conductive hearing loss (CHL) with an intact tympanic membrane (TM) that was of a non-inflammatory origin. We reviewed data from patients who underwent exploratory tympanotomy for CHL with intact TM from January 1995 to November 2012. Patients with diseases of non-inflammatory origin were enrolled (69 patients; 79 ears). Patients were categorized into two groups: non-trauma (50 ears) and trauma (29 ears). Demographic data, intraoperative findings, and audiologic results were obtained and analyzed. Overall, the second decade was the most common age of diagnosis in both the non-trauma and trauma groups. Operative findings showed that ossicular dislocation was more prevalent than ossicular fixation; all trauma group subjects had ossicular dislocation. Short columellization or partial ossicular replacement was the most frequently adopted surgical procedures in both groups. Overall, audiologically, air-conduction thresholds (ACs) and air-bone gaps were significantly improved over the short- and long-term period in both groups. However, the non-trauma group had significantly higher preoperative ACs than the trauma group, especially at low frequencies. This study provides clinicians with useful information regarding the clinical characteristics of CHL with intact TM of non-inflammatory origin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Indirect approach for estimation of forest degradation in non-intact dry forest

    DEFF Research Database (Denmark)

    Dons, Klaus; Bhattarai, Sushma; Meilby, Henrik

    2016-01-01

    Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels....... They are susceptible to gradual but persistent degradation and monitoring needs to be low cost due to the low potential benefit from carbon accumulation per unit area. Indirect remote sensing approaches may provide estimates of subsistence wood extraction, but sampling of biomass loss produces zero-inflated continuous...... data that challenges conventional statistical approaches. We introduce the use of Tweedie Compound Poisson distributions from the exponential dispersion family with Generalized Linear Models (CPGLM) to predict biomass loss as a function of distance to nearest settlement in two forest areas in Tanzania...

  5. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  6. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  7. Thermal conductivity degradation analyses of LWR MOX fuel by the quasi-two phase material model

    International Nuclear Information System (INIS)

    Kosaka, Yuji; Kurematsu, Shigeru; Kitagawa, Takaaki; Suzuki, Akihiro; Terai, Takayuki

    2012-01-01

    The temperature measurements of mixed oxide (MOX) and UO 2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO 2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel. (author)

  8. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  9. Degradation of solid oxide fuel cells with wood

    International Nuclear Information System (INIS)

    N Frank; M Saule; J Karl

    2006-01-01

    The Technical University of Munich investigates the degradation effects observed on SOFCs when fired with product gases from biomass gasification processes. The TUM has concentrated its research on tubular SOFCs. For this purpose tubular electrolyte-supported SOFCs have been manufactured using commercially available electrolyte tubes, anode foil and cathode paste. The tubular SOFCs were first run with hydrogen and synthetic fuels. Once stable and reproducible results were achieved, tests with product gas from four different biomass gasifiers have started. These gasifiers have been coupled to a gas cleaning device which includes sulphur and particle removal and pre-reforming. Different operation conditions of the gasifiers and the gas cleaning device have been realized and the corresponding fuel cell degradations have been analysed. (authors)

  10. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  11. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  12. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    Science.gov (United States)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  13. Comparison of Intact PTH and Bio-Intact PTH Assays Among Non-Dialysis Dependent Chronic Kidney Disease Patients.

    Science.gov (United States)

    Einbinder, Yael; Benchetrit, Sydney; Golan, Eliezer; Zitman-Gal, Tali

    2017-09-01

    The third-generation bio-intact parathyroid hormone (PTH) (1-84) assay was designed to overcome problems associated with the detection of C-terminal fragments by the second-generation intact PTH assay. The two assays have been compared primarily among dialysis populations. The present study evaluated the correlations and differences between these two PTH assays among patients with chronic kidney disease (CKD) stages 3 to 5 not yet on dialysis. Blood samples were collected from 98 patients with CKD stages 3 to 5. PTH concentrations were measured simultaneously by using the second-generation - PTH intact-STAT and third-generation bio-intact 1-84 PTH assays. Other serum biomarkers of bone mineral disorders were also assessed. CKD stage was calculated by using the CKD-Epidemiology Collaboration (EPI) formula. Serum bio-intact PTH concentrations were strongly correlated but significantly lower than the intact PTH concentrations (r=0.963, Pbio-intact PTH) positively correlated with urea (r=0.523, r=0.504; P=0.002, respectively), phosphorus (r=0.532, r=0.521; Pbio-intact PTH assay detected significantly lower PTH concentrations compared with intact PTH assay. Additional studies that correlate the diagnosis and management of CKD mineral and bone disorders with bone histomorphometric findings are needed to determine whether bio-intact PTH assay results are better surrogate markers in these early stages of CKD. © The Korean Society for Laboratory Medicine

  14. Does human leukocyte elastase degrade intact skin elastin?

    DEFF Research Database (Denmark)

    Schmelzer, Christian E H; Jung, Michael C; Wohlrab, Johannes

    2012-01-01

    This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues...... and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage......, and thus to functional loss of the elastic fiber network. Hence, it is a key issue to understand which enzymes actually initiate elastolysis under certain pathological conditions or during intrinsic aging. In this paper, we provide a complete workflow for isolation of pure and intact elastin from very...

  15. Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal

    International Nuclear Information System (INIS)

    Rady, Adam C.; Giddey, Sarbjit; Kulkarni, Aniruddha; Badwal, Sukhvinder P.S.; Bhattacharya, Sankar

    2014-01-01

    Graphical abstract: - Highlights: • Degradation mechanism studied for demineralised coal in a direct carbon fuel cell. • Diffusion limited processes dominate the electrode polarisation losses in pure N 2 . • Major fuel cell performance loss occurred due to loss of carbon/anode contacts. • The anode retained its phase structure with minor other phases formed in operation. - Abstract: The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N 2 atmosphere, however, these decrease substantially in the presence of CO 2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO 2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance

  16. Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks

    International Nuclear Information System (INIS)

    Parhizkar, Tarannom; Roshandel, Ramin

    2017-01-01

    Highlights: • A degradation based optimization framework is developed. • The cost of electricity based on degradation of solid oxide fuel cells is minimized. • The effects of operating conditions on degradation mechanisms are investigated. • Results show 7.12% lower cost of electricity in comparison with base case. • Degradation based optimization is a beneficial concept for long term analysis. - Abstract: The main objective of this work is minimizing the cost of electricity of solid oxide fuel cell stacks by decelerating degradation mechanisms rate in long term operation for stationary power generation applications. The degradation mechanisms in solid oxide fuel cells are caused by microstructural changes, reactions between lanthanum strontium manganite and electrolyte, poisoning by chromium, carburization on nickel particles, formation of nickel sulfide, nickel coarsening, nickel oxidation, loss of conductivity and crack formation in the electrolyte. The rate of degradation mechanisms depends on the cell operating conditions (cell voltage and fuel utilization). In this study, the degradation based optimization framework is developed which determines optimum operating conditions to achieve a minimum cost of electricity. To show the effectiveness of the developed framework, optimization results are compared with the case that system operates at its design point. Results illustrate optimum operating conditions decrease the cost of electricity by 7.12%. The performed study indicates that degradation based optimization is a beneficial concept for long term performance degradation analysis of energy conversion systems.

  17. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  18. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  19. Thermal degradation of ligno-cellulosic fuels. DSC and TGA studies

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, V.; Cancellieri, D.; Leoni, E. [SPE-CNRS UMR 6134, University of Corsica, Campus Grossetti, BP 52, 20250 Corti (France)

    2006-12-01

    The scope of this work was to show the utility of thermal analysis and calorimetric experiments to study the thermal oxidative degradation of Mediterranean scrubs. We investigated the thermal degradation of four species; DSC and TGA were used under air sweeping to record oxidative reactions in dynamic conditions. Heat released and mass loss are important data to be measured for wildland fires modelling purpose and fire hazard studies on ligno-cellulosic fuels. Around 638 and 778K, two dominating and overlapped exothermic peaks were recorded in DSC and individualized using a experimental and numerical separation. This stage allowed obtaining the enthalpy variation of each exothermic phenomenon. As an application, we propose to classify the fuels according to the heat released and the rate constant of each reaction. TGA experiments showed under air two successive mass loss around 638 and 778K. Both techniques are useful in order to measure ignitability, combustibility and sustainability of forest fuels. (author)

  20. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  1. Short stack modeling of degradation in solid oxide fuel cells. Part II. Sensitivity and interaction analysis

    Science.gov (United States)

    Gazzarri, J. I.; Kesler, O.

    In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.

  2. Short stack modeling of degradation in solid oxide fuel cells. Part II. Sensitivity and interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada)

    2008-01-21

    In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes. (author)

  3. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014

    Science.gov (United States)

    Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter

    2017-01-01

    New and rapid political and economic changes in Myanmar are increasing the pressures on the country’s forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar’s intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country’s forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp) PMID:28520726

  4. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    Science.gov (United States)

    Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.

    2018-05-01

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the

  5. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  6. Non-conventional fuel tax credit

    International Nuclear Information System (INIS)

    Soeoet, P.M.

    1988-01-01

    Coal-seam methane, along with certain other non-conventional fuels, is eligible for a tax credit. This production tax credit allowed coal-seam methane producers to receive $0.7526 per million Btu of gas sold during 1986. In 1987, this credit rose to $0.78 per million Btu. The tax credit is a very significant element of the economic analysis of current coal-seam methane projects. In today's spot market, gas prices are around $1.50 per million Btu. Allowing for costs of production, the gas producer will net more income from the tax credit than from the sale of the gas. The Crude Oil Windfall Profit Tax Act of 1980 is the source of this tax credit. There were some minor changes made by subsequent legislation, but most of the tax credit has remained intact. Wells must be drilled by 1990 to qualify for the tax credit but the production from such wells is eligible for the tax credit until 2001. Projections have been made, showing that the tax credit should increase to $0.91 per million Btu for production in 1990 and $1.34 per million Btu in 2000. Variables which may decrease the tax credit from these projections are dramatically lower oil prices or general economic price deflation

  7. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    Science.gov (United States)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  8. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    Directory of Open Access Journals (Sweden)

    Alejandro Gran-Scheuch

    2017-08-01

    Full Text Available Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH. Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems.

  9. Secondary degradation mechanisms - A theoretical approach to remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Rudling, P. [Advanced Nuclear Technology, Uppsala (Sweden)

    2001-04-01

    A failed BWR fuel rod may degrade either by developing long axial cracks and/or transversal breaks. The tendency of failed BWR rods to degrade depends on the fuel design and reactor operation of the failed rod. The knowledge of the degradation mechanisms may be used to develop secondary degradation resistant fuel and/or to mitigate the degradation tendencies during operation of failed fuel. Literature data from three different categories has been analysed: Open literature data on failed BWR rods that have and have not degraded; Data generated in experimental reactors where primary failures have been simulated either by drilling a hole in the intact cladding before the test or by letting water/steam into the rod from a capsule connected to the otherwise intact rod. In addition data related to hydrogen production in the pellet-cladding gap in a failed rod and the subsequent hydrogen ingress and finally the hydride formation in zirconium alloys; Open literature data out-of-pile material tests to improve the knowledge of the secondary degradation mechanisms. To get an idea of the degradation mechanisms one may first characterise the failed fuel rods in commercial BWRs that form axial splits, transversal breaks and also failed rods that do not degrade at all. Considering axial splits in BWRs, they seem to occur mostly for failed fuel rods with intermediate and high burnups, i.e., in rods with small pellet-cladding gaps, that have been subjected to a power ramp. Such data indicate that the axial crack propagation rate is larger than 0.16 mm/h. It is also clear that the axial cracks formed in commercial reactors show mostly brittle cleavage features at reactor operating temperature even though the hydrogen content in the fuel cladding is low, 150-300 wtppm. Macroscopically the brittle cleavage fractures are characterised by: a fracture surface that is perpendicular to the main tensile stress direction i.e., in the cladding circumferential direction, no or very little clad

  10. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  11. Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage-treatment process.

    Science.gov (United States)

    Shigeri, Yasushi; Matsui, Tatsunobu; Watanabe, Kunihiko

    2009-11-01

    In order to develop a practical method for the decomposition of intact chicken feathers, a moderate thermophile strain, Meiothermus ruber H328, having strong keratinolytic activity, was used in a bio-type garbage-treatment machine working with an acidulocomposting process. The addition of strain H328 cells (15 g) combined with acidulocomposting in the garbage machine resulted in 70% degradation of intact chicken feathers (30 g) within 14 d. This degradation efficiency is comparable to a previous result employing the strain as a single bacterium in flask culture, and it indicates that strain H328 can promote intact feather degradation activity in a garbage machine currently on the market.

  12. Characterisation and enzymic degradation of non-starch polysccharides in lignocellulosic by-products : a study on sunflower meal and palm-kernel meal

    NARCIS (Netherlands)

    Duesterhoeft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be

  13. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2......, there is only a slight decrease in open circuit voltage of the fuel cell which implies the membrane is not affected by the test. The electrochemical impedance spectrum measurement shows that the H2 starvation can cause significant increase in the ohmic resistance and charge transfer resistance. By looking...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  14. Visual observations of a degraded bundle of irradiated fuel: the Phebus FPT1 test

    International Nuclear Information System (INIS)

    Barrachin, M.; Bottomley, P.D.

    1999-01-01

    The international Phebus-FP (Fission Product) project is managed by the Institut de Protection et Surete Nucleaire in collaboration with Electricite de France (EDF), the European Commission (EC), the USNRC (USA), COG (Canada), NUPEC and JAERI (Japan), KAERI (South Korea), PSI and HSK (Switzerland). It is designed to measure the source-term and to study the degradation of irradiated UO 2 fuel in conditions typical of a severe loss of coolant accident in a pressurised water reactor (PWR). In the first test (FPT0), performed in December '93, a bundle of 20 fresh fuel rods and a central Ag-In-Cd control rod underwent a short 15-day irradiation to generate fission products before testing in the Phebus reactor in Cadarache. The second test (FPT1) was performed in July '96, in the same conditions and geometry, but using irradiated fuel (-23 GWd/tU). In the FPT1 test, the bundle was heated to an estimated 3000 K over a period of 30 minutes in order to induce a substantial liquefaction of the bundle. After the test, the bundle was embedded in epoxy and cut at different levels to investigate the mechanisms of the core degradation. This paper reports the visual observations of the degraded FPT1 bundle, very preliminary interpretations about the scenario of degradation and a comparison between the behaviour of the fuel in the FPT0 and FPT1 tests. (author)

  15. Transport and degradation of fuel compounds in the vadose zone

    DEFF Research Database (Denmark)

    Christophersen, Mette; Broholm, Mette Martina; Kjeldsen, Peter

    2002-01-01

    Fuel has been spilled in the vadose zone at many sites. An artificial jet fuel source has been installed in a vadose zone at Airbase Værløse. The field experiment is conducted to investigate the natural attenuation potential in order to obtain better evaluations of the risk for groundwater...... contamination. Field data and calculations of mass in the pore air indicate a large loss within a short period of time. Laboratory experiments and isotopic analysis proves that biodegradation is occurring. The results indicate that for most compounds degradation is significant reducing the concentrations...

  16. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  17. Comparing aye-aye (Daubentonia madagascariensis) presence and distribution between degraded and non-degraded forest within Ranomafana National Park, Madagascar.

    Science.gov (United States)

    Farris, Zach J; Morelli, Toni Lyn; Sefczek, Timothy; Wright, Patricia C

    2011-01-01

    The aye-aye is considered the most widely distributed lemur in Madagascar; however, the effect of forest quality on aye-aye abundance is unknown. We compared aye-aye presence across degraded and non-degraded forest at Ranomafana National Park, Madagascar. We used secondary signs (feeding sites, high activity sites) as indirect cues of aye-aye presence and Canarium trees as an indicator of resource availability. All 3 measured variables indicated higher aye-aye abundance within non-degraded forest; however, the differences across forest type were not significant. Both degraded and non-degraded forests showed a positive correlation between feeding sites and high activity sites. We found that Canarium, an important aye-aye food source, was rare and had limited dispersal, particularly across degraded forest. This preliminary study provides baseline data for aye-aye activity and resource utilization across degraded and non-degraded forests. Copyright © 2011 S. Karger AG, Basel.

  18. A Slurry Biocascade for the Enhanced Degradation of Fuels in Soils

    National Research Council Canada - National Science Library

    Apitz, Sabine

    1994-01-01

    .... In the first step of the cascade, the simplest fuel components (e.g., n-alkanes) are biodegraded. Then, the soil is transferred to the next steps in the cascade, in which different "microbial soups" degrade the next groups of hydrocarbons...

  19. Bioavailability and in vivo metabolism of intact glucosinolates

    DEFF Research Database (Denmark)

    Sørensen, Jens Christian; Frandsen, Heidi Blok; Jensen, Søren Krogh

    2016-01-01

    Health benefits associated with consumption of cruciferous vegetables have received considerable attention with a hitherto focus on the role and bioactivity of glucosinolate degradation products. We investigated the in vivo metabolism of intact glucosinolates by following their fate in digesta an...

  20. Fuel Wood Consumption and Species Degradation in South-Western Nigeria: The Ecological Relevance

    Directory of Open Access Journals (Sweden)

    Orimoogunje Oluwagbenga O.I.

    2015-01-01

    Full Text Available The continuous dependence of man on fuel and service wood has resulted in serious degradation of the fragile forest ecosystem. Therefore, this study evaluated the sources and patterns of fuel wood and examined the rate of consumption in the study area. This was with the aim to assess the ecological implications of fuelwood consumption on species degradation. The study utilized both, primary and secondary data. Information was extracted from topographic map on the scale of 1: 50,000 and satellites imageries that cover the study area. Questionnaire administration, field observation and weight measurement of fuel wood were carried out. The results showed that the sources of fuel wood for domestic cooking were forest, nearby bush and abandoned farm while the sources of domestic energy were fuel wood (61.17%, charcoal (27%, kerosene (10%, electricity (1.33% and gas (0.5%. Fuel wood for small scale industries were: forest (49.23%, farmland (34.62 and fallow land (16.15%. The trend of fuel wood consumption was on the high side from 1995 to 2011, it was 58% in 1995, 70% in 2000, 82% in 2005 and 92% in 2010 and 2011 respectively. Many valuable economic tree species such as Triplochiton scleroxylon, Nesogordonia papaverifera, and Cordia spp. are near their extinction. Animals such as antelope, wolf and fox are going into extinction while monkey, grasscutter, hare, rabbit were endemic in the study area. The study concluded that the patterns of fuel wood use and fuel wood saturation presents a great danger for biodiversity products and services.

  1. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    Science.gov (United States)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  2. Control of degradation of spent LWR [light-water reactor] fuel during dry storage in an inert atmosphere

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

    1987-10-01

    Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab

  3. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  4. Measurement of fuel importance distribution in non-uniformly distributed fuel systems

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.

    1995-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)

  5. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  6. Measurement of diffusive properties of intact rock

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, K B

    1996-12-01

    In the Postclosure Assessment of a Reference System for the Disposal of Canada`s Nuclear Fuel Waste (Goodwin et al. 1994) the disposal vault is assumed to be surrounded by a zone of intact rock, referred to as the `exclusion zone.` A sensitivity analysis of the relative effectiveness of the several engineered and natural barriers that contribute to the safety of the reference disposal system has shown that this zone of intact rock is the most effective of these barriers to the movement of radionuclides through the reference system. Peer review of the geosphere model used in the case study for the EIS (Environmental Impact Statement) of the Canadian Nuclear Fuel Waste Management Program has identified the need to quantify the properties of the intact rock surrounding the disposal vault that would control the transport of radionuclides by diffusion. The Postclosure Assessment also identified the need for appropriate values of the free water diffusion coefficient (D{sub o}) for {sup 129}1 and {sup 14}C. The measurement of rock resistivity allows the calculation of the Formation Factor for a rock This review describes the Formation Factor, diffusivity, permeability, and porosity, and how these properties might be measured or inferred for insitu rock under the conditions that apply to the intact rock surrounding a potential disposal vault. The importance of measuring the intrinsic diffusion coefficient (D{sup i}) of diffusing species under solution salinities simulating those of groundwaters is emphasised, and a method of measurement is described that is independent of the diffusing medium, and which would be appropriate for measurements made in chemically complex media such as groundwaters. (author). 95 refs., 4 tabs., 39 figs.

  7. Measurement of diffusive properties of intact rock

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1996-12-01

    In the Postclosure Assessment of a Reference System for the Disposal of Canada's Nuclear Fuel Waste (Goodwin et al. 1994) the disposal vault is assumed to be surrounded by a zone of intact rock, referred to as the 'exclusion zone.' A sensitivity analysis of the relative effectiveness of the several engineered and natural barriers that contribute to the safety of the reference disposal system has shown that this zone of intact rock is the most effective of these barriers to the movement of radionuclides through the reference system. Peer review of the geosphere model used in the case study for the EIS (Environmental Impact Statement) of the Canadian Nuclear Fuel Waste Management Program has identified the need to quantify the properties of the intact rock surrounding the disposal vault that would control the transport of radionuclides by diffusion. The Postclosure Assessment also identified the need for appropriate values of the free water diffusion coefficient (D o ) for 129 1 and 14 C. The measurement of rock resistivity allows the calculation of the Formation Factor for a rock This review describes the Formation Factor, diffusivity, permeability, and porosity, and how these properties might be measured or inferred for insitu rock under the conditions that apply to the intact rock surrounding a potential disposal vault. The importance of measuring the intrinsic diffusion coefficient (D i ) of diffusing species under solution salinities simulating those of groundwaters is emphasised, and a method of measurement is described that is independent of the diffusing medium, and which would be appropriate for measurements made in chemically complex media such as groundwaters. (author). 95 refs., 4 tabs., 39 figs

  8. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  9. Secondary degradation mechanisms - A theoretical approach to remedial actions

    International Nuclear Information System (INIS)

    Rudling, P.

    2001-04-01

    A failed BWR fuel rod may degrade either by developing long axial cracks and/or transversal breaks. The tendency of failed BWR rods to degrade depends on the fuel design and reactor operation of the failed rod. The knowledge of the degradation mechanisms may be used to develop secondary degradation resistant fuel and/or to mitigate the degradation tendencies during operation of failed fuel. Literature data from three different categories has been analysed: Open literature data on failed BWR rods that have and have not degraded; Data generated in experimental reactors where primary failures have been simulated either by drilling a hole in the intact cladding before the test or by letting water/steam into the rod from a capsule connected to the otherwise intact rod. In addition data related to hydrogen production in the pellet-cladding gap in a failed rod and the subsequent hydrogen ingress and finally the hydride formation in zirconium alloys; Open literature data out-of-pile material tests to improve the knowledge of the secondary degradation mechanisms. To get an idea of the degradation mechanisms one may first characterise the failed fuel rods in commercial BWRs that form axial splits, transversal breaks and also failed rods that do not degrade at all. Considering axial splits in BWRs, they seem to occur mostly for failed fuel rods with intermediate and high burnups, i.e., in rods with small pellet-cladding gaps, that have been subjected to a power ramp. Such data indicate that the axial crack propagation rate is larger than 0.16 mm/h. It is also clear that the axial cracks formed in commercial reactors show mostly brittle cleavage features at reactor operating temperature even though the hydrogen content in the fuel cladding is low, 150-300 wtppm. Macroscopically the brittle cleavage fractures are characterised by: a fracture surface that is perpendicular to the main tensile stress direction i.e., in the cladding circumferential direction, no or very little clad

  10. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  11. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  12. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    Science.gov (United States)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  13. Assessment of causes for degrading fuel performance at Darlington NGS

    International Nuclear Information System (INIS)

    Judah, J.; Goodchild, S.

    2013-01-01

    Fuel performance at the Darlington nuclear generating station has historically been excellent. Until recently, the majority of these few fuel defects have been attributed to fretting by heat transport system debris. The minority have been linked to manufacturing issues. Recently, Darlington has experienced an increase in the number of fuel defects. Although the defect rate remains low with respect to industry standards, this defect experience is considered to be unacceptable given current industry expectations and the OPG zero defect policy. Nine fuel defects have been discharged since 2007 from the four Darlington reactors. This represents a fuel defect rate of just 0.35 defects per year per reactor. At the time of this writing three additional defects are suspected to be in core. Although a definitive defect cause has yet to be identified, these fuel performance issues appear to be due to the coincidental degradation of manufacturing and operational factors, thereby decreasing the margins to fuel failure due to fuelling power ramps. All of the confirmed defected bundles have been long bundles and all experienced a relatively high power ramp when shifted from Position 2 to Position 6. High bundle uranium masses and low internal clearances are thought to be significant contributing factors. Bundle burnups at the time of the power ramps were low and these bundles were not identified by existing power ramp defect predictive tools. Our assessment has resulted in a number of recommendations which are designed to mitigate these adverse conditions by restoring the margins to power ramp failures. These recommendations impact broadly across a number of organizations including reactor physics, fuel design, fuel manufacturing, reactor design, inspections and PIE. (author)

  14. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... of the polymer. Fuel cell durability tests with contaminations of ferrous ions did show considerable performance degradation, however, primarily due to the catalyst deterioration rather than the membrane degradation........ In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer...

  15. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  16. Estimation of Forest Degradation with Remote Sensing and GIS Analysis

    DEFF Research Database (Denmark)

    Dons, Klaus

    +). An indirect remote sensing (RS) approach has been suggested to map the infrastructure used for degradation rather than the actual change in forest canopy cover. This offers a way to delineate intact forest land and to model and estimate emissions from forest degradation in the non‐intact forest land – thereby...

  17. Study on Thermal Degradation Characteristics and Regression Rate Measurement of Paraffin-Based Fuel

    Directory of Open Access Journals (Sweden)

    Songqi Hu

    2015-09-01

    Full Text Available Paraffin fuel has been found to have a regression rate that is higher than conventional HTPB (hydroxyl-terminated polybutadiene fuel and, thus, presents itself as an ideal energy source for a hybrid rocket engine. The energy characteristics of paraffin-based fuel and HTPB fuel have been calculated by the method of minimum free energy. The thermal degradation characteristics were measured for paraffin, pretreated paraffin, HTPB and paraffin-based fuel in different working conditions by the using differential scanning calorimetry (DSC and a thermogravimetric analyzer (TGA. The regression rates of paraffin-based fuel and HTPB fuel were tested by a rectangular solid-gas hybrid engine. The research findings showed that: the specific impulse of paraffin-based fuel is almost the same as that of HTPB fuel; the decomposition temperature of pretreated paraffin is higher than that of the unprocessed paraffin, but lower than that of HTPB; with the increase of paraffin, the initial reaction exothermic peak of paraffin-based fuel is reached in advance, and the initial reaction heat release also increases; the regression rate of paraffin-based fuel is higher than the common HTPB fuel under the same conditions; with the increase of oxidizer mass flow rate, the regression rate of solid fuel increases accordingly for the same fuel formulation.

  18. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  19. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  20. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  1. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  2. Does rim microstructure formation degrade the fuel rod performance?

    International Nuclear Information System (INIS)

    Baron, D.; Spino, J.

    2002-01-01

    High burnup extension of LWR fuel is progressing to reduce the total process flow and eventually the costs of the nuclear fuel cycle. A particular fuel restructuring at high burnups, commonly observed at the periphery of LWR fuel pellets (rim structure), but also in FBR fuels to some extent and in the Plutonium rich clusters of the MOX Fuels, was considered a priori as a limitation for burnup extension. Since more than ten years this rim effect have been deeply investigated. Its causes and consequences are however not yet totally elucidated. The three steps actually identified of this phenomenon are first a progressive disappearing of the intra-granular Xenon, the outset of numerous 0.5 to 1 m pores and finally a grain subdivision around the pores. Penalty of the porosity increase on the thermal conductivity is obvious. One expect the fission gases to remain trapped in the rim porosity up to a 75 MWd/kgUO 2 local burnup. Above this threshold, 15 to 20 % of the fission gases seem to be quickly released. Microindentation tests conducted at ITU have shown the rim structure to resist fracture extension under punching. It is still open whether this implies certain ductility and viscosity of the material, or if it corresponds to stress relaxation by microcracking. Whatever the case be, it is suggested that the rim material would be able to decrease the interaction stresses and to equalise the cladding strains during a power ramp. Moreover, in the RIA tests, it was concluded so far that the grain de-cohesion caused by gas expansion at the grain boundaries was responsible for the cladding strain and failure. However, not the rim zone was affected by grain de-cohesion but the region adjacent to it. Therefore, in front of the question whether the rim structure degrades the fuel rod behaviour, we continue to argue on its benefit for fuel burnup extension. (author)

  3. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  4. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    of bacteria and a fungus capable of extensively degrading a broad range of the hydrocarbons mainly composing diesel fuels. Given their remarkable biodegradation potential, stability and resistance to cryopreservation, both consortia appear very interesting candidates for bioaugmentation operations on Diesel fuel impacted soils and sites.

