WorldWideScience

Sample records for degraded genomic dna

  1. Whole genome nucleosome sequencing identifies novel types of forensic markers in degraded DNA samples

    Science.gov (United States)

    Dong, Chun-nan; Yang, Ya-dong; Li, Shu-jin; Yang, Ya-ran; Zhang, Xiao-jing; Fang, Xiang-dong; Yan, Jiang-wei; Cong, Bin

    2016-01-01

    In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these “nucleosome protected STRs” (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082

  2. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

    Science.gov (United States)

    Land, Allison M; Wang, Jiayi; Law, Emily K; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E; Harris, Reuben S

    2015-11-24

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.

  3. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing.

    Science.gov (United States)

    Permenter, Jessalyn; Ishwar, Arjun; Rounsavall, Angie; Smith, Maddie; Faske, Jennifer; Sailey, Charles J; Alfaro, Maria P

    2015-12-01

    Proper storage of whole blood is crucial for isolating nucleic acids from leukocytes and to ensure adequate performance of downstream assays in the molecular diagnostic laboratory. Short-term and long-term storage recommendations are lacking for successful isolation of genomic DNA (gDNA). Container type (EDTA or heparin), temperature (4 °C and room temperature) and time (1-130 days) were assessed as criterion for sample acceptance policies. The percentage of integrated area (%Ti) between 150 and 10,000 bp from the 2200 TapeStation electropherogram was calculated to measure gDNA degradation. Refrigerated EDTA samples yielded gDNA with low %Ti (high quality). Heparinized samples stored at room temperature yielded gDNA of worst quality. Downstream analysis demonstrated that the quality of the gDNA correlated with the quality of the data; samples with high %Ti generated significantly lower levels of high molecular weight amplicons. Recommendations from these analyses include storing blood samples intended for nucleic acid isolation in EDTA tubes at 4 °C for long term storage (>10 days). gDNA should be extracted within 3 days when blood is stored at room temperature regardless of the container. Finally, refrigerated heparinized samples should not be stored longer than 9 days if expecting high quality gDNA isolates. Laboratories should consider many factors, in addition to the results obtained herein, to update their policies for sample acceptance for gDNA extraction intended for molecular genetic testing.

  4. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    Lianwen Zhang; Lianwen Zhang

    2005-12-01

    To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence, mainly represented by temperature and heating time, affects the DNA degradation via DNA depurination followed by cleavage of nearby phosphodiesters. The heating time influence is temperature-dependent. By reactive oxygen species (ROS) scavenging and 1,3-diphenyl-isobenzofuran (DPBF) bleaching experiments the influence of oxygen on DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the thermal degradation of cellular DNA and isolated DNA showed that cellular lipids can aggravate DNA thermal degradation. These results confirm the possibility of gene amplification from thermally degraded DNA. They can be used to evaluate the feasibility of the retrieval of single gene from ancient remains.

  5. An isothermal primer extension method for whole genome amplification of fresh and degraded DNA: applications in comparative genomic hybridization, genotyping and mutation screening.

    Science.gov (United States)

    Lee, Cheryl I P; Leong, Siew Hong; Png, Adrian E H; Choo, Keng Wah; Syn, Christopher; Lim, Dennis T H; Law, Hai Yang; Kon, Oi Lian

    2006-01-01

    We describe a protocol that uses a bioinformatically optimized primer in an isothermal whole genome amplification (WGA) reaction. Overnight incubation at 37 degrees C efficiently generates several hundred- to several thousand-fold increases in input DNA. The amplified product retains reasonably faithful quantitative representation of unamplified whole genomic DNA (gDNA). We provide protocols for applying this isothermal primer extension WGA protocol in three different techniques of genomic analysis: comparative genomic hybridization (CGH), genotyping at simple tandem repeat (STR) loci and screening for single base mutations in a common monogenic disorder, beta-thalassemia. gDNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues can also be amplified with this protocol.

  6. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... Breve guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is ... genetic basis for health and disease. Implications of Genomics for Medical Science Virtually every human ailment has ...

  7. Preparation of genomic DNA from bacteria.

    Science.gov (United States)

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq).

    Science.gov (United States)

    Graham, Carly F; Glenn, Travis C; McArthur, Andrew G; Boreham, Douglas R; Kieran, Troy; Lance, Stacey; Manzon, Richard G; Martino, Jessica A; Pierson, Todd; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2015-11-01

    Degraded DNA from suboptimal field sampling is common in molecular ecology. However, its impact on techniques that use restriction site associated next-generation DNA sequencing (RADSeq, GBS) is unknown. We experimentally examined the effects of in situDNA degradation on data generation for a modified double-digest RADSeq approach (3RAD). We generated libraries using genomic DNA serially extracted from the muscle tissue of 8 individual lake whitefish (Coregonus clupeaformis) following 0-, 12-, 48- and 96-h incubation at room temperature posteuthanasia. This treatment of the tissue resulted in input DNA that ranged in quality from nearly intact to highly sheared. All samples were sequenced as a multiplexed pool on an Illumina MiSeq. Libraries created from low to moderately degraded DNA (12-48 h) performed well. In contrast, the number of RADtags per individual, number of variable sites, and percentage of identical RADtags retained were all dramatically reduced when libraries were made using highly degraded DNA (96-h group). This reduction in performance was largely due to a significant and unexpected loss of raw reads as a result of poor quality scores. Our findings remained consistent after changes in restriction enzymes, modified fold coverage values (2- to 16-fold), and additional read-length trimming. We conclude that starting DNA quality is an important consideration for RADSeq; however, the approach remains robust until genomic DNA is extensively degraded.

  9. High quality genomic DNA extraction from postmortem fetal tissue.

    Science.gov (United States)

    Addison, S; Sebire, N J; Taylor, A M; Abrams, D; Peebles, D; Mein, C; Munroe, P B; Thayyil, S

    2012-11-01

    We examined the yield and quality of genomic deoxyribonucleic acid (DNA) extracted from various postmortem fetal tissues. Fetal tissues were collected at the time of autopsy, and DNA was subsequently extracted. The yield and DNA quality was assessed using ultraviolet spectrometry and agarose gel electrophoresis. We used polymerase chain reaction (PCR) to assess the DNA extracted for genomic testing. The median (range) gestation of the fetuses was 22 (16-41) weeks and the postmortem interval was 5.5 (2-10) days. Non-degraded genomic DNA was successfully extracted from all fetal tissues. Liver tissue had the lowest quality and muscle the highest quality. DNA yield or purity was not influenced by the postmortem interval. High quality genomic DNA can be extracted from fetal muscle, despite postmortem intervals of several days.

  10. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophili...... genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo....

  11. Genomics of wood-degrading fungi.

    Science.gov (United States)

    Ohm, Robin A; Riley, Robert; Salamov, Asaf; Min, Byoungnam; Choi, In-Geol; Grigoriev, Igor V

    2014-11-01

    Woody plants convert the energy of the sun into lignocellulosic biomass, which is an abundant substrate for bioenergy production. Fungi, especially wood decayers from the class Agaricomycetes, have evolved ways to degrade lignocellulose into its monomeric constituents, and understanding this process may facilitate the development of biofuels. Over the past decade genomics has become a powerful tool to study the Agaricomycetes. In 2004 the first sequenced genome of the white rot fungus Phanerochaete chrysosporium revealed a rich catalog of lignocellulolytic enzymes. In the decade that followed the number of genomes of Agaricomycetes grew to more than 75 and revealed a diversity of wood-decaying strategies. New technologies for high-throughput functional genomics are now needed to further study these organisms.

  12. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  13. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  14. Isolation of genomic DNA from mammalian cells.

    Science.gov (United States)

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    Science.gov (United States)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  16. [Application of the QIAamp DNA Investigator Kit and Prepfiler Forensic DNA Extraction Kit in genomic DNA extraction from skeletal remains].

    Science.gov (United States)

    Ludwikowska-Pawłowska, Małgorzata; Jacewicz, Renata; Jedrzejczyk, Maciej; Prośniak, Adam; Berent, Jarosław

    2009-01-01

    The report presents an application of the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit in genomic DNA extraction from post-mortem highly degraded skeletal remains. The analysis included 25 bone samples collected on autopsy. DNA extraction was performed in accordance with the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit manufacturer's isolation protocols. Amplification was performed on a Biometra termocycler using the AmpFISTR Identifiler PCR Amplification Kit according to the manufacturer's protocol. Typing of PCR products was carried out on an ABI Prism 377 DNA sequencer. The recommended parameters for GeneScan analysis and Genotyper software were followed. The authors demonstrated that the QIAamp DNA Investigator Kit was more effective, convenient and statistically significantly better method which may be employed in DNA extraction from bone specimens.

  17. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  18. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  19. Simple & Safe Genomic DNA Isolation.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  20. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    of each method’s ability to analyze DNA copy number data. Moreover, our study shows that analysis methods developed for cancer research may also successfully be applied to DNA copy number profiles from bacterial genomes. However, here the purpose is to characterize variations in the gene content...... to verify predictions of highly expressed genes. Moreover, the codon bias of microbial genomes was found to constitute an environmental signature. For example, soil bacteria have very similar codon bias....

  1. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T

    Science.gov (United States)

    Sharma, Gaurav; Khatri, Indu; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668T that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria. PMID:27358428

  2. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T.

    Science.gov (United States)

    Sharma, Gaurav; Khatri, Indu; Subramanian, Srikrishna

    2016-08-29

    Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria.

  3. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation r...

  4. No genome barriers to promiscuous DNA

    Science.gov (United States)

    Lewin, R.

    1984-06-01

    Farrelly and Butow (1983) used the term 'promiscuous DNA' in their report of the apparent natural transfer of yeast mitochondrial DNA sequences into the nuclear genome. Ellis (1982) applied the same term in an editorial comment. It is pointed out since that time the subject of DNA's promiscuity has exploded with a series of reports. According to a report by Stern (1984), movement of DNA sequences between chloroplasts and mitochondria is not just a rare event but is a rampant process. It was recently concluded that 'the widespread presence of ctDNA sequences in plant mtDNA is best regarded as a dramatic demonstration of the dynamo nature of interactions between the chloroplast and the mitochondrion, similar to the ongoing process of interorganellar DNA transfer already documented between mitochondrion and nucleus and between chloroplast and nucleus'.

  5. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  6. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation.

    Directory of Open Access Journals (Sweden)

    Ethan E Mann

    Full Text Available Recent studies have demonstrated a role for Staphylococcus aureus cidA-mediated cell lysis and genomic DNA release in biofilm adherence. The current study extends these findings by examining both temporal and additional genetic factors involved in the control of genomic DNA release and degradation during biofilm maturation. Cell lysis and DNA release were found to be critical for biofilm attachment during the initial stages of development and the released DNA (eDNA remained an important matrix component during biofilm maturation. This study also revealed that an lrgAB mutant exhibits increased biofilm adherence and matrix-associated eDNA consistent with its proposed role as an inhibitor of cidA-mediated lysis. In flow-cell assays, both cid and lrg mutations had dramatic effects on biofilm maturation and tower formation. Finally, staphylococcal thermonuclease was shown to be involved in biofilm development as a nuc mutant formed a thicker biofilm containing increased levels of matrix-associated eDNA. Together, these findings suggest a model in which the opposing activities of the cid and lrg gene products control cell lysis and genomic DNA release during biofilm development, while staphylococcal thermonuclease functions to degrade the eDNA, possibly as a means to promote biofilm dispersal.

  7. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  8. Proteasome-dependent degradation of replisome components regulates faithful DNA replication.