  5. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    extensively degrading a broad range of the hydrocarbons mainly composing diesel fuels. Given their remarkable biodegradation potential, stability and resistance to cryopreservation, both consortia appear very interesting candidates for bioaugmentation operations on Diesel fuel impacted soils and sites.

  6. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  7. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.

    Science.gov (United States)

    Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun

    2014-06-30

    The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  9. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  10. Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation.

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    Full Text Available GTP cyclohydrolase 1 (GTPCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4. GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131 in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.

  11. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  12. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  13. Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-01

    A finite element model of the impact of diverse degradation mechanisms on the impedance spectrum of a solid oxide fuel cell is presented as a tool for degradation mode identification. Among the degradation mechanisms that cause electrode active area loss, the attention is focused on electrode delamination and uniformly distributed surface area loss, which were found to cause distinct and specific changes in the impedance spectrum. Degradation mechanisms resulting in uniformly distributed reactive surface area loss include sintering, sulphur poisoning, and possibly incipient coke formation at the anode, and chromium deposition at the cathode. Parametric studies reveal the extent and limits of applicability of the model and detectability of the different degradation modes, as well as the influence of different cell geometries on the change in impedance behaviour resulting from the loss of active area. It is expected that this technique could form the basis of a useful diagnostic tool for both solid oxide fuel cell developers and users. (author)

  14. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  15. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  16. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  17. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Starch-degrading enzymes from anaerobic non-clostridial bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H; Schepers, H J; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1990-08-01

    A number of meso- and thermophilic anaerobic starch-degrading non-spore-forming bacteria have been isolated. All the isolates belonging to different genera are strictly anaerobic, as indicated by a catalase-negative reaction, and produce soluble starch-degrading enzymes. Compared to enzymes of aerobic bacteria, those of anaerobic origin mainly show low molecular mass of about 25 000 daltons. Some of the enzymes may have useful applications in the starch industry because of their unusual product pattern, yielding maltotetraose as the main hydrolysis product. (orig.).

  19. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune

    2008-01-01

    -reforming catalysis. In the context of electrochemically tested and technologically relevant cells, the majority of the microstructural work is performed on a cell tested at 850°C under relatively severe conditions for 17,500 hours. It is demonstrated that the major Ni rearrangements take place at the interface...... are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work......, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused...

  20. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  1. Spent nuclear fuel structural response when subject to an end impact accident

    Energy Technology Data Exchange (ETDEWEB)

    Tang, D.T.; Guttmann, J. [United States Nuclear Regulatory Commission, Rockville, MD (United States)]|[United States Nuclear Regulatory Commission, Washington, DC (United States); Koeppel, B.J.; Adkins, H.E.

    2004-07-01

    The US Nuclear Regulatory Commission (USNRC) is responsible for licensing spent fuel storage and transportation systems. A subset of this responsibility is to investigate and understand the structural performance of these systems. Studies have shown that the fuel rods of intact spent fuel assemblies with burn-ups up to 45 gigawatt days per metric ton of uranium (Gwd/MTU) are capable of resisting the normally expected impact loads subjected during drop accident conditions. However, effective cladding thickness for intact spent fuel assemblies with burn ups greater than 45 Gwd/MTU can be reduced due to corrosion. The capability of the fuel rod to withstand the expected loads encountered under normal and accident conditions may also be reduced, given degradation of the material properties under extended use, such as decrease in ductility. The USNRC and Pacific Northwest Laboratory (PNNL) performed computational studies to predict the structural response of spent nuclear fuel in a transport system that is subjected to a hypothetical regulatory impact accident, as defined in 10 CFR71.73. This study performs a structural analysis of a typical high burn up Pressurized Water Reactor (PWR) fuel assembly using the ANSYS {sup registered} ANSYS {sup registered} /LS- DYNA {sup registered} finite element analysis (FEA) code. The material properties used in the analyses were based on expert judgment and included uncertainties. Ongoing experimental programs will reduce the uncertainties. The current evaluations include the pins, spacer grids, and tie plates to assess possible cladding failure/rupture under hypothetical impact accident loading. This paper describes the USNRC and PNNL staff's analytical approach, provides details on the single pin model developed for this assessment, and presents the results.

  2. The development of an intraruminal nylon bag technique using non-fistulated animals to assess the rumen degradability of dietary plant materials.

    Science.gov (United States)

    Pagella, J H; Mayes, R W; Pérez-Barbería, F J; Ørskov, E R

    2018-01-01

    Although the conventional in situ ruminal degradability method is a relevant tool to describe the nutritional value of ruminant feeds, its need for rumen-fistulated animals may impose a restriction on its use when considering animal welfare issues and cost. The aim of the present work was to develop a ruminal degradability technique which avoids using surgically prepared animals. The concept was to orally dose a series of porous bags containing the test feeds at different times before slaughter, when the bags would be removed from the rumen for degradation measurement. Bags, smaller than those used in the conventional nylon bag technique, were made from woven nylon fabric, following two shape designs (rectangular flat shape, tetrahedral shape) and were fitted with one of three types of device for preventing their regurgitation. These bags were used in two experiments with individually housed non-pregnant, non-lactating sheep, as host animals for the in situ ruminal incubation of forage substrates. The bags were closed at the top edge by machine stitching and wrapped in tissue paper before oral dosing. Standard times for ruminal incubation of substrates in all of the tests were 4, 8, 16, 24, 48, 72 and 96 h before slaughter. The purpose of the first experiment was to compare the effectiveness of the three anti-regurgitation device designs, constructed from nylon cable ties ('Z-shaped', ARD1; 'double Z-shaped', ARD2; 'umbrella-shaped', ARD3), and to observe whether viable degradation curves could be generated using grass hay as the substrate. In the second experiment, three other substrates (perennial ryegrass, red clover and barley straw) were compared using flat and tetrahedral bags fitted with type ARD1 anti-regurgitation devices. Non-linear mixed-effect regression models were used to fit asymptotic exponential curves of the percentage dry matter loss of the four substrates against time of incubation in the reticulorumen, and the effect of type of anti

  3. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  4. Individual tree detection in intact forest and degraded forest areas in the north region of Mato Grosso State, Brazilian Amazon

    Science.gov (United States)

    Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.

    2017-12-01

    The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the

  5. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Yu, Shuchun; Li, Xiaojin; Li, Jin; Liu, Sa; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2013-01-01

    Highlights: • The hydrophobicity degradation mechanism of GDL was proposed thoroughly. • C-O and C=O groups appeared on the surfaces of GDL after immersion. • The relative content of PTFE in GDL decreased after immersion. • The surfaces and inner structure of GDL destroyed after immersion. - Abstract: As one of the essential components of proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL) is of importance on water management, as well on the performance and durability of PEMFC. In this paper, the hydrophobicity degradation of GDL was investigated by immersing it in the 1.0 mol L −1 H 2 SO 4 solution saturated by air for 1200 h. From the measurements of contact angle and water permeability, the hydrophobic characteristics of the pristine and immersed GDLs were compared. To investigate the causes for hydrophobicity degradation, the GDLs were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry. Further, the chemical compositions of H 2 SO 4 solutions before and after immersion test were analyzed with infrared spectroscopy. Results showed that the hydrophobicity of immersed GDL decreased distinctly, which was caused by the damage of physical structure and surface characteristics. Moreover, the immersed GDL showed a worse fuel cell performance than the pristine GDL, especially under a low humidity condition

  6. Non-destructive delamination detection in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-15

    A finite element model has been developed to simulate the steady state and impedance behaviour of a single operating solid oxide fuel cell (SOFC). The model results suggest that electrode delamination can be detected minimally-invasively by using electrochemical impedance spectroscopy. The presence of cathode delamination causes changes in the cell impedance spectrum that are characteristic of this type of degradation mechanism. These changes include the simultaneous increase in both the series and polarization resistances, in proportion to the delaminated area. Parametric studies show the dependence of these changes on the extent of delamination, on the operating point, and on the kinetic characteristics of the fuel cell under study. (author)

  7. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  8. Summary of Preliminary Criticality Analysis for Peach Bottom Fuel in the DOE Standardized Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1999-01-01

    The Department of Energy's (DOE's) National Spent Nuclear Fuel Program is developing a standardized set of canisters for DOE spent nuclear fuel (SNF). These canisters will be used for DOE SNF handling, interim storage, transportation, and disposal in the national repository. Several fuels are being examined in conjunction with the DOE SNF canisters. This report summarizes the preliminary criticality safety analysis that addresses general fissile loading limits for Peach Bottom graphite fuel in the DOE SNF canister. The canister is considered both alone and inside the 5-HLW/DOE Long Spent Fuel Co-disposal Waste Package, and in intact and degraded conditions. Results are appropriate for a single DOE SNF canister. Specific facilities, equipment, canister internal structures, and scenarios for handling, storage, and transportation have not yet been defined and are not evaluated in this analysis. The analysis assumes that the DOE SNF canister is designed so that it maintains reasonable geometric integrity. Parameters important to the results are the canister outer diameter, inner diameter, and wall thickness. These parameters are assumed to have nominal dimensions of 45.7-cm (18.0-in.), 43.815-cm (17.25-in), and 0.953-cm (0.375-in.), respectively. Based on the analysis results, the recommended fissile loading for the DOE SNF canister is 13 Peach Bottom fuel elements if no internal steel is present, and 15 Peach Bottom fuel elements if credit is taken for internal steel

  9. Woody and non-woody biomass utilisation for fuel and implications ...

    African Journals Online (AJOL)

    Plant biomass is a major source of energy for households in eastern Africa. Unfortunately, the heavy reliance on this form of energy is a threat to forest ecosystems and a recipe for accelerated land resource degradation. Due to the increasing scarcity of traditional fuel wood resources, rural communities have shifted to ...

  10. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  11. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  13. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  14. Anodic deposition-assisted photoelectrocatalytic degradation of bisphenol A at a cadmium sulfide modified electrode based on visible light-driven fuel cells

    International Nuclear Information System (INIS)

    Luo, Jin-Yuan; Chen, Lin-Lin; Liang, Xing-Hui; Zhao, Qian-Wen; Li, Hong

    2015-01-01

    Highlights: • CdS nanoparticles can largely promote anodic deposition of BPA in the dark. • Photoelectrocatalytic degradation of BPA is driven by photo-stimulated fuel cells. • CdS/ITO is regenerated in photoelectrocatalytic degradation process of BPA. • Visible light-driven BPA fuel cell exhibits several unique advantages. - Abstract: A novel photoelectrocatalytic oxidation method has been successfully developed to effectively degrade bisphenol A (BPA) using a visible light-sensitive CdS nanoparticle modified indium-tin oxide (ITO) electrode. In the present protocol, BPA is oxidized on the CdS/ITO electrode to produce a redox-active film (BPA AD ), which is subsequently degraded upon incorporation of visible light irradiation and anodic electric fields, making the CdS/ITO electrode cyclically regenerated and the BPA removed. The addition of CdS nanoparticles to the ITO electrode not only increases the anodic deposition of BPA in the dark, but also promotes the photoelectrocatalytic degradation of BPA under visible light irradiation. The CdS/ITO photoanode shows high regeneration ability, and the removal efficiency of BPA is high up to 94.1%. Meanwhile, a monopolar visible light-simulated BPA fuel cell vs. Ag/AgCl electrode with a salt bridge is fabricated to achieve the photoelectrocatalytic degradation of BPA, showing open-circuit photovoltage of 0.412 (±0.015) V and short-circuit photocurrent density of 20.52 (±1.02) μA cm −2 , respectively. The present study provides a new approach for efficient removal of phenolic pollutants and optimum utilization of renewable energy sources.

  15. SOFC direct fuelling with high-methane gases: Optimal strategies for fuel dilution and upgrade to avoid quick degradation

    International Nuclear Information System (INIS)

    Baldinelli, A.; Barelli, L.; Bidini, G.; Di Michele, A.; Vivani, R.

    2016-01-01

    Highlights: • SOFCs are operated on natural gas and biogas direct feeding. • Methane partial oxidation and dry reforming are compared. • The optimal oxygen-to-carbon stoichiometry to avoid degradation is determined for both natural gas and biogas. • NiYSZ anodes degradation mechanisms are investigated though SEM-EDX and XRD. - Abstract: In the outlook of the transition to the carbon-free society, low-carbon gases, such as natural gas or biogas, are very promising. The first is commonly used for stationary applications based on Solid Oxide Fuel Cells (SOFCs) equipped with external reformers. Similar installations are required when the SOFC is run on biogas. Yet, high SOFC operative temperature enables internal decomposition of light hydrocarbons, therefore allowing the suppression of external reforming. Evidently, this brings about benefits in terms of system complexity and cost reduction. Nonetheless, unlike reformate fuels, direct exposure to large amount of methane favours SOFC anodes degradation. Implementing a systematic experimental approach, this paper aims at determining a simple operative strategy to carry out direct feeding without meeting with quick degradation issues, producing interesting outcomes with regards to the management of SOFC-based systems. Particularly, the regulation of the oxygen-to-carbon (O/C) relative fraction of the fuel through air addition to natural gas and partial CO_2 separation from biogas is helpful in the prevention of those mechanisms. In this study, NiYSZ anode SOFCs are exposed to air-diluted natural gas and upgraded biogas, featuring O/C between 0.2 and 1.2. Tracing these cases, at 800 °C and 500 mA/cm"2 constant load, cell performances are measured over a time interval of 100 h. Finally, post-mortem analysis is performed on the specimens to investigate material morphological changes after the exposure to high-methane fuels. Results showed that O/C = 0.8 (+63% air) is the best case to employ air-diluted natural gas

  16. Reactivity effect of non-uniformly distributed fuel in fuel solution systems

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Yamane, Yoshihiro; Nishina, Kojiro; Mitsuhashi, Ishi.

    1991-01-01

    A numerical method to determine the optimal fuel distribution for minimum critical mass, or maximum k-effective, is developed using the Maximum Principle in order to evaluate the maximum effect of non-uniformly distributed fuel on reactivity. This algorithm maximizes the Hamiltonian directly by an iterative method under a certain constraint-the maintenance of criticality or total fuel mass. It ultimately reaches the same optimal state of a flattened fuel importance distribution as another algorithm by Dam based on perturbation theory. This method was applied to two kinds of spherical cores with water reflector in the simulating reprocessing facility. In the slightly-enriched uranyl nitrate solution core, the minimum critical mass decreased by less than 1% at the optimal moderation state. In the plutonium nitrate solution core, the k-effective increment amounted up to 4.3% Δk within the range of present study. (author)

  17. Perspectives and benefits of the non-proliferating fuel cycle

    International Nuclear Information System (INIS)

    Parker, F.

    2012-01-01

    The world community has faced the issues of nuclear non-proliferation for decades. Frank Parker, Emeritus Distinguished Professor at Vanderbilt University, has proposed a non-proliferating fuel cycle, which greatly reduces the risk of use of nuclear materials for military purpose. A simplified fuel cycle with reduced opportunities for proliferation of nuclear weapons and permanent disposal of radioactive wastes as well as a reference sub-seabed HLW disposal system are described [ru

  18. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  19. Effect of concentration gradients on biodegradation in bench-scale sand columns with HYDRUS modeling of hydrocarbon transport and degradation.

    Science.gov (United States)

    Horel, Agota; Schiewer, Silke; Misra, Debasmita

    2015-09-01

    The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.

  20. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  1. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    International Nuclear Information System (INIS)

    CUNNANE, J.

    2004-01-01

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an ''upper-limit'' (i

  2. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  3. Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Caitlin Howell; Bo Jensen; Frederick Green

    2011-01-01

    Small, low molecular weight, non-enzymatic compounds have been linked to the early stages of brown rot decay as the enzymes involved with holocellulose degradation are too large to penetrate the S3 layer of intact wood cells. We investigated the most notable of these compounds, i.e. hydrogen peroxide, iron, and oxalic acid. The former two are involved in the Fenton...

  4. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... particular, emphasis is placed on bacteria as biocatalysts of choice and their ability to degrade waste coal and ... petroleum and the non-volatile materials composed ...... reduction and rheology for pipeline transportation. Fuel ...

  5. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  6. The impact of family intactness on family functioning, parental control and parent-child relational qualities in a Chinese context

    Directory of Open Access Journals (Sweden)

    Daniel Tan Lei Shek

    2015-01-01

    Full Text Available The current study investigated the differences between intact and non-intact families in family processes, including systematic family functioning, parental behavioral control, parental psychological control, and parent-child relational qualities. The participants were 3,328 Secondary One students, with a mean age of 12.59 years, recruited from 28 secondary schools in Hong Kong. Four validated scales were used to assess family processes. Results showed that adolescents in non-intact families perceived relatively poorer family functioning, lower level of paternal and maternal behavioral control, lower level of paternal psychological control and poorer parent-child relational qualities than did adolescents in intact families. This generally indicated that family processes were poorer in non-intact families, compared with those in intact families. The theoretical and practical implications of the findings were discussed.

  7. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    performance loss caused by CO poisoning can be alleviated by the presence of water vapor. The CO oxidation via the water gas shift reaction is the main reason for the mitigated CO poisoning with the presence of water vapor. Meanwhile, the CO poisoning can deteriorate with the presence of CO2, although the CO2...... for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  8. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  9. Method for modeling the gradual physical degradation of a porous material

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-20

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  10. Method for modeling the gradual physical degradation of a porous material

    International Nuclear Information System (INIS)

    Flach, Greg

    2017-01-01

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  11. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  12. AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING

    International Nuclear Information System (INIS)

    Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

    2010-01-01

    The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

  13. Posttest examination results of recent treat tests on metal fuel

    International Nuclear Information System (INIS)

    Holland, J.W.; Wright, A.E.; Bauer, T.H.; Goldman, A.J.; Klickman, A.E.; Sevy, R.H.

    1986-01-01

    A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity. Eutectic penetration and failure of the cladding were also examined in the failed pins

  14. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  15. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J. CUNNANE

    2004-11-19

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an &apos

  17. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.

    Science.gov (United States)

    Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-04-07

    Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.

  18. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  19. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  20. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, S.D.; Gese, N.J. [Separations Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Wurth, L.A. [Zinc Air Inc., 5314-A US Hwy 2 West, Columbia Falls, MT 59912 (United States)

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  1. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    International Nuclear Information System (INIS)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong; Yan, Zhi-Ying; Zhou, Jun; Wu, Xia-Yuan; Wei, Ping; Jia, Hong-Hua; Zheng, Tao; Yong, Yang-Chun

    2017-01-01

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L"−"1 h"−"1) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H_2O_2 to a maximum of 135.96 μmol L"−"1 at the Fe@Fe_2O_3_(_*_)/graphite felt composite cathode, which further reacted with leached Fe"2"+ to produce hydroxyl radicals. While 100 μmol L"−"1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L"−"1 h"−"1. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO_2. This study provides an energy saving and efficient approach for TPTC degradation.

  2. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  3. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    P. Bernot

    2001-01-01

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% 235 U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to

  4. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  5. Non-Inverting Buck-Boost Converter for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2008-01-01

    Fuel cell DC/DC converters often have to be able to both step-up and step-down the input voltage, and provide a high efficiency in the whole range of output power. Conventional negative output buck-boost and non-inverting buck-boost converters provide both step-up and step-down characteristics....... In this paper the non-inverting buck-boost with either diodes or synchronous rectifiers is investigated for fuel cell applications. Most of previous research does not consider  the parasitic in the evaluation of the converters. In this study, detailed analytical expressions of the efficiencies for the system...

  6. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  7. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  8. Signals of forest degradation in the demography of common Asian amphibians

    Directory of Open Access Journals (Sweden)

    Nancy E. Karraker

    2018-01-01

    Full Text Available Background Lowland areas in tropical East and Southeast Asia have a long history of conversion from forestland to agricultural land, with many remaining forests being chronically degraded by wood cutting, livestock grazing, and burning. Wetland-breeding amphibians that have evolved in lowland forests in the region have adjusted to changes in habitat composition caused by humans’ activities, and populations continue to persist. However, we have little understanding of the impacts of forest disturbance on these species beyond assessments of abundance and distribution, and species considered to be common and widespread have been largely neglected. Methods We examined body condition and sex ratios of toads (Duttaphrynus melanostictus, predation risk in treefrogs (2 Polypedates spp., and growth and survival of leaf litter frogs (2 Microhyla spp. in agricultural land, degraded forest, and intact forest in two study areas, Thailand and Hong Kong. Results Toad populations exhibited higher body condition and female-biased sex ratios in intact forest. Predation of treefrog embryos by flies was lower in intact and degraded forests than in agricultural land. Embryonic survival and larval growth and survival in leaf litter frogs were lower in intact forests than in agricultural land. Results for each study were similar between study areas. Discussion For three of five of these common amphibian species, we documented signals of forest loss and disturbance in their populations. Although these species occur in disturbed habitats, loss of forest cover continues to degrade aspects of their population demography. We urge conservation biologists to consider that populations of species appearing to be common, widespread, and tolerant of human disturbance may be eroding over time.

  9. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  10. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  11. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Yan, Zhi-Ying [Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041 (China); Zhou, Jun; Wu, Xia-Yuan [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Wei, Ping [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Jia, Hong-Hua [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Zheng, Tao, E-mail: zhengtao@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Nengyuan Road, Guangzhou 510640 (China); Yong, Yang-Chun, E-mail: ycyong@ujs.edu.cn [Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-02-15

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L{sup −1} h{sup −1}) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H{sub 2}O{sub 2} to a maximum of 135.96 μmol L{sup −1} at the Fe@Fe{sub 2}O{sub 3(*)}/graphite felt composite cathode, which further reacted with leached Fe{sup 2+} to produce hydroxyl radicals. While 100 μmol L{sup −1} TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L{sup −1} h{sup −1}. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO{sub 2}. This study provides an energy saving and efficient approach for TPTC degradation.

  12. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    International Nuclear Information System (INIS)

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440 0 C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500 0 C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables

  13. Isotope inequilibrium of glucose metabolites in intact cells and particlefree supernatants of Ehrlich ascites tumor

    International Nuclear Information System (INIS)

    Daehnfeldt, J.L.; Winge, P.

    1975-01-01

    With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particle-free supernatants of Ehrlich ascites tumor using I- 14 C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate and fructose-6-phosphate were found to be in near equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle. (U.S.)

  14. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  15. Dissolution of intact UO2 pellet in batch and rotary dissolver conditions

    International Nuclear Information System (INIS)

    Jayendra Kumar Gelatar; Bijendra Kumar; Sampath, M.; Shekhar Kumar; Kamachi Mudali, U.; Natarajan, R.

    2015-01-01

    Comparative dissolution of intact un-irradiated UO 2 pellet of PHWR fuel dimensions was performed in batch and dynamic rotary dissolver conditions in aqueous nitric acid solutions at elevated temperatures. The extent of dissolution was estimated by determining the uranium concentration of the resulting aqueous solution. It was observed that rate of dissolution was much faster in dynamic conditions as compared to static batch conditions. (author)

  16. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  17. Paracetamol degradation in aqueous solution by non-thermal plasma

    Science.gov (United States)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  18. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  19. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  20. Influence of divalent metal ions on degradation of dimethylsulphide ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Dimethylsulphide degradation by intact cells of Thiobacillus thioparus TK-m was stimulated by the addition of divalent .... plastic vials in ice-cooled water. .... tization of authotrophic sulphur bacteria oxidizing dimethyldisulphide.

  1. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  2. Structural chromatin organization as a factor determining the rate of chromatin endonucleolysis in irradiated and intact thymocytes

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Ivannik, B.P.

    1987-01-01

    A study was made of chromatin endonucleolysis in hypotonized thymocytes incubating in digestive buffers containing different concentrations of potassium, magnesium, calcium, and mercaptoethanol. Inhibition of endonucleolysis by univalent cation during the first 20 min of incubation was followed by intensive chromatin degradation. A decrease in free potassium content retarded chromatin degradation and enhanced the inhibiting effect of the univalent cations. The regularities of changes in the rate of chromatin endonucleolysis in different digestive buffers were similar with both exposed and intact thymocytes

  3. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    Directory of Open Access Journals (Sweden)

    Nakorn Tippayawong

    2010-05-01

    Full Text Available Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than that made in oils from gasoline-run engine. There was no significant difference between the effect of gasohol and gasoline on the viscosity of the used lubricating oils. Moreover, no oxidation products in any used oil samples could be detected.

  4. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  5. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  6. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  7. 46 CFR 173.020 - Intact stability standards: Counterballasted and non-counterballasted vessels.

    Science.gov (United States)

    2010-10-01

    ...) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSEL USE Lifting § 173.020 Intact stability standards... vessel that is not equipped to counter-ballast while lifting must be shown by design calculations to... and crane radius. (b) Each vessel must have a righting arm curve with the following characteristics...

  8. Effects of ratios of non-fibre carbohydrates to rumen degradable ...

    African Journals Online (AJOL)

    To evaluate the effect of different ratios of non-fibre carbohydrates (NFC) to rumen degradable protein (RDP) on lactation responses, digestion and dry matter intake (DMI), nine multiparous mid-lactation Holstein cows, averaging 171 +-17 days in milk and 24.1+-3.3 kg of milk/d were assigned to a 3 x 3 Latin square design.

  9. MCCREEP - a model to estimate creep produced by microcracking around a cavity in an intact rock mass

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1991-11-01

    AECL Research is examining the disposal of nuclear fuel waste in a vault in plutonic rock. Models (MCDIRC and MCROC) have been developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. MCDIRC has been constructed to consider the perturbation of the stress state of intact rock by long cylindrical cavities. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which possible movements (creep strain) in the rock mass are estimated. MCDIRC depends on analytical solutions for stress-state perturbations. MCCREEP has been developed from MCDIRC and relies on the use of finite-element methods to solve for stress states. It is more flexible than MCDIRC and can deal with non-homogeneous rock properties and non-symmetrical cavities

  10. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  11. Identical location transmission electron microscopy in combination with rotating disc electrode measurements. The activity of fuel cell catalysts and their degradation

    Energy Technology Data Exchange (ETDEWEB)

    Schloegl, Katrin G.

    2011-07-13

    As an alternative to conventional combustion engines, the Proton Exchange Membrane Fuel Cell (PEMFC) using hydrogen as a fuel is a promising concept owing to its potential independence from fossil fuels, high efficiency and zero emissions. Concerning its commercial viability, the fundamental problem of high system cost per power output and lifetime is closely related to finding more active and stable catalysts for the oxygen reduction reaction. In the presented work, several methods are combined to examine the parameters and processes responsible for both activity and degradation of platinum-based catalysts. Degradation mechanisms are scrutinized by means of electrochemical measurements with the rotating disc electrode in combination with a recently developed TEM technique, which allows for the comparison of identical locations before and after accelerated stress tests. (orig.) [German] Die mit Wasserstoff betriebene Proton Exchange Membrane Brennstoffzelle (PEMFC) stellt aufgrund ihrer potentiellen Unabhaengigkeit von fossilen Energietraegern, ihrem hohen Wirkungsgrad und fehlendem Schadstoffausstoss eine vielversprechende Alternative zum konventionellen Verbrennungsmotor dar. Das grundlegende Problem der zu hohen Systemkosten und zu geringen Lebensdauer fuer kommerzielle Anwendungen ist eng mit der Entwicklung aktiverer und stabiler Elektrokatalysatoren fuer die Sauerstoffreduktion verknuepft. In der vorliegenden Arbeit werden verschiedene Methoden kombiniert, um die Parameter und Prozesse zu untersuchen, welche fuer die Aktivitaet und Degradation platinbasierter Katalysatoren verantwortlich sind. Zur Aufklaerung vorliegender Degradationsmechanismen werden elektrochemische Messungen mit der rotierenden Scheibenelektrode in Kombination mit einer neu entwickelten TEM Methode eingesetzt, welche es ermoeglicht, identische Stellen vor und nach beschleunigten Degradationstests zu untersuchen.

  12. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    International Nuclear Information System (INIS)

    Lell, R. M.; Pope, C. L.

    2000-01-01

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles

  13. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  14. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... rating. (a) If you are a retailer who offers for sale or sells non-liquid alternative vehicle fuel (other... fuel. If you are a retailer who offers for sale or sells electricity to consumers through an electric... vehicle fuel dispensing system, either by letter or on the delivery ticket or other paper, or by a...

  15. The physical and chemical degradation of PWR fuel rods in severe accident conditions

    International Nuclear Information System (INIS)

    Parsons, P.D.; Mowat, J.A.S.; Dewhurst, D.W.F.; Hughes, T.E.

    1983-01-01

    An experimental study of the interaction between Zircaloy-4 cladding and UO 2 in PWR fuel rods heated to high temperatures with a negligible differential pressure across the cladding wall is described. The fuel rods were of dimensions appropriate to the 17x17 PWR fuel sub-assembly and were heated in a non-oxidising environment (vacuum) up to approx. 1850 deg. C either isothermally or through heating ramps. Observations were made concerning the extent and nature of the reaction zone between Zircaloy-4 and UO 2 over the temperature range 1500-1850 deg. C for times ranging from 1 min to 125 min. The location, morphology and the chemical composition of the phases formed are described along with the kinetics of their formation. (author)

  16. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  17. Fuel Effects on Emissions From Non-Road Engines

    Energy Technology Data Exchange (ETDEWEB)

    Murtonen, T.; Nylund, N.

    2003-10-15

    The objective of this project was to study how fuel quality affects the exhaust emissions from different kinds of non-road engines. The project was divided into two parts: emissions from small gasoline engines and emissions from diesel engines. The measured small engines were a 2-stroke chainsaw engine, and a 4-stroke OHV engine, which could be used in different applications. Measurements were done with three different fuels, with and without catalyst. Also a comparison between biodegradable vs. conventional lubrication oil was done with the 2-stroke engine. Measurements were done according to ISO8178 standard. The results clearly demonstrate that using a good quality fuel (e.g. low sulphur, low aromatics) and a catalyst gives the best outcome in overall emission levels from these small engines. In the second part two different diesel engines were tested with five different fuels. Two of the fuels were biodiesel blends. The engines were chosen to represent old and new engine technology. The old engine (MY 1985) was produced before EU emission regulations were in place, and the new engine fulfilled the current EU Stage 2 emission limits. These measurements were also done according to the ISO8178 standard. With the new engine comparison with and without oxidation catalyst was done using two fuels. The results in general are similar compared to the results from the small gasoline engines: fuel quality has an effect on the emissions and when combining a good quality fuel (e.g. low sulphur, low aromatics) and an oxidation catalyst the emission levels are significantly reduced. Also some unregulated emission measurements were done but those results are not included to this report.

  18. Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded.

    Science.gov (United States)

    Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian; Rubinstein, Jay T

    2014-06-01

    Won et al. (J Acoust Soc Am 132:1113-1119, 2012) reported that cochlear implant (CI) speech processors generate amplitude-modulation (AM) cues recovered from broadband speech frequency modulation (FM) and that CI users can use these cues for speech identification in quiet. The present study was designed to extend this finding for a wide range of listening conditions, where the original speech cues were severely degraded by manipulating either the acoustic signals or the speech processor. The manipulation of the acoustic signals included the presentation of background noise, simulation of reverberation, and amplitude compression. The manipulation of the speech processor included changing the input dynamic range and the number of channels. For each of these conditions, multiple levels of speech degradation were tested. Speech identification was measured for CI users and compared for stimuli having both AM and FM information (intact condition) or FM information only (FM condition). Each manipulation degraded speech identification performance for both intact and FM conditions. Performance for the intact and FM conditions became similar for stimuli having the most severe degradations. Identification performance generally overlapped for the intact and FM conditions. Moreover, identification performance for the FM condition was better than chance performance even at the maximum level of distortion. Finally, significant correlations were found between speech identification scores for the intact and FM conditions. Altogether, these results suggest that despite poor frequency selectivity, CI users can make efficient use of AM cues recovered from speech FM in difficult listening situations.

  19. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  20. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  1. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells

    DEFF Research Database (Denmark)

    Huang, Liping; Angelidaki, Irini

    2008-01-01

    Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fuel...... to controls where HAs were not added, addition of commercial HA resulted in increase of power density and coulombic efficiency, which ranged from 7.5% to 67.4% and 24% to 92.6%, respectively. Digested manure wastewater (DMW) was tested as potential mediator for power generation due to its content of natural...

  2. The state of the Primary Degradation Factors and Models of Concrete Cask in Spent Fuel Dry Storage System

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, K. S.; Choi, J. W.; Kwon, S.

    2010-01-01

    In South Korea, a total of twenty nuclear reactors are in operation; the cumulative amount of spent fuel is estimated to be 10,490 MTU in 2009. The full capacity of the waste storage is expected to be saturated in around 2016. However, a national strategy for spent fuel management has not yet been set down and high level waste (HLW) such as spent fuel will have to be stored at-reactor (AR) by re-racking. Recently an worldwide interest on the dry storage has increased especially around U.S. With a perspective of the material of the spent fuel dry storage cask, the system can be divided into two types of metal and concrete casks. The concrete type cask is a very attractive option because of the cost competitiveness of concrete material and its relatively long-term durability. Although the type of metal cask is chosen, the use of cementitious material is inevitable at least for the cask foundation and the facilities for the protection of dry storage structures. Upon being placed, the performance of concrete begins to deteriorate from the intrinsic change of cement and the physical/ chemical environmental conditions. Thus it is necessary to evaluate the durability of a concrete for the increase of reliability and safety of the whole system during the designed life time. Considering the dry storage system of spent fuel is the item which can create a lot of added value, the development of a dry storage cask is usually initiated by private enterprises among developed countries. The detail research results and specific design criteria for the safety assessment of a concrete cask have not been revealed to the public well. In this paper, the major expected degradation factors and related degradation models of concrete casks were investigated as part of the safety assessment by taking account of the site where Korea industrial nuclear power plants are located

  3. Current status of U.S. coal utilization and non-fuel uses of fossil fuels

    International Nuclear Information System (INIS)

    Song, C.S.; Schobert, H.; Scaroni, A.W.

    1997-01-01

    An understanding of the current situation is important for projecting the future direction of coal utilization. The world's annual consumption of coal in 1995 was 5104.01 million short tons (MST, 1 short ton = 0.907 metric ton). Coal plays a very important role in the US energy supply; US coal production in 1995 totaled 1033 MST, including 611.1 MST of bituminous coal, 328.4 MST of subbituminous coal, 86.1 MST of lignite, and 4.1 MST of anthracite. US coal consumption totaled 940.6 MST, with 88.1% in electric utilities, 3.5% in coke plants, 7.8% for other industrial uses, and only 0.6% in the residential and commercial sectors. The amount of fossil resources used for non-fuel purposes accounted for 8.4% of the total annual consumption in 1995. Non-fuel uses of fossil fuels particularly coal may become more important in the future. The demonstrated coal reserves in the world are large enough for consumption for over 220 years at the 1995 level, while proven oil reserves are only about 40 times the world's 1995 consumption level. Coal has several positive attributes when considered as a feedstock for aromatic chemicals, specialty chemicals, and carbon-based materials. Existing nonfuel uses of coals include (1) high temperature carbonization of bituminous and subbituminous coals to make metallurgical coke; (2) gasification of coal to make synthesis gases and other chemicals; (3) use of coal in manufacturing other materials such as activated carbons, carbon molecular sieves (CMS) and production of phosphorus (phosphoric acid); (4) the use of coal tars from carbonization and gasification for making aromatic and phenolic chemicals; (5) the use of coal tar pitch for making carbon fibers and activated carbon fibers; and (6) other non-fuel products derived from coal including combustion by-products. Coal may become more important both as an energy source and as the source of chemical feedstocks in the 21st century

  4. Control of civilian plutonium inventories using burning in a non-fertile fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M. [Lawrence Livermore National Lab., CA (United States); McPheeters, C.C. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Degueldre, C. [Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Paratte, J.M. [Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland)

    1997-05-01

    The increasing inventories of plutonium generated by commercial nuclear power production represent a potential source for proliferation of nuclear weapons. To address this threat we propose separating the plutonium from the other constituents of commercial reactor spent fuel and burning it in a non-fertile fuel based on a zirconium dioxide matrix. The separation can be performed by the Purex process currently in use, but we recommend development of a more compact separation technology that would produce less secondary waste than currently used technology and would allow for more stringent accounting of plutonium inventories. The non-fertile fuel is designed for use in conventional light water power reactors and does not require development of new reactor technology. (orig.).

  5. Control of civilian plutonium inventories using burning in a non-fertile fuel

    Science.gov (United States)

    Oversby, V. M.; McPheeters, C. C.; Degueldre, C.; Paratte, J. M.

    1997-05-01

    The increasing inventories of plutonium generated by commercial nuclear power production represent a potential source for proliferation of nuclear weapons. To address this threat we propose separating the plutonium from the other constituents of commercial reactor spent fuel and burning it in a non-fertile fuel based on a zirconium dioxide matrix. The separation can be performed by the Purex process currently in use, but we recommend development of a more compact separation technology that would produce less secondary waste than currently used technology and would allow for more stringent accounting of plutonium inventories. The non-fertile fuel is designed for use in conventional light water power reactors and does not require development of new reactor technology.

  6. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants

  7. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chen, Fei-Yan; Gu, Zhe-Jia; Zhao, Dawen; Tang, Qun

    2015-01-01

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF 3 nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration

  8. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan [Nanchang University, College of Chemistry (China); Gu, Zhe-Jia [Nanchang University, Institute for Advanced Study (China); Zhao, Dawen [UT Southwestern Medical Center, Department of Radiology (United States); Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2015-09-15

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF{sub 3} nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration.

  9. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  10. Degradation and aggregation of delta sleep-inducing peptide (DSIP) and two analogs in plasma and serum

    International Nuclear Information System (INIS)

    Graf, M.V.; Saegesser, B.; Schoenenberger, G.A.

    1987-01-01

    The biostability of DSIP (delta sleep-inducing peptide) and two analogs in blood was investigated in order to determine if rates of inactivation contribute to variable effects in vivo. Incubation of DSIP in human or rat blood led to release of products having retention times on a gel filtration column equivalent to Trp. Formation of products was dependent on temperature, time, and species. Incubation of 125 I-N-Tyr-DSIP and 125 I-N-Tyr-P-DSIP, a phosphorylated analog, revealed slower degradation and, in contrast to DSIP, produced complex formation. An excess of unlabeled material did not displace the radioactivity supporting the assumption of non-specific binding/aggregation. It was concluded that the rapid disappearance of injected DSIP in blood was due to degradation, whereas complex formation together with slower degradation resulted in longer persistence of apparently intact analogs. Whether this could explain the sometimes stronger and more consistent effects of DSIP-analogs remains to be examined

  11. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  12. An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty

    Science.gov (United States)

    Xi, Xiaopeng; Chen, Maoyin; Zhang, Hanwen; Zhou, Donghua

    2018-05-01

    It is widely noted in the literature that the degradation should be simplified into a memoryless Markovian process for the purpose of predicting the remaining useful life (RUL). However, there actually exists the long-term dependency in the degradation processes of some industrial systems, including electromechanical equipments, oil tankers, and large blast furnaces. This implies the new degradation state depends not only on the current state, but also on the historical states. Such dynamic systems cannot be accurately described by traditional Markovian models. Here we present an improved non-Markovian degradation model with both the long-term dependency and the item-to-item uncertainty. As a typical non-stationary process with dependent increments, fractional Brownian motion (FBM) is utilized to simulate the fractal diffusion of practical degradations. The uncertainty among multiple items can be represented by a random variable of the drift. Based on this model, the unknown parameters are estimated through the maximum likelihood (ML) algorithm, while a closed-form solution to the RUL distribution is further derived using a weak convergence theorem. The practicability of the proposed model is fully verified by two real-world examples. The results demonstrate that the proposed method can effectively reduce the prediction error.

  13. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  14. Rural household biomass fuel production and consumption in Ethiopia: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Mekonnen, A. [Addis Ababa Univ. (Ethiopia). Dept. of Economics and Goeteborg Univ. (Sweden)

    1999-04-01

    Over 90 percent of energy consumption in Ethiopia comes from biomass fuels and this pattern is a major cause of land degradation and deforestation in the country. This paper examines biomass fuel collection and consumption behaviour of a sample of rural households in Ethiopia. We use a non-separable agricultural household model to take into account imperfections in, or absence of, markets for fuel and labour used in collection. The method of instrumental variables (2SLS) is used in the estimation of demand functions to take care of endogeneity of virtual (shadow) fuel prices and wages. Negative own-price elasticities indicate advantages of forest policies that can reduce fuel collection time and make more time available for other activities. The results also suggest that fuel choice and mix are influenced by scarcity which indicate a possibility of policy interventions directed at reducing the relative price of wood and encouraging increased dung use as fertilizer and hence reduced land degradation. While income elasticities of demand give indications of increasing viability of such interventions with growth, the absence of evidence of substitutability and the effects of household resource endowment indicate the importance of cooking habits and culture 36 refs, 3 tabs

  15. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  16. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    Science.gov (United States)

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  17. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert

    2004-01-01

    Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several di...... to the lysosomes. Similar results were obtained in studies of primary human Vbeta8+ T cells stimulated with superantigen. Based on these results, the simplest model for TCR internalization, sorting, and degradation is proposed.......Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several...... divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down...

  18. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  19. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  20. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  1. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  2. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    International Nuclear Information System (INIS)

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-01-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe 2+ ). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe 2+ was 99%). • In DBD/Fe 2+ only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions

  3. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO 2 , which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO 2 . The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  4. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  5. Non-covalent association of protein and capsular polysaccharide on bacteria-sized latex beads as a model for polysaccharide-specific humoral immunity to intact Gram-positive extracellular bacteria1

    Science.gov (United States)

    Colino, Jesus; Duke, Leah; Snapper, Clifford M.

    2013-01-01

    Intact Streptococcus pneumoniae, expressing type 14 capsular polysaccharide (PPS14) and type III Streptococcus agalactiae containing a PPS14 core capsule identical to PPS14, exhibit non-covalent associations of PPS14 and bacterial protein, in contrast to soluble covalent conjugates of these respective antigens. Both bacteria and conjugates induce murine PPS14-specific IgG responses dependent on CD4+ T cells. Further, secondary immunization with conjugate and S. agalactiae, although not S. pneumoniae, results in a boosted response. However, in contrast to conjugate, PPS14-specific IgG responses to bacteria lack affinity maturation, utilize the 44.1-idiotype and are dependent on marginal zone B cells. To better understand the mechanism underlying this dichotomy we developed a minimal model of intact bacteria in which PPS14 and pneumococcal surface protein A (PspA) were stably attached to 1 μm (bacteria-sized) latex beads, but not directly linked to each other, in contrast to PPS14-PspA conjugate. PPS14+[PspA] beads, similar to conjugate, induced in mice boosted PPS14-specific IgG secondary responses, dependent on T cells and ICOS-dependent costimulation, and in which priming could be achieved with PspA alone. In contrast to conjugate, but similar to intact bacteria, the primary PPS14-specific IgG response to PPS14+[PspA] beads peaked rapidly, with the secondary response highly enriched for the 44.1-idiotype and lacking affinity maturation. These results demonstrate that non-covalent association in a particle, of polysaccharide and protein, recapitulates essential immunologic characteristics of intact bacteria that are distinct from soluble covalent conjugates of these respective antigens. PMID:23926322

  6. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  7. Role of aromaticity in humic substances degradation kinetics using non-arrhenius temperature functions

    Czech Academy of Sciences Publication Activity Database

    Kislinger, J.; Novák, František; Kučerík, J.

    2008-01-01

    Roč. 102, č. 15 (2008), s1086-s1088 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z60660521 Keywords : aromaticity * humic substances degradation kinetics * non-arrhenius temperature Subject RIV: EH - Ecology, Behaviour Impact factor: 0.593, year: 2008

  8. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  9. Non-destructive methods of control of thermo-physical properties of fuel rods

    International Nuclear Information System (INIS)

    Kruglov, A B; Kruglov, V B; Kharitonov, V S; Struchalin, P G; Galkin, A G

    2017-01-01

    Information about the change of thermal properties of the fuel elements needed for a successful and safe operation of the nuclear power plant. At present, the existing amount of information on the fuel thermal conductivity change and “fuel-shell” thermal resistance is insufficient. Also, there is no technique that would allow for the measurement of these properties on the non-destructive way of irradiated fuel elements. We propose a method of measuring the thermal conductivity of the fuel in the fuel element and the contact thermal resistance between the fuel and the shell without damaging the integrity of the fuel element, which is based on laser flash method. The description of the experimental setup, implementing methodology, experiments scheme. The results of test experiments on mock-ups of the fuel elements and their comparison with reference data, as well as the results of numerical modeling of thermal processes that occur during the measurement. Displaying harmonization of numerical calculation with the experimental thermograms layout shell portions of the fuel cell, confirming the correctness of the calculation model. (paper)

  10. Treatment alternatives for non-fuel-bearing hardware

    International Nuclear Information System (INIS)

    Ross, W.A.; Clark, L.L.; Oma, K.H.

    1987-01-01

    This evaluation compared four alternatives for the treatment or processing of non-fuel bearing hardware (NFBH) to reduce its volume and prepare it for disposal. These treatment alternatives are: shredding; shredding and low pressure compaction; shredding and supercompaction; and melting. These alternatives are compared on the basis of system costs, waste form characteristics, and process considerations. The study recommends that melting and supercompaction alternatives be further considered and that additional testing be conducted for these two alternatives

  11. Direct detection of radicals in intact soybean nodules

    DEFF Research Database (Denmark)

    Mathieu, C; Moreau, S; Frendo, P

    1998-01-01

    Electron paramagnetic resonance spectroscopy has been employed to examine the nature of the metal ions and radicals present in intact root nodules of soybean plants grown in the absence of nitrate. The spectra obtained from nodules of different ages using this non-invasive technique show dramatic...... differences, suggesting that there are both qualitative and quantitative changes in the metal ion and radical species present. A major component of the spectra obtained from young nodules is assigned to a complex (Lb-NO) of nitric oxide (NO.) with the heme protein leghemoglobin (Lb). This Lb-NO species, which...... has not been previously detected in intact root nodules of plants grown in the absence of nitrate, is thought to be formed by reaction of nitric oxide with iron(II) leghemoglobin. The nitric oxide may be generated from arginine via a nitric oxide synthase-like activity present in the nodules...

  12. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    Science.gov (United States)

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  13. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  14. Household fuel consumption and resource use in rural-urban Ethiopia

    NARCIS (Netherlands)

    Gebreegziabher, Z.

    2007-01-01

    Keywords: biofuels; land degradation; technology adoption; fuel-savings efficiency; stove R&D; household and community tree investments; fuelwood availability; animal dung; biogas; urban fuel demand; rural hinterlands; northern Ethiopia. Fuel scarcity and land degradation are intertwined

  15. Exploratory investigations of hypervelocity intact capture spectroscopy

    Science.gov (United States)

    Tsou, P.; Griffiths, D. J.

    1993-01-01

    The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.

  16. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Nishizaki, K.; Uchida, H.; Watanabe, M. [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  17. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  18. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  19. Synthesis, characterisation and non-isothermal degradation kinetics ...

    Indian Academy of Sciences (India)

    Thus, obtained co-polymer was charac- terized by Fourier transform ... used, the Kissinger method yielded the lowest degradation kinetics. The degradation ... addition of amines with alkenes in methanol water medium, report is available in the ...

  20. United States Department of Energy commercial reactor spent fuel programs being conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Rasmussen, T.L.; Uhl, D.L.

    1987-01-01

    The Idaho National Engineering Laboratory participation in OCRWM programs includes the Spent Fuel Storage Cask Testing Program, Dry Rod Consolidation Technology Program, Prototypical Consolidation Demonstration Program, the Nuclear Fuel Services Project, and the Cask Systems Acquisition Program. The DOE has entered into a cooperative agreement with Virginia Power and the Electric Power Research Institute to demonstrate storage of commercial spent fuel in steel storage casks. The Program conducted heat transfer and shielding tests with three storage casks with intact spent fuel assemblies and two casks with consolidated spent fuel rods, one of which was previously tested with intact fuel, and provides test information in support of Virginia Power's at-reactor dry storage licensing effort. 3 figs., 1 tab

  1. Intact glycopeptide characterization using mass spectrometry.

    Science.gov (United States)

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  2. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  3. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    International Nuclear Information System (INIS)

    CUNNANE, J.C.

    2004-01-01

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release

  4. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  5. Comparison of US/FRG accident condition models for HTGR fuel failure and radionuclide release

    International Nuclear Information System (INIS)

    Verfondern, K.

    1991-03-01

    The objective was to compare calculation models used in safety analyses in the US and FRG which describe fission product release behavior from TRISO coated fuel particles under core heatup accident conditions. The frist step performed is the qualitative comparison of both sides' fuel failure and release models in order to identify differences and similarities in modeling assumptions and inputs. Assumptions of possible particle failure mechanisms under accident conditions (SiC degradation, pressure vessel) are principally the same on both sides though they are used in different modeling approaches. The characterization of a standard (= intact) coated particle to be of non-releasing (GA) or possibly releasing (KFA/ISF) type is one of the major qualitative differences. Similar models are used regarding radionuclide release from exposed particle kernels. In a second step, a quantitative comparison of the calculation models was made by assessing a benchmark problem predicting particle failure and radionuclide release under MHTGR conduction cooldown accident conditions. Calculations with each side's reference method have come to almost the same failure fractions after 250 hours for the core region with maximum core heatup temperature despite the different modeling approaches of SORS and PANAMA-I. The comparison of the results of particle failure obtained with the Integrated Failure and Release Model for Standard Particles and its revision provides a 'verification' of these models in this sense that the codes (SORS and PANAMA-II, and -III, respectively) which were independently developed lead to very good agreement in the predictions. (orig./HP) [de

  6. Acceptance of non-fuel assembly hardware by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high-priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high-level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. 14 refs., 12 figs., 43 tabs

  7. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  8. Catalytic degradation of waste high-density polyethylene into fuel products using BaCO{sub 3} as a catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jan, M. Rasul; Shah, Jasmin; Gulab, Hussain [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan)

    2010-11-15

    Waste high-density polyethylene (HDPE) was degraded thermally and catalytically using BaCO{sub 3} as a catalyst under different conditions of temperature, cat/pol ratio and time. The oil collected at optimum conditions (450 C, 0.1 cat/pol ratio and 2 h reaction time) was fractionated at different temperatures and fuel property of the fractions and parent oil was evaluated by their physicochemical parameters for fuel tests. The results were compared with the standard values for gasoline, kerosene and diesel oil. Boiling point distribution (BPD) curves were plotted from the gas chromatographic study of the samples and compared with that of the standard gasoline, kerosene and diesel. The oil samples were analyzed using GC/MS in order to find out their composition. The physical parameters and the composition of the parent oil and its fractions support the resemblance of the samples with the standard fuel oils. The light fractions best match with gasoline, the middle fractions match with kerosene and the heavier fractions match with diesel oil in almost all of the characteristic properties. (author)

  9. Ingested soluble CD14 from milk is transferred intact into the blood of newborn rats.

    Science.gov (United States)

    Ward, Tonya L; Spencer, William J; Davis, Laura D R; Harrold, Joann; Mack, David R; Altosaar, Illimar

    2014-02-01

    Milk acts as an edible immune system that is transferred from mother to newborn. Soluble Cluster of Differentiation 14 (sCD14) is a protein found in significant quantities in human milk (~8-29 µg/ml). At a 10-fold lower concentration in the blood (~3 µg/ml), the most notable role of sCD14 is to sequester lipopolysaccharides of Gram-negative bacteria from immune cells. To explore the pharmacodynamics of this milk protein and its biological fate, the biodistribution of radiolabeled sCD14 ((14)C, (125)I) was monitored in 10-d-old rat pups. Up to 3.4 ± 2.2% of the radiolabeled sCD14 administered was observed, intact, in the pup blood for up to 8 h post-ingestion. Additionally, 30.3 ± 13.0% of the radiolabeled sCD14 administered was observed degraded in the stomach at 8 h post-ingestion. A reservoir of intact, administered sCD14 (3.2 ± 0.3%), however, remained in the stomach at 8 h post-ingestion. Intact sCD14 was observed in the small intestine at 5.5 ± 1.6% of the dose fed at 8 h post-ingestion. The presence of intact sCD14 in the blood and the gastrointestinal tract of newborns post-ingestion has implications in the development of allergies, obesity, and other inflammation-related pathogeneses later in life.

  10. Effects of intraoperative electron irradiation in the dog on cell turnover in intact and surgically-anastomosed aorta and intestine

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Morrow, B.M.; Travis, E.L.; Tepper, J.; Merkel, A.B.; Kranda, K.; Terrill, R.

    1983-01-01

    Adults dogs were subjected to laparotomy and intraoperative electron irradiation after division and reanastomosis of aorta or after construction of a blind loop of small intestine having a transverse suture line and an end-to-side anastomosis. Dogs received intraoperative irradiation of both intact and anastomosed aorta or intestine in doses of 0, 2000, 3000, or 4500 rad. Animals were sacrificed at seven days or three months following treatment. At 24 hours prior to sacrifice, dogs received 5 mCi tritiated thymidine intravenously. Irradiated and non-irradiated segments of aorta and small intestine, including intact and anastomotic regions, were analyzed for tritiated thymidine incorporation and were subjected to autoradiography. Incorporation studies showed diminution in tritiated thymidine uptake by irradiated portions of aorta and small intestine, in both intact and anastomotic regions. Autoradiograms revealed that irradiated areas of intact or anastomotic aorta or intestine had diminished labeling of stromal cells, suggesting a lowered cell proliferative capacity of irradiated tissue compared to non-irradiated portions. Inflammatory cells showed similar labeling indices in irradiated and non-irradiated tissues, both intact and surgically-manipulated, suggesting that irradiation does not significantly affect a subsequent local inflammatory response. Radiation-induced decreases in tritiated thymidine incoporation in irradiated aorta and small intestine were generally more marked at seven days than at three months following irradiation, suggesting that radiation-induced depression of cell turnover rates decreases with time

  11. Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Gazso, L.G.

    1997-01-01

    The intent of the workshop organizers was to convene experts in the fields of corrosion and spent nuclear fuels. The major points which evolved from the interaction of microbiologists, material scientists, and fuel storage experts are as follows: Corrosion of basin components as well as fuel containers or cladding is occurring; Water chemistry monitoring, if done in the storage facility does not take into account the microbial component; Microbial influenced corrosion is an area that many have not considered to be an important contributor in the aging of metallurgical materials especially those exposed to a radiation field; Many observations indicate that there is a microbial or biological presence in the storage facilities but these observations have not been correlated with any deterioration or aging phenomena taking place in the storage facility; The sessions on the fundamentals of microbial influenced corrosion and biofilm pointed out that these phenomena are real, occurring on similar materials in other industries and probably are occurring in the wet storage of spent fuel; All agreed that more monitoring, testing, and education in the field of biological mediate processes be performed and financially supported; Loosing the integrity of fuel assemblies can only cause problems, relating to the future disposition of the fuel, safety concerns, and environmental issues; In other rad waste scenarios, biological processes may be playing a role, for instance in the mobility of radionuclides in soil, decomposition of organic materials of the rad waste, gas production, etc. The fundamental scientific presentations discussed the full gamut of microbial processes that relate to biological mediated effects on metallic and non-metallic materials used in the storage and containment of radioactive materials

  12. Factors affecting diesel fuel degradation using a bespoke high-pressure fuel system rig

    OpenAIRE

    Gopalan, Kesavan; Smith, Christopher; Pickering, Simon; Chuck, Christopher; Bannister, Christopher

    2018-01-01

    Recently, there has been automotive industry-wide impetus to reduce overall diesel vehicle emissions and fuel consumption by increasing fuel injection pressures within common rail systems. Many production fuel injection systems are now capable of delivering rail pressures of 1800-2000 bar with those able to achieve 3000 bar under development. In addition, there has been a gradual increase in the permitted FAME content in EN590 diesel from 5% to 7% with further increases to 10% proposed. With ...