    Science.gov (United States)

    Roseaulin, Laura C; Noguchi, Chiaki; Noguchi, Eishi

    2013-08-15

    The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. Stalled forks are prone to collapse, posing serious threats to genomic integrity. It is generally thought that the replication checkpoint functions to stabilize the replisome and replication fork structure upon replication stress. This is important in order to allow DNA replication to resume once the problem is solved. However, our recent studies demonstrated that some replisome components undergo proteasome-dependent degradation during DNA replication in the fission yeast Schizosaccharomyces pombe. Our investigation has revealed the involvement of the SCF(Pof3) (Skp1-Cullin/Cdc53-F-box) ubiquitin ligase in replisome regulation. We also demonstrated that forced accumulation of the replisome components leads to abnormal DNA replication upon replication stress. Here we review these findings and present additional data indicating the importance of replisome degradation for DNA replication. Our studies suggest that cells activate an alternative pathway to degrade replisome components in order to preserve genomic integrity.

  9. Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy.

    Science.gov (United States)

    Sato, Miyuki; Sato, Ken

    2012-03-01

    Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.

  10. Single-tube library preparation for degraded DNA

    DEFF Research Database (Denmark)

    Carøe, Christian; Gopalakrishnan, Shyam; Vinner, Lasse

    2017-01-01

    1.In recent years, massive parallel sequencing has revolutionized the study of degraded DNA, thus enabling the field of ancient DNA to evolve into that of paleogenomics. Despite these advances, the recovery and sequencing of degraded DNA remains challenging due to limitations in the manipulation...... of chemically damaged and highly fragmented DNA molecules. In particular, the enzymatic reactions and DNA purification steps during library preparation can result in DNA template loss and sequencing biases, affecting downstream analyses. The development of library preparation methods that circumvent...... these obstacles and enable higher throughput are therefore of interest to researchers working with degraded DNA. 2.In this study, we compare four Illumina library preparation protocols, including two “single-tube” methods developed for this study with the explicit aim of improving data quality and reducing...

  11. Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis

    Directory of Open Access Journals (Sweden)

    Lee H. Bergstrand

    2016-03-01

    Full Text Available Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria.

  12. Degradation of transgene DNA in genetically modified herbicide-tolerant rice during food processing.

    Science.gov (United States)

    Song, Shangxin; Zhou, Guanghong; Gao, Feng; Zhang, Wei; Qiu, Liangyan; Dai, Sifa; Xu, Xinglian; Xiao, Hongmei

    2011-12-01

    In order to assess the effect of food processing on the degradation of exogenous DNA components in sweet rice wine and rice crackers made from genetically modified (GM) rice (Oryza sativa L.), we developed genomic DNA extraction methods and compared the effect of different food processing procedures on DNA degradation. It was found that the purity, quantity and quality of DNA by alkaline lysis method were higher than by CTAB (cetyltrimethylammonium bromide) method. For sweet rice wine, CAMV35S (cauliflower mosaic virus 35S) promoter and NOS (nopaline synthase) terminator were degraded by the third day, whereas the exogenous gene Bar (bialaphos resistance) remained unaffected. For rice crackers, boiling, drying and microwaving contributed to the initial degradations of DNA. Baking resulted in further degradations, and frying led to the most severe changes. These results indicated that the stability of DNA in GM rice was different under different processing conditions. For sweet rice wine, Bar was most stable, followed by NOS, CAMV35S, and SPS. For rice crackers, CAMV35S was most stable, followed by SPS, NOS, and Bar.

  13. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Storage of plant tissues for DNA is important to avoid degradation of DNA. Preliminary ..... cessful was when SDS based isolation protocol (Edwards ..... preservative facilitating DNA extraction from 'difficult' plants collected.

  14. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic dna degradation and development.

    Directory of Open Access Journals (Sweden)

    Huey-Jen Lai

    Full Text Available DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3' OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1's ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3' OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.

  15. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    Directory of Open Access Journals (Sweden)

    Nidhi Nair

    2017-07-01

    Full Text Available Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.

  16. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  17. Capillary electrophoresis of miniSTR markers to genotype highly degraded DNA samples.

    Science.gov (United States)

    Coble, Michael D

    2012-01-01

    The amplification of short tandem repeat (STR) markers throughout the human nuclear DNA genome are used to associate crime scene evidence to the perpetrator's profile in criminal investigations. For highly challenged or compromised materials such as stains exposed to the elements, skeletal remains from missing persons cases, or fragmented and degraded samples from mass disasters, obtaining a full STR profile may be difficult if not impossible. With the introduction of short amplicon STR or "miniSTR" typing, it is possible to obtain STR genetic information from highly challenged samples without the need to sequence the hypervariable regions of the mitochondrial DNA (mtDNA) genome. Non-Combined DNA Index System (CODIS) STR markers have been developed to obtain information beyond the core CODIS loci. This chapter will focus on the steps necessary to prepare and use one of the non-CODIS (NC) multiplexes, NC01 (Coble and Butler 2005), for analysis on capillary electrophoresis instrumentation.

  18. The mitochondrial genome of the wood-degrading basidiomycete Trametes cingulata.

    Science.gov (United States)

    Haridas, Sajeet; Gantt, J Stephen

    2010-07-01

    We present the 91,500 bp mitochondrial genome of the wood-degrading basidiomycete Trametes cingulata and compare it with the mitochondrial genomes of five additional Basidiomycota species. The Trametes mitochondrial genome encodes 15 proteins, 25 tRNAs and the small and large rRNAs. All of the genes, except one tRNA, are found on the same DNA strand. Several additional ORFs have also been identified; however, their sequences have not been conserved across the species we compared and they show no similarity to any known gene, suggesting that they may not correspond to authentic genes. The presence of endonuclease-like sequences in introns suggests a mechanism that explains the diversity of mitochondrial genome sizes that are unrelated to the gene content.

  19. Differential cDNA cloning by enzymatic degrading subtraction (EDS).

    OpenAIRE

    1994-01-01

    We describe a new method, called enzymatic degrading subtraction (EDS), for the construction of subtractive libraries from PCR amplified cDNA. The novel features of this method are that i) the tester DNA is blocked by thionucleotide incorporation; ii) the rate of hybridization is accelerated by phenol-emulsion reassociation; and iii) the driver cDNA and hybrid molecules are enzymatically removed by digestion with exonucleases III and VII rather than by physical partitioning. We demonstrate th...

  20. [DNA degradation during standard alkaline of thermal denaturation].

    Science.gov (United States)

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  1. Genomic selective constraints in murid noncoding DNA.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2006-11-01

    Full Text Available Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.

  2. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    Science.gov (United States)

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = forensic DNA sampling strategies in future victim recovery investigations.

  3. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  4. DNA Repair and Genome Maintenance in Bacillus subtilis

    OpenAIRE

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutage...

  5. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells.

    Science.gov (United States)

    Møller, Henrik D; Bojsen, Rasmus K; Tachibana, Chris; Parsons, Lance; Botstein, David; Regenberg, Birgitte

    2016-04-04

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA, removal of remaining linear chromosomal DNA, rolling-circle amplification of eccDNA, deep sequencing, and mapping. Extensive exonuclease treatment was required for sufficient linear chromosomal DNA degradation. The rolling-circle amplification step by φ29 polymerase enriched for circular DNA over linear DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA circularization is conserved between strains at these loci. In sum, the Circle-Seq method has broad applicability for genome-scale screening for eccDNA in eukaryotes as well as for detecting specific eccDNA types.

  6. Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium.

    Science.gov (United States)

    Nagata, Yuji; Natsui, Shunsuke; Endo, Ryo; Ohtsubo, Yoshiyuki; Ichikawa, Natsuko; Ankai, Akiho; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Tsuda, Masataka

    2011-12-10

    The complete genome sequencing of a γ-hexachlorocyclohexane-degrading strain, Sphingobium japonicum UT26, revealed that the genome consists of two circular chromosomes [with sizes of 3.5 Mb (Chr1) and 682kb (Chr2)], a 191-kb large plasmid (pCHQ1), and two small plasmids with sizes of 32 and 5kb. The lin genes are dispersed on Chr1, Chr2, and pCHQ1. Comparison of the UT26 genome with those of other sphingomonad strains demonstrated that the "specific"lin genes for conversion of γ-HCH to β-ketoadipate (linA, linB, linC, linRED, and linF) are located on the DNA regions unique to the UT26 genome, suggesting the acquisition of these lin genes by horizontal transfer events. On the other hand, linGHIJ and linKLMN are located on the regions conserved in the genomes of sphingomonads, suggesting that the linGHIJ-encoded β-ketoadipate pathway and the LinKLMN-type ABC transporter system are involved in core functions of sphingomonads. Based on these results, we propose a hypothesis that UT26 was created by recruiting the specific lin genes into a strain having core functions of sphingomonads. Most of the specific lin genes in UT26 are associated with IS6100. Our analysis of spontaneous linA-, linC-, and linRED-deletion mutants of UT26 revealed the involvement of IS6100 in their deduced genome rearrangements. These facts strongly suggest that IS6100 plays important roles both in the dissemination of the specific lin genes and in the genome rearrangements.

  7. Post mortem DNA degradation of human tissue experimentally mummified in salt.

    Science.gov (United States)

    Shved, Natallia; Haas, Cordula; Papageorgopoulou, Christina; Akguel, Guelfirde; Paulsen, Katja; Bouwman, Abigail; Warinner, Christina; Rühli, Frank

    2014-01-01

    Mummified human tissues are of great interest in forensics and biomolecular archaeology. The aim of this study was to analyse post mortem DNA alterations in soft tissues in order to improve our knowledge of the patterns of DNA degradation that occur during salt mummification. In this study, the lower limb of a female human donor was amputated within 24 h post mortem and mummified using a process designed to simulate the salt dehydration phase of natural or artificial mummification. Skin and skeletal muscle were sampled at multiple time points over a period of 322 days and subjected to genetic analysis. Patterns of genomic fragmentation, miscoding lesions, and overall DNA degradation in both nuclear and mitochondrial DNA was assessed by different methods: gel electrophoresis, multiplex comparative autosomal STR length amplification, cloning and sequence analysis, and PCR amplification of different fragment sizes using a damage sensitive recombinant polymerase. The study outcome reveals a very good level of DNA preservation in salt mummified tissues over the course of the experiment, with an overall slower rate of DNA fragmentation in skin compared to muscle.

  8. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    Science.gov (United States)

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  9. Two-dimensional DNA displays for comparisons of bacterial genomes

    Directory of Open Access Journals (Sweden)

    Malloff Chad

    2003-01-01

    Full Text Available We have developed two whole genome-scanning techniques to aid in the discovery of polymorphisms as well as horizontally acquired genes in prokaryotic organisms. First, two-dimensional bacterial genomic display (2DBGD was developed using restriction enzyme fragmentation to separate genomic DNA based on size, and then employing denaturing gradient gel electrophoresis (DGGE in the second dimension to exploit differences in sequence composition. This technique was used to generate high-resolution displays that enable the direct comparison of > 800 genomic fragments simultaneously and can be adapted for the high-throughput comparison of bacterial genomes. 2DBGDs are capable of detecting acquired and altered DNA, however, only in very closely related strains. If used to compare more distantly related strains (e.g. different species within a genus numerous small changes (i.e. small deletions and point mutations unrelated to the interesting phenotype, would encumber the comparison of 2DBGDs. For this reason a second method, bacterial comparative genomic hybridization (BCGH, was developed to directly compare bacterial genomes to identify gain or loss of genomic DNA. BCGH relies on performing 2DBGD on a pooled sample of genomic DNA from 2 strains to be compared and subsequently hybridizing the resulting 2DBGD blot separately with DNA from each individual strain. Unique spots (hybridization signals represent foreign DNA. The identification of novel DNA is easily achieved by excising the DNA from a dried gel followed by subsequent cloning and sequencing. 2DBGD and BCGH thus represent novel high resolution genome scanning techniques for directly identifying altered and/or acquired DNA.