  13. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  14. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  15. Influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Minkler, W [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-04-01

    On the basis of a number of graphs and data on theoretical combustion temperatures and the difference between the heating value of the fuel and the waste gas in respect of 1 m/sup 3/ of waste gas, the author demonstrates the influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere derived from five different fuels. A rotary-hearth furnace is described for the non-oxidizing heating of pressings from plain carbon and alloy steel.

  16. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  17. Contribution to the study of degradation products of spent fuel reprocessing solvents using mass spectroscopy, its different linkages and by the use of stable isotopes

    International Nuclear Information System (INIS)

    Lesage, Denis

    1995-01-01

    Tributylphosphate (TBP) is used as an extraction solvent in nuclear fuel reprocessing. The presence of uranium fission products leads to the formation of a large variety of organic compounds resulting from radiolytic degradation of TBP. Some of these compounds can complex metallic cations, and as a result, to decrease nuclear fuel extraction yields. In this work we have studied by tandem mass spectrometry the fragmentation mechanisms of different TBP and their dimers. These molecules are interesting because of the similarity of their structures to other more complex molecules formed by irradiation (functionalized TBP and TBP dimers). This work allowed to identify mixtures of degradation products and relate their structures to radiolytic mechanisms. Ail these results, including structure determination and formation mechanisms, have been validated by using specifically labeled compounds (deuterium, oxygen 18, nitrogen 15). (author) [fr

  18. Degradation of tropoelastin and skin elastin by neprilysin

    DEFF Research Database (Denmark)

    Mora Huertas, Angela C.; Schmelzer, Christian E. H.; Luise, Chiara

    2018-01-01

    was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave...... young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1' upon cleavage of tropoelastin...... and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes....

  19. Effects of lysosomal inhibitors on 125I-insulin and 125I-asialofetuin degradation by the isolated, perfused rat liver and isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Ward, W.F.; Moss, A.L.

    1985-01-01

    To further evaluate the role of the lysosomal system in insulin degradation, the authors have compared the effects of inhibitors of lysosomal function on the degradation of 125 I-insulin with 125 I-asialofetuin, a lysosomally targeted molecule, by the intact, perfused rat liver and the isolated rat hepatocyte. The inhibitors employed were chloroquine ( 125 microM), NH 4 Cl (10 mM), and leupeptin (50 micrograms/ml). In the intact, perfused liver the observed inhibition of 125 I-asialofetuin degradation at 30 min was as follows: chloroquine, 38%; NH 4 Cl, 32%; and leupeptin, 86%. Chloroquine also inhibited 125 I-insulin degradation in the intact, perfused liver (29%), but NH 4 Cl and leupeptin had no effect. Using the isolated hepatocyte, the observed values for inhibition of 125I-asialofetuin at 60 min were: chloroquine, 85%; NH 4 Cl, 76%; and leupeptin, 81%. Chloroquine produced a 28% inhibition of 125I-insulin degradation, while NH 4 Cl and leupeptin had no effect. Chloroquine and NH 4 Cl decreased cell-associated radioactivity when isolated hepatocytes were incubated with 125I-asialofetuin (leupeptin had no effect), whereas chloroquine caused a 107% increase in cell-associated radioactivity when 125I-insulin was added to the incubation media (NH 4 Cl and leupeptin had no effect). These results indicate that the effects of chloroquine on insulin degradation are an extralysosomal action and that lysosomes appear not to be involved in the physiologic degradation of the insulin molecule

  20. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  1. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2018-05-01

    Full Text Available Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF model coupled with a chemistry component (WRF-Chem to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning versus non-fire (including fossil fuel combustion, and road dust, etc. sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a fossil fuel burning only, (b biomass burning only, and (c both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼  4110 per year in 2002 to  ∼  6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is

  2. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  3. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  4. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, NikAthirah; Lee, Sin-Li; Yusuf, Sara Yasina

    2017-10-01

    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their V oc , J sc and P max . The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of code SFINEL (Spent fuel integrity evaluator)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Chin Young; Ohk, Young Kil; Yang, Yong Sik; Kim, Dong Ju; Kim, Nam Ku [Hanyang University, Seoul (Korea)

    1999-01-01

    SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed through this project. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms. SFINEL code has been thoroughly benchmarked against the collected in-pile data and operating experiences: deformation and rupture, and cladding oxidation, rod internal pressure creep, then comprehensive whole degradation process. (author). 75 refs., 51 figs., 5 tabs.

  6. Strength analysis of fast gas cooled reactor fuel element in conditions of fuel-cladding interraction and non-uniform azimuthal heating

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.

    1984-01-01

    The technique and the PRORT mathematical program in FORTRAN language for determining mechanical properties of a fuel element with motionless fuel-cladding interaction taking into account circular temperature non-uniformity in gas-cooled fast reactor conditions are proposed. The calculation results of the fuel element of dissociating gas cooled fast reactor are presented for seven cross-sections over the height of the core. The obtained data testify to appreciable swelling of Cr16Ni15Mo3Nb steel fuel cladding in the conditions of dissociating gas cooled fast reactor through the allowance for the effect of stresses on this essential parameter shows, that its value is lower in comparison with swelling, wherein stresses are not taken into account

  7. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)

    2014-07-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  8. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  9. Fuel From Self-Degrading Bioengineering Packaging

    National Research Council Canada - National Science Library

    Gross, Richard A

    2005-01-01

    Research focused on developing an enzyme that could be embedded within a single-use plastic and convert the plastic after use to products of value such as fuel to troops in the field. Polylactic acid (PLA...

  10. Determination of nuclear fuel burnup by non-destructive gamma spectroscopy

    International Nuclear Information System (INIS)

    Soares, A.J.

    1979-01-01

    The determination of nuclear fuel burnup by the non-destructive gamma spectroscopy method is studied. A MTR (Materials Testing Reactor) -type fuel element is used in the measurement. The fuel element was removed from the reactor core in 1958 and, because of the long decay time, show only one peak in is gamma spectrum at 661.6 Kev. Corresponding to 137 Cs. Measurements are made at 330 points of the element using a Nal detector and the final result revealed that the quantity of 235 U consumed was 3.3 +- 0,8 milligram in the entire element. The effect of the migration of 137 Cs in the element is neglected in view of the fact that it occurs only when the temperature is above 1000 0 C, which is not the case in IEAR-1. (Author)

  11. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  12. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non

  13. Serum steroid levels in intact and endocrine ablated BALB/c nude mice and their intact littermates

    DEFF Research Database (Denmark)

    Brünner, N; Svenstrup, B; Spang-Thomsen, M

    1986-01-01

    An investigation was made of the serum steroid levels found in intact and endocrine ablated nude mice of both sexes and in their intact homozygous littermates. The results showed that nude mice have a normal steroidogenesis, but with decreased levels of circulating steroids compared to those...

  14. An assessment of the transportation costs of shipping non-fuel assembly hardware to FWMS facilities

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Johnson, P.E.; Danese, F.L.; Best, R.E.

    1991-01-01

    This study examines the cost of using Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Initiative I casks for transporting 62,700 MTU of spent fuel plus associated non-fuel assembly hardware (NFAH) between reactor sites and either a monitored retrievable storage (MRS) or a repository facility. The study further considers the benefits of increasing the cell size of the Initiative I BWR cask baskets to accommodate the fuel plus channels (which also would decrease the capacity of the cask to carry BWR fuel without channels) and the use of a commercial, non-spent-fuel cask to carry compacted NFAH that could not be shipped integrally. Costs that are developed involve transportation charges, capital costs for casks, and canning costs of NFAH that have been separated from the fuel. The results indicate that significant cost savings are possible if NFAH is accepted into the Federal Waste Management System (FWMS) that is either integral with the spent fuel, or consolidated if it has been separated. Shipment of unconsolidated NFAH is very expensive. Transportation costs for shipping to a western repository are approximately 50 to 75% higher than the costs for shipping to an eastern MRS

  15. Computational Modeling of Degradation of Substituted Benzyltrimethyl Ammonium: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, H.; Pivovar, B. S.

    2014-09-01

    The degradation of cations on the alkaline exchange membranes is the major challenge for alkaline membrane fuel cells. In this paper, we investigated the degradation barriers by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations, which is one of the most commonly used cations for alkaline exchange membranes. We found that substituted cations with electron-releasing substituent groups at meta-position of the benzyl ring could result in improved degradation barriers. However, after investigating more than thirty substituted BTMA+ cations with ten different substituent groups, the largest improvement of degradation barriers is only 1.6 kcal/mol. This implies that the lifetime of alkaline membrane fuel cells could increase from a few months to a few years by using substituted BTMA+ cations, an encouraging but still limited improvement for real-world applications.

  16. Valine pyrrolidide preserves intact glucose-dependent insulinotropic peptide and improves abnormal glucose tolerance in minipigs with reduced beta-cell mass

    DEFF Research Database (Denmark)

    Larsen, Marianne Olholm; Rolin, Bidda; Ribel, Ulla

    2003-01-01

    levels of intact GLP-1 but increased levels of intact GIP (from 4543 +/- 1880 to 9208 +/- 3267 pM x min; P glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 +/- 480 to 1582 +/- 353 mM x min; P =.05). VP did not increase insulin levels during the oral......The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation. However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment...... glucose tolerance test (OGTT) but increased the insulinogenic index in normal animals (from 83 +/- 42 to 192 +/- 108; P

  17. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  18. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  19. Degradation of EBR-II driver fuel during wet storage

    International Nuclear Information System (INIS)

    Pahl, R. G.

    2000-01-01

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH

  20. Non-standard constraints within In-Core Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, G.I. [University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 (United States); Torres, C. [Comision Federal de Electricidad, Gestion de Combustible, Mexico, D.F. (Mexico); Marrote, G.N.; Ruiz U, V. [Global Nuclear Fuel, Americas, LLC, PO Box 780, M/C A16, Wilmington, NC28402 (United States)]. e-mail: Ivan.Maldonado@uc.edu

    2004-07-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  1. Non-standard constraints within In-Core Fuel Management

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Torres, C.; Marrote, G.N.; Ruiz U, V.

    2004-01-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  2. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available The thermal stability and kinetics of non-isothermal degradation of polypropene and polypropene composites filled with 20 mass% vigorously grounded and mixed raw rice husks (RRH, black rice husks ash (BRHA, white rice husks ash (WRHA and Aerosil Degussa (AR were studied. The calculation procedures of Coats – Redfern, Madhysudanan et al., Tang et al., Wanjun et al. and 27 model kinetic equations were used. The kinetics of thermal degradation were found to be best described by kinetic equations of n-th order (Fn mechanism. The kinetic parameters E, A, ΔS≠, ΔH≠and ΔG≠for all the samples studied were calculated. The highest values of n, E and A were obtained for the composites filled with WRHA and AR. A linear dependence between lnA and E was observed, known also as kinetic compensation effect. The results obtained were considered enough to conclude that the cheap RRH and the products of its thermal degradation BRHA and WRHA, after vigorously grounding and mixing, could successfully be used as fillers for polypropene instead of the much more expensive synthetic material Aerosil to prepare various polypropene composites.

  3. Improvement of degradation with non-condensable gas in micro steam injector

    International Nuclear Information System (INIS)

    Saihara, Atsushi; Horiki, Sachiyo; Osakabe, Masahiro; Ohmori, Shuichi

    2007-01-01

    Effect of non-condensable gas on a micro steam injector (MSI) to obtain a vacuum was experimentally studied. When a pure steam was used in the MSI, the high vacuum condition was obtained. However when the mass fraction of air included in the steam was larger than a cartain value, the MSI became unstable and the vacuum condition could not be obtained. It is considered that the malfunction is due to the instability triggered with the uncondensed steam remained at the throat in downstream of the condensing region. The water nozzle was expected to be a key component to mitigate the effect of non-condensable gas. Three kinds of water nozzle whose flow areas were round, star and screw shapes were used in the present experiment. The star-shaped nozzle where the increased surface area could be expected to compensate the degradation of condensation failed to improve the malfunction of MSI with the non-condensable gas. The screw nozzle expected to drive air away outside the condensing surface could mitigate the effect of non-condensable gas. (author)

  4. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  5. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  6. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  7. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    International Nuclear Information System (INIS)

    W. L. Poe, Jr.; P.F. Wise

    1998-01-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage

  8. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  9. TRU transmutation using ThO2-UO2 and fully ceramic micro-encapsulated fuels in LWR fuel assemblies

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Sergi

    2012-01-01

    The objective of this work is to design new LWR fuel assemblies which are able to efficiently destroy TRU (transuranics) nuclide without degradation of safety aspects by using ThO 2 -UO 2 fuel pins and FCM (Fully Ceramic Micro-encapsulated) fuel pins containing TRU fuel particles. Thorium was mixed to UO 2 in order to reduce the generation of plutonium nuclides and to save the uranium resources in the UO 2 pins. Additionally, the use of thorium contributes to the extension of the fuel cycle length. All calculations were performed by using DeCART (Deterministic Core Analysis based on Ray Tracing) code. The results show that the new concept of fuel assembly has the TRU destruction rates of ∼40% and ∼25% per 1200 EFPD (Effective Full Power Day) over the TRU FCM pins and the overall fuel assembly, respectively, without degradation of FTC and MTC

  10. Main chain acid-degradable polymers for the delivery of bioactive materials

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  11. Multi-Objective Optimization Considering Battery Degradation for a Multi-Mode Power-Split Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xuerui Ma

    2017-07-01

    Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

  12. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  13. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., 45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k eff . Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  14. Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Stockman, Christine T.

    2014-01-01

    This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early PAs to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998. - Highlights: • Progression of modeling of waste degradation in performance assessments is discussed for the proposed repository at Yucca Mountain. • Progression of evaluating dissolved concentrations of radionuclides in the source-term is discussed. • Radionuclide transport modeling in the waste, container, and invert in 1995 and thereafter is discussed. • Colloid-facilitated transport in the waste, container, and invert in 1998 and thereafter is discussed

  15. Comparative Investigation of Mechanical–Physical Characteristics of Biodegradable and Non-Degradable Yarns

    Directory of Open Access Journals (Sweden)

    Krikštanavičienė Kira

    2014-06-01

    Full Text Available This article presents the results from investigations of tensile tests, absorbency test and degradation test of biodegradable and non- or partly biodegradable yarns produced from pure poly hydroxybutyrate-co-valerate (PHBV, poly (lactide acid (PLA, isotactic polypropylene (iPP polymers and their blends. The results indicate that mechanical-physical properties of PHBV are improved by adding PLA and iPP to PHBV. The main results indicate that the PHBV/PLA and PHBV/iPP (70/30 blends had better mechanical properties than pure PHBV, as well as improved immiscibility and the same or lower degradation in sodium chloride solution, respectively. The PHBV/PLA and PHBV/iPP blends showed a tendency for lower crystallinity and stiffness of the yarns, rendering them less stiff and fragile. The absorption tests showed that absorption dynamic process depends on the structure and raw materials of the yarns. The disinfectant in all samples is absorbed faster than blood. Research results showed that pure PHBV yarns have good hydrophobic properties, compared with pure PLA and iPP yarns. The use of additional PLA and iPP polymers changed the wetting behaviour of yarns. Absorption time of blended yarns in disinfectant liquid decreases and absorption time in the case of blood significantly increases in comparison with PLA and iPP yarns and decreases compared with PHBV yarns. The degradation tests (within 90 days in a solution of sodium chloride showed that pure PHBV and PHBV/PLA blends degraded at different rates but with the loss of the same weight, while pure PHBV and PHBV/iPP blends degraded at the same rate, but PHBV/iPP blends had worse destruction results. Such improvements are expected to be important for the practical application of PHBV in some fields

  16. Crowd Confrontation and Non-Lethal Weapons: A Literature Review and Conceptual Model

    Science.gov (United States)

    2008-03-01

    counterterrorist situations, when there is a need to incapacitate one or several terrorists operating from within a larger group of harmless individuals. In such...weapons include some microbes capable of degrading fuel, an herbicide (“Agent Orange”), as well as non-lethal anti-personnel mines. It is concluded

  17. Degradation of High Mountain Ecosystems in Northern Europe

    Institute of Scientific and Technical Information of China (English)

    J(o)rg L(o)ffler

    2004-01-01

    Data material of a long-term highmountain ecosystem research project was used to interpret the grazing impact of reindeers. In central Norway investigations were conducted to both, areas where reindeer grazing is excluded, and areas where intensive pasturing is present for a long period of time.The comparative analysis of grazing impact was based on similar environmental conditions. The results were transposed to northern Norway where dramatic overgrazing had been exceeding the carrying capacity.Using landscape ecological mappings, especially of vege ation and soils, the impact of reindeer grazing in different areas became obvious. Non-grazedlichen-dominated ecosystems of the snow-free locations functioned sensitively near the limit of organism survival. These localities were most influenced by grazing as they offer the winter forage to the reindeers. So, intensive grazing in central Norway led to landscape degradation by destruction of the vegetation and superinduced by soil erosion.Those features were comparable to the situation in northern Norway, where a broad-scale destruction of the environment combined with a depression of the altitudinal belts had occurred due to overgrazing.Functioning principles of intact high mountain systems were explained and used to interpret the environmental background for the understanding of degradation phenomena. Finally, the use of a new model calculating the carrying capacity of high mountain landscape was discussed.

  18. Review of direct electrical heating experiments on irradiated mixed-oxide fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Bandyopadhyay, G.

    1982-01-01

    Results of approximately 50 out-of-reactor experiments that simulated various stages of a loss-of-flow event with irradiated fuel are presented. The tests, which utilized the direct electrical heating technique to simulate nuclear heating, were performed either on fuel segments with their original cladding intact or on fuel segments that were extruded into quartz tubes. The test results demonstrated that the macro- and microscopic fuel behavior was dependent on a number of variables including fuel heating rate, thermal history prior to a transient, the number of heating cycles, type of cladding (quartz vs stainless steel), and fuel burnup

  19. Back-end of the fuel cycle and non-proliferation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chebeskov, A.N.; Oussanov, V.I.; Iougai, S.V.; Pshakin, G.M. [Institute of Physics and Power Engineering, State Scientific Center of Russian Federation, Obninsk (Russian Federation)

    2001-07-01

    The paper focuses on the problem of fissile materials proliferation risk estimation. Some methodological approaches to the solution of this task and results of their application for comparison of different nuclear fuel cycle strategies are discussed. The results of comparative assessment of non-proliferation aspects of plutonium utilization alternatives in Russia using system analysis approach are presented. (author)

  20. Back-end of the fuel cycle and non-proliferation strategies

    International Nuclear Information System (INIS)

    Chebeskov, A.N.; Oussanov, V.I.; Iougai, S.V.; Pshakin, G.M.

    2001-01-01

    The paper focuses on the problem of fissile materials proliferation risk estimation. Some methodological approaches to the solution of this task and results of their application for comparison of different nuclear fuel cycle strategies are discussed. The results of comparative assessment of non-proliferation aspects of plutonium utilization alternatives in Russia using system analysis approach are presented. (author)

  1. Development of a code and models for high burnup fuel performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Kitajima, S [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1997-08-01

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs.

  2. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  3. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  4. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  5. Mechanisms of the initial stage of fuel elements degradation of BN reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zagorul'ko, Yu.I.; Kashcheev, M.V.; Ganichev, N.S.

    2015-01-01

    On the base of developed calculational technique numerical evaluation is carried out to the time of fuel element fracture in conditions of loss of sodium flow through fuel element jacket. Data on mechanical properties of steel EhK-164 is used in calculations. Calculations are carried out for different conditions of jacket outer surface cooling: by sodium of 1073 K temperature, by boiling sodium and by sodium in condition of film boiling. It is shown that time to jacket fracture under considered rupture mechanisms essentially depends on fuel element cooling conditions [ru

  6. The degradation of zirconium alloys in nuclear reactors - a review

    International Nuclear Information System (INIS)

    Lim, D.; Graham, N.A.

    1986-01-01

    This report presents the findings of a survey of available non-Canadian literature on the oxidation and hydriding of zirconium alloys. Much of the literature was found to address the Zircaloys, particularly when used as fuel cladding subjected to a radioactive and oxidizing environment. Hydriding of Zircaloys is mainly attributed to oxidation. The survey revealed that Zr-Nb alloys have been included in some investigations; however, data on the long-term degradation of Zr-2.5 wt% Nb, in particular, were scarce. The reviewed literature did not lead to conclusions regarding the potential for accelerated hydriding due to corrosion at crevices and/or second-phase particles, nor did it lead to conclusions as to the potential for a 'breakaway' in oxidation and hydrogen acquisition in long service life of Zr-Nb alloys. Specific information on service experience in U.S.S.R. power reactors could not be obtained; however, most of the information surveyed leads to the conclusion that fuel channels having Zr-2.5 wt% Nb pressure tubes should perform satisfactorily with respect to degradation from corrosion and hydriding provided they are installed correctly and are not operated under conditions that are far removed from those anticipated in design. 91 refs

  7. Interpretation of Actinide-Distribution Data Obtained from Non-Destructive and Destructive Post-Test Analyses of an Intact-Core Column of Culebra Dolomite

    International Nuclear Information System (INIS)

    LUCERO, DANIEL A.; PERKINS, W. GEORGE

    1999-01-01

    The US DOE, with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, New Mexico. Performance assessment analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for releases of radionuclides from the disposal system. In modeling long-term brine releases, subsequent to a drilling event, potential migration pathways through the permeable layers of rock above the Salado formation were analyzed. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been earned out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241 Pu and 241 Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft--AIS). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22 Na. Elution experiments carried out over periods of a few days with tracers 232 U and 239 Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241 Pu and 241 Am were attempted, but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241 Pu and 241 Am after a period of brine flow, non-destructive and

  8. Non-linear behaviour of multi-phase MOX fuels: a micro-mechanical approach

    International Nuclear Information System (INIS)

    Rousette, S.; Gatt, J.M.; Michel, J.C.

    2005-01-01

    The modelling of mechanical pellet-clad interaction requires knowledge of the thermo-mechanical behaviour of nuclear fuels. Some nuclear fuels such as MOX are composed of several phases. The mechanical properties of these phases, which are elasto-visco-plastic in-pile, are changing in-pile. The objective is to formulate a mechanical behaviour law taking all the physical phenomena into account in the different phases, which can easily be introduced into a fuel rod modelling code. Consequently, Non-uniform Transformation Field Analysis (NTFA) is used on the one hand, to correctly capture the heterogeneity of the anelastic strain in the different phases and, on the other hand, to provide a simple overall constitutive law for computational codes. This method is a good way to describe the behaviour of MOX fuel. Transformation Field Analysis (TFA), which corresponds to piecewise uniform transformation fields, is used to perform a sensitivity study. (authors)

  9. Fuel rod analysis to respond to high burnup and demanding loading requirements. Probabilistic methodology recovers design margins narrowed by degrading fuel thermal conductivity and progressing FGR

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, R; Heins, L; Sontheimer, F [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-08-01

    The proof that fuel rods will safely withstand all loads arising from inpile service conditions is generally achieved through the assessment of a number of design criteria by using a conservative analysis methodology in conjunction with design limits ``on the safe side``. The classical approach is the application of a fuel rod code to the Worst Case which is defined by the combination of most unfavorable conditions and assumptions with respect to the criterion under consideration. As it is evident that the deterministic construction of such Worst Cases imply an (unknown but) intuitively very high degree of conservatism, it is not surprising that this will develop to cause problems the more demanding fuel insertion conditions have to be anticipated (increased burnup, high efficiency loading schemes, etc.). A certain relief can be gained form cautious revisions of single design limits based on grown performance experience. But this increase of knowledge allows as well to change the established deterministic ``go/no-go`` conception into a better differentiating assessment methodology by which the quantification of the implied conservatism and the remaining design margins is possible: the Probabilistic Design Methodology (PDM). Principles and elements of the PDM are described. An essential prerequisite is a best-estimate fuel rod code which incorporates the latest state of knowledge about potential performance limiting phenomena (e.g. burnup degradation of fuel oxide thermal conductivity) as Siemens/KWU`s CARO-E does. An example is given how input distributions for rod data and model parameters transfer into a frequency distribution of maximum rod internal pressure, and indications are given how this is to be interpreted in view of a probabilistically re-formulated design criterion. The PDM provides a realistic conservative assessment of design criteria and will thus recover design margins for increasingly aggravated loading conditions. (author). 9 refs, 9 figs, 2 tabs.

  10. Fuel rod analysis to respond to high burnup and demanding loading requirements. Probabilistic methodology recovers design margins narrowed by degrading fuel thermal conductivity and progressing FGR

    International Nuclear Information System (INIS)

    Eberle, R.; Heins, L.; Sontheimer, F.

    1997-01-01

    The proof that fuel rods will safely withstand all loads arising from inpile service conditions is generally achieved through the assessment of a number of design criteria by using a conservative analysis methodology in conjunction with design limits ''on the safe side''. The classical approach is the application of a fuel rod code to the Worst Case which is defined by the combination of most unfavorable conditions and assumptions with respect to the criterion under consideration. As it is evident that the deterministic construction of such Worst Cases imply an (unknown but) intuitively very high degree of conservatism, it is not surprising that this will develop to cause problems the more demanding fuel insertion conditions have to be anticipated (increased burnup, high efficiency loading schemes, etc.). A certain relief can be gained form cautious revisions of single design limits based on grown performance experience. But this increase of knowledge allows as well to change the established deterministic ''go/no-go'' conception into a better differentiating assessment methodology by which the quantification of the implied conservatism and the remaining design margins is possible: the Probabilistic Design Methodology (PDM). Principles and elements of the PDM are described. An essential prerequisite is a best-estimate fuel rod code which incorporates the latest state of knowledge about potential performance limiting phenomena (e.g. burnup degradation of fuel oxide thermal conductivity) as Siemens/KWU's CARO-E does. An example is given how input distributions for rod data and model parameters transfer into a frequency distribution of maximum rod internal pressure, and indications are given how this is to be interpreted in view of a probabilistically re-formulated design criterion. The PDM provides a realistic conservative assessment of design criteria and will thus recover design margins for increasingly aggravated loading conditions. (author). 9 refs, 9 figs, 2 tabs

  11. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  12. Modeling of coated fuel particles irradiation behavior

    International Nuclear Information System (INIS)

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  13. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  14. Intact glycopeptide characterization using mass spectrometry

    OpenAIRE

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prykova, Iya; Wu, Si

    2016-01-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to r...

  15. What do we know about the secretion and degradation of incretin hormones?

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2005-01-01

    mediated via a neural loop involving GRP. Once they have been released, both GLP-1 and GIP are subject to rapid degradation. The ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV) cleaves N-terminally, removing a dipeptide and thereby inactivating both peptides, because the N-terminus is crucial...... for receptor binding. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. The intact peptides are inactivated during passage across the hepatic bed and further metabolised by the peripheral tissues, while the kidney is important for the final elimination...

  16. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2017-07-01

    The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.

  17. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  18. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  19. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    International Nuclear Information System (INIS)

    Thornton, T.A.

    2000-01-01

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix

  20. DSNF and other waste form degradation abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Thomas A.

    2000-12-20

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix.

  1. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    Science.gov (United States)

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  2. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hill; Denzel L. Fillmore

    2005-10-01

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

  3. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  4. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  5. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  6. Non fuel bearing component(NFBC) inspection device

    International Nuclear Information System (INIS)

    Kurokawa, Hideyuki; Kosaka, Tatsuya.

    1994-01-01

    The device of the present invention continuously inspects the length and abrasion/corrosion states for a plurality of non-fuel bearing components (NFBC) under water in a pit. That is, the device comprises the following components. Two sets of frames are planted vertically on a pit wall. A support stand capable of opening and closing is disposed at the upper portion of the frame to sustain each control rods of the NFBC. An abrasion/corrosion measuring tool is disposed vertically movably on the frame at the lower portion of the support stand for detecting abrasion/corrosion states on the surface of each of the fuel rods. A lifting device is disposed outside of the pit for lifting the abrasion/corrosion measuring tools. The measuring tool is disposed vertically movably at a lower portion of the frame for measuring the length of each of the control rods. Then NFBCs are inserted and positioned reliably underwater in the pit, the length of the NFBCs and the abrasion/corrosion states on the surface of the control rod can be observed, the inspecting tools can be exchanged easily since the support stand is capable of opening and closing, and the inspection can be made continuously because of the dual structure according to the present invention. (I.S.)