  10. Combing genomic DNA for structural and functional studies.

    Science.gov (United States)

    Schurra, Catherine; Bensimon, Aaron

    2009-01-01

    Molecular combing is a process whereby single DNA molecules bind by their extremities to a silanised surface and are then uniformly stretched and aligned by a receding air/water interface (1). This method, with a high resolution ranging from a few kilobases to megabases, has many applications in the field of molecular cytogenetics, allowing structural and functional analysis at the genome level. Here we describe protocols for preparing DNA for combing and for the use of fluorescent hybridisation (FH) applied to combed DNA to conduct physical mapping or genomic structural analysis. We also present the methodology for visualising and studying DNA replication using combed DNA.

  11. Slow DNA loss in the gigantic genomes of salamanders.

    Science.gov (United States)

    Sun, Cheng; López Arriaza, José R; Mueller, Rachel Lockridge

    2012-01-01

    Evolutionary changes in genome size result from the combined effects of mutation, natural selection, and genetic drift. Insertion and deletion mutations (indels) directly impact genome size by adding or removing sequences. Most species lose more DNA through small indels (i.e., ~1-30 bp) than they gain, which can result in genome reduction over time. Because this rate of DNA loss varies across species, small indel dynamics have been suggested to contribute to genome size evolution. Species with extremely large genomes provide interesting test cases for exploring the link between small indels and genome size; however, most large genomes remain relatively unexplored. Here, we examine rates of DNA loss in the tetrapods with the largest genomes-the salamanders. We used low-coverage genomic shotgun sequence data from four salamander species to examine patterns of insertion, deletion, and substitution in neutrally evolving non-long terminal repeat (LTR) retrotransposon sequences. For comparison, we estimated genome-wide DNA loss rates in non-LTR retrotransposon sequences from five other vertebrate genomes: Anolis carolinensis, Danio rerio, Gallus gallus, Homo sapiens, and Xenopus tropicalis. Our results show that salamanders have significantly lower rates of DNA loss than do other vertebrates. More specifically, salamanders experience lower numbers of deletions relative to insertions, and both deletions and insertions are skewed toward smaller sizes. On the basis of these patterns, we conclude that slow DNA loss contributes to genomic gigantism in salamanders. We also identify candidate molecular mechanisms underlying these differences and suggest that natural variation in indel dynamics provides a unique opportunity to study the basis of genome stability.

  12. DNase I induced DNA degradation is inhibited by neomycin.

    Science.gov (United States)

    Woegerbauer, M; Burgmann, H; Davies, J; Graninger, W

    2000-03-01

    Preparations of antimicrobials from biotechnological sources containing nucleic acids may serve as vector for the dissemination of resistance genes. An essential prerequisite for the acquisition of a new resistance phenotype in a transformational scenario is the availability of physically intact DNA molecules capable of transforming competent microorganisms. DNA is thought to be an easy target for catabolic processes when present in the natural habitat of bacteria (e.g. gastrointestinal tract, soil) due to the overall presence of nucleolytic enzymes. Aminoglycoside antibiotics are known to display a strong affinity to nucleic acids rendering these compounds to be primary candidates for exerting DNA protective functions in the gastrointestinal tract when applied orally during antibiotic chemotherapy. Using a DNase I protection assay it could be demonstrated that neomycin B at a concentration of 2 mM completely inhibited degradation of plasmid DNA in vitro. No inhibition of degradation was observed with streptomycin and kanamycin and the non-aminoglycoside antibiotics oxytetracycline and ampicillin under identical assay conditions. Thus, neomycin preparations may be able to promote structural integrity of contaminating DNA-fragments in DNase-rich environments.

  13. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism.

    Directory of Open Access Journals (Sweden)

    Renee M Tsolis

    Full Text Available Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.

  14. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  15. ATM signaling and genomic stability in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Martin F. [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia) and Central Clinical Division, University of Queensland, Brisbane (Australia)]. E-mail: martinl@qimr.edu.au; Birrell, Geoff [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Chen, Philip [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Kozlov, Sergei [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Scott, Shaun [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Gueven, Nuri [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia)

    2005-01-06

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.

  16. DNA-free genome editing methods for targeted crop improvement.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala

    2016-07-01

    Evolution of the next-generation clustered, regularly interspaced, short palindromic repeat/Cas9 (CRISPR/Cas9) genome editing tools, ribonucleoprotein (RNA)-guided endonuclease (RGEN) RNPs, is paving the way for developing DNA-free genetically edited crop plants. In this review, I discuss the various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants. Furthermore, focus is given on the importance of developing DNA-free genome edited crop plants, including perennial crop plants. The possible regulation on the DNA-free, next-generation genome-edited crop plants is also highlighted.

  17. Genomic DNA extraction protocols from ovine hair

    Directory of Open Access Journals (Sweden)

    Jennifer Nonato da Silva Prate

    2013-12-01

    Full Text Available Genomic DNA extracted from animal cells can be used for several purposes, for example, to know genetic variability and genetic relationships between individuals, breeds and/or species, paternity tests, to describe the genetic profile for registration of the animal at association of breeders, detect genetic polymorphisms (SNP related to characteristics of commercial interest, disease diagnose, assess resistance or susceptibility to pathogens, etc. For such evaluations, in general, DNA is amplified by PCR (polymerase chain reaction, and then subjected to various techniques as RFLP (restriction fragments length polymorphism, SSCP (single strand conformation polymorphism, and sequencing. The DNA may be obtained from blood, buccal swabs, meat, cartilage or hair bulb. Among all, the last biological material has been preferred by farmers for its ease acquisition. Several methods for extracting DNA from hair bulb were reported without any consensus for its implementation. This study aimed to optimize a protocol for efficient DNA extraction for use in PCR-RFLP analysis of the Prion gene. For this study, were collected hair samples containing hair bulb from 131 Santa Inês sheep belonging to the Institute of Zootechny, Nova Odessa - SP. Two DNA extraction protocols were evaluated. The first, called phenol-chloroform-isoamyl alcohol (PCIA has long been used by Animal Genetic Laboratories, whose procedures are described below: in each microtube (1.5 mL containing 500 µL of TE-Tween solution (Tris-HCl 50 mM, EDTA 1 mM and 0.5% Tween 20 were added to approximately 30 hair bulb per animal which was incubated at 65°C with shaking at 170 rpm for 2 hours. Then was added 15 µL of proteinase K [10 mg mL-1] and incubated at 55°C at 170 rpm for 6-12 hours. At the end of digestion was added 1 volume of solution phenol-chloroform-isoamyl alcohol (25:24:1 followed by vigorous shaking for 10 seconds and centrifuged at 8000 rpm and 4°C for 10 minutes. The upper phase

  18. DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA.

    Science.gov (United States)

    Docherty, Sophia J; Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert; Mill, Jonathan

    2010-11-01

    DNA methylation plays a vital role in normal cellular function, with aberrant methylation signatures being implicated in a growing number of human pathologies and complex human traits. Methods based on the modification of genomic DNA with sodium bisulfite are considered the 'gold-standard' for DNA methylation profiling on genomic DNA; however they require large amounts of DNA and may be prohibitively expensive when used on the large sample sizes necessary to detect small effects. DNA pooling approaches are already widely used in large-scale studies of DNA sequence and gene expression. In this paper, we describe the application of this economical DNA pooling technique to the study of DNA methylation profiles. This method generates accurate quantitative assessments of group DNA methylation averages, reducing the time, cost and amount of DNA starting material required for large-scale epigenetic investigation of disease phenotypes.

  19. DDB2 association with PCNA is required for its degradation after UV-induced DNA damage.

    Science.gov (United States)

    Cazzalini, Ornella; Perucca, Paola; Mocchi, Roberto; Sommatis, Sabrina; Prosperi, Ennio; Stivala, Lucia Anna

    2014-01-01

    DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21(CDKN1A) (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.

  20. Degradable starch nanoparticle assisted ethanol precipitation of DNA.

    Science.gov (United States)

    Ip, Alexander C-F; Tsai, Tsung Hao; Khimji, Imran; Huang, Po-Jung Jimmy; Liu, Juewen

    2014-09-22

    Precipitation of DNA from a large volume of aqueous solution is an important step in many molecular biology and analytical chemistry experiments. Currently, this is mainly achieved by ethanol precipitation, where a long-term incubation (usually overnight) at low temperature of -20 to -80°C with high salt concentration is required. This method also requires a large quantity of DNA to form a visible pellet and was tested mainly for double-stranded DNA. To improve DNA precipitation, co-precipitating polymers such as linear polyacrylamide has been used. In this work, we report that starch nanoparticles (SNPs) can achieve convenient DNA precipitation at room temperature with a low salt concentration and short incubation time. This method requires as low as 0.01-0.1% SNPs and can precipitate both single- and double-stranded DNA of various lengths. The effect of salt concentration, pH and the crosslinking density of SNPs has been systematically studied. Compared to other types of precipitating agents, SNPs are highly biocompatible and can be degraded by a common enzyme (amylase). This work suggests a novel application of a bio-based material that is prepared in mass production.

  1. Tracking genome engineering outcome at individual DNA breakpoints.

    Science.gov (United States)

    Certo, Michael T; Ryu, Byoung Y; Annis, James E; Garibov, Mikhail; Jarjour, Jordan; Rawlings, David J; Scharenberg, Andrew M

    2011-07-10

    Site-specific genome engineering technologies are increasingly important tools in the postgenomic era, where biotechnological objectives often require organisms with precisely modified genomes. Rare-cutting endonucleases, through their capacity to create a targeted DNA strand break, are one of the most promising of these technologies. However, realizing the full potential of nuclease-induced genome engineering requires a detailed understanding of the variables that influence resolution of nuclease-induced DNA breaks. Here we present a genome engineering reporter system, designated 'traffic light', that supports rapid flow-cytometric analysis of repair pathway choice at individual DNA breaks, quantitative tracking of nuclease expression and donor template delivery, and high-throughput screens for factors that bias the engineering outcome. We applied the traffic light system to evaluate the efficiency and outcome of nuclease-induced genome engineering in human cell lines and identified strategies to facilitate isolation of cells in which a desired engineering outcome has occurred.

  2. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  3. APOBEC3A damages the cellular genome during DNA replication.

    Science.gov (United States)

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  4. Rapid extraction and preservation of genomic DNA from human samples.

    Science.gov (United States)

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  5. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    Science.gov (United States)

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  6. Genome Sequence of the Electrogenic Petroleum-Degrading Thalassospira sp. Strain HJ

    Science.gov (United States)

    Kiseleva, Larisa; Garushyants, Sofya K.; Briliute, Justina; Simpson, David J. W.; Goryanin, Igor

    2015-01-01

    We present the draft genome of the petroleum-degrading Thalassospira sp. strain HJ, isolated from tidal marine sediment. Knowledge of this genomic information will inform studies on electrogenesis and means to degrade environmental organic contaminants, including compounds found in petroleum. PMID:25977412

  7. Protocol for extraction of genomic DNA from swine solid tissues

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Biase

    2002-01-01

    Full Text Available Molecular diagnostics are performed by using DNA from different body tissues. However, it is necessary to obtain genomic DNA of good quality. Due to the impossibility of collecting blood from slaughtered animals, DNA extraction from solid tissues is necessary. The objective of this study was to describe a protocol of DNA extraction from swine skin, adipose, brain, liver, kidney and muscle tissues. We obtained high molecular weight DNA of good quality, shown by agarose gel and amplification of two DNA fragments, 605bp and 891pb, by PCR. Spectrophotometric analysis of DNA concentration showed variation among the DNA from different tissues, with the liver and adipose tissues presenting the greatest and the smallest concentration, respectively. The described protocol has proven to be advantageous due to its simplicity, quickness, affordable reagents and absence of phenol, resulting in a high molecular weight DNA of good quality from several tissues.

  8. Concentrating Genomic Length DNA in a Microfabricated Array

    DEFF Research Database (Denmark)

    Chen, Yu; Abrams, Ezra S.; Boles, T. Christian

    2015-01-01

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 μm=s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting...

  9. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  10. Cytogenetic analysis from DNA by comparative genomic hybridization.

    Science.gov (United States)

    Tachdjian, G; Aboura, A; Lapierre, J M; Viguié, F

    2000-01-01

    Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.

  11. TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

    Institute of Scientific and Technical Information of China (English)

    Kunling Chen; Caixia Gao

    2013-01-01

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology.Transcription activator-like effector nucleases (TALENs),consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain,are newly developed versatile reagents for genome engineering in different organisms.Because of the simplicity of the DNA recognition code and their modular assembly,TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location.Thus,they provide a valuable approach to targeted genome modifications such as mutations,insertions,replacements or chromosome rearrangements.In this article,we review the development of TALENs,and summarize the principles and tools for TALEN-mediated gene targeting in plant cells,as well as current and potential strategies for use in plant research and crop improvement.

  12. Extraction of high-quality genomic DNA from Ectocarpus.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-03-01

    For some applications, such as genome sequencing and high-throughput genotyping with multiple markers, it is necessary to use high-quality genomic DNA. This article describes how to obtain several micrograms of high-quality, cesium chloride-purified DNA from 1 g of Ectocarpus filaments. We also recommend using DNA of this quality for quantitative RT-PCR control reactions. However, simpler, more rapid, kit-based methods are preferable for experiments that involve the treatment of large numbers of individuals, such as genotyping large populations with a small number of markers or PCR screening of large populations.

  13. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  14. Selective microbial genomic DNA isolation using restriction endonucleases.

    Science.gov (United States)

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  15. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Directory of Open Access Journals (Sweden)

    Peterson Kenneth R

    2004-04-01

    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  16. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  17. Functional and Comparative Genomics of Lignocellulose Degradation by Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Lee, Hanbyul; Park, Hongjae; Brewer, Heather M.; Carver, Akiko; Copeland, Alex; Grimwood, Jane; Lindquist, Erika; Lipzen, Anna; Martin, Joel; Purvine, Samuel O.; Schackwitz, Wendy; Tegelaar, Martin; Tritt, Andrew; Baker, Scott; Choi, In-Geol; Lugones, Luis G.; Wosten, Han A. B.; Grigoriev, Igor V.

    2014-03-14

    The Basidiomycete fungus Schizophyllum commune is a wood-decaying fungus and is used as a model system to study lignocellulose degradation. Version 3.0 of the genome assembly filled 269 of 316 sequence gaps and added 680 kb of sequence. This new assembly was reannotated using RNAseq transcriptomics data, and this resulted in 3110 (24percent) more genes. Two additional S. commune strains with different wood-decaying properties were sequenced, from Tattone (France) and Loenen (The Netherlands). Sequence comparison shows remarkably high sequence diversity between the strains. The overall SNP rate of > 100 SNPs/kb is among the highest rates of within-species polymorphisms in Basidiomycetes. Some well-described proteins like hydrophobins and transcription factors have less than 70percent sequence identity among the strains. Some chromosomes are better conserved than others and in some cases large parts of chromosomes are missing from one or more strains. Gene expression on glucose, cellulose and wood was analyzed in two S. commune strains. Overall, gene expression correlated between the two strains, but there were some notable exceptions. Of particular interest are CAZymes (carbohydrate-active enzymes) that are regulated in different ways in the different strains. In both strains the transcription factor Fsp1 was strongly up-regulated during growth on cellulose and wood, when compared to glucose. Over-expression of Fsp1 using a constitutive promoter resulted in higher cellulose and xylose-degrading enzyme activity, which suggests that Fsp1 is involved in regulating CAZyme gene expression. Two CAZyme genes (of family GH61 and GH11) were shown to be strongly up-regulated during growth on cellulose, compared to glucose. Proteomics on the secreted proteins in the growth medium confirmed this. A promoter analysis revealed the shortest active promoters for these two genes, as well as putative transcription factor binding sites.

  18. DNA secondary structures and epigenetic determinants of cancer genome evolution

    OpenAIRE

    2010-01-01

    An unstable genome is a hallmark of many cancers. It is unclear, however, whether some mutagenic features driving somatic alterations in cancer are encoded in the genome sequence and whether they can operate in a tissue-specific manner. We performed a genome-wide analysis of 663,446 DNA breakpoints associated with somatic copy-number alterations (SCNAs) from 2,792 cancer samples classified into 26 cancer types. Many SCNA breakpoints are spatially clustered in cancer genomes. We observed a sig...

  19. DNA damage accumulation and TRF2 degradation in atypical Werner syndrome fibroblasts with LMNA mutations.

    Science.gov (United States)

    Saha, Bidisha; Zitnik, Galynn; Johnson, Simon; Nguyen, Quyen; Risques, Rosa A; Martin, George M; Oshima, Junko

    2013-01-01

    Segmental progeroid syndromes are groups of disorders with multiple features suggestive of accelerated aging. One subset of adult-onset progeroid syndromes, referred to as atypical Werner syndrome, is caused by mutations in the LMNA gene, which encodes a class of nuclear intermediate filaments, lamin A/C. We previously described rapid telomere attrition and accelerated replicative senescence in cultured fibroblasts overexpressing mutant lamin A. In this study, we investigated the cellular phenotypes associated with accelerated telomere shortening in LMNA mutant primary fibroblasts. In early passage primary fibroblasts with R133L or L140R LMNA mutations, shelterin protein components were already reduced while cells still retained telomere lengths comparable to those of controls. There was a significant inverse correlation between the degree of abnormal nuclear morphology and the level of TRF2, a shelterin subunit, suggesting a potential causal relationship. Stabilization of the telomeres via the introduction of the catalytic subunit of human telomerase, hTERT (human telomerase reverse transcriptase), did not prevent degradation of shelterin components, indicating that reduced TRF2 in LMNA mutants is not mediated by short telomeres. Interestingly, γ-H2AX foci (reflecting double strand DNA damage) in early passage LMNA mutant primary fibroblasts and LMNA mutant hTERT fibroblasts were markedly increased in non-telomeric regions of DNA. Our results raise the possibility that mutant lamin A/C causes global genomic instability with accumulation of non-telomeric DNA damage as an early event, followed by TRF2 degradation and telomere shortening.

  20. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    NARCIS (Netherlands)

    Yamada, T.; Takatsu, Y.; Kasumi, K.; Ichimura, K.; Doorn, van W.G.

    2006-01-01

    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the num

  1. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    NARCIS (Netherlands)

    Yamada, T.; Takatsu, Y.; Kasumi, K.; Ichimura, K.; Doorn, van W.G.

    2006-01-01

    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the

  2. Defining functional DNA elements in the human genome.

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  3. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene-fixed samples compared with restored formalin-fixed and paraffin-embedded DNA.

    Science.gov (United States)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte; Tost, Jörg

    2015-01-01

    Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective.

  4. T-DNA Integration Category and Mechanism in Rice Genome

    Institute of Scientific and Technical Information of China (English)

    Jiang WANG; Lin LI; Zhen-Ying SHI; Xin-Shan WAN; Lin-Sheng AN; Jing-Liu ZHANG

    2005-01-01

    T-DNA integration is a key step in the process of plant transformation, which is proven to be important for analyzing T-DNA integration mechanism. The structures of T-DNA right borders inserted into the rice (Oryza sativa L.) genome and their flanking sequences were analyzed. It was found that the integrated ends of the T-DNA right border occurred mainly on five nucleotides "TGACA" in inverse repeat (IR)sequence of 25 bp, especially on the third base "A". However, the integrated ends would sometimes lie inward of the IR sequence, which caused the IR sequence to be lost completely. Sometimes the right integrated ends appeared on the vector sequences rightward of the T-DNA right border, which made the TDNA, carrying vector sequences, integrated into the rice genome. These results seemingly suggest that the IR sequence of the right border plays an important role in the process of T-DNA integration into the rice genome, but is not an essential element. The appearance of vector sequences neighboring the T-DNA right border suggested that before being transferred into the plant cell from Agrobacterium, the entire T-DNA possibly began from the left border in synthesis and then read through at the right border. Several nucleotides in the T-DNA right border homologous with plant DNA and filler DNAs were frequently discovered in the integrated position ofT-DNA. Some small regions in the right border could match with the plant sequence, or form better matches, accompanied by the occurrence of filler DNA, through mutual twisting, and then the TDNA was integrated into plant chromosome through a partially homologous recombination mechanism. The appearance of filler DNA would facilitate T-DNA integration. The fragments flanking the T-DNA right border in transformed rice plants could derive from different parts of the inner T-DNA region; that is, disruption and recombination could occur at arbitrary positions in the entire T-DNA, in which the homologous area was comparatively

  5. DNA Repair Systems: Guardians of the Genome

    Indian Academy of Sciences (India)

    2016-10-01

    The 2015 Nobel Prize in Chemistry was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar to honour their accomplishments in the field of DNA repair. Ever since the discovery of DNA structure and their importance in the storage of genetic information, questions about their stability became pertinent. A molecule which is crucial for the development and propagation of an organism must be closely monitored so that the genetic information is not corrupted. Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial in the fight against cancer and other debilitating diseases.

  6. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic...... cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard...

  7. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  8. Inconsistencies in Neanderthal genomic DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Wall

    2007-10-01

    Full Text Available Two recently published papers describe nuclear DNA sequences that were obtained from the same Neanderthal fossil. Our reanalyses of the data from these studies show that they are not consistent with each other and point to serious problems with the data quality in one of the studies, possibly due to modern human DNA contaminants and/or a high rate of sequencing errors.

  9. Mitochondrial DNA insertions in the nuclear Capra hircus genome.

    Science.gov (United States)

    Ning, F Y; Fu, J; Du, Z H

    2017-01-23

    Nuclear mitochondrial pseudogenes (numts), originating from mtDNA insertions into the nuclear genome, have been detected in many species. However, the distribution of numts in the newly published nuclear genome of domestic goat (Capra hircus) has not yet been explored. We used the entire goat mtDNA sequence and nuclear genome, to identify 118 numts using BLAST. Of these, 79 were able to map sequences to the genome. Further analysis showed that the size of the numts ranged from 318 to 9608 bp, and the homologous identity between numts and their respective corresponding mtDNA fragments varied between 65 and 99%. The identified Yunnan black goat numts covered nearly all the mitochondrial genes including mtDNA control region, and were distributed over all chromosomes with the exception of chromosomes 18, 21, and 25. The Y chromosome was excluded from our analysis, as sequence data are currently not available. Among the discovered 79 numts that we were able to map to the genome, 26 relatively complete mitochondrial genes were detected. Our results constitute valuable information for subsequent studies related to mitochondrial genes and goat evolution.

  10. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  11. Differential DNA Methylation Analysis without a Reference Genome.

    Science.gov (United States)

    Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph

    2015-12-22

    Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  12. Mitochondrial DNA insertions in the nuclear horse genome.

    Science.gov (United States)

    Nergadze, S G; Lupotto, M; Pellanda, P; Santagostino, M; Vitelli, V; Giulotto, E

    2010-12-01

    The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  13. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  14. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    OpenAIRE

    Barnes, Ryan; Eckert, Kristin

    2017-01-01

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome ...