  7. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  8. Integrity of spent CANDU fuel during and following dry storage

    International Nuclear Information System (INIS)

    Villagran, J.E.

    2004-01-01

    This report examines the issue of CANDU fuel integrity at the back end of the fuel cycle and outlines a program designed to provide assurance that used CANDU fuel will retain its integrity over an extended period. In specific terms, the program is intended to provide assurance that during and following extended dry storage the fuel will remain fit to undergo, without loss of integrity, the handling, packaging and transportation operations that might be necessary until it is placed in disposal containers. The first step in the development of the program was a review of the available technical information on phenomena relevant to fuel integrity. The major conclusions from that review were the following: Under normal storage conditions it is unlikely that the spent fuel will suffer significant degradation during a one-hundred year period and it should be possible to retrieve, repackage and transport the fuel as required, using methods and systems similar to those used today. However, to provide increased confidence regarding the above conclusion, investigations should be conducted in areas where there is higher uncertainty in the prediction of fuel condition and on some degradation processes to which the fuel appears to present higher vulnerability. The proposed program includes, among other tasks, irradiated fuel tests, analytical studies on the most relevant fuel degradation processes and the development of a long-term fuel verification program. (Author)

  9. Fission product release from nuclear fuel I. Physical modelling in the ASTEC code

    International Nuclear Information System (INIS)

    Brillant, G.; Marchetto, C.; Plumecocq, W.

    2013-01-01

    Highlights: • Physical modeling of FP and SM release in ASTEC is presented. • The release is described as solid state diffusion within fuel for high volatile FP. • The release is described as FP vaporisation for semi volatile FP. • The release is described as fuel vaporisation for low volatile FP. • ASTEC validation is presented in the second paper. - Abstract: This article is the first of a series of two articles dedicated to the mechanisms of fission product release from a degraded core as they are modelled in the ASTEC code. The ASTEC code aims at simulating severe accidents in nuclear reactors from the initiating event up to the radiological consequences on the environment. This code is used for several applications such as nuclear plant safety evaluation including probabilistic studies and emergency preparedness. To cope with the requirements of robustness and low calculation time, the code is based on a semi-empirical approach and only the main limiting phenomena that govern the release from intact rods and from debris beds are considered. For solid fuel, fission products are classified into three groups, depending on their degree of volatility. The kinetics of volatile fission products release depend on the rate-limiting process of solid-state diffusion through fuel grains. For semi-volatile fission products, the release from the open fuel porosities is assumed to be governed by vaporisation and mass transfer processes. The key phenomenon for the release of low volatile fission products is supposed to be fuel volatilisation. A similar approach is used for the release of fission products from a rubble bed. An in-depth validation of the code including both analytical and integral experiments is the subject of the second article

  10. Fuel utilization in a progressive conversion reactor (PCR)

    International Nuclear Information System (INIS)

    Leyse, C.F.; Judd, J.L.

    1981-05-01

    Preliminary studies indicate that for once-through fuel cycles, the PCR offers potential improvements over current LWRs in the following major areas: improved uranium utilization (reduced uranium demand), degraded plutonium product in spent fuel, reduced plutonium content of spent fuel, reduced amount of spent fuel, reduced fissile content of spent fuel, and reduced separative work

  11. Evolution of processing of GE fuel clad tubing for corrosion resistance in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.D. [GE Nuclear Energy, Wilmington, NC (United States); Adamson, R.B. [GE Nuclear Energy, Wilmington, NC (United States); Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Plaza-Meyer, E. [GE Nuclear Energy, Wilmington, NC (United States); Proebstle, R.A. [GE Nuclear Energy, Wilmington, NC (United States); White, D.W. [GE Nuclear Energy, Wilmington, NC (United States)

    1996-05-01

    The current modification of the primary GE in-process solution-quench heat treatment, an (alpha+beta) solution-quench carried out at a tube diameter requiring only two subsequent reduction and anneal cycles, is applicable to Zr barrier fuel clad tubing, to non-barrier fuel clad tubing, and to the TRICLAD tubing product. A combination of good in-reactor corrosion performance and degradation resistance is anticipated for these products, based on knowledge of metallurgical characteristics and supported by the demonstrated performance capability of the Zircaloy-2 materials used. (orig.)

  12. High performance liquid chromatographic analysis of insulin degradation products from a cultured kidney cell line

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Frank, B.H.; Yagil, C.; Rabkin, R.

    1988-01-01

    The kidney is a major site for insulin removal and degradation, but the subcellular processes and enzymes involved have not been established. We have examined this process by analyzing insulin degradation products by HPLC. Monoiodoinsulin specifically labeled on either the A14 or B26 tyrosine residue was incubated with a cultured kidney epithelial cell line, and both intracellular and extracellular products were examined on HPLC. The products were then compared with products of known structure generated by hepatocytes and the enzyme insulin protease. Intracellular and extracellular products were different, suggesting two different degradative pathways, as previously shown in liver. The extracellular degradation products eluted from HPLC both before and after sulfitolysis similarly with hepatocyte products and products generated by insulin protease. The intracellular products also eluted identically with hepatocyte products. Based on comparisons with identified products, the kidney cell generates two fragments from the A chain of intact insulin, one with a cleavage at A13-A14 and the other at A14-A15. The B chain of intact insulin is cleaved in a number of different sites, resulting in peptides that elute identically with B chain peptides cleaved at B9-B10, B13-B14, B16-B17, B24-B25, and B25-B26. These similarities with hepatocytes and insulin protease suggest that liver and kidney have similar mechanisms for insulin degradation and that insulin protease or a very similar enzyme is involved in both tissues

  13. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  14. First qualitative analysis of fuel irradiation results carried out in the MR reactor on WWER-1000 fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chantoin, P [International Atomic Energy Agency, Vienna (Austria); Dubrovin, K; Platonov, P [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Onufriev, V [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    Four experiments carried out in the MR reactor are evaluated. They are aimed to assess the influence of burnup and the size of the pellet central hole on the fuel temperature and thus on the fuel swelling and fission gas release. The experiments have been performed at different linear rate and burnup of the fuel rods which are above the actual licensed values in WWER power stations. In this paper the results on WWER fuel rod behaviour are examined. The main fabrication and irradiation characteristics for each experiment are given. The main results from destructive and non-destructive examinations are summarized. They include: burnup determination by gamma spectroscopy, caesium shifting along fuel column and accumulation at the end of the fuel stack, fission gas release. fuel rod diameter and length change and macro-graphs showing the central hole size and the morphology after irradiation. From observation of fuel structure, Cs spectrometry and fission gas release, a large degradation of fuel thermal conductivity can be identified at high burnup. If the fuel burnup is the right parameter to be considered, burnup limits identified are: 0 70-75 MWd/kg for rods with large central hole; (2) 58-64 MWd/kg for rods with small central hole. As a general conclusion it is stressed the importance of the study due to irradiation beyond the usual linear rates at high burnup. Up to now the fuel life limiting factor was cladding corrosion when using Zircaloy-4. As the cladding corrosion situation improves, the next life limiting factor to be met could be the fuel itself. The decreasing fuel thermal conductivity is probably of prime importance and should be further studied and modelled. 5 tabs., 5 figs., 3 refs.

  15. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  16. Development of a non-engine fuel injector deposit test for alternative fuels (ENIAK-project)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Pohland vom Schloss, Heide [OWI - Oel Waerme Institut GmbH, Herzogenrath (Germany)

    2013-06-01

    Deposit formation in and on the injectors of diesel engines may lead to injector malfunction, resulting in a loss in power, rough engine operation and poor emission levels. Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, good housekeeping when using biodiesel is required, and all additives have to pass a no-harm test concerning injector fouling. The standard fouling tests are two engine tests: The XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine and cannot reproduce internal diesel injector deposits (IDID). The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 1 per test, both contributing to the high costs of the test. The ENIAK-Project is funded by the FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources) and conducted in cooperation with AGQM, ASG and ERC. Its main goal is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses a complete common rail system. The injection takes place in a self-designed reactor instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle, leading to a low amount of fuel required. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. (orig.)

  17. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  18. Strategies for Analyzing Data from Intact Groups.

    Science.gov (United States)

    Cross, Lawrence H.; Lane, Carolyn E.

    Action research often necessitates the use of intact groups for the comparison of educational treatments or programs. This paper considers several analytical methods that might be used for such situations when pretest scores indicate that these intact groups differ significantly initially. The methods considered include gain score analysis of…

  19. Malnutrition among Cognitively Intact, non-Critically Ill Older Adults in the Emergency Department

    Science.gov (United States)

    Pereira, Greg F.; Bulik, Cynthia M.; Weaver, Mark A.; Holland, Wesley C.; Platts-Mills, Timothy F.

    2014-01-01

    Objectives We estimate the prevalence of malnutrition among older patients presenting to an emergency department (ED) in the southeastern United States and identify subgroups at increased risk. Methods We conducted a cross-sectional study with random time block sampling of cognitively intact patients aged 65 years and older. Nutrition was assessed using the Mini Nutritional Assessment Short-Form (0–14 scale) with malnutrition defined as a score of 7 or less and at-risk for malnutrition defined as a score of 8–11. The presence of depressive symptoms was defined as a Center for Epidemiological Studies Depression-10 score of 4 or more (0–10 scale). Results Among 138 older adults, 16% (95% Confidence Interval [CI], 10%–22%) were malnourished and 60% (95% CI, 52%–69%) were either malnourished or at-risk for malnutrition. Seventeen of the 22 malnourished patients (77%) denied previously being diagnosed with malnutrition. The prevalence of malnutrition was not appreciably different between males and females, across levels of patient education, or between those living in urban and rural areas. However, the prevalence of malnutrition was higher among patients with depressive symptoms 52%, those residing in assisted living 50%, those with difficulty eating 38%, and those reporting difficulty buying groceries 33%. Conclusion Among a random sample of cognitively intact older ED patients, more than half were malnourished or at-risk for malnutrition, and the majority of malnourished patients had not previously been diagnosed. Higher rates of malnutrition among those with depression, difficulty eating, and difficulty buying groceries suggest the need to explore multifaceted interventions. PMID:25129819

  20. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  1. Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Persiani, P K [Argonne National Lab., IL (United States)

    1997-07-01

    The purpose of the study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiative and safeguards systems. Alternative recycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products. The concepts are alternatives to either the direct long-term storage deposition of or the purex reprocessing of the spent fuels. The alternate fuel cycle concepts reviewed include: the dry-recycle processes such as the direct use of reconfigured PWR spent fuel assemblies into CANDU reactors(DUPIC); low-decontamination, single-cycle co-extraction of fast reactor fuels in a wet-purex type of reprocessing; and on a limited scale the thorium-uranium fuel cycle. The nonproliferation advantages usually associated with the above non-separation processes are: the highly radioactive spent fuel presents a barrier to the physical diversion of the nuclear material; avoid the need to dissolve and chemically separate the plutonium from the uranium and fission products; and that the spent fuel isotopic quality of the plutonium vector is further degraded. Although the radiation levels and the need for reprocessing may be perceived as barriers to the terrorist or the subnational level of safeguards, the international level of nonproliferation concerns is addressed primarily by material accountancy and verification activities. On the international level of nonproliferation concerns, the non-separation fuel cycle concepts involved have to be evaluated on the bases of the impact the processes may have on nuclear materials accountancy. (author).

  2. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    International Nuclear Information System (INIS)

    Williamson, D.A.

    1991-01-01

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  3. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  4. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

    Science.gov (United States)

    He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng

    2018-04-15

    A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  6. Fiscal 1994 survey report. Survey of factors causing degradation of phosphoric acid fuel cells; 1994 nendo rinsangata nenryo denchi no cell rekka yoin chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This survey aims to effectively promote studies for evaluating phosphoric acid fuel cell degradation. Data of time-dependent changes in voltage are collected from 58 plants now in operation (for 17,500 hours at the maximum). Half of them exhibit a degradation rate of 0.25-1%/1000 hours while degradation is abruptly accelerated midway in the other half. Causes for voltage drop are not known clearly. Since but a little systematically collected test data are available concerning the mechanism of cell degradation, it is decided that tests be conducted using small test model cells sharing the same specifications. Primary test conditions (combination of temperature, current, and pressure with test reference levels), performance evaluating methods (conditions of data collection), and methods of investigation by dismantling (items and frequency of investigations) are determined, and guidelines are provided for element tests for complementing the said test items and for studying their relations with the degradation mechanism. Based on acceleration-related factors to be obtained by common specification test cells, corporations involved will develop their own accelerated test methods. Small cells are fabricated for testing parameters, and model cells are specified. (NEDO)

  7. Fuel use and emissions from non-road machinery in Denmark from 1985-2004 - and projections from 2005-2030

    International Nuclear Information System (INIS)

    Winther, M.; Nielsen, Ole-Kenneth

    2006-01-01

    This report documents the updated 1985-2004 fuel use and emission inventory for non road machinery and recreational craft in Denmark. The inventory comprises the emission components of SO 2 , NO x , NMVOC, CH 4 , CO, CO 2 , N 2 O, NH 3 and TSP, and in addition a fuel use and emission forecast is presented from 2005-2030. The calculated results are grouped into the sub-sectors agriculture, forestry, industry, household/gardening and inland waterways, according to the structure of the CollectER database used for all Danish sources. The report explains the existing EU emission directives for non road machinery, the actual fuel use and emission factors used, sources of background and operational data, calculation methods and the calculated fuel use and emission results. (au)

  8. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    Energy Technology Data Exchange (ETDEWEB)

    Sjoholm, Ole R.; Nybroe, Ole [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Aamand, Jens [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, 1350 Copenhagen K (Denmark); Sorensen, Jan, E-mail: jan@life.ku.d [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2010-12-15

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before {sup 14}C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10{sup -16} mol C intact cell{sup -1} day{sup -1}) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  9. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    International Nuclear Information System (INIS)

    Sjoholm, Ole R.; Nybroe, Ole; Aamand, Jens; Sorensen, Jan

    2010-01-01

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before 14 C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10 -16 mol C intact cell -1 day -1 ) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  10. Non-linear degradation model of cement barriers in a borehole repository for disused radioactive sources

    International Nuclear Information System (INIS)

    Gharbieh, Heidar K.; Cota, Stela

    2015-01-01

    Narrow diameter borehole facilities (a few tens of centimeters), like the BOSS concept developed by the IAEA, provide a safe and cost effective disposal option for radioactive waste and particularly disused sources. The BOSS concept (borehole disposal of sealed radioactive sources) comprises a multi-barrier system of cement grout and stainless steel components. In order to predict the long-time performance of the cement barriers as an input of a future safety assessment under the specific hydrochemical and hydrological conditions, a non-linear degradation model was developed in this work. With the assistance of the program 'PHREEQC' it describes the change of the porosity and the hydraulic conductivity with time, which also let to conclusions concerning the change of the sorption capacity of the cement grout. This work includes the theoretical approach and illustrates the non-liner degradation by means of an exemplary water composition found in the saturated zone and the dimensions of the backfill made of cement grout representing a barrier of the BOSS borehole facility. (author)

  11. A new non-degradative method to purify glycogen.

    Science.gov (United States)

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Experimental and modeling study of Portland cement paste degradation in boric acid

    International Nuclear Information System (INIS)

    Benakli, A.; Chomat, L.; Le Bescop, P.; Wall, J.

    2015-01-01

    In the framework of Spent Fuel Pools (SFP) lifetime studies, an investigation of the Portland cement degradation in boric acid has been requested by the Electric Power Research Institute. The main goal of this study is to identify the physico-chemical degradation mechanisms involved in boric acid media. Both experimental and modeling approaches are considered. Concerning degradation experiments, sample of cement paste are immersed during three and nine months in a boric acid solution at 2400 ppm that is periodically renewed. Boric acid concentration has been chosen to be representative of SFP solution. Results will be confronted with reactive transport numerical calculations performed by the reactive transport code HYTEC associated with a dedicated extended database called Thermoddem. The analysis of degradation solution revealed a main ions release mechanism driven by diffusion especially for calcium, nitrate, sodium and sulfate. Leaching behavior of magnesium seems to be more complex. Decalcification is the major degradation process involved, even if a non-negligible contribution of further cations (Mg 2+ , Na + ) and anions (SO 4 2- ) has been noticed. Analysis of degradation soution also revealed that kinetic of Portland cement paste degradation in boric acid is higher than in pure water, regarding the degraded depths measured and calcium leaching rate. This observation has been confirmed by solid characterization. Microstructure analysis of degraded Portland cement paste showed a global porosity increase in the degraded zone that might be mainly attributed to Portlandite dissolution. An Ettringite reprecipitation in the degraded zone has been suspected but could also be Ettringite-like phases containing boron. The analysis techniques used did not allow us to differentiate it, and no others specific mineral phases containing boron has been identified. Profile pattern by XRD analysis allowed us to identify four zones composing the degraded Portland cement paste

  13. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  14. Numerical solution of the elastic non-axial contact between pellet and cladding of fuel rod in PWR

    International Nuclear Information System (INIS)

    Zymak, J.

    1987-08-01

    Elastic non-axial contacts between the pellet and the cladding of a fuel rod in a pressurized water reactor were calculated. The existence and the uniqueness of the solution were proved. The problem was approximated by the finite element method and quadratic programming was used for the solution. The results will be used in the solution of the probabilistic model of a fuel rod with non-axial pellets in a PWR. (author). 10 figs., 4 tabs., 10 refs

  15. 50 CFR 622.38 - Landing fish intact.

    Science.gov (United States)

    2010-10-01

    ... that is operating under the respective trip limits. Such cut-off fish also may be sold. A maximum of... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Landing fish intact. 622.38 Section 622.38... Landing fish intact. The operator of a vessel that fishes in the EEZ is responsible for ensuring that fish...

  16. Out-pile test of non-instrumented capsule for the advanced PWR fuel pellets in HANARO irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Oh, D. S.; Bang, J. K.; Kim, Y. M.; Yang, Y. S.; Jeong, Y. H.; Jeon, H. K.; Ryu, J. S. [KAERI, Taejon (Korea, Republic of)

    2002-05-01

    Non-instrumental capsule were designed and fabricated to irradiate the advanced pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. This capsule was out-pie tested at Cold Test Loop-I in KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented capsule of advanced PWR fuel pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the capsule ranges from 13.0 to 32.3 Hz. RMS displacement for non-instrumented capsule of advanced PWR fuel pellet is less than 11.6 {mu}m, and the maximum displacement is less that 30.5 {mu}m. The flow rate for endurance test were 8.19 kg/s, which was 110% of 7.45 kg/s. And the endurance test was carried out for 100 days and 17 hours. The test results found not to the wear satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented capsule.

  17. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  18. Pharmacokinetics of erythropoietin in intact and anephric dogs

    International Nuclear Information System (INIS)

    Fu, J.S.; Lertora, J.J.; Brookins, J.; Rice, J.C.; Fisher, J.W.

    1988-01-01

    The present studies were performed to determine the pharmacokinetic parameters of erythropoietin in intact and anephric dogs by use of unlabeled crude native erythropoietin (nEp) and iodine 125-labeled purified recombinant erythropoietin (rEp) given by intravenous infusion for 15 minutes. Sephadex G-75 gel filtration was used to confirm that the 125I-rEp molecule remained iodinated in dog plasma during the 24-hour period of these studies. The plasma disappearance of erythropoietin conformed to a biexponential equation for both nEp and 125I-rEp, with the central compartment being larger than the peripheral compartment. The mean distribution half-life of 75.3 +/- 21.2 minutes for nEp was significantly (p less than 0.05) longer than that of 125I-rEp (23.7 +/- 5.0 minutes) in intact dogs. The intercompartmental clearance (CIic) for nEp (0.018 +/- 0.006 L/kg/hr) was significantly smaller than that of 125I-rEp (0.068 +/- 0.018 L/kg/hr) in intact dogs (p less than 0.05). There were no significant differences in apparent volume of distribution, elimination half-life, and elimination clearance (CIe) for nEp and rEp in intact dogs. The mean elimination half-life for 125I-rEp in intact dogs (9.0 +/- 0.6 hours) and anephric dogs (13.8 +/- 1.4 hours) was significantly different (p less than 0.05). The CIe for 125I-rEp in anephric dogs (0.008 +/- 0.001 L/kg/hr) was significantly (p less than 0.05) smaller than that of 125I-rEp in intact dogs (0.011 +/- 0.001 L/kg/hr). There were no significant differences in apparent volume of distribution, distribution half-life, and CIic for 125I-rEp in intact and anephric dogs

  19. Scientific issues in fuel behaviour

    International Nuclear Information System (INIS)

    1995-01-01

    The current limits on discharge burnup in today's nuclear power stations have proven the fuel to be very reliable in its performance, with a negligibly small rate of failure. However, for reasons of economy, there are moves to increase the fuel enrichment in order to extend both the cycle time and the discharge burnup. But, longer periods of irradiation cause increased microstructural changes in the fuel and cladding, implying a larger degradation of physical and mechanical properties. This degradation may well limit the plant life, hence the NSC concluded that it is of importance to develop a predictive capability of fuel behaviour at extended burnup. This can only be achieved through an improved understanding of the basic underlying phenomena of fuel behaviour. The Task Force on Scientific Issues Related to Fuel Behaviour of the NEA Nuclear Science Committee has identified the most important scientific issues on the subject and has assigned priorities. Modelling aspects are listed in Appendix A and discussed in Part II. In addition, quality assurance process for performing and evaluating new integral experiments is considered of special importance. Main activities on fuel behaviour modelling, as carried out in OECD Member countries and international organisations, are listed in Part III. The aim is to identify common interests, to establish current coverage of selected issues, and to avoid any duplication of efforts between international agencies. (author). refs., figs., tabs

  20. Effects of fuel relocation on reflood in a partially-blocked rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.

  1. Evaluation of the qualification of SPERT [Special Power Excursion Reactor Test] fuel for use in non-power reactors

    International Nuclear Information System (INIS)

    1987-08-01

    This report summarizes the US Nuclear Regulatory Commission staff's evaluation of the qualification of the stainless-steel-clad uranium/oxide (UO 2 ) fuel pins for use in non-power reactors. The fuel pins were originally procured in the 1960's as part of the Special Power Excursion Reactor Test (SPERT) program. Argonne National Laboratory (ANL) examined 600 SPERT fuel pins to verify that the pins were produced according to specification and to assess their present condition. The pins were visually inspected under 6X magnification and by X-radiographic, destructive, and metallographic examinations. Spectrographic and chemical analyses were performed on the UO 2 fuel. The results of the qualification examinations indicated that the SPERT fuel pins meet the requirements of Phillips Specification No. F-1-SPT and have suffered no physical damage since fabrication. Therefore, the qualification results give reasonable assurance that the SPERT fuel rods are suitable for use in non-power reactors provided that the effects of thin-wall defects in the region of the upper end cap and low-density fuel pellets are evaluated for the intended operating conditions. 1 ref., 4 figs., 11 tabs

  2. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  3. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  4. Fuel use and emissions from non-road machinery in Denmark from 1985-2004 - and projections from 2005-2030

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Nielsen, Ole-Kenneth [National Environmental Research Inst. (Denmark)

    2006-08-31

    This report documents the updated 1985-2004 fuel use and emission inventory for non road machinery and recreational craft in Denmark. The inventory comprises the emission components of SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3} and TSP, and in addition a fuel use and emission forecast is presented from 2005-2030. The calculated results are grouped into the sub-sectors agriculture, forestry, industry, household/gardening and inland waterways, according to the structure of the CollectER database used for all Danish sources. The report explains the existing EU emission directives for non road machinery, the actual fuel use and emission factors used, sources of background and operational data, calculation methods and the calculated fuel use and emission results. (au)

  5. Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper. Polycyclic aromatic ... production of paper, feeds, chemicals and fuels there is ... microbes with the production of lignin-modifying enzymes ... enable white rot fungi to degrade a variety of toxic.

  6. Postirradiation examination of HTR fuel

    International Nuclear Information System (INIS)

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances

  7. Alternative fuel cycles and non-proliferation aspects

    International Nuclear Information System (INIS)

    Kessler, G.

    1980-10-01

    The most important physical characteristics of the U/Pu and the Th/U fuel cycles and the technical data of the most significant converter reactors operating with Th/U fuel are outlined in the report. Near breeders as well as breeders with a thermal neutron spectrum are briefly discussed, and the potential of breeders with fast neutron spectra in the Th/U fuel is outlined. The essential criteria for the comparison of the alternative fuel cycles with the reference Pu/U cycle are the consumption of natural uranium, the numbers of U-233 producing and U-233 consuming converter reactors and the amounts of fission material transported and handled within the fuel cycle (reprocessing, refabrication). Although the alternative U/Th fuel cycles are feasible with some advantages and some disadvantages as compared to the reference U/Pu cycle, not much experience has so far been gathered with pilot plants of the fuel cycle. The respective status in reprocessing, refabrication and waste disposal is briefly discussed. Finally, a comparison of the risk potential inherent in secular storage is presented and questions of resistance to proliferation and of safeguards of the U/Th cycle are discussed

  8. Life-cycle global warming and non-renewable energy consumption impacts of ammonia fuel

    International Nuclear Information System (INIS)

    Are, Kristian Ray Angelo; Razon, Luis; Tan, Raymond Girard

    2015-01-01

    The use of ammonia (NH 3 ) as transportation fuel had been a recent topics of research interest. NH 3 has fuel properties that are better than those of other alternative fuels, such as it high energy density and simpler storage. However, it has a low flame speed and would require to be mixed with a secondary fuel forming a dual fuel system. Moreover, current industrial methods of NH 3 production are major global warming potential (GWP) and non-renewable energy consumption (NREC) impact contributors. This study assessed the life-cycle GWP and NREC of using different NH 3 -secondary fuel mixtures. Four fuel mixtures were considered, wherein NH 3 is mixed with gasoline, diesel, hydrogen or dimethyl ether (DME). Also, our processes of NH 3 production were considered: steam reforming (SR), partial oxidation (PO), which are industrial methods and two biomass-based (alternative) processes wherein cereal straw (Salix) and cyanobacteria (Anabaena ATCC 33047) are used feedstocks. Contribution, sensitivity, and uncertainty analyses (via Monte Carlo simulation) were conducted for life-cycle interpretation. Dominance matrix tool was also employed to aid in drawing conclusions. The study concludes that the environmental impacts of NH 3 fuel are dependent on (i) NH 3 production methods and (ii) type of NH 3 fuel mixture. NH 3 -diesel fuel mixtures have lower GWP compared to pure diesel, while NH 3 -gasoline fuel mixture have higher GWP compared to pure gasoline. Because of large uncertainty of the NREC pure gasoline and pure diesel, no firm conclusion can be made about the NREC ammonia-diesel and ammonia-gasoline. If fuel mixture types are compared, NH 3 -H 2 mixtures have the lowest GWP and NREC among the four, though this would entail designing new engines. Over-all, it is shown that fuel systems involving biomass-based NH 3 have lower environmental impacts as compared to conventionally-produced NH 3 counterparts. (author)

  9. Palliative effects of H2 on SOFCs operating with carbon containing fuels

    Science.gov (United States)

    Reeping, Kyle W.; Bohn, Jessie M.; Walker, Robert A.

    2017-12-01

    Chlorine can accelerate degradation of solid oxide fuel cell (SOFC) Ni-based anodes operating on carbon containing fuels through several different mechanisms. However, supplementing the fuel with a small percentage of excess molecular hydrogen effectively masks the degradation to the catalytic activity of the Ni and carbon fuel cracking reaction reactions. Experiments described in this work explore the chemistry behind the "palliative" effect of hydrogen on SOFCs operating with chlorine-contaminated, carbon-containing fuels using a suite of independent, complementary techniques. Operando Raman spectroscopy is used to monitor carbon accumulation and, by inference, Ni catalytic activity while electrochemical techniques including electrochemical impedance spectroscopy and voltammetry are used to monitor overall cell performance. Briefly, hydrogen not only completely hides degradation observed with chlorine-contaminated carbon-containing fuels, but also actively removes adsorbed chlorine from the surface of the Ni, allowing for the methane cracking reaction to continue, albeit at a slower rate. When hydrogen is removed from the fuel stream the cell fails immediately due to chlorine occupation of methane/biogas reaction sites.

  10. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  11. Degradation and toxicity of phenyltin compounds in soil

    International Nuclear Information System (INIS)

    Paton, G.I.; Cheewasedtham, W.; Marr, I.L.; Dawson, J.J.C.

    2006-01-01

    Although the fate of organotins has been widely studied in the marine environment, fewer studies have considered their impact in terrestrial systems. The degradation and toxicity of triphenyltin in autoclaved, autoclaved-reinoculated and non-sterilised soil was studied in a 231 day incubation experiment following a single application. Degradation and toxicity of phenyltin compounds in soil was monitored using both chemical and microbial (lux-based bacterial biosensors) methods. Degradation was significantly slower in the sterile soil when compared to non-sterilised soils. In the non-sterilised treatment, the half-life of triphenyltin was 27 and 33 days at amendments of 10 and 20 mg Sn kg -1 , respectively. As initial triphenyltin degradation occurred, there was a commensurate increase in toxicity, reflecting the fact that metabolites produced may be both more bioavailable and toxic to the target receptor. Over time, the toxicity reduced as degradation proceeded. The toxicity impact on non-target receptors for these compounds may be significant. - Triphenyltin degradative metabolites cause toxic responses to biosensors

  12. CLASSIFICATION OF THE MGR NON-FUEL COMPONENTS DISPOSAL CONTAINER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) non-fuel components disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  13. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de

    2015-01-01

    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  14. Isolation of intact elastin fibers devoid of microfibrils.

    NARCIS (Netherlands)

    Daamen, W.F.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2005-01-01

    Purification protocols for elastin generally result in greatly damaged elastin fibers and this likely influences the biological response. We here describe a novel protocol for the isolation of elastin whereby the fibers stay intact, and introduce the term "elastin fiber" for intact elastic fibers

  15. Recovering of images degraded by atmosphere

    Science.gov (United States)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  16. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto; Alqarni, Wejdan Mohammed Mofleh; Hussain, Muhammad Mustafa

    2014-01-01

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  17. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  18. Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water.

    Czech Academy of Sciences Publication Activity Database

    Banaschik, R.; Lukeš, Petr; Miron, C.; Banaschik, R.; Pipa, A.V.; Fricke, K.; Bednarski, P.; Kolb, J.F.

    2017-01-01

    Roč. 245, August (2017), s. 539-548 ISSN 0013-4686 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : advanced oxidation * non-thermal plasma * electrode corrosion * pulsed electrolysis * hydroxyl radicals * pollutant degradation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013468617311179

  19. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  20. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  1. Generation of an artificial skin construct containing a non-degradable fiber mesh: a potential transcutaneous interface

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Frederick [Biomedical Strategies Inc., San Diego, CA (United States); Kyriakides, Themis R [Vascular Biology and Therapeutics, Yale University, New Haven, CT 06536-9812 (United States)], E-mail: themis.kyriakides@yale.edu

    2008-09-01

    Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation.

  2. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.

    2001-01-01

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  3. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  4. Effects of visual fields, stimulus degradation, and level of practice on event-related potentials of the brain

    NARCIS (Netherlands)

    Kok, A.; van de Vijver, F.R.; Rooijakkers, J.A.

    1985-01-01

    12 male undergraduates were instructed to indicate whether letter pairs that were randomly presented in the center and peripheral (left and right) visual fields were semantically same or different. Letter pairs could be either intact or perceptually degraded, and all Ss participated in 3 consecutive

  5. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

    Science.gov (United States)

    Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui

    2018-01-01

    Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005

  6. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  7. Cardiac troponin I degradation in serum of patients with hypertrophic obstructive cardiomyopathy undergoing percutaneous septal ablation

    DEFF Research Database (Denmark)

    Madsen, Lene H; Lund, Terje; Grieg, Zanina

    2009-01-01

    prior to initiation of PTSMA and up to 50 h following the procedure. Western blot analysis was performed with subsequent analysis of relative intensities of the bands as compared to the degradation of cTnI in STEMI patients from the ASSENT-2 troponin substudy. RESULTS: We demonstrate intact cTnI and 9...... degradation products [molecular weight (MW) 12.0-23.5 kDa]. The bands were comparable in MW to degradation fragments in STEMI. Their early rise in intensity, occurring within few minutes after the alcohol injection, emphasizes how susceptible troponin bands are to chemical/ischemic insults. Moreover, two...... additional bands were visible in the PTSMA population. CONCLUSION: This work describes the degradation products of troponin I in HOCM patients undergoing PTSMA. The detected bands appear fast and are similar to degradations following STEMI. This model contributes to our knowledge of the degradation patterns...

  8. Evaluation of used fuel disposition in clay-bearing rock

    Energy Technology Data Exchange (ETDEWEB)

    Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Hao. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaich, Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheshire, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atkins-Duffin, Cindy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, Terry [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, William L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    The R&D program from the DOE Used Fuel Disposition Campaign (UFDC) has documented key advances in coupled Thermal-Hydrological-Mechanical-Chemical (THMC) modeling of clay to simulate its complex dynamic behavior in response to thermal and hydrochemical feedbacks. These efforts have been harnessed to assess the isolation performance of heat-generating nuclear waste in a deep geological repository in clay/shale/argillaceous rock formations. This report describes the ongoing disposal R&D efforts on the advancement and refinement of coupled THMC process models, hydrothermal experiments on barrier clay interactions, used fuel and canister material degradation, thermodynamic database development, and reactive transport modeling of the near-field under non-isothermal conditions. These play an important role to the evaluation of sacrificial zones as part of the EBS exposure to thermally-driven chemical and transport processes. Thermal inducement of chemical interactions at EBS domains enhances mineral dissolution/precipitation but also generates mineralogical changes that result in mineral H2O uptake/removal (hydration/dehydration reactions). These processes can result in volume changes that can affect the interface / bulk phase porosities and the mechanical (stress) state of the bentonite barrier. Characterization studies on bentonite barrier samples from the FEBEX-DP international activity have provided important insight on clay barrier microstructures (e.g., microcracks) and interactions at EBS interfaces. Enhancements to the used fuel degradation model outlines the need to include the effects of canister corrosion due the strong influence of H2 generation on the source term.

  9. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  10. Non-fertile fuels for burning weapons plutonium in thermal fission reactors

    International Nuclear Information System (INIS)

    Lombardi, C.; Mazzola, A.; Vettraino, F.

    1996-01-01

    In the last few years, the excess plutonium disposition has become ever more a topical and critical issue. As a matter of fact, more than 200 MT of plutonium coming from spent fuel reprocessing have been already stockpiled and over the next decade, under the already ratified agreements, another about 200 MT of weapon-grade plutonium are expected to be available from nuclear weapons dismantlement. On this basis, an ever growing plutonium production is no longer the goal and the already stored quantities should be burnt in power reactors by taking care that no new plutonium is generated under irradiation. This new outlook in considering plutonium has led many designers to reassess the Fast Breeder Reactors (FBR) role and shifting from breeder to burner machines perspective. Several solutions for burning plutonium have been so far proposed and discussed from the safeguards, proliferation resistance, environmental safety, technological background, economy and time schedule standpoint. A proposal for plutonium burning in commercial Pressurized Water Reactors (PWR) by using a non-fertile oxide-type fuel consisting of PuO 2 diluted in an inert matrix is reported hereafter. This solution appears to receive an ever growing interest in the nuclear community. In order not to produce new plutonium during irradiation an innovative U-free fuel is being researched, based on an inert matrix which will consist in a mixed compound of inert oxides, such as ZrO 2 , Al2O 3 , MgO, CeO 2 where the plutonium oxide is dispersed in. The matrix will fulfill the following requirements: good chemical compatibility, acceptable thermal conductivity, good nuclear properties, good stability under irradiation, good dissolution resistance. The plutonium relative content will be comparable to that used in MOX fuel. The fuel is expected to be characterized by a high chemical stability (rock-like fuel), so that after discharge from reactor and adequate cooling time, it can be considered a High Level

  11. Advances in simulating non-congruent phase transitions of hyperstoichiometric uranium dioxide fuel

    International Nuclear Information System (INIS)

    Welland, M.J.; Thompson, W.T.; Lewis, B.J.

    2007-01-01

    A model is being developed to simulate UO 2 at very high temperatures incorporating the effects of non-congruent phase transitions. In particular, the melting transformation and the possible 'Λ-transition' is being investigated to help support the design and analysis of experimental work being conducted as part of nuclear safety research. This work includes the interpretation of the behaviour of operating CANDU fuel under upset conditions, where centerline melting may potentially occur (particularly if the fuel is oxidized). The model presented here numerically solves a system of coupled nonlinear differential equations as derived from fundamental principles. The results of the model present here compare well against laser flash experiments in recently published literature. (author)

  12. Life cycle assessment of the use of alternative fuels in cement kilns: A case study.

    Science.gov (United States)

    Georgiopoulou, Martha; Lyberatos, Gerasimos

    2018-06-15

    The benefits of using alternative fuels (AFs) in the cement industry include reduction of the use of non-renewable fossil fuels and lower emissions of greenhouse gases, since fossil fuels are replaced with materials that would otherwise be degraded or incinerated with corresponding emissions and final residues. Furthermore, the use of alternative fuels maximizes the recovery of energy. Seven different scenaria were developed for the production of 1 ton of clinker in a rotary cement kiln. Each of these scenaria includes the use of alternative fuels such as RDF (Refuse derived fuel), TDF (Tire derived fuel) and BS (Biological sludge) or a mixture of them, in partial replacement of conventional fuels such as coal and pet coke. The purpose of this study is to evaluate the environmental impacts of the use of alternative fuels in relation to conventional fuels in the kiln operation. The Life Cycle Assessment (LCA) methodology is used to quantify the potential environmental impacts in each scenario. The interpretation of the results provides the conclusion that the most environmentally friendly prospect is the scenario based on RDF while the less preferable scenario is the scenario based on BS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction.

    Science.gov (United States)

    Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan

    2018-01-01

    Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (Pformation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo , quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.

  14. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Organic matter degradation in Chilean sediments - following nature's own degradation experiment

    DEFF Research Database (Denmark)

    Langerhuus, Alice Thoft; Niggemann, Jutta; Lomstein, Bente Aagaard

    ORGANIC MATTER DEGRADATION IN CHILEAN SEDIMENTS – FOLLOWING NATURE’S OWN DEGRADATION EXPERIMENT Degradation of sedimentary organic matter was studied at two stations from the shelf of the Chilean upwelling region. Sediment cores were taken at 1200 m and 800 m water depth and were 4.5 m and 7.5 m...... in length, respectively. The objective of this study was to assess the degradability of the organic matter from the sediment surface to the deep sediments. This was done by analysing amino acids (both L- and D-isomers) and amino sugars in the sediment cores, covering a timescale of 15.000 years. Diagenetic...... indicators (percentage of carbon and nitrogen present as amino acid carbon and nitrogen, the ratio between a protein precursor and its non-protein degradation product and the percentage of D-amino acids) revealed ongoing degradation in these sediments, indicating that microorganisms were still active in 15...

  16. Aquatic degradation of textile dyes using ionizing and non ionizing radiation

    International Nuclear Information System (INIS)

    Sadek, S.A.; Abdel-Hamid, A.S.; Ebraheem, S.

    2002-01-01

    Complete text of publication follows. In this study the possibility of the use of γ-rays and sunlight for the degradation of fast violet 2rl (fv) and astrazone red 6b (ar) were investigated. These dyes are released to the wastewater streams originating from the industrial textile processing. The degree of degradation in dye concentration was calculated and was found to be completed at about 3.0 kGy for fast violet and at about 1.5 for astrazone in the case of using sunlight, the degradation was completed in two hours by using titanium dioxide as heterogeneous catalyst in the medium, while without any additives the degradation occurred in 30 days for both dyes. The kinetics of degradation process was found to follow first order reaction. The effect of O 2 , N 2 , H 2 O 2 on the rate of degradation was also studied

  17. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  18. Possible cleavage sites of glutelin partial degradation confirmed by immunological analysis in globulin-less mutants of rice (Oryza sativa L.).

    Science.gov (United States)

    Khan, Nadar; Yamaguchi, Satoru; Katsube-Tanaka, Tomoyuki

    2017-10-01

    Proteolytic cleavage or partial degradation of proteins is one of the important post-translational modifications for various biological processes, but it is difficult to analyze. Previously, we demonstrated that some subunits of the major rice (Oryza sativa L.) seed storage protein glutelin are partially degraded to produce newly identified polypeptides X1-X5 in mutants in which another major seed storage protein globulin is absent. In this study, the new polypeptides X3 and X4/X5 were immunologically confirmed to be derived from GluA3 and GluA1/GluA2 subunits, respectively. Additionally, the new polypeptides X1 and X2 were at least in part the α polypeptides of the GluB4 subunit partially degraded at the C-terminus. Simulated 2D-PAGE migration patterns of intact and partially degraded α polypeptides based on the calculation of their MWs and pIs enabled us to narrow or predict the possible locations of cleavage sites. The predicted cleavage sites were also verified by the comparison of 2D-PAGE patterns between seed-extracted and E. coli-expressed proteins of the intact and truncated α polypeptides. The results and methodologies demonstrated here would be useful for analyses of partial degradation of proteins and the structure-function relationships of rice seed protein bodies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    International Nuclear Information System (INIS)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-01-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal

  20. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, Jeremy B., E-mail: jrenshaw@epri.com [Electric Power Research Institute, 1300 West WT Harris Blvd., Charlotte, NC 28262 (United States); Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com [MetroLaser, Inc., 22941 Mill Creek Drive, Laguna Hills, CA 92653 (United States); Friend, Brian [AREVA, Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States)

    2015-03-31

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  1. Generic Degraded Configuration Probability Analysis for the Codisposal Waste Package

    International Nuclear Information System (INIS)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-01-01

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M and O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k eff in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package

  2. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  3. Recovery of acid-degraded tributyl phosphate by solvent extraction

    International Nuclear Information System (INIS)

    Young, G.C.; Holladay, D.W.

    1981-01-01

    During nuclear fuel reprocessing the organic solvent becomes loaded with various acidic degradation products, which can be effectively removed through solvent extraction. Studies have been made with a small bench-scale solvent extraction system to optimize such parameters as pH of aqueous phase, phase ratio, residence time, flow rates, and temperature. The necessary decontamination factors have been obtained for various degradation products during continuous solvent extraction in one stage, with the aqueous phase being recycled. The aqueous phase contains compounds that can be degraded to gases to minimize waste disposal problems

  4. Regularization of the degradation behavior and working zone of proton exchange membrane fuel cells with a five-constant ideal cell as prototype

    International Nuclear Information System (INIS)

    Zhang, H.F.; Pei, P.C.; Yuan, X.; Chao, P.X.; Wang, X.Z.

    2011-01-01

    Highlights: → Load-oriented cell lifetime endpoint definition to reveal two forms of lifetime. → Working zone representing the range of optimum operating endpoint candidates. → Ideal cell model to describe the commonness in PEM fuel cell specialties. → Ideal cell as prototype to regularize real cells. → Working zone of real cells uniformly characterized with five cell constants. - Abstract: This paper is to outline the working zone (the correlative assembly of all the practical steady-state operating points under all affordable constant power loads) of proton exchange membrane (PEM) fuel cells in united form. For this purpose, an ideal cell model is proposed to regularize the degradation behavior of real cells, and a load-oriented cell lifetime endpoint definition is made to reveal two forms of cell lifetime. As derived, the working zone of any cell is an enclosed region by three boundaries: one part of the initial steady-state polarization (SSP) curve, the lifetime end-curve and the zero current density line; and the ideal cell has three distinct shapes of working zone of the simplest expressions of lifetime end-curve. Practical data well support the ideal cell as a good prototype for the regularization, and thus the working zone of real cells can be approximately but uniformly and concisely outlined, with the boundaries characterized with five cell constants including two initial SSP constants, two degradation constants and the absolute lifetime.

  5. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  6. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    International Nuclear Information System (INIS)

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository

  7. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  8. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  9. Development of comprehensive long-term-dry stored Spent Fuel INtegrity EvaLuator [SFINEL] - I

    International Nuclear Information System (INIS)

    Kwon, H. M.; Yang, Y. S.; Kim, Y. S.; You, K. S.; Min, D. K.; No, S. K.

    1999-01-01

    Safe management of spent nuclear fuels is socially, technically, and economically very important in terms of environmental protection and utilization of recyclable resources. One of the most critical parts in the management is to establish the comprehensive monitoring system which can maintain and confirm the integrity of the spent fuels, whenever necessary, until final policy is determined on the their treatment and disposal. Especially in the first stage of maturing up the system, it is essential to secure a computing tool or code which can evaluate the integrity of the fuel cladding based on its power history and cladding degradation mechanisms. SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed in this research. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms

  10. Modelling the release behaviour of cesium during severe fuel degradation

    International Nuclear Information System (INIS)

    Lewis, B.J.; Andre, B.; Morel, B.

    1995-01-01

    An analytical model has been applied to describe the diffusional release of fission product cesium from Zircaloy-clad fuel under high-temperature reactor accident conditions. The present treatment accounts for the influence of the atmosphere (i.e., changing oxygen potential) on the state of fuel oxidation and the release kinetics. The effects of fuel dissolution on the volatile release behaviour (under reducing conditions) is considered in terms of earlier crucible experiments and a simple model based on bubble coalescence and transport in metal pools. The model has been used to interpret the cesium release kinetics observed in steam and hydrogen experiments at the Vertical Irradiation (VI) Facility in the Oak Ridge National Laboratory and at the HEVA/VERCORS Facility in the Commissariat a l'Energie Atomique. (author)

  11. Physical characteristics of non-fuel assembly reactor components

    International Nuclear Information System (INIS)

    Hawkes, E.C.

    1994-09-01

    The primary objective of this report is to enhance the utility of the Characteristics Data Base (CDB). This has been accomplished by providing a pictorial representation of the principal non-fuel assembly (NFA) components along with a tabular summary of key information about each type of component. This report is intended for use as an adjunct to the CDB. Toward this end, the report may be used either as a complement to the detailed descriptions in the CDB, or as a stand-alone document that acts as an illustrated abstract of the CDB. Line drawings of major NFA components are included. Data not provided in the CDB are also included. Summary descriptions of each component are given in tabular format

  12. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  13. Criteria for recladding of spent light water reactor fuel before long term pool storage

    International Nuclear Information System (INIS)

    Pettersson, K.; Jansson, L.

    1979-01-01

    The question of the need for any special treatment of failed fuel elements prior to long term pool storage has been studied. It is concluded that the main problem appears to be hydride embrittlement of failed fuel rods, which may lead to increased damage during handling and transport of the failed fuel. Some mechanisms for the degradation of failed fuel rods have been identified. They can all be considered as relatively improbable, but further experimental evidence is needed before it can be concluded that these degradation mechanisms are insignificant during pool storage. The report also contains a review of methods for identification of leaking fuel bundles and fuel rods. (Auth.)

  14. Criteria for recladding of spent light water reactor fuel before long term pool storage

    International Nuclear Information System (INIS)

    Pettersson, K.; Jansson, L.

    1979-06-01

    The question of the need for any special treatment of failed fuel elements prior to long term pool storage has been studied. It is concluded that the main problem appears to be hydride embrittlement of failed fuel rods, which may lead to increased damage during handling and transport of the failed fuel. Some mechanisms for the degradation of failed fuel rods have been identified. They can all be considered as relatively improbable, but further experimental evidence is needed before it can be concluded that thede degradation mechanisms are insignificant during pool storage. The report also contains a review of methods for identification of leaking fuel bundles and fuel rods.(author)

  15. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    NARCIS (Netherlands)

    Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Pemen, A.J.M.; Heesch, van E.J.M.; Kling, W.L.

    2012-01-01

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The

  16. Nuclear fuel cycle industry. A responsible approach supporting non proliferation efforts in global perspective

    International Nuclear Information System (INIS)

    Jorant, Caroline

    2005-01-01

    This paper presents the reasons why and the manner in which nuclear industry is a stakeholder in non proliferation efforts. It then presents some recent proposals on multinational approaches to the fuel cycle industry and offers some comments and an industry view on these issues. A parallel is established with fundamental concepts in the field of radiation protection. Our industry, involved in 'nuclear technology development' (activities) qualified of 'sensitive' from a non proliferation standpoint, has major interests at stake in the evolution of the international non proliferation regime and is genuinely committed to the spreading of a non proliferation culture. The international community and in particular the nuclear community have been recently reflecting on ways to strengthen the non-proliferation regime in reaction to new threats or the perception thereof. Multilateral approaches regarding the nuclear fuel cycle are being discussed or proposed in this regard. Our approach as an industrial may be illustrated using the three basic principles developed in the field of radiation protection, namely limitation, justification and optimization. a) an overall limitation of sensitive facilities worldwide may be judicious, b) however no prohibition should be imposed if justified needs can be demonstrated on objective criteria, c) optimized used for existing facilities should be promoted through strengthened guarantees of supply where it may be necessary. (author)

  17. Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation.

    Science.gov (United States)

    Labas, Valérie; Teixeira-Gomes, Ana-Paula; Bouguereau, Laura; Gargaros, Audrey; Spina, Lucie; Marestaing, Aurélie; Uzbekova, Svetlana

    2018-03-20

    Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Preliminary Assessment of Non-Fuel Mineral Resources of Afghanistan, 2007

    Science.gov (United States)

    ,

    2007-01-01

    Introduction Afghanistan has abundant mineral resources, including known deposits of copper, iron, barite, sulfur, talc, chromium, magnesium, salt, mica, marble, rubies, emeralds, lapis lazuli, asbestos, nickel, mercury, gold and silver, lead, zinc, fluorspar, bauxite, beryllium, and lithium (fig. 1). Between 2005 and 2007, the U.S. Agency for International Development (USAID) funded a cooperative study by the U.S. Geological Survey (USGS) and the Afghanistan Geological Survey (AGS) to assess the non-fuel mineral resources of Afghanistan as part of the effort to aid in the reconstruction of that country. An assessment is an estimation or evaluation, in this instance of undiscovered non-fuel mineral resources. Mineral resources are materials that are in such form that economic extraction of a commodity is currently or potentially feasible. In this assessment, teams of scientists from the USGS and the AGS compiled information about known mineral deposits and then evaluated the possible occurrence of undiscovered deposits of all types. Quantitative probabilistic estimates were made for undiscovered deposits of copper, mercury, rare-earth elements, sulfur, chromite, asbestos, potash, graphite, and sand and gravel. These estimates were made for undiscovered deposits at depths less than a kilometer. Other deposit types were considered and discussed in the assessment, but quantitative estimates of numbers of undiscovered deposits were not made. In addition, the assessment resulted in the delineation of 20 mineralized areas for further study, of which several may contain resources amenable to rapid development.

  19. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen

    2012-01-01

    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  20. Degradation of tetraethyllead during the degradation of leaded gasoline hydrocarbons in soil

    International Nuclear Information System (INIS)

    Mulroy, P.T.; Ou, L.T.

    1998-01-01

    For over 50 years, leaded gasoline was the only fuel for automobiles, and tetraethyllead (TEL) was the major octane number enhancer used in leaded gasoline. Ample information is available on the fate and remediation of gasoline hydrocarbons in contaminated subsoils and groundwater. However, little is known regarding the fate of TEL in leaded gasoline-contaminated subsoils and groundwater. In soil not contaminated with gasoline, TEL was rapidly degraded and completely disappeared in 14 d. In gasoline-contaminated soil, TEL degradation was slower; after 77 d, 4 to 17% of the applied TEL still remained in the contaminated soil. Disappearance of total petroleum hydrocarbons (TPH) was initially rapid but slowed appreciably after 7 to 14 d. As a result, after 77 d, 33 to 51% of the applied gasoline still remained in soil. The retardation of TEL degradation in leaded gasoline-contaminated soil is due to the presence of gasoline hydrocarbons. As long as gasoline hydrocarbons remain in soil, TEL may also remain in soil, most likely in the gasoline hydrocarbon phase

  1. Fuel Retrieval and Management of Fuel Element Debris

    International Nuclear Information System (INIS)

    Chande, Shridhar; Lachaume, J. L.

    2013-01-01

    Nuclear accidents involving core meltdown have not been so rare. While the first occurred in early fifties, it is reported that about 20 have occurred worldwide in military and commercial reactors. The more recent and major accidents are 1. Three Mile Island, USA in 1979: Approximately half the core was melted, and flowed to the bottom of the reactor pressure vessel however the pressure vessel remained intact and contained the damaged fuel. 2. Chernobyl, former USSR in 1984: Explosive release of radioactive material occurred. About 6 tons of fuel was dispersed as air-borne particles. Most of the core was damaged or melted. 3. Fukushima, Japan 2011: Three units suffered melt down. In unit 1 almost all the fuel assemblies melted and accumulated at the bottom of the vessel. It is reported that the vessel failed and the molten corium has penetrated the concrete. In the units 2 and 3, partial melting of cores has occurred. In several of these cases, fuel retrieval and management activities have been carried out. The experience and insights gained from these activities will be extremely useful for planning and execution of similar activities in future if ever they are needed. The purpose of this session was to exchange this experience and also to share the lessons learned. This is of particularly important, at this juncture, when planning and preparation for retrieval of damaged cores in Fukushima NPP is in progress. (author)

  2. First stage of bio-jet fuel production: non-food sunflower oil extraction using cold press method

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2014-06-01

    Full Text Available As a result of concerning petroleum price increasing and environmental impact, more attention is attracted to renewable resources for transportation fuels. Because not conflict with human and animal food resources, non-food vegetable oils are promising sources for developing bio-jet fuels. Extracting vegetable oil from oilseeds is the first critical step in the pathway of bio-jet fuel production. When sunflower seeds are de-hulled, there are always about 5%–15% broken seed kernels (fine meat particles left over as residual wastes with oil content up to 48%. However, the oil extracted from these sunflower seed residues is non-edible due to its quality not meeting food standards. Genetically modified sunflower grown on margin lands has been identified one of sustainable biofuel sources since it doesn't compete to arable land uses. Sunflower oils extraction from non-food sunflower seeds, sunflower meats, and fine sunflower meats (seed de-hulling residue was carried out using a cold press method in this study. Characterization of the sunflower oils produced was performed. The effect of cold press rotary frequency on oil recovery and quality was discussed. The results show that higher oil recovery was obtained at lower rotary frequencies. The highest oil recovery for sunflower seeds, sunflower meats, and fine sunflower meats in the tests were 75.67%, 89.74% and 83.19% respectively. The cold press operating conditions had minor influence on the sunflower oil quality. Sunflower meat oils produced at 15 Hz were preliminarily upgraded and distilled. The properties of the upgraded sunflower oils were improved. Though further study is needed for the improvement of processing cost and oil recovery, cold press has shown promising to extract oil from non-food sunflower seeds for future bio-jet fuel production.

  3. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  4. Prediction of Non-Equilibrium Kinetics of Fuel-Rich Kerosene/LOX Combustion in Gas Generator

    International Nuclear Information System (INIS)

    Yu, Jung Min; Lee, Chang Jin

    2007-01-01

    Gas generator is the device to produce high enthalpy gases needed to drive turbo-pump system in liquid rocket engine. And, the combustion temperature in gas generator should be controlled below around 1,000K to avoid any possible thermal damages to turbine blade by using either fuel rich combustion or oxidizer rich combustion. Thus, nonequilibrium chemical reaction dominates in fuel-rich combustion of gas generator. Meanwhile, kerosene is a compounded fuel with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel rich kerosene/LOX combustion with detailed kinetics developed by Dagaut using PSR (Perfectly Stirred Reactor) assumption. In Dagaut's surrogate model for kerosene, chemical kinetics of kerosene consists of 1,592 reaction steps with 207 chemical species. Also, droplet evaporation time is taken into account in the PSR calculation by changing the residence time of droplet in the gas generator. Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux. The results could provide very reliable and accurate numbers in the prediction of combustion gas temperature,species fraction and material properties

  5. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Highlights: ► A new type of electro-Fenton system was developed for wastewater treatment. ► Degradation efficiency of organic pollutants was substantially improved. ► Operation cost was greatly reduced compared to other microbial fuel cell designs. -- Abstract: Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H 2 O 2 generation and Fe 2+ release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants

  6. Microbial electricity generation enhances decabromodiphenyl ether (BDE-209 degradation.

    Directory of Open Access Journals (Sweden)

    Yonggang Yang

    Full Text Available Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs, it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209 would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC and open-circuit microbial fuel cell (o-MFC systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.