  15. A simplified universal genomic DNA extraction protocol suitable for PCR.

    Science.gov (United States)

    Wang, T Y; Wang, L; Zhang, J H; Dong, W H

    2011-03-29

    Conventional genomic DNA extraction protocols need expensive and hazardous reagents for decontamination of phenolic compounds from the extracts and are only suited for certain types of tissue. We developed a simple, time-saving and cost-efficient method for genomic DNA extraction from various types of organisms, using relatively innocuous reagents. The protocol employs a single purification step to remove contaminating compounds, using a silica column and a non-hazardous buffer, and a chaotropic-detergent lysing solution that hydrolyzes RNA and allows the selective precipitation of DNA from cell lysates. We used this system to extract genomic DNA from different tissues of various organisms, including algae (Dunaliella salina), human peripheral blood, mouse liver, Escherichia coli, and Chinese hamster ovary cells. Mean DNA yields were 20-30 μg/cm(3) from fresh tissues (comparable to yields given by commercial extraction kits), and the 260/280 nm absorbance ratio was 1.8-2.0, demonstrating a good degree of purity. The extracted DNA was successfully used in PCR, restriction enzyme digestion and for recombinant selection studies.

  16. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.

    Science.gov (United States)

    Reshat, Reshat; Priestley, Catherine C; Gooderham, Nigel J

    2012-11-01

    Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.

  17. The linguistics of DNA. [HUMAN GENOME PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Searls, D.B. (Univ. of Pennsylvania, Philadelphia (United States))

    Discusses the structure of DNA and RNA and the mechanisms of transcription and translation in relation to the grammatical rules of language. The ultimate purpose is to design a grammar which can be used to write flexible, adaptive computer programs for searching nucleotide sequences, with the goal of being able to search large sequences for gene-coding regions. 11 refs., 16 figs.

  18. Whole genome methylation profiling by immunoprecipitation of methylated DNA.

    Science.gov (United States)

    Sharp, Andrew J

    2012-01-01

    I provide a protocol for DNA methylation profiling based on immunoprecipitation of methylated DNA using commercially available monoclonal antibodies that specifically recognize 5-methylcytosine. Quantification of the level of enrichment of the resulting DNA enables DNA methylation to be assayed for any genomic locus, including entire chromosomes or genomes if appropriate microarray or high-throughput sequencing platforms are used. In previous studies (1, 2), I have used hybridization to oligonucleotide arrays from Roche Nimblegen Inc, which allow any genomic region of interest to be interrogated, dependent on the array design. For example, using modern tiling arrays comprising millions of oligonucleotide probes, several complete human chromosomes can be assayed at densities of one probe per 100 bp or greater, sufficient to yield high-quality data. However, other methods such as quantitative real-time PCR or high-throughput sequencing can be used, giving either measurement of methylation at a single locus or across the entire genome, respectively. While the data produced by single locus assays is relatively simple to analyze and interpret, global assays such as microarrays or high-throughput sequencing require more complex statistical approaches in order to effectively identify regions of differential methylation, and a brief outline of some approaches is given.

  19. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  20. Automated genomic DNA extraction from saliva using the QIAxtractor.

    Science.gov (United States)

    Keijzer, Henry; Endenburg, Silvia C; Smits, Marcel G; Koopmann, Miriam

    2010-05-01

    Venipuncture is an invasive procedure to obtain whole blood in order to obtain high quality and sufficient amounts of genomic DNA. Obtaining DNA from non-invasive sources is preferred by patients, medical doctors and researchers. Saliva collected with cotton swabs (Salivette) is increasingly being used to study chemical compounds, and it can also be a source of DNA. However, extracting DNA from Salivettes is very laborious and time consuming. Therefore, we developed a protocol for automated genomic DNA extraction from saliva collected in Salivette using the QIAxtractor. Saliva (0.1-2.0 mL) was collected by chewing on a Salivette for 1-2 min. A total of 70 samples, collected from healthy volunteers, were extracted with the QIAxtractor robot and a Qiagen DX reagent pack. Quantity and quality was assessed using UV spectrometry and real-time polymerase chain reaction (PCR) (substitution at position -729 in the CYP1A2 gene). The average DNA concentration from the saliva samples was 6.0 microg/mL (95% CI 5.4-6.6 microg/mL). In 100% of the saliva samples, PCR products were detected with an average cycle threshold of 23.1 (95% CI 22.6-23.6). DNA can be extracted in sufficient amounts from Salivette with a fully automated system with a short turnaround time. Real-time PCR can be performed with these samples.

  1. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    Science.gov (United States)

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  2. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Science.gov (United States)

    Davis, Jennifer R.; Goodwin, Lynne; Teshima, Hazuki; Detter, Chris; Tapia, Roxanne; Han, Cliff; Huntemann, Marcel; Wei, Chia-Lin; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Woyke, Tanja; Pitluck, Sam; Peters, Lin; Nolan, Matt; Land, Miriam

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass-degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized component of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism. PMID:23833133

  3. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  4. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    Science.gov (United States)

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  5. How to Concentrate Genomic Length DNA in a Microfabricated Array

    Science.gov (United States)

    Chen, Yu; Abrams, Ezra; Boles, Christian; Pedersen, Jonas; Flyvbjerg, Henrik; Sturm, James; Austin, Robert

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 ?m/s, if the single-molecule DNA globule has a sufficiently large shear modulus.. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil-size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot where concentration occurs as a function of PEG con- centration, flow speed, and bump array parameters using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.

  6. Resurrection of DNA function in vivo from an extinct genome.

    Science.gov (United States)

    Pask, Andrew J; Behringer, Richard R; Renfree, Marilyn B

    2008-05-21

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  7. Resurrection of DNA function in vivo from an extinct genome.

    Directory of Open Access Journals (Sweden)

    Andrew J Pask

    Full Text Available There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine, obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  8. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  9. Optimized Protocol for Simple Extraction of High-Quality Genomic DNA from Clostridium difficile for Whole-Genome Sequencing.

    Science.gov (United States)

    Sim, James Heng Chiak; Anikst, Victoria; Lohith, Akshar; Pourmand, Nader; Banaei, Niaz

    2015-07-01

    Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Draft Genome Sequence of a Chitinophaga Strain Isolated from a Lignocellulose Biomass-Degrading Consortium

    Science.gov (United States)

    Kishi, Luciano T.; Lopes, Erica M.; Fernandes, Camila C.; Fernandes, Gabriela C.; Sacco, Lais P.; Carareto Alves, Lucia M.

    2017-01-01

    ABSTRACT Chitinophaga comprises microorganisms capable of degrading plant-derived carbohydrates, serving as a source of new tools for the characterization and degradation of plant biomass. Here, we report the draft genome assembly of a Chitinophaga strain with 8.2 Mbp and 7,173 open reading frames (ORFs), isolated from a bacterial consortium that is able to degrade lignocellulose. PMID:28104646

  11. PHOTOPROBER® Biotin: An Alternative Method for Labeling Archival DNA for Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Dirk Korinth

    2004-01-01

    Full Text Available Comparative genomic hybridization (CGH represents a powerful method for screening the entire genome of solid tumors for chromosomal imbalances. Particularly it enabled the molecular cytogenetic analysis of archival, formalin‐fixed, paraffin‐embedded (FFPE tissue. A well‐known dilemma, however, is the poor DNA quality of this material with fragment sizes below 1000 bp. Nick translation, the conventionally used enzymatic DNA labeling method in CGH, leads to even shorter fragments often below a critical limit for successful analysis. In this study we report the alternative application of non‐enzymatic, PHOTOPROBE® biotin labeling for conjugation of the hapten to the DNA prior to in situ hybridization and fluorescence detection. We analyzed 51 FFPE tumor samples mainly from the upper respiratory tract by both labeling methods. In 19 cases, both approaches were successful. The comparison of hybridized metaphases showed a distinct higher fluorescence signal of the PHOTOPROBE® samples sometimes with a discrete cytoplasm background which however did not interfere with specificity and sensitivity of the detected chromosomal imbalances. For further 32 cases characterized by an average DNA fragment size below 1000 bp, PHOTOPROBE® biotin was the only successful labeling technique thus offering a new option for CGH analysis of highly degraded DNA from archival material.

  12. Investigating the control of chlorophyll degradation by genomic correlation mining

    Science.gov (United States)

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulat...

  13. Criminal Genomic Pragmatism: Prisoners' Representations of DNA Technology and Biosecurity

    Directory of Open Access Journals (Sweden)

    Helena Machado

    2012-01-01

    Full Text Available Background. Within the context of the use of DNA technology in crime investigation, biosecurity is perceived by different stakeholders according to their particular rationalities and interests. Very little is known about prisoners’ perceptions and assessments of the uses of DNA technology in solving crime. Aim. To propose a conceptual model that serves to analyse and interpret prisoners’ representations of DNA technology and biosecurity. Methods. A qualitative study using an interpretative approach based on 31 semi-structured tape-recorded interviews was carried out between May and September 2009, involving male inmates in three prisons located in the north of Portugal. The content analysis focused on the following topics: the meanings attributed to DNA and assessments of the risks and benefits of the uses of DNA technology and databasing in forensic applications. Results. DNA was described as a record of identity, an exceptional material, and a powerful biometric identifier. The interviewees believed that DNA can be planted to incriminate suspects. Convicted offenders argued for the need to extend the criteria for the inclusion of DNA profiles in forensic databases and to restrict the removal of profiles. Conclusions. The conceptual model entitled criminal genomic pragmatism allows for an understanding of the views of prison inmates regarding DNA technology and biosecurity.

  14. [Genomic DNA extraction from hair sacs of pigs using modified phenol-chloroform method].

    Science.gov (United States)

    Wang, Ji-Ying; Yu, Ying; Feng, Li-Xia; Wang, Huai-Zhong; Zhang, Qin

    2010-07-01

    In referring to various methods for genomic DNA extraction from different tissues, we modified the classical phenol-chloroform procedure and reaction system for use in genomic DNA extraction from pig hair sacs. With the modified the phenol-chloroform method we successfully obtained high quality genomic DNA from pig hair sacs. Genomic DNA can be extracted from sacs of one to six pig hairs with satisfied quantity and quality for the need of PCR-based molecular ex-periment.

  15. Functional Genomics of Lignocellulose Degradation in the Basidiomycete White Rot Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A. [Joint Genome Inst., Walnut Creek, CA (United States); Tegelaar, Martin [Utrecht Univ. (Netherlands); Henrissat, Bernard [Univ. of Marseille (France); Brewer, Heather M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wosten, Han A. B. [Utrecht Univ. (Netherlands); Grigoriev, Igor V. [Joint Genome Inst., Walnut Creek, CA (United States); Lugones, Luis G. [Utrecht Univ. (Netherlands)

    2013-03-01

    White and brown rot fungi are among the most important wood decayers in nature. Although more than 50 genomes of Basidiomycete white and brown rots have been sequenced by the Joint Genome Institute, there is still a lot to learn about how these fungi degrade the tough polymers present in wood. In particular, very little is known about how these fungi regulate the expression of genes involved in lignocellulose degradation. Here, we used transcriptomics, proteomics, and promoter analysis in an effort to gain insight into the process of lignocellulose degradation.

  16. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    Science.gov (United States)

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  17. Design optimization methods for genomic DNA tiling arrays.

    Science.gov (United States)

    Bertone, Paul; Trifonov, Valery; Rozowsky, Joel S; Schubert, Falk; Emanuelsson, Olof; Karro, John; Kao, Ming-Yang; Snyder, Michael; Gerstein, Mark

    2006-02-01

    A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences.

  18. Ancient DNA: genomic amplification of Roman and medieval bovine bones

    Directory of Open Access Journals (Sweden)

    A. Valentini

    2010-04-01

    Full Text Available Cattle remains (bones and teeth of both roman and medieval age were collected in the archaeological site of Ferento (Viterbo, Italy with the aim of extracting and characterising nucleic acids. Procedures to minimize contamination with modern DNA and to help ancient DNA (aDNA preservation of the archaeological remains were adopted. Different techniques to extract aDNA (like Phenol/chloroform extraction from bovine bones were tested to identify the method that applies to the peculiar characteristics of the study site. Currently, aDNA investigation is mainly based on mtDNA, due to the ease of amplification of the small and high-copied genome and to its usefulness in evolutionary studies. Preliminary amplification of both mitochondrial and nuclear aDNA fragments from samples of Roman and medieval animals were performed and partial specific sequences of mitochondrial D-loop as well as of nuclear genes were obtained. The innovative amplification of nuclear aDNA could enable the analysis of genes involved in specific animal traits, giving insights of ancient economic and cultural uses, as well as providing information on the origin of modern livestock population.

  19. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Science.gov (United States)

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  20. A Novel Method of Genomic DNA Extraction for Cactaceae

    Directory of Open Access Journals (Sweden)

    Shannon D. Fehlberg

    2013-03-01

    Full Text Available Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies.

  1. A novel method of genomic DNA extraction for Cactaceae1

    Science.gov (United States)

    Fehlberg, Shannon D.; Allen, Jessica M.; Church, Kathleen

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. • Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies. PMID:25202521

  2. Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt;

    2012-01-01

    Abstract DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident are often subject to degradation. When using the STR DNA technology, the DNA profile is observed via a so-called electropherogram (EPG), where the alleles are identified as signal peaks above a ...

  3. All-or-Nothing Character of DNA Degradation in Bacteria after Ionizing Radiation

    Science.gov (United States)

    Pollard, Ernest C.; Kraus, Kathryn

    1973-01-01

    The response of single cells of Escherichia coli Bs-11 and 15JG151 to radiation-induced DNA degradation has been observed by autoradiography. For both cells it is concluded that the event which causes DNA degradation is of an all-or-nothing character. The unit which suffers degradation is not the whole cell, but each cell has between two and four such units. The results suggest that there is some resynthesis of degraded DNA. Evidence that this occurs is shown by examining the degradation of mass cultures of 15TAU/t3 and t7 below and above the permissive temperature for DNA synthesis. The results on the all-or-nothing character are in agreement with previous studies made by completely different techniques. PMID:4572361

  4. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%.

  5. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    PURPOSE: Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight...... thrombi. CONCLUSIONS: Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold....

  6. Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2012-01-01

    -outs. In this paper, we present a method for measuring the degree of degradation of a sample and demonstrate how to incorporate this in estimating the probability of allelic drop-out. This is done by extending an existing method derived for non-degraded samples. The performance of the methodology is evaluated using......DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident are often subject to degradation. When using the STR DNA technology, the DNA profile is observed via a so-called electropherogram (EPG), where the alleles are identified as signal peaks above a certain...

  7. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  8. Alu Mobile Elements: From Junk DNA to Genomic Gems

    Directory of Open Access Journals (Sweden)

    Sami Dridi

    2012-01-01

    Full Text Available Alus, the short interspersed repeated sequences (SINEs, are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.

  9. An integrated encyclopedia of DNA elements in the human genome.

    Science.gov (United States)

    2012-09-01

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  10. Impact of chromatin structures on DNA processing for genomic analyses.

    Directory of Open Access Journals (Sweden)

    Leonid Teytelman

    Full Text Available Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin. Using input samples from ChIP-Seq studies, we detected a similar bias throughout the heterochromatic portions of the yeast genome. We also observed significant chromatin-related effects at telomeres, protein binding sites, and genes, reflected in the variation of input-Seq coverage. Experimental tests of candidate regions showed that chromatin influenced shearing at some loci, and that chromatin could also lead to enriched or depleted DNA levels in prepared samples, independently of shearing effects. Our results suggested that assays relying on immunoprecipitation of chromatin will be biased by intrinsic differences between regions packaged into different chromatin structures - biases which have been largely ignored to date. These results established the pervasiveness of this bias genome-wide, and suggested that this bias can be used to detect differences in chromatin structures across the genome.

  11. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.

    Science.gov (United States)

    Pérez-Pantoja, Danilo; De la Iglesia, Rodrigo; Pieper, Dietmar H; González, Bernardo

    2008-08-01

    Cupriavidus necator JMP134 is a model for chloroaromatics biodegradation, capable of mineralizing 2,4-D, halobenzoates, chlorophenols and nitrophenols, among other aromatic compounds. We performed the metabolic reconstruction of aromatics degradation, linking the catabolic abilities predicted in silico from the complete genome sequence with the range of compounds that support growth of this bacterium. Of the 140 aromatic compounds tested, 60 serve as a sole carbon and energy source for this strain, strongly correlating with those catabolic abilities predicted from genomic data. Almost all the main ring-cleavage pathways for aromatic compounds are found in C. necator: the beta-ketoadipate pathway, with its catechol, chlorocatechol, methylcatechol and protocatechuate ortho ring-cleavage branches; the (methyl)catechol meta ring-cleavage pathway; the gentisate pathway; the homogentisate pathway; the 2,3-dihydroxyphenylpropionate pathway; the (chloro)hydroxyquinol pathway; the (amino)hydroquinone pathway; the phenylacetyl-CoA pathway; the 2-aminobenzoyl-CoA pathway; the benzoyl-CoA pathway and the 3-hydroxyanthranilate pathway. A broad spectrum of peripheral reactions channel substituted aromatics into these ring cleavage pathways. Gene redundancy seems to play a significant role in the catabolic potential of this bacterium. The literature on the biochemistry and genetics of aromatic compounds degradation is reviewed based on the genomic data. The findings on aromatic compounds biodegradation in C. necator reviewed here can easily be extrapolated to other environmentally relevant bacteria, whose genomes also possess a significant proportion of catabolic genes.

  12. Universal seeds for cDNA-to-genome comparison

    Directory of Open Access Journals (Sweden)

    Florea Liliana

    2008-01-01

    Full Text Available Abstract Background To meet the needs of gene annotation for newly sequenced organisms, optimized spaced seeds can be implemented into cross-species sequence alignment programs to accurately align gene sequences to the genome of a related species. So far, seed performance has been tested for comparisons between closely related species, such as human and mouse, or on simulated data. As the number and variety of genomes increases, it becomes desirable to identify a small set of universal seeds that perform optimally or near-optimally on a large range of comparisons. Results Using statistical regression methods, we investigate the sensitivity of seeds, in particular good seeds, between four cDNA-to-genome comparisons at different evolutionary distances (human-dog, human-mouse, human-chicken and human-zebrafish, and identify classes of comparisons that show similar seed behavior and therefore can employ the same seed. In addition, we find that with high confidence good seeds for more distant comparisons perform well on closer comparisons, within 98–99% of the optimal seeds, and thus represent universal good seeds. Conclusion We show for the first time that optimal and near-optimal seeds for distant species-to-species comparisons are more generally applicable to a wide range of comparisons. This finding will be instrumental in developing practical and user-friendly cDNA-to-genome alignment applications, to aid in the annotation of new model organisms.

  13. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.

    Science.gov (United States)

    Richard, Guy-Franck; Kerrest, Alix; Dujon, Bernard

    2008-12-01

    Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.

  14. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  15. Complete Genome of Rhodococcus pyridinivorans SB3094, a Methyl-Ethyl-Ketone-Degrading Bacterium Used for Bioaugmentation

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Albertsen, Mads; D'Imperio, Seth;

    2014-01-01

    Here, we present the complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethyl-ketone (MEK)-degrading strain used for bioaugmentation relating to the treatment of wastewater contamination with petrochemical hydrocarbons. The genome highlights important features for bioaugmentation...

  16. High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria.

    Science.gov (United States)

    Benslama, Ouided; Boulahrouf, Abderrahmane

    2016-06-01

    Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome sequence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no detectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

  17. Complete mitochondrial DNA genome of Pseudobagrus truncatus (Siluriformes: Bagridae).

    Science.gov (United States)

    Liang, Hong-wei; Meng, Yan; Li, Zhong; Zhang, Yan; Zou, Gui-wei

    2014-06-01

    In this study, the complete mitochondrial DNA (mtDNA) sequence of Pseudobagrus truncatus (Siluriformes: Bagridae) was determined. The complete mtDNA genome sequence of P. truncatus is 16,533 bp in size. It consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding control region. The gene order and genes were the same as that found in other previously reported catfishes. The overall-based composition was 31.6% A, 26.7% T, 14.9% G and 26.8% C, with a high A + T content (58.3%). This complete mitogenome of P. truncatus provides a basic data for studies on species identification, molecular systematics and conservation genetics.

  18. Volume visualization of multiple alignment of genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nameeta; Weber, Gunther H.; Dillard, Scott E.; Hamann, Bernd

    2004-05-01

    Genomes of hundreds of species have been sequenced to date and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We provide results for aligned DNA sequence data and compare it with traditional 1D line plots. Our technique, coupled with 1D line plots, results in effective multiresolution visualization of very large aligned sequence data sets.

  19. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.

    Science.gov (United States)

    Calla, Bernarda; Blahut-Beatty, Laureen; Koziol, Lisa; Zhang, Yunfang; Neece, David J; Carbajulca, Doris; Garcia, Alexandre; Simmonds, Daina H; Clough, Steven J

    2014-08-01

    Oxalate oxidases (OxO) catalyse the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an OxO gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA-producing pathogen Sclerotinia sclerotiorum using soybean cDNA microarrays. The genes with changed expression at statistically significant levels (overall F-test P-value cut-off of 0.0001) were classified into functional categories and pathways, and were analysed to evaluate the differences in transcriptome profiles. Although many genes and pathways were found to be similarly activated or repressed in both genotypes after inoculation with S. sclerotiorum, the OxO genotype displayed a measurably faster induction of basal defence responses, as observed by the differential changes in defence-related and secondary metabolite genes compared with its susceptible parent AC Colibri. In addition, the experiment presented provides data on several other transcripts that support the hypothesis that S. sclerotiorum at least partially elicits the hypersensitive response, induces lignin synthesis (cinnamoyl CoA reductase) and elicits as yet unstudied signalling pathways (G-protein-coupled receptor and related). Of the nine genes showing the most extreme opposite directions of expression between genotypes, eight were related to photosynthesis and/or oxidation, highlighting the importance of redox in the control of this pathogen.

  20. An efficient genomic DNA extraction from whole blood using Nextractor.

    Science.gov (United States)

    Jeong, Tae-Dong; Cho, Young-Uk; Lee, Woochang; Chun, Sail; Min, Won-Ki

    2014-08-05

    We evaluated the performance of the Nextractor NX-48 nucleic acid extractor system for the extraction of genomic DNA from whole blood samples. We compared the performance of the Nextractor to that of the QIAamp DNA Blood Mini Kit and the Maxwell system, using five whole blood samples. Extraction efficiencies were compared based on the total amount of extracted DNA adjusted by input blood volume, and the purity was compared. Polymerase chain reaction analyses were performed using ACTB as a target. The real-time PCR assay was carried out for housekeeping gene GAPDH. Total elapsed time for DNA extraction was compared. Extraction efficiencies for the QIAamp, Maxwell, and Nextractor were 25.4±3.8ng/μL, 9.2±0.6ng/μL, and 31.0±5.6ng/μL, respectively. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in Ct values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50min for the QIAamp, 40min for the Maxwell, and 20min for the Nextractor. As the Nextractor is faster and requires less hands-on time than manual procedures, it may be useful for molecular diagnostic testing in clinical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA

    Science.gov (United States)

    Prakash, Ashwin; Bechtel, Jason; Fedorov, Alexei

    2011-01-01

    Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition. PMID:21610667

  2. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  3. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  4. [Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being].

    Science.gov (United States)

    Long, Ren; Wang, Wei-ping; Xiong, Ping

    2005-08-01

    To probe the correlation between the postmortem interval (PMI) and the DNA degradation of costicartilage and dental pulp cells in human being after death, and to seek a new method for estimating PMI. The image cytometry was used to measure the DNA degradation under different ambient temperatures (30-35 degrees C, 15-20 degrees C) in 0-15 days after death. The average DNA content of two kinds of tissue was degradated with the prolongation of PMI. But there was a plateau period of 0-4 days for dental pulp cells of human being in 15-20 degrees C. There was a high negative correlativity PPMI. PMI could be estimated accurately according to the DNA degradation of costicartilage and dental pulp cells in human being after death.

  5. Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium.

    Science.gov (United States)

    Kohli, Puneet; Dua, Ankita; Sangwan, Naseer; Oldach, Phoebe; Khurana, J P; Lal, Rup

    2013-11-14

    Here, we report the draft genome sequence of the hexachlorocyclohexane (HCH)-degrading bacterium Sphingobium ummariense strain RL-3, which was isolated from the HCH dumpsite located in Lucknow, India (27°00'N and 81°09'E). The annotated draft genome sequence (4.75 Mb) of strain RL-3 consisted of 139 contigs, 4,645 coding sequences, and 65% G+C content.

  6. Beyond the dna: a prototype for functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Albala, J

    2000-03-02

    A prototype oligonucleotide ''functional chip'' has been developed to screen novel DNA repair proteins for their ability to bind or alter different forms of DNA. This chip has been developed as a functional genomics screen for analysis of protein-DNA interactions for novel proteins identified from the Human Genome Project The process of novel gene identification that has ensued as a consequence of available sequence information is remarkable. The challenge how lies in determining the function of newly identified gene products in a time-and cost-effective high-throughput manner. The functional chip is generated by the robotic application of DNA spotted in a microarray format onto a glass slide. Individual proteins are then analyzed against the different form of DNA bound to the slide. Several prototype functional chips were designed to contain various DNA fragments tethered to a glass slide for analysis of protein-DNA binding or enzymatic activity of known proteins. The technology has been developed to screen novel, putative DNA repair proteins for their ability to bind various types of DNA alone and in concert with protein partners. An additional scheme has been devised to screen putative repair enzymes for their ability to process different types of DNA molecules. Current methods to analyze gene expression primarily utilize either of two technologies. The oligonucleotide chip, pioneered by Fodor and co-workers and Affymetrix, Inc., consists of greater than 64,000 oligonucleotides attached in situ to a glass support. The oligonucleotide chip has been used primarily to identify specific mutations in a given gene by hybridization against a fluorescently-labeled substrate. The second method is the microarray, whereby DNA targets are systematically arranged on a glass slide and then hybridized with fluorescently-labeled complex targets for gene expression analysis (Jordan, 1998). By this technique, a large amount of information can be obtained

  7. cDNA-AFLP-based genetical genomics in cotton fibers.

    Science.gov (United States)

    Claverie, Michel; Souquet, Marlène; Jean, Janine; Forestier-Chiron, Nelly; Lepitre, Vincent; Pré, Martial; Jacobs, John; Llewellyn, Danny; Lacape, Jean-Marc

    2012-03-01

    Genetical genomics, or genetic analysis applied to gene expression data, has not been widely used in plants. We used quantitative cDNA-AFLP to monitor the variation in the expression level of cotton fiber transcripts among a population of inter-specific Gossypium hirsutum × G. barbadense recombinant inbred lines (RILs). Two key fiber developmental stages, elongation (10 days post anthesis, dpa), and secondary cell wall thickening (22 dpa), were studied. Normalized intensity ratios of 3,263 and 1,201 transcript-derived fragments (TDFs) segregating over 88 RILs were analyzed for quantitative trait loci (QTL) mapping for the 10 and 22 dpa fibers, respectively. Two-thirds of all TDFs mapped between 1 and 6 eQTLs (LOD > 3.5). Chromosome 21 had a higher density of eQTLs than other chromosomes in both data sets and, within chromosomes, hotspots of presumably trans-acting eQTLs were identified. The eQTL hotspots were compared to the location of phenotypic QTLs for fiber characteristics among the RILs, and several cases of co-localization were detected. Quantitative RT-PCR for 15 sequenced TDFs showed that 3 TDFs had at least one eQTL at a similar location to those identified by cDNA-AFLP, while 3 other TDFs mapped an eQTL at a similar location but with opposite additive effect. In conclusion, cDNA-AFLP proved to be a cost-effective and highly transferable platform for genome-wide and population-wide gene expression profiling. Because TDFs are anonymous, further validation and interpretation (in silico analysis, qPCR gene profiling) of the eQTL and eQTL hotspots will be facilitated by the increasing availability of cDNA and genomic sequence resources in cotton.

  8. Genome Shuffling of Stenotrophomonas maltophilia OK-5 for Improving the Degradation of Explosive RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine).

    Science.gov (United States)

    Lee, Bheong-Uk; Choi, Moon-Seop; Kim, Dong-Min; Oh, Kye-Heon

    2017-02-01

    A genome-shuffled Stenotrophomonas maltophilia strain showing the enhanced ability of RDX degradation was constructed, and its characteristics were compared with those of the wild-type one. The shuffled strain was able to completely degrade 25, 50, and 75 µM RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) within 10, 30, and 50 days, respectively. However, it took 30 and 70 days for the wild-type strain to degrade 25 and 50 µM RDX, respectively, and at day 70, the strain degraded only 67% of 75 µM RDX. The shuffled strain reached its maximum growth at 50-60 days and exhibited approximately 1.5-fold increased cell numbers. SEM revealed more severe damage on the surface of the wild-type cells compared to the genome-shuffled cells. The mRNA levels of dnaK and groEL encoding the heat shock proteins were increased by 2.5-fold and fourfold, and DnaK and GroEL proteins were more highly produced in the shuffled cells. In addition, the mRNA levels of pnrB encoding a TNT nitroreductase, and algA involved in exopolymer biosynthesis, were slightly higher in the shuffled strain, but not as high as those of dnaK and groEL. These results indicate that the genome shuffling rendered the shuffled cells more resistant to RDX stress. A proteomic comparison revealed changes in the production levels of certain proteins including nitrate and cell protection, particularly those involved in metabolism. These proteomic analyses provide clues for understanding the improved RDX degradation by the genome-shuffled S. maltophilia strain.

  9. Evaluation protocols for the extraction of genomic DNA from Bovine blood

    Directory of Open Access Journals (Sweden)

    Crispim Bruno do Amaral

    2016-08-01

    Full Text Available Basic studies on DNA extraction techniques are very important for the success of scientific papers in the field of molecular biology. The extraction and purification of nucleic acids are critical steps for establishing further genetic analysis. The objective of this study was to evaluate the efficacy of different protocols for DNA extraction by determining the quantity and quality of extracted genetic material and the possibility of amplification by PCR. We did DNA extraction and PCR of ten bovine blood samples. The test results obtained by spectrophotometry indicated that the quantity and quality of genomic DNA were considered satisfactory in all protocols for PCR. However, there was a statistically significant difference between the parameters measured, both in quantity and in quality (p <0.01. The extraction protocol using whole blood was more efficient in terms of time and quality; there was no degradation in all processes of extraction. It was also demonstrated that the possibility of amplification of the region of exon 2 of the leptin gene in extracted DNA exists.

  10. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation.

    Science.gov (United States)

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Keppler, Frank; Vuilleumier, Stéphane

    2014-01-01

    Chloromethane (CH3Cl) is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial, and phyllospheric environments. Improving our knowledge of these degradation processes and their magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl. The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterized in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment. Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans MB2 showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans MB2 suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future.

  11. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation

    Directory of Open Access Journals (Sweden)

    Thierry eNADALIG

    2014-10-01

    Full Text Available Chloromethane (CH3Cl is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial and phyllospheric environments. Improving our knowledge of these degradation processes and its magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl.The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterised in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment.Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future.

  12. A new sensitive short pentaplex (ShoP) PCR for typing of degraded DNA.

    Science.gov (United States)

    Meissner, C; Bruse, P; Mueller, E; Oehmichen, M

    2007-03-02

    Analysis of short tandem repeat makers has become the most powerful tool for DNA typing in forensic casework analysis. Unfortunately, typing of DNA extracted from telogen shed hairs, bones buried in the soil or from paraffin-embedded, formalin-fixed tissue often reveals no results due to the degradation of DNA. The reduction in size of the target fragments by development of new primers and their combination in multiplex approaches open a new field of DNA analysis. Here we present a new sensitive short pentaplex PCR including the loci amelogenin, TH01, VWA, D3S1358 and D8S1179. Validation tests of our new method included sensitivity, mixtures, human specificity, artificial degradation of DNA by DNase I and case work analysis on a panel of different forensic samples. The detection limit was 12.5 pg of human DNA, and mixtures of 50 pg in a total of 1000 pg were clearly detectable and revealed complete profiles. Only DNA extracts of human primates displayed a few signals, whereas other animal, fungal or bacterial DNA showed no signals. Our method proved extremely valuable in the analysis of artificially degraded DNA and in forensic cases, where only poorly preserved DNA was available. This approach and other similar methods can aid in the analysis of samples where allelic drop out of larger fragments is observed. It is highly recommended to develop more of these multiplexes to improve poor quality DNA typing.

  13. Localized degradation of foreign DNA strands in cells: Only excising the first nucleotide of 5' region.

    Science.gov (United States)

    Li, Hui; Shen, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2017-09-15

    Intracellular delivery of foreign DNA probes sharply increases the efficiency of various biodetection protocols. Spherical nucleic acid (SNA) conjugate is a new type of probe that consists of a dense oligonucleotide shell attached typically to a gold nanoparticle core. They are widely used as novel labels for in vitro biodetection and intracellular assay. However, the degradation of foreign DNA still remains a challenge that can cause significant signal leakage (false positive signal). Hence, the site and behavior of intracellular degradation need to be investigated. Herein, we discover a localized degradation behavior that only excises the first nucleotide of 5' terminal from a DNA strand, whereas the residual portion of this strand is unbroken in MCF-7 cell. This novel degradation action totally differs from previous opinion that foreign DNA strand would be digested into tiny fragments or even individual nucleotides in cellular environment. On the basis of these findings, we propose a simple and effective way to avoid degradation-caused false positive that one can bypass the degradable site and choose a secure region to label fluorophore along the DNA stand, when using DNA probes for intracellular biodetection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan;

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary...

  15. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    Indian Academy of Sciences (India)

    Andrew M. Lynn; Chakresh Kumar Jain; K. Kosalai; Pranjan Barman; Nupur Thakur; Harish Batra; Alok Bhattacharya

    2001-04-01

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences.

  16. Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase

    Directory of Open Access Journals (Sweden)

    Roozbeh Hushiarian

    2015-12-01

    This technique was found to be reliably repeatable. The indirect detection of genomic DNA using this method is significantly improved and showed high efficiency in small amounts of samples with the detection limit of 5.37 × 10−14 M.

  17. Effective DNA/RNA Co-Extraction for Analysis of MicroRNAs, mRNAs, and Genomic DNA from Formalin-Fixed Paraffin-Embedded Specimens

    Science.gov (United States)

    Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Background Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. Principal Findings For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. Significance We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which

  18. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    Science.gov (United States)

    Kotorashvili, Adam; Ramnauth, Andrew; Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded

  19. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    Directory of Open Access Journals (Sweden)

    Adam Kotorashvili

    Full Text Available BACKGROUND: Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. PRINCIPAL FINDINGS: For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. SIGNIFICANCE: We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of

  20. Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    DEFF Research Database (Denmark)

    Winkel, Bo G; Hollegaard, Mads Vilhelm; Olesen, Morten S;

    2011-01-01

    The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.We wanted to compare m...

  1. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize.