  7. Spent fuel characterization program in Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Lloret, M.; Canencia, R.; Blanco, J.; POMAR, C.

    2010-01-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles were

  8. Spent fuel characterization program in Jose Cabrera nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, M.; Canencia, R. [Product Engineering, Enusa Industrias Avanzadas S.A., Santiago Rusinol 12, 28040 Madrid (Spain); Blanco, J.; POMAR, C. [Direction of Nuclear Generation, Gas Natural SDG, Avda. San Luis 77, 28033 Madrid (Spain)

    2010-07-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles

  9. Research and development of nitride fuel cycle technology in Europe

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2004-01-01

    Research and development on nitride fuels for minor actinide burning in accelerator driven systems is performed in Europe in context of the CONFIRM project. Dry and wet methods for fabrication of uranium free nitride fuels have been developed with the assistance of thermo-chemical modelling. Four (Pu, Zr) pins have been fabricated by PSI and will be irradiated in Studsvik at a rating of 40-50 kW/m. The thermal conductivity of (Pu, Zr)N has been measured and was found to be in agreement with earlier theoretical assessments. Safety modeling indicates that americium bearing nitride fuels, in spite of their relatively poor high temperature stability under atmospheric pressure, can survive power transients as long as the fuel cladding remains intact. (author)

  10. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  11. Procedure for estimating facility decommissioning costs for non-fuel-cycle nuclear facilities

    International Nuclear Information System (INIS)

    Short, S.M.

    1988-01-01

    The Nuclear Regulatory Commission (NRC) staff has been reappraising its regulatory position relative to the decommissioning of nuclear facilities over the last several years. Approximately 30 reports covering the technology, safety, and costs of decommissioning reference nuclear facilities have been published during this period in support of this effort. One of these reports, Technology, Safety, and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities (NUREG/CR-1754), was published in 1981 and was felt by the NRC staff to be outdated. The Pacific Northwest Laboratory (PNL) was asked by the NRC staff to revise the information provided in this report to reflect the latest information on decommissioning technology and costs and publish the results as an addendum to the previous report. During the course of this study, the NRC staff also asked that PNL provide a simplified procedure for estimating decommissioning costs of non-fuel-cycle nuclear facilities. The purpose being to provide NRC staff with the means to easily generate their own estimate of decommissioning costs for a given facility for comparison against a licensee's submittal. This report presents the procedure developed for use by NRC staff

  12. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  13. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  14. Autism Spectrum Disorder and intact executive functioning.

    Science.gov (United States)

    Ferrara, R; Ansermet, F; Massoni, F; Petrone, L; Onofri, E; Ricci, P; Archer, T; Ricci, S

    2016-01-01

    Earliest notions concerning autism (Autism Spectrum Disorders, ASD) describe the disturbance in executive functioning. Despite altered definition, executive functioning, expressed as higher cognitive skills required complex behaviors linked to the prefrontal cortex, are defective in autism. Specific difficulties in children presenting autism or verbal disabilities at executive functioning levels have been identified. Nevertheless, the developmental deficit of executive functioning in autism is highly diversified with huge individual variation and may even be absent. The aim of the present study to examine the current standing of intact executive functioning intact in ASD. Analysis of ASD populations, whether high-functioning, Asperger's or autism Broad Phenotype, studied over a range of executive functions including response inhibition, planning, cognitive flexibility, cognitive inhibition, and alerting networks indicates an absence of damage/impairment compared to the typically-developed normal control subjects. These findings of intact executive functioning in ASD subjects provide a strong foundation on which to construct applications for growth environments and the rehabilitation of autistic subjects.

  15. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  16. Influence of fluoride varnish on shear bond strength of a universal adhesive on intact and demineralized enamel.

    Science.gov (United States)

    Ortiz-Ruiz, Antonio José; Muñoz-Gómez, Iban Jesús; Pérez-Pardo, Ana; Germán-Cecilia, Concepción; Martínez-Beneyto, Yolanda; Vicente, Ascensión

    2018-04-27

    The aim was to evaluate the effect of fluoride varnish on the shear bond strength (SBS) on polished and non-polished intact and demineralized enamel. Bovine incisors (half demineralized) were used. Bifluorid 12™ was applied. Bonding was made with Futurabond ® M + and GrandioSO, 24 h and 7 days after varnishing. In some groups, varnish was removed by polishing before bonding. SBS was measured. Fracture type was determined by stereomicroscopy and scanning electron microscope (SEM) observations of the enamel surface were made. Between-group differences were determined by one-way ANOVA and the Tukey test. Associations between study factors and fracture modes were analysed using contingency tables and Pearson's chi-squared test. For intact enamel, SBS on varnished enamel at 24 h was significantly less than in the other groups. SBS recovered 7 days after varnishing. Varnish elimination after 24 h significantly increased the SBS. However, removal at 7 days did not modify SBS. SBS on demineralized enamel groups was significantly less than in intact enamel, except for demineralized enamel varnished and removed at 7 days. Demineralized enamel was associated with cohesive enamel fractures and intact enamel with cohesive fractures of the composite and adhesive fractures. SEM of varnish surfaces showed a homogenous layer scattered with amorphous precipitate. In conclusion, on intact enamel fluoride varnish had a negative effect on SBS at 24 h, which disappeared after 7 days. On demineralized enamel, varnish did not reduce SBS at either time. Polishing the varnished enamel surface showed a similar SBS to intact enamel after 7 days.

  17. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    International Nuclear Information System (INIS)

    Sipilae, K.

    1995-01-01

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  18. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  19. Gas chromatographic determination of Di-n-butyl phosphate in radioactive lean organic solvent of FBTR carbide fuel reprocessing

    International Nuclear Information System (INIS)

    Velavendan, P.; Ganesh, S.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work Di-n- butyl phosphate (DBP) a degraded product of Tri-n-butyl phosphate (TBP) formed by acid hydrolysis and radiolysis in the PUREX process was analyzed. Lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solution was determined by standard Gas Chromatographic technique. The method involves the conversion of non-volatile Di-n-butyl phosphate into volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatograph (GC). A calibration graph was made for DBP concentration range of 200-2000 ppm with correlation coefficient of 0.99587 and RSD 1.2 %. (author)

  20. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  1. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  2. End of project report on degradation processes in hydrogen fuel cells.

    Science.gov (United States)

    2008-01-01

    Proton exchange membrane (PEM) fuel cells are one of the most popular types of fuel cells. They operate similarly to others with the electrolyte material inbetween the electrodes being a patented polymer called Nafion, made by DuPont. This polyelec...

  3. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  4. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    International Nuclear Information System (INIS)

    Hagiwara, S; Nabetani, H; Nakajima, M

    2015-01-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  5. Human-Induced Vegetation Degradation in a Semi-Arid Rangeland

    Science.gov (United States)

    Jackson, Hasan

    per year, also its percentage of the potential, were the measures of degradation. Degradation was then compared to non-green components of vegetation (e.g. wood, stems, leaf litter, dead biomass) to determine their relationship in space and time. Finally, the symptoms of degradation were compared to land management patterns and the environmental variability (e.g. drought, non-drought conditions). Nearly 20% of the region was identified as degraded and another 7% had significant negative trends. The average annual reduction in NPP due to anthropogenic degradation was -17% of the non-degraded potential, although the severity of degradation varied substantially throughout the region. Non-green vegetation cover was strongly correlated with the inter-annual and intra-annual temporal trends of degradation. The dynamics of degradation in drought and non-drought years provided evidence of multiple stables states of degradation.

  6. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  7. Development of non-destructive examination system for irradiated fuel rods

    International Nuclear Information System (INIS)

    Sumerling, R.; Goldsmith, L.A.; Cross, M.T.; McKee, F.

    1978-12-01

    The development of non-destructive examination (NDE) system for irradiated fuel rods is described. The system is used for testing rods within a concrete cave and consists of three parts: a fully-automated fuel rod-drive machine, designed for easy maintenance; a series of plug-in NDE modules which fit into the central space provided in the machine, plus optical/TV viewing devices and gamma-scan equipment lined up on the rod; and on electronic control equipment situated outside the concrete shielding. The equipment is at present routinely used for viewing, eddy-current testing, gamma-scanning and diameter measurement of rods. The system is flexible in that additional modules can be added later as they are developed, since there is room for three modules of standard size (about 10cm x 10 cm x 3cm) in the machine or one large module taking the full space. New developments include the use of dual frequency eddy-current testing, which allows much greater discrimination against unwanted signals, and measurement of oxide thickness using a high frequency eddy-current probe. (author)

  8. On possibility of degradation of lava-like fuel-containing materials of the 4-th block of Chernobyl NPP under internal self-irradiation by alpha-particle sources

    International Nuclear Information System (INIS)

    Pazukhin, Eh. M.; Borovoj, A.A.; Rudya, K.G.

    2002-01-01

    It is shown that internal self-irradiation by alpha-particle beam cannot be a cause of change of strength characteristics of silicate matrix and so a cause of degradation of Chernobyl lava-like materials. A new method is proposed for management with lava-like fuel-containing materials of the 4-th block: vitrification in smelter unit situated in bubbler-basin and storage of prepared immobilized compacts in corresponding depositories [ru

  9. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M., E-mail: daniel.wachs@inl.gov [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Robinson, A.B.; Rice, F.J. [Idaho National Laboratory, Characterization and Advanced PIE Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Kraft, N.C.; Taylor, S.C. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lillo, M. [Idaho National Laboratory, Nuclear Systems Design and Analysis Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Woolstenhulme, N.; Roth, G.A. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008–2009. The irradiation conditions were: ∼250 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm{sup 3} peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  10. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism

    International Nuclear Information System (INIS)

    Glass, J.R.; Gerner, E.W.

    1987-01-01

    The mechanism of spermidine-induced ornithine decarboxylase (OCD, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine. Treatment of cells with 10 μM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [ 35 S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 0 C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 0 C for 3 hours with 10 μ M spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents had no effect of ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway

  11. Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051

    International Nuclear Information System (INIS)

    Quintero, Roger; Smith, Sahid; Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim

    2013-01-01

    In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (μm) to 6350 μm mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last

  12. Degradation Analysis of Field-Exposed Photovoltaic Modules with Non-Fluoropolymer-Based Backsheets

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fairbrother, Andrew [National Institute of Standards and Technology (NIST); Julien, Scott [Northeastern University; Wan, Kai-Tak [Northeastern University; Ji, Liang [Underwriters Laboratory; Boyce, Kenneth [Underwriters Laboratory; Merzlic, Sebastien [Arkema; Lefebvre, Amy [Arkema; O' Brien, Greg [Arkema; Wang, Yu [Case Western Reserve University; Bruckman, Laura [Case Western Reserve University; French, Roger [Case Western Reserve University; Gu, Xiaohong [National Institute of Standards and Technology (NIST)

    2017-08-23

    The selection of polymeric materials utilized in photovoltaic (PV) modules has changed relatively little since the inception of the PV industry, with ethylene-vinyl acetate (EVA), polyethylene terephthalate (PET), and fluoropolymer-based laminates being the most widely adopted primary components of the encapsulant and backsheet materials. The backsheet must serve to electrically insulate the solar cells and protect them from the effects of weathering. Due to continued downward pressure on cost, other polymeric materials are being formulated to withstand outdoor exposure for use in backsheets to replace either the PET film, the fluoropoymer film, or both. Because of their relatively recent deployment, less is known about their reliability and if they are durable enough to fulfill the greater than or equal to 25 year warranties of current PV modules. This work presents a degradation analysis of field-exposed modules with polyamide- and polyester-based backsheets. Modules were exposed for up to five years in different geographic locations: USA (Maryland, Ohio), China, and Italy. Surface and cross-sectional analysis included visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy. Each module experienced different types of degradation depending on the exposure site, even for the same material and module brand. For instance, the polyamide-based backsheet experienced hairline cracking and greater yellowing and chemical changes in China (Changsu, humid subtropical climate), while in Italy (Rome, hot-summer Mediterranean climate) it underwent macroscopic cracking and greater losses in gloss. Spectroscopic studies have permitted identification of degradation products and changes in polymer structure over time. Comparisons are made to fielded modules with fluoropolymer-based backsheets, as well as backsheet materials in accelerated laboratory exposures. Implications for qualification testing and service life prediction of the non

  13. Degradation analysis of field-exposed photovoltaic modules with non-fluoropolymer-based backsheets

    Science.gov (United States)

    Fairbrother, Andrew; Julien, Scott; Wan, Kai-Tak; Ji, Liang; Boyce, Kenneth; Merzlic, Sebastien; Lefebvre, Amy; O'Brien, Greg; Wang, Yu; Bruckman, Laura; French, Roger; Kempe, Michael; Gu, Xiaohong

    2017-08-01

    The selection of polymeric materials utilized in photovoltaic (PV) modules has changed relatively little since the inception of the PV industry, with ethylene-vinyl acetate (EVA), polyethylene terephthalate (PET), and fluoropolymer-based laminates being the most widely adopted primary components of the encapsulant and backsheet materials. The backsheet must serve to electrically insulate the solar cells and protect them from the effects of weathering. Due to continued downward pressure on cost, other polymeric materials are being formulated to withstand outdoor exposure for use in backsheets to replace either the PET film, the fluoropoymer film, or both. Because of their relatively recent deployment, less is known about their reliability and if they are durable enough to fulfill the >=25 year warranties of current PV modules. This work presents a degradation analysis of field-exposed modules with polyamide- and polyester-based backsheets. Modules were exposed for up to five years in different geographic locations: USA (Maryland, Ohio), China, and Italy. Surface and cross-sectional analysis included visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy. Each module experienced different types of degradation depending on the exposure site, even for the same material and module brand. For instance, the polyamide-based backsheet experienced hairline cracking and greater yellowing and chemical changes in China (Changsu, humid subtropical climate), while in Italy (Rome, hot-summer Mediterranean climate) it underwent macroscopic cracking and greater losses in gloss. Spectroscopic studies have permitted identification of degradation products and changes in polymer structure over time. Comparisons are made to fielded modules with fluoropolymer-based backsheets, as well as backsheet materials in accelerated laboratory exposures. Implications for qualification testing and service life prediction of the non-fluoropolymer-based backsheets are

  14. Fuel consolidation and compaction and storage of NFBC

    International Nuclear Information System (INIS)

    Fuierer, T.

    1992-01-01

    Rochester Gas and Electric Corporation (RG ampersand E) has been involved in two separate fuel consolidation demonstration programs. One of those programs resulted in identifying some problems that may be resolved in consolidation hardware compaction and storage in order for consolidation to be attractive. In conjunction with the Electric Power Research Institute (EPRI), a study was recently performed on hardware compaction and storage. Consolidation is probably not a commercial alternative at this point in time because there are still several problems that must be resolved. There are some potential advantages of fuel consolidation. Consolidation has attractive economics and can minimize the institutional impacts of expanding spent fuel storage by internalizing spent fuel storage operations. The licensing effort is fairly simple. Consolidation may be less likely to have public intervention since the storage expansion will occur inside the plant. Consolidation can be subcontracted and the equipment is temporary. It can be used in conjunction with other storage expansion technologies such as dry storage. Fewer dry storage casks would be needed to store consolidated fuel than would be necessary for intact spent fuel

  15. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  16. Nuclear fuel and/or fertile material element suitable for non-destructive determination of burn-up

    International Nuclear Information System (INIS)

    Muench, E.

    1976-01-01

    The invention refers to a nuclear fuel and/or fertile material element suitable for non-destructive burn-up analysis, where an isotope or a mixture of isotopes capable of being activated is provided for measuring the intensity of radiation emitted from radioactive nuclides, especially the intensity of gamma rays. The half-life of radioactive decay of the isotope or the mixture mentioned above after being activated is sufficiently large compared with the irradiation of the fuel and/or fertile material element in the nuclear reactor. (orig.) [de

  17. Accident tolerant fuels for LWRs: A perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J., E-mail: zinklesj@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2014-05-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms.

  18. Accident tolerant fuels for LWRs: A perspective

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L.

    2014-01-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms

  19. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  20. CORA-13 experiment on severe fuel damage

    International Nuclear Information System (INIS)

    Firnhaber, M.; Trambauer, K.; Hagen, S.; Hofmann, P.; Schanz, G.; Sepold, L.

    1993-07-01

    The major objectives of the experiment were to investigate the behavior of PWR fuel elements during early core degradation and fast cooldown due to refill. Measured quantities are boundary conditions, bundle temperatures, hydrogen generation and the final bundle configuration. Boundary conditions which could not be measured, but which are necessary for simplified test simulation (axial power profile, shroud insulation temperature, bundle refill flow) were estimated using ATHLET-CD. The capability of the codes in calculating the main degradation phenomena has been clearly illustrated and weaknesses concerning the modelling of some degradation processes have been identified. Among the degradation phenomena involved in the test, the more severe limitations concern the UO 2 -ZrO 2 dissolution by molten Zr, the solubility limits in the resulting U-Zr-O mixture and the cladding failure by the molten mixture. There is a lack concerning the Inconel spacer-grid interactions with the rods, the material interaction between control rod material and fuel rods, and in the modelling of hydrogen generation during cooldown. (orig./DG)

  1. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  2. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions.

    Science.gov (United States)

    van der Waals, Marcelle J; Pijls, Charles; Sinke, Anja J C; Langenhoff, Alette A M; Smidt, Hauke; Gerritse, Jan

    2018-04-01

    The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.

  3. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  4. Operative findings of conductive hearing loss with intact tympanic membrane and normal temporal bone computed tomography.

    Science.gov (United States)

    Kim, Se-Hyung; Cho, Yang-Sun; Kim, Hye Jeong; Kim, Hyung-Jin

    2014-06-01

    Despite recent technological advances in diagnostic methods including imaging technology, it is often difficult to establish a preoperative diagnosis of conductive hearing loss (CHL) in patients with an intact tympanic membrane (TM). Especially, in patients with a normal temporal bone computed tomography (TBCT), preoperative diagnosis is more difficult. We investigated middle ear disorders encountered in patients with CHL involving an intact TM and normal TBCT. We also analyzed the surgical results with special reference to the pathology. We reviewed the medical records of 365 patients with intact TM, who underwent exploratory tympanotomy for CHL. Fifty nine patients (67 ears, eight bilateral surgeries) had a normal preoperative TBCT findings reported by neuro-radiologists. Demographic data, otologic history, TM findings, preoperative imaging findings, intraoperative findings, and pre- and postoperative audiologic data were obtained and analyzed. Exploration was performed most frequently in the second and fifth decades. The most common postoperative diagnosis was stapedial fixation with non-progressive hearing loss. The most commonly performed hearing-restoring procedure was stapedotomy with piston wire prosthesis insertion. Various types of hearing-restoring procedures during exploration resulted in effective hearing improvement, especially with better outcome in the ossicular chain fixation group. In patients with CHL who have intact TM and normal TBCT, we should consider an exploratory tympanotomy for exact diagnosis and hearing improvement. Information of the common operative findings from this study may help in preoperative counseling.

  5. Degradation in steam of 60 cm-long B{sub 4}C control rods

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, C., E-mail: christina.dominguez@irsn.fr; Drouan, D.

    2014-08-01

    In the framework of nuclear reactor core meltdown accident studies, the degradation of boron carbide control rod segments exposed to argon/steam atmospheres was investigated up to about 2000 °C in IRSN laboratories. The sequence of the phenomena involved in the degradation has been found to take place as expected. Nevertheless, the ZrO{sub 2} oxide layer formed on the outer surface of the guide tube was very protective, significantly delaying and limiting the guide tube failure and therefore the boron carbide pellet oxidation. Contrary to what was expected, the presence of the control rod decreases the hydrogen release instead of increasing it by additional oxidation of boron compounds. Boron contents up to 20 wt.% were measured in metallic mixtures formed during degradation. It was observed that these metallic melts are able to attack the surrounding fuel rods, which could have consequences on fuel degradation and fission product release kinetics during severe accidents.

  6. Non-precious electrocatalysts for polymer electrolyte fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chung, H.T.; Zelenay, P. [Los Alamos National Laboratory, Los Alamos, NM (United States). Materials Physics and Applications

    2009-07-01

    This study investigated the feasibility of reducing the high cost of polymer electrolyte fuel cell stacks by using non-precious catalysts for the oxygen reduction reaction (ORR). Most research interest has focused on ORR catalysts based on heat-treated precursors of transition metals, nitrogen and carbon. While initial ORR activity of such catalysts has improved in recent years, it is not sufficient for automotive use. The long-term stability of these catalysts is also insufficient. The activity and durability of the catalysts must be improved significantly in order to overcome these limitations. In addition, innovative electrode structures must be developed to allow for operation with thick catalyst layers. The ORR reaction mechanism must also be well understood in terms of the active reaction site. This presentation summarized non-precious ORR catalysis research at Los Alamos, with particular focus on catalysts obtained by heat treatment of polymers (such as polyaniline) on high-surface-area carbon in the presence of transition metals, cobalt and iron. These heat-treated catalysts achieve respectable ORR activity and improved stability in both aqueous and polymer electrolytes. Electrochemical and non-electrochemical techniques such as XPS, XANES and XAFS were used to examine the source of ORR activity of these heat-treated catalysts.

  7. TMI-2 fuel-recovery plant. Feasibility study

    International Nuclear Information System (INIS)

    Evans, D.L.

    1982-12-01

    This project is a feasibility study for constructing a TMI-2 core Fuel Recovery Plant at the Idaho National Engineering Laboratory (INEL). The primary objectives of the Fuel Recovery Plant (FRP) are to recover and account for the fuel and to process, isolate, and package the waste material from the TMI-2 core. This feasibility study is predicated on a baseline plant and covers its design, fabrication, installation, testing and operation. Alternative methods for the disposal of the TMI-2 core have also been considered, but not examined in detail for their feasibility. The FRP will receive TMI-2 fuel in canisters. The fuel will vary from core debris to intact fuel assemblies and include some core structural materials. The canister contents will be shredded and subsequently fed to a dissolver. Uranium, plutonium, fission products, and some core structural material will be dissolved. The uranium will be separated by solvent extraction and solidified by calcination. The plutonium will also be separated by solvent extraction and routed to the Plutonium Extraction Facility. The wastes will be packaged for further treatment, temporary storage or permanent disposal

  8. Fuel-Efficient Road Vehicle Non-Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The need to address global energy issues, i.e. energy security and climate change, is more urgent than ever. Road vehicles dominate global oil consumption and are one of the fastest growing energy end-uses. This paper studies policies and measures to improve on-road fuel efficiency of vehicles by focusing on energy efficiency of automobile components not generally considered in official fuel efficiency test, namely tyres, cooling technologies and lightings. In this paper, current policies and industry activities on these components are reviewed, fuel saving potential by the components analysed and possible policies to realise the potential recommended.

  9. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco, horseradish peroxidase (HRP, hemoglobin (Hb], and two pepsin resistant proteins [lipid transfer protein (LTP and soybean trypsin inhibitor (STI]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to

  10. Results from the characterisation of the Futurix-FTA metal alloy transmutation fuels

    International Nuclear Information System (INIS)

    Rory Kennedy, J.; O'Holleran, Th.; Keiser, D.

    2007-01-01

    Full text of publication follows. Idaho National Laboratory has been developing and irradiation testing a number of fuels and fuel types for actinide transmutation as part of the Advanced Fuel Cycle Initiative (AFCI). Fuel types under consideration include both fertile (fast reactor systems) and fertile-free (accelerator-driven systems) metallic alloys. Most recently, fuel fabrication was completed and the fuel pins shipped to the fast flux Phenix reactor in Marcoule, France for irradiation testing as part of the FUTURIX-FTA experiment: an international experiment involving the USA, France, the European Commission and Japan. The metal alloy fuels for this experiment are the low-fertile U-29Pu-4Am-2Np-30Zr and the non-fertile Pu-12Am-40Zr. The fresh fuels have been fully characterised for chemical composition, phase, microstructure, thermal behaviour and fuel-cladding-chemical-interaction (FCCI). Preliminary FCCI results raised some safety concerns with respect to the formation of low melting phases and cladding degradation, which could preclude a fuel from consideration. Results from diffusion couple experiments between the non-fertile fuel Pu-12Am-40Zr and the ferritic HT9 and 422 stainless steels (SS) used in the AFC experiments in the ATR reactor (USA) compared to the austenitic AIM1 SS used in the FUTURIX-FTA experiments in the Phenix reactor (France) indicate significant inter-diffusion with the AIM1 SS. Up to about a 30-fold increase in the diffusion of iron (and accompanying Ni and Cr) into the fuel at 650 C was observed compared to the 422 SS studies. Comparable studies between the low-fertile U-29Pu-4Am-2Np-30Zr fuel alloy and the AIM1 SS show virtually no inter-diffusion. The Fe (along with small amounts of Ni and Cr) appears as small precipitates in the fuel alloy with only minor concentrations identified in the fuel alloy matrix. These results will be discussed in terms of mechanisms of the inter-diffusion and the difference in behaviour between the

  11. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2018-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...

  12. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  13. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  14. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  15. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  16. Fuel substitution - poverty impacts on biomass fuel suppliers (Uganda, Kenya and Ethiopia)

    International Nuclear Information System (INIS)

    2002-01-01

    Many sub Saharan countries view the increasing use of traditional fuels (primarily charcoal and, to a lesser extent, wood) in urban areas as a major cause of environmental degradation. Governments are concerned about the effects of perceived rising costs of traditional fuels on poor households and seek to reduce those costs. Many are also concerned with the health impacts that using traditional fuels may have in households. In response to this, many governments have prompted a shift from traditional fuels for cooking to kerosene, gas and electricity as substitutes, and to energy-efficient charcoal and wood stoves to reduce these impacts. Such interventions can have major impacts on the livelihoods of people engaged in the production, transport and sale of traditional biomass supplies due to the decline in demand for wood-based fuels. This project will quantify the impact that fuel substitution will have on people engaged in traditional fuel supply, distribution and trade and develop a set of recommendations for Kenya, Ethiopia and Uganda that will recommend ways to mitigate the negative effects of fuel substitution on traditional biomass fuel suppliers. At the same time, it will address how this can be accomplished while mitigating the environmental and health impacts of continued use of traditional fuels. (author)

  17. Fuel substitution - poverty impacts on biomass fuel suppliers (Uganda, Kenya and Ethiopia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Many sub Saharan countries view the increasing use of traditional fuels (primarily charcoal and, to a lesser extent, wood) in urban areas as a major cause of environmental degradation. Governments are concerned about the effects of perceived rising costs of traditional fuels on poor households and seek to reduce those costs. Many are also concerned with the health impacts that using traditional fuels may have in households. In response to this, many governments have prompted a shift from traditional fuels for cooking to kerosene, gas and electricity as substitutes, and to energy-efficient charcoal and wood stoves to reduce these impacts. Such interventions can have major impacts on the livelihoods of people engaged in the production, transport and sale of traditional biomass supplies due to the decline in demand for wood-based fuels. This project will quantify the impact that fuel substitution will have on people engaged in traditional fuel supply, distribution and trade and develop a set of recommendations for Kenya, Ethiopia and Uganda that will recommend ways to mitigate the negative effects of fuel substitution on traditional biomass fuel suppliers. At the same time, it will address how this can be accomplished while mitigating the environmental and health impacts of continued use of traditional fuels. (author)

  18. Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues.