    Science.gov (United States)

    Abdel-Latif, Amani; Osman, Gamal

    2017-01-01

    The world's top three cereals, based on their monetary value, are rice, wheat, and corn. In cereal crops, DNA extraction is difficult owing to rigid non-cellulose components in the cell wall of leaves and high starch and protein content in grains. The advanced techniques in molecular biology require pure and quick extraction of DNA. The majority of existing DNA extraction methods rely on long incubation and multiple precipitations or commercially available kits to produce contaminant-free high molecular weight DNA. In this study, we compared three different methods used for the isolation of high-quality genomic DNA from the grains of cereal crop, Zea mays, with minor modifications. The DNA from the grains of two maize hybrids, M10 and M321, was extracted using extraction methods DNeasy Qiagen Plant Mini Kit, CTAB-method (with/without 1% PVP) and modified Mericon extraction. Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain codes for 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS regions show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this study, the genomic DNA was then amplified with PCR using primers specific for ITS gene. PCR products were then visualized on agarose gel. The modified Mericon extraction method was found to be the most efficient DNA extraction method, capable to provide high DNA yields with better quality, affordable cost and less time.

  2. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  3. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Ryan Barnes

    2017-01-01

    Full Text Available Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  4. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases.

    Science.gov (United States)

    Barnes, Ryan; Eckert, Kristin

    2017-01-06

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize "difficult to replicate" genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  5. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    STELLY; David

    2008-01-01

    Gossypium mustelinum [(AD)4] is one of five tetraploid species in Gossypium.Three pairs of nucleolar organizer regions(NOR) in(AD)4 were detected by FISH with 45S rDNA as a probe,they also were observed with genomic DNA(gDNA) from Gossypium D genome species as probes.Of the

  6. The roles of adenoviral vectors and donor DNA structures on genome editing

    NARCIS (Netherlands)

    Holkers, Maarten

    2016-01-01

    Accurate and efficient genome editing is primarily dependent on the generation of a sequence-specific, genomic double-stranded DNA break (DSB) combined with the introduction of an exogenous DNA template into target cells. The exogenous template, called donor DNA, normally contains the foreign sequen

  7. Genomic and cDNA cloning of a novel mouse lipoxygenase gene

    NARCIS (Netherlands)

    Willems van Dijk, K.; Steketee, K.; Havekes, L.; Frants, R.; Hofker, M.

    1995-01-01

    A novel 12- and 15-lipoxygenase related gene was isolated from a mouse strain 129 genomic phage library in a screen with a human 15-lipoxygenase cDNA probe. The complete genomic sequence revealed 14 exons and 13 introns covering 7.3 kb of DNA. The splice junctions were verified from the cDNA

  8. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  9. Exonuclease VII is involved in "reckless" DNA degradation in UV-irradiated Escherichia coli.

    Science.gov (United States)

    Repar, Jelena; Briški, Nina; Buljubašić, Maja; Zahradka, Ksenija; Zahradka, Davor

    2013-01-20

    The recA mutants of Escherichia coli exhibit an abnormal DNA degradation that starts at sites of double-strand DNA breaks (DSBs), and is mediated by RecBCD exonuclease (ExoV). This "reckless" DNA degradation occurs spontaneously in exponentially growing recA cells, and is stimulated by DNA-damaging agents. We have previously found that the xonA and sbcD mutations, which inactivate exonuclease I (ExoI) and SbcCD nuclease, respectively, markedly suppress "reckless" DNA degradation in UV-irradiated recA cells. In the present work, we show that inactivation of exonuclease VII (ExoVII) by an xseA mutation contributes to attenuation of DNA degradation in UV-irradiated recA mutants. The xseA mutation itself has only a weak effect, however, it acts synergistically with the xonA or sbcD mutations in suppressing "reckless" DNA degradation. The quadruple xseA xonA sbcD recA mutants show no sign of DNA degradation during post-irradiation incubation, suggesting that ExoVII, together with ExoI and SbcCD, plays a crucial role in regulating RecBCD-catalyzed chromosome degradation. We propose that these nucleases act on DSBs to create blunt DNA ends, the preferred substrates for the RecBCD enzyme. In addition, our results show that in UV-irradiated recF recA(+) cells, the xseA, xonA, and sbcD mutations do not affect RecBCD-mediated DNA repair, suggesting that ExoVII, ExoI and SbcCD nucleases are not essential for the initial targeting of RecBCD to DSBs. It is possible that the DNA-blunting activity provided by ExoVII, ExoI and SbcCD is required for an exchange of RecBCD molecules on dsDNA ends during ongoing "reckless" DNA degradation.

  10. Comparison of three methods of DNA extraction from human bones with different degrees of degradation.

    Science.gov (United States)

    Jakubowska, Joanna; Maciejewska, Agnieszka; Pawłowski, Ryszard

    2012-01-01

    There is a necessity for deceased identification as a result of many accidents and sometimes bones are the only accessible source of DNA. So far, a universal method that allows for extraction of DNA from materials at different stages of degradation does not exist. The aims of this study were: the comparison of three methods of DNA extraction from bones with different degree of degradation and an evaluation of the usefulness of these methods in forensic genetics. The efficiency of DNA extraction, the degree of extract contamination by polymerase chain reaction (PCR) inhibitors and the possibility of determining the STR loci profile were especially being compared. Nuclear DNA from bones at different states of degradation was isolated using three methods: classical, organic phenol-chloroform extraction, DNA extraction from crystal aggregates and extraction by total demineralisation. Total demineralisation is the best method for most cases of DNA extraction from bones, although it does not provide pure DNA. DNA extraction from aggregates removes inhibitors much better and is also a good method of choice when identity determination of exhumed remains is necessary. In the case of not buried bones (remains found outside) total demineralisation or phenol-chloroform protocols are more efficient for successful DNA extraction.

  11. Complete Genome Sequence of the Fenitrothion-Degrading Burkholderia sp. Strain YI23

    OpenAIRE

    Lim, Jong Sung; Choi, Beom Soon; Choi, Ah Young; Kim, Kyung Duk; Kim, Dong In; Choi, Ik Young; Ka, Jong-Ok

    2012-01-01

    Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.

  12. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges

    Science.gov (United States)

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-01-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652

  13. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges.

    Science.gov (United States)

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-12-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.

  14. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation.

    Science.gov (United States)

    Fath, A; Bethke, P C; Jones, R L

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  15. Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

    Science.gov (United States)

    Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar

    2015-11-20

    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.

  16. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed.

  17. DNA methylation as a system of plant genomic immunity.

    Science.gov (United States)

    Kim, M Yvonne; Zilberman, Daniel

    2014-05-01

    Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The genome of Ganoderma lucidum provides insights into triterpenes biosynthesis and wood degradation [corrected].

    Directory of Open Access Journals (Sweden)

    Dongbo Liu

    Full Text Available BACKGROUND: Ganoderma lucidum (Reishi or Ling Zhi is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs, were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. CONCLUSIONS/SIGNIFICANCE: The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy.

  19. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  20. TEMPORAL MODELING OF DNA DEGRADATION IN BONE REMAINS

    Directory of Open Access Journals (Sweden)

    Andrei Stefan

    2012-06-01

    Full Text Available The aim of this study is to follow the changes that occur, in time, at DNA level and to establish an efficient and reliable protocol for ancestral DNA extraction from bones found in archaeological sites. To test whether the protocol is efficient and capable of yielding good quality DNA, extraction was first performed on fresh bones. The material consists of fresh pig (Sus scrofa and cow (Bos taurus bones that were grounded by using a drill operating at low speed. The bone powder was then incubated in lysis buffer in the presence of proteinase K. DNA isolation and purification were done by using the phenol:chloroform protocol and DNA was precipitated with absolute ethanol stored at -20oC. The extractions were carried out once every month for a total of four extractions

  1. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications.

  2. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Science.gov (United States)

    2011-01-01

    The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles. PMID:21439072

  3. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Directory of Open Access Journals (Sweden)

    Sengupta Tapas K

    2011-03-01

    Full Text Available Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  4. Formation of mushrooms and lignocellulose degradation encoded in the genome sequence of Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; de Jong, Jan F.; Lugones, Luis G.; Aerts, Andrea; Kothe, Erika; Stajich, Jason E.; de Vries, Ronald P.; Record, Eric; Levasseur, Anthony; Baker, Scott E.; Bartholomew, Kirk A.; Coutinho, Pedro M.; Erdmann, Susann; Fowler, Thomas J.; Gathman, Allen C.; Lombard, Vincent; Henrissat, Bernard; Knabe, Nicole; Kues, Ursula; Lilly, Walt W.; Lindquist, Erika; Lucas, Susan; Magnuson, Jon K.; Piumi, Francois; Raudaskoski, Marjatta; Salamov, Asaf; Schmutz, Jeremy; Schwarze, Francis W.M.R.; van Kuyk, Patricia A.; Horton, J. Stephen; Grigoriev, Igor V.; Wosten, Han A.B.

    2010-07-12

    The wood degrading fungus Schizophyllum commune is a model system for mushroom development. Here, we describe the 38.5 Mb assembled genome of this basidiomycete and application of whole genome expression analysis to study the 13,210 predicted genes. Comparative analyses of the S. commune genome revealed unique wood degrading machinery and mating type loci with the highest number of reported genes. Gene expression analyses revealed that one third of the 471 identified transcription factor genes were differentially expressed during sexual development. Two of these transcription factor genes were deleted. Inactivation of fst4 resulted in the inability to form mushrooms, whereas inactivation of fst3 resulted in more but smaller mushrooms than wild-type. These data illustrate that mechanisms underlying mushroom formation can be dissected using S. commune as a model. This will impact commercial production of mushrooms and the industrial use of these fruiting bodies to produce enzymes and pharmaceuticals.

  5. Effect of inhibitors of cellular metabolism on postradiation repair and degradation of DNA in rat thymocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ivannik, B.P.; Golubeva, R.V.; Proskuryakov, S.Ya.; Murzaev, V.I.; Ryabchenko, N.I.

    1979-10-01

    The viscosimetric method was used to determine the molecular weight of high polymer single-stranded DNA in alkaline nuclear lysates for the study of the effects of a number of inhibitors of synthesis of DNA (hydroxyurea), macroergic elements (2,4-dinitrophenol, EDTA) and DNAase (Na/sup +/ citrate, Ca/sup + +/ ions) on the process of repair and secondary post-radiation degradation of DNA of rat thymocytes exposed to radiation in a dosage of 3 kR.

  6. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  7. Action of hydrogen peroxide on degradation of DNA after irradiation in Escherichia coli.

    Science.gov (United States)

    Keller, K M; Pollard, E C

    1977-05-01

    Hydrogen peroxide (H2O2), which produces breaks in cellular DNA, has not hitherto been shown to cause degradation of DNA. In this investigation it is shown that if transcription is blocked with rifampin, treatment with H2O2 causes degradation of DNA to nearly the same extent as does gamma-radiation. Further, if cells are given a treatment with H2O2 and incubated for 50 min, the amount of degradation in a second treatment is markedly less. This is attributed to the induction of the inhibitor of post-irradiation degradation of DNA (prd) by the first treatment. There is thus a double action of H2O2: first, to induce inhibition, and second, to cause degradation of DNA to begin in non-induced cells. The genetic dependence of induction by H2O2 mimics that of ionizing radiation. Accordingly, the induction process does not occur in recA- and lex- cells, because they are not inducible and is absent in recB- cells because they lack exonuclease V, the major component of prd. Potassium iodide (KI), an OH radical scavenger, negates the action of peroxide on DNA. The results obtained in this study suggest a possible theory for the evolution of radiation response systems

  8. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Watson Spencer K

    2006-12-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded (FFPE tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. Results We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb. When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. Conclusion Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.

  9. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, Alain, E-mail: alain.arneodo@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Vaillant, Cedric, E