    Science.gov (United States)

    Zhu, Xiaomin; Schroll, Reiner; Dörfler, Ulrike; Chen, Baoliang

    2018-03-01

    During pesticides degradation, biogenic non-extractable residues ("apparent NER") may not share the same environmental fate and risks with the "real NER" that are bound to soil matrix. It is not clear how microbial community (MC) inoculation for pesticides degradation would influence the NER composition. To investigate degradation efficiency of pesticides Isoproturon (IPU) and NER composition following MC inoculation, clay particles harboring MC that contains the IPU degrading strain, Sphingomonas sp., were inoculated into soil receiving 14 C-labeled IPU addition. Mineralization of IPU was greatly enhanced with MC inoculation that averagely 55.9% of the applied 14 C-IPU was consumed up into 14 CO 2 during 46 days soil incubation. Isoproturon degradation was more thorough with MC than that in the control: much less amount of metabolic products (4.6% of applied IPU) and NER (35.4%) formed in MC treatment, while the percentages were respectively 30.3% for metabolites and 49.8% for NER in the control. Composition of NER shifted with MC inoculation, that relatively larger amount of IPU was incorporated into the biogenic "apparent NER" in comparison with "real NER". Besides its well-recognized role on enhancing mineralization, MC inoculation with clay particles benefits soil pesticides remediation in term of reducing "real NER" formation, which has been previously underestimated. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Secretion of non-cell-bound phytase by the yeast Pichia kudriavzevii TY13.

    Science.gov (United States)

    Hellström, A; Qvirist, L; Svanberg, U; Veide Vilg, J; Andlid, T

    2015-05-01

    Mineral deficiencies cause several health problems in the world, especially for populations consuming cereal-based diets rich in the anti-nutrient phytate. Our aim was to characterize the phytate-degrading capacity of the yeast Pichia kudriavzevii TY13 and its secretion of phytase. The phytase activity in cell-free supernatants from cultures with 100% intact cells was 35-190 mU ml(-1) depending on the media. The Km was 0.28 mmol l(-1) and the specific phytase activity 0.32 U mg(-1) total protein. The phytase activity and secretion of extracellular non-cell-bound phytase was affected by the medium phosphate concentrations. Further, addition of yeast extract had a clearly inducing effect, resulting in over 60% of the cultures total phytase activity as non-cell-bound. Our study reveals that it is possible to achieve high extracellular phytase activity from the yeast P. kudriavzevii TY13 by proper composition of the growth medium. TY13 could be a promising future starter culture for fermented foods with improved mineral bioavailability. Using strains that secrete phytase to the food matrix may significantly improve the phytate degradation by facilitating the enzyme-to-substrate interaction. The secreted non-cell-bound phytase activities by TY13 could further be advantageous in industrial production of phytase. © 2015 The Society for Applied Microbiology.

  20. Non-destructive analysis of spent nuclear fuel

    International Nuclear Information System (INIS)

    Popovic, D.

    1961-12-01

    Nondestructive analysis of fuel elements dealt with determining the isotope contents which provide information about the burnup level, quantities of fission products and neutron-multiplication properties of the irradiated fuel. Methods for determination of the isotope ratio of the spent fuel are both numerical and experimental. This report deals with the experimental method. This means development of the experimental methods for direct measurement of the isotope content. A number of procedures are described: measurements of α, β and γ activities of the isotopes; measurement of secondary effects of nuclear reactions with thermal neutrons and fast neutrons; measurement of cross sections; detection of prompt and delayed neutrons

  1. Used Fuel Cask Identification through Neutron Profile

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature. If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.

  2. Mapping the World's Intact Forest Landscapes by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Peter Potapov

    2008-12-01

    Full Text Available Protection of large natural forest landscapes is a highly important task to help fulfill different international strategic initiatives to protect forest biodiversity, to reduce carbon emissions from deforestation and forest degradation, and to stimulate sustainable forest management practices. This paper introduces a new approach for mapping large intact forest landscapes (IFL, defined as an unbroken expanse of natural ecosystems within areas of current forest extent, without signs of significant human activity, and having an area of at least 500 km2. We have created a global IFL map using existing fine-scale maps and a global coverage of high spatial resolution satellite imagery. We estimate the global area of IFL within the current extent of forest ecosystems (forest zone to be 13.1 million km2 or 23.5% of the forest zone. The vast majority of IFL are found in two biomes: Dense Tropical and Subtropical Forests (45.3% and Boreal Forests (43.8%. The lowest proportion of IFL is found in Temperate Broadleaf and Mixed Forests. The IFL exist in 66 of the 149 countries that together make up the forest zone. Three of them - Canada, Russia, and Brazil - contain 63.8% of the total IFL area. Of the world's IFL area, 18.9% has some form of protection, but only 9.7% is strictly protected, i.e., belongs to IUCN protected areas categories I-III. The world IFL map presented here is intended to underpin the development of a general strategy for nature conservation at the global and regional scales. It also defines a baseline for monitoring deforestation and forest degradation that is well suited for use with operational and cost-effective satellite data. All project results and IFL maps are available on a dedicated web site (http://www.intactforests.org.

  3. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  4. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells....... The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation......, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high...

  5. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  6. Intact collagen and atelocollagen sponges: Characterization and ESEM observation

    International Nuclear Information System (INIS)

    Ruozi, Barbara; Tosi, Giovanni; Leo, Eliana; Parma, Bruna; Vismara, Susanna; Forni, Flavio; Vandelli, Maria Angela

    2007-01-01

    In this study we have investigated the chemical-physical and morphological properties of intact and atelocollagen sponges used for tissue engineering. The porous sponges were prepared by lyophilization and their physico-chemical characteristics (water binding capacity, denaturing temperature, amino group content) were investigated. Considering the importance of the 'in vivo' interactions between these sponges and the tissue, our attention was addressed (a) to clarify the relationships between the morphology and the amount of water absorbed and (b) to evaluate the influence of pepsin-alkaline treatment on the reorganization of the atelocollagen fibres. Conventional scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) were employed to study the morphology and wetting behaviour of the intact and atelocollagen sponges. The observations by SEM indicated remarkable differences both in the structure and dimension of the pores between intact and atelocollagen sponges. At the data are related to a different water binding capacity. However, the ESEM observations, achieved by changing the relative humidity in the operative chamber, demonstrated that the water adsorbed can be removed with major difficulty from atelocollagen sponges than from intact ones

  7. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  8. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun, E-mail: kunmo@anl.gov; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-15

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO{sub 2} particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO{sub 2} particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO{sub 2} particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO{sub 2} particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  9. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  10. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    Science.gov (United States)

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Kinematics and thermodynamics across a propagating non-stoichiometric oxidation phase front in spent fuel grains

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-09-01

    Spent fuel contains mixtures, alloy and compound, but are dominated by U and O except for some UO 2 fuels with burnable poisons (gadolinia in BWR rods), the other elements evolve during reactor operation from neutron reaction and fission + fission decay events. Due to decay, chemical composition and activity of spent fuel will continue to evolve after removal from reactors. During the time interval with significant radioactivity levels relevant for a geological repository, it is important to develop models for potential chemical responses in spent fuel and potential degradation of repository. One such potential impact is the oxidation of spent fuel, which results in initial phase change of UO 2 lattice to U 4 O 9 and the next phase change is probably to U 3 O 8 although it has not been observed yet below 200C. The U 4 O 9 lattice is nonstoichiometric with a O/U weight ratio at 2.4. Preliminary indications are that the UO 2 has a O/U of 2. 4 at the time just before it transforms into the U 4 O 9 phase. In the oxygen weight gain versus time response, a plateau appears as the O/U approaches 2.4. Part of this plateau is due to geometrical effects of a U 4 O 9 phase change front propagating into UO 2 grain volumes; however, this may indicate a metastable phase change delay kinetics or a diffusional related delay time until the oxygen density can satisfy stoichiometry and energy conditions for phase changes. Experimental data show a front of U 4 O 9 lattice structure propagating into grains of the UO 2 lattice. To describe this spatially inhomogenous oxidation phase transition, as well as the expected U 3 O 8 phase transition from the U 4 O 9 lattice, lattice models are developed and spatially discontinuous kinematic and energetic expressions are derived. 9 refs

  12. Complex degradation processes lead to non-exponential decay patterns and age-dependent decay rates of messenger RNA.

    Directory of Open Access Journals (Sweden)

    Carlus Deneke

    Full Text Available Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data.

  13. Improved drying rate diagnostics for saturated fuel debris at the INEEL

    International Nuclear Information System (INIS)

    Childs, K.; Christensen, A.

    1999-01-01

    A fuel canning station (FCS) has been operated for ∼2 yr to prepare for the dry storage of a variety of spent reactor fuels stored in pools at the Idaho National Engineering and Environmental Laboratory (INEEL). The FCS dewaters the fuel and then passivates possibly pyrophoric components in the fuel. Fuel-loaded canisters are placed into a heated insert, the canister is connected to a vacuum system, and the fuel is heated under a vacuum to remove the water. The dewatering system must also verify that the water was removed. The dryness criteria state that the canister pressure shall not exceed a defined pressure for a specified isolation time. Dewatering did not work well for defected TRIGA elements that had corroded in pool storage, leaving the intact fuel meat mixed with a bed of fines from metal oxides and from sludge that continuously accumulated within the pool. Dewatering these cans proved to be very time consuming. Fueled canisters were heated to 60 C and evacuated between 5 and 10 torr. At these conditions, intact fuels were rapidly dried (<10 h). TRIGA drying periods extended to 9 days. Dryness was qualitatively monitored using the canister pressure-control valve position. The valve closes as the gas flow rate declines, providing an indication that drying is complete. However, the valve remained open when drying TRIGA fuel, leaving no indication of dryness. In addition, dryness could not be verified because the canister pressure exceeded the defined pressure during isolation. Air leakage into the evacuated canister prevented the dryness from being verified. Air in-leakage and water vapor cannot easily be discriminated by the aforementioned procedures. Because the canister design does not seal above atmospheric pressure, a drying temperature that yielded a vapor pressure less than atmospheric pressure was chosen. A sufficiently long isolation test could then determine if air was accumulating in the canister; however, the low temperature reduced the drying

  14. Development status of metallic, dispersion and non-oxide advanced and alternative fuels for power and research reactors

    International Nuclear Information System (INIS)

    2003-09-01

    eighties until the present days. The aspects of HTGR fuels, as well as partitioning and transmutation (P and T) of minor actinides and relative specific fuels have not been addressed. The International Atomic Energy Agency's (IAEA) Division of Nuclear Fuel Cycle and Waste Technology has been closely involved for many years in the above mentioned activities in the framework of the Advisory Group on Advanced Fuel Technology and Performance (fast reactor fuels) and Technical Working Group on Water Reactor Fuel Performance and Technology (thermal power reactor fuels). Apart from the progress made during the last decade, this report summarizes technological approaches, out-of-pile and in-pile properties of many types of advanced non-oxide fuels. It is expected that the report will provide IAEA Member States and their nuclear engineers with useful information and will preserve knowledge in the area for future developments. The review was prepared by a group of experts in the field from Germany, India and the Russian Federation and supported by information from specialists in Japan, Switzerland and the IAEA engaged in non-oxide fuel developments and related subjects

  15. Acid Distribution and Durability of HT-PEM Fuel Cells with Different Electrode Supports

    DEFF Research Database (Denmark)

    Kannan, A.; Li, Q.; Cleemann, L. N.

    2018-01-01

    made from carbon black took up much more acid than materials with a more coarse apparent structure made from graphitized carbon. The same trend was evident from thermally accelerated fuel cell tests at 180 °C under constant load where degradation rates depended strongly on the choice of GDL material......, especially on the cathode side. Acid was collected from the fuel cell exhaust at rates clearly correlated to the fuel cell degradation rates, but amounted to less than 6% of the total acid content in the cell even after significant degradation. Long-term durability of more than 5,500 h with a degradation...... long-term operation. The effect of the gas diffusion layers (GDL) on acid loss was studied. Four different commercially available GDLs were subjected to passive ex situ acid uptake by capillary forces and the acid distribution mapped over the cross-section. Materials with an apparent fine structure...

  16. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  17. Autolytic degradation of skipjack tuna during heating as affected by initial quality and processing conditions.

    Science.gov (United States)

    Stagg, Nicola J; Amato, Penny M; Giesbrecht, Francis; Lanier, Tyre C

    2012-02-01

    Several factors were studied as affecting protein degradation and texture of skipjack tuna muscle following ambient pressure thermal processing (precooking). These included degree of mushy tuna syndrome (MTS) evidenced in the raw meat, raw meat pH, abusive thawing/holding, and precooking temperature/time. Slurries and intact pieces from frozen skipjack tuna, either tempered for 2 h or thawed and held at 25 °C for 22 h (abusive treatment) were heated at temperatures ranging from 40 to 80 °C for up to 2 h, and also at 90 °C for 1 h, with or without prior adjustment of pH to 5 or 7 to favor cathepsin or calpain activity, respectively. Proteolysis of precooked samples was monitored by Lowry assay and SDS-PAGE; cooked texture of intact meat was measured using a Kramer shear press and by sensory profile analysis. Proteolysis maximally occurred in slurries of skipjack tuna muscle that had been abusively stored (22 h at 25 °C) and adjusted to pH 5 prior to heating at 55 °C. Intact pieces of tuna abusively thawed/held for 22 h with subsequent heating at 55 °C also evidenced the most proteolysis and were the least firm in texture. Raw fish that evidenced higher severity of MTS when raw displayed higher levels of proteolysis prior to cooking, which were further increased after cooking at 55 °C. The kinetic data presented here can be used to optimize processing conditions for skipjack tuna canning to minimize textural degradation and optimize quality. © 2012 Institute of Food Technologists®

  18. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  19. Consequences of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-09-01

    This report documents work performed for the Department of Energy's Office of Nuclear Energy (DOENE) Fuel Cycle Technologies Used Fuel Disposition Campaign to assess the impact of fuel reconfiguration due to fuel failure on the criticality safety of used nuclear fuel (UNF) in storage and transportation casks. This work was motivated by concerns related to the potential for fuel degradation during extended storage (ES) periods and transportation following ES, but has relevance to other potential causes of fuel reconfiguration. Commercial UNF in the United States is expected to remain in storage for longer periods than originally intended. Extended storage time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications for virtually all aspects of a UNF storage and transport system's performance. The potential impact of fuel reconfiguration on the safety of UNF in storage and transportation is dependent on the likelihood and extent of the fuel reconfiguration, which is not well understood and is currently an active area of research. The objective of this work is to assess and quantify the impact of postulated failed fuel configurations on the criticality safety of UNF in storage and transportation casks. Although this work is motivated by the potential for fuel degradation during ES periods and transportation following ES, it has relevance to fuel reconfiguration due to the effects of high burnup. Regardless of the ultimate disposition path, UNF will need to be transported at some point in the future. To investigate and quantify the impact of fuel reconfiguration on criticality safety limits, which are given in terms of the effective neutron multiplication factor, a set of failed fuel

  20. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  1. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  2. Suggested non-proliferation criteria for commercial nuclear fuel cycles

    International Nuclear Information System (INIS)

    Laney, R.V.; Heubotter, P.R.

    1978-01-01

    Based on the Administration's policy to prevent nuclear weapons proliferation through diversion of fuel from commercial reactor fuel cycles, a ''benchmark'' set of nonproliferation criteria was prepared for the commercial nuclear fuel cycle. These criteria should eliminate incremental risks of proliferation beyond those inherent in the present generation of low-enriched-uranium-fueled reactors operating in a once-through mode, with internationally safeguarded storage of spent fuel. They focus on the balanced application of technical constraints consistent with the state of the technology, with minimal requirements for institutional constraints, to provide a basis for assessing the proliferation resistance of proposed fission power systems. The paper contains: (1) our perception of the nuclear energy policy and of the baseline proliferation risk accepted under this policy; (2) objectives for a reactor and fuel cycle strategy which address the technical, political, and institutional aspects of diversion and proliferation and, at the same time, satisfy the Nation's needs for efficient, timely, and economical utilization of nuclear fuel resources; (3) criteria which are responsive to these objectives and can therefore be used to screen proposed reactor and fuel cycle strategies; and (4) a rationale for these criteria

  3. Evaluation of the ceramographies of the KNK II/1 test zone fuel assembly NY-202-IA

    International Nuclear Information System (INIS)

    Geier, F.

    1983-12-01

    From the 211 fuel pins of the KNK II/1 fuel assembly NY-202-IA six intact fuel pins were selected in addition to the defective pin for destructive post-irradiation examinations in the Hot Cells of the KfK Karlsruhe. The assembly had been unloaded due to a pin failure after 192 equivalent full-power days and a maximum burnup of 5.4 %. The main aspect of these investigations was to record the fuel and fuel pin behavior and thus to allow a comparison of the status before and after irradiation. The results can also be used for comparative calculations and adaptations of existing calculational models. This report documents in detailed form the results of the fuel and fuel pin examinations [de

  4. Tolerance of a standard intact protein formula versus a partially hydrolyzed formula in healthy, term infants

    Directory of Open Access Journals (Sweden)

    Marunycz John D

    2009-06-01

    Full Text Available Abstract Background Parents who perceive common infant behaviors as formula intolerance-related often switch formulas without consulting a health professional. Up to one-half of formula-fed infants experience a formula change during the first six months of life. Methods The objective of this study was to assess discontinuance due to study physician-assessed formula intolerance in healthy, term infants. Infants (335 were randomized to receive either a standard intact cow milk protein formula (INTACT or a partially hydrolyzed cow milk protein formula (PH in a 60 day non-inferiority trial. Discontinuance due to study physician-assessed formula intolerance was the primary outcome. Secondary outcomes included number of infants who discontinued for any reason, including parent-assessed. Results Formula intolerance between groups (INTACT, 12.3% vs. PH, 13.7% was similar for infants who completed the study or discontinued due to study physician-assessed formula intolerance. Overall study discontinuance based on parent- vs. study physician-assessed intolerance for all infants (14.4 vs.11.1% was significantly different (P = 0.001. Conclusion This study demonstrated no difference in infant tolerance of intact vs. partially hydrolyzed cow milk protein formulas for healthy, term infants over a 60-day feeding trial, suggesting nonstandard partially hydrolyzed formulas are not necessary as a first-choice for healthy infants. Parents frequently perceived infant behavior as formula intolerance, paralleling previous reports of unnecessary formula changes. Trial Registration clinicaltrials.gov: NCT00666120

  5. Bio-Electro-Fenton process for the degradation of Non-Steroidal Anti-Inflammatory Drugs in wastewater

    DEFF Research Database (Denmark)

    Nadais, Helena; Li, Xiaohu; Alves, Nadine

    2018-01-01

    Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are ubiquitous municipal wastewater pollutants of which several are resistant to degradation in conventional wastewater treatment, and represent a major environmental health concern worldwide. An alternative treatment, the bio-electro-Fenton process......, has received increasing attention in past years. In this process the strong oxidant •HO is formed using the electrons derived from bacterial oxidation of organic substrate. In this work, a laboratory scale microbial electrolysis cell based bio-electro-Fenton process was developed for the treatment...

  6. Cracked pellet gap conductance model: comparison of FRAP-S calculations with measured fuel centerline temperatures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Broughton, J.M.

    1975-03-01

    Fuel pellets crack extensively upon irradiation due both to thermal stresses induced by power changes and at high burnup, to accumulation of gaseous fission products at grain boundaries. Therefore, the distance between the fuel and cladding will be circumferentially nonuniform; varying between that calculated for intact operating fuel pellets and essentially zero (fuel segments in contact with the cladding wall). A model for calculation of temperatures in cracked pellets is proposed wherein the effective fuel to cladding gap conductance is calculated by taking a zero pressure contact conductance in series with an annular gap conductance. Comparisons of predicted and measured fuel centerline temperatures at beginning of life and at extended burnup are presented in support of the model. 13 references

  7. Use of a non-edible vegetable oils as an alternative fuel in compression ignition engines

    International Nuclear Information System (INIS)

    Jayaraj, S.; Ramadhas, A.S.; Muraleedharan, C.

    2006-01-01

    Shortage of petroleum fuels is assumed predominance globally and hence efforts are being made in every country to look for alternative fuels, especially for running internal compression ignition engines. However, the limited availability of edible vegetable oils in excess amounts is a limiting factors, which limits their large usage as an alternative fuel. A remedy for this is the use of non-edible oils obtained mainly from seeds, which are otherwise dumped as waste material. An effort is made here to use rubber seed oil as fuel in compression ignition engine at various proportions, mixed with diesel oil. The performance and emission characteristics of the engine are measured under dual fuel operation. The compression ignition engine could be run satisfactorily without any noticeable problem, even with 100% rubber seed oil. A multi-layer artificial neural network model was developed for predicting the performance and emission characteristics of the engine under dual fuel operation. Experimental data has been used to train the network. The predicted engine performance and emission characteristics obtained by neural network model are validated by using the experimental data. The neural network model is found to be quite efficient in predicting engine performance and emission characteristics. It has been found that 60-80% diesel replacement by rubber seed oil is the optimum in order to get maximum engine performance and minimum exhaust emission

  8. MCDIRC: A model to estimate creep produced by microcracking around a shaft in intact rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1989-12-01

    Atomic Energy of Canada Limited (AECL) is studying the concept of disposing of nuclear fuel waste in a vault in plutonic rock. Models are being developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. A model has been constructed to consider the perturbation of the stress state of intact rock by a vertical cylindrical opening. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which the movement (creep) of the opening wall and radial strain in the rock mass can be estimated

  9. A study of the stabilities, microstructures and fuel characteristics of tri-fuel (diesel-biodiesel-ethanol) using various fuel preparation methods

    Science.gov (United States)

    Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.

  10. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Miyanishi, Hideyuki; Kitagawa, Isamu; Iida, Shozo; Ito, Tadaharu; Amano, Hidetoshi.

    1991-11-01

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85 Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/V f or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO 2 fuel, C (counts/h) the radioactivity of 85 Kr at plenum of the tested fuel rod and V f (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  11. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    Science.gov (United States)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  12. Coating degradation at tank bottomdue to settled water

    International Nuclear Information System (INIS)

    Majeed, U.; Rizvi, M.A.; Khan, I.H.

    2008-01-01

    In the present work, coating degradation as a result of settled water on fuel storage tank bottoms has been reported with the help of electrochemical impedance spectroscopy (EIS), blister analysis and gravimetric analysis (water uptake). Blistering occurs underneath the coating at the tank bottom due to direct contact with settled water. Degradation behavior of polyamide epoxy coatings on mild steel has been reported in term of coating resistance at the start of the experiments, after 96 hours and at the end of EIS experiments. Coating degradation in terms of shift in phase angle (theta) at high frequency as a function of exposure time has also been reported. The blister formation and gravimetric analysis data has also been reported in support of EIS result. (author)

  13. Non-linear thermal and structural analysis of a typical spent fuel silo

    International Nuclear Information System (INIS)

    Alvarez, L.M.; Mancini, G.R.; Spina, O.A.F.; Sala, G.; Paglia, F.

    1993-01-01

    A numerical method for the non-linear structural analysis of a typical reinforced concrete spent fuel silo under thermal loads is proposed. The numerical time integration was performed by means of a time explicit axisymmetric finite-difference numerical operator. An analysis was made of influences by heat, viscoelasticity and cracking upon the concrete behaviour between concrete pouring stage and the first period of the silo's normal operation. The following parameters were considered for the heat generation and transmission process: Heat generated during the concrete's hardening stage, Solar radiation effects, Natural convection, Spent-fuel heat generation. For the modelling of the reinforced concrete behaviour, use was made of a simplified formulation of: Visco-elastic effects, Thermal cracking, Steel reinforcement. A comparison between some experimental temperature characteristic values obtained from the numerical integration process and empirical data obtained from a 1:1 scaled prototype was also carried out. (author)

  14. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  15. Improvement of CO2 emission estimates from the non-energy use of fossil fuels in the Netherlands

    International Nuclear Information System (INIS)

    Neelis, M.; Patel, M.; De Feber, M.

    2003-04-01

    Estimates of carbon dioxide emissions originating from the non-energy use of fossil fuels are generally considered to be a rather uncertain part in greenhouse gas (GHG) emission inventories. For this reason, the NEAT (Non-energy use Emission Accounting Tables) model has been developed which represents a bottom-up carbon flow analysis to calculate the CO2 emissions that originate from the non-energy use of fossil fuels. The NEAT model also provides estimates for the total fossil CO2 emissions by deducting the non-energy use carbon storage from the total fuel consumption. In this study, an extended version of the NEAT model (NEAT 2.0) has been developed and applied to the Netherlands for the period 1993-1999. For this analysis, confidential production and trade statistics were provided by Statistics Netherlands (CBS) within the CEREM framework. The main conclusion of this study is that the total fossil CO2 emissions are very likely to be overestimated in the official CO2 emission inventories for the Netherlands (as reported to the UNFCCC). According to the NEAT model, the total fossil CO2 emissions in the Netherlands range between 158-173 Mt CO2 (varying per year), whereas the results according to the IPCC Reference Approach (IPCC-RA, a top down method based on the total primary energy supply in a country) are 2.9-7.5 Mt CO2 (2-7%) higher. The difference results from a different estimate for non-energy use carbon storage that is deducted from the total primary energy supply to yield an estimate for total national CO2 emissions of fossil origin

  16. Study thermofluidynamic of the sub frame of fuel in the cell of discharge of the ATC; Estudio termofluidodinamico del bastidor auxiliar de combustible en la celda de descarga del ATC

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, J.; Feria, F.; Herranz, L. E.

    2014-07-01

    The objective of this work was to determine the conditions that guarantee the maintenance of the State of the fuel during hypothetical stays in the discharge of a postulated ATC cell. The study includes three different conditions fuel element: intact, defective drawer of damaged fuel and defective without drawer of damaged fuel. (Author)

  17. Analysis of possibilities for functional capacity for work rise of reactor fuel elements at nuclear engine regime

    International Nuclear Information System (INIS)

    Deryavko, I.I.; Perepelkin, I.G.; Pivovarov, O.S.; Storozhenko, A.N.; Tarasov, V.I.

    2000-01-01

    The principle results of carbide fuel rods testing during series of IVG.1 reactor starts up at regime simulating nuclear engine regime of nuclear moving power unit are given. Considerable degradation of initial fuel elements status increasing from start up to start up and which could resulted fail of separate technological channels is shown. Origin case of extreme degradation of fuel elements status are insufficient thermal strength of fuel elements operation in the field brittle state of sintered carbide material, Possible ways of artificial reinforce of fuel elements of low temperature sections, increasing its thermal strength up to required level

  18. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D., E-mail: hunnjd@ornl.gov [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M. [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A. [Idaho National Laboratory (INL), P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-09-15

    Highlights: • Cesium release was used to detect SiC failure in HTGR fuel. • Tristructural-isotropic particles with SiC failure were isolated by gamma screening. • SiC failure was studied by X-ray tomography and SEM. • SiC degradation was observed after irradiation and subsequent safety testing. - Abstract: As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of {sup 134}Cs and {sup 137}Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were

  19. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  20. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review

    International Nuclear Information System (INIS)

    Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Imtenan, S.; Shahir, S.A.; Mobarak, H.M.

    2014-01-01

    Highlights: • Overview of current energy situation. • Overview of biology, distribution and chemistry of various non-edible oil resources. • Comparison of fuel properties of various biodiesels produced from various non-edible oils. • Comparison of engine performance and emission characteristics of reviewed biodiesels. - Abstract: Energy demand is increasing dramatically because of the fast industrial development, rising population, expanding urbanization, and economic growth in the world. To fulfill this energy demand, a large amount of fuel is widely used from different fossil resources. Burning of fossil fuels has caused serious detrimental environmental consequences. The application of biodiesel has shown a positive impact in resolving these issues. Edible vegetable oils are one of the potential feedstocks for biodiesel production. However, as the use of edible oils will jeopardize food supplies and biodiversity, non-edible vegetable oils, also known as second-generation feedstocks, are considered potential substitutes of edible food crops for biodiesel production. This paper introduces some species of non-edible vegetables whose oils are potential sources of biodiesel. These species are Pongamia pinnata (karanja), Calophyllum inophyllum (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica (Neem), Linum usitatissimum (Linseed) and Jatropha curcas (Jatropha). Various aspects of non-edible feedstocks, such as biology, distribution, and chemistry, the biodiesel’s physicochemical properties, and its effect on engine performance and emission, are reviewed based on published articles. From the review, fuel properties are found to considerably vary depending on feedstocks. Analysis of the performance results revealed that most of the biodiesel generally give higher brake thermal efficiency and lower brake-specific fuel consumption. Emission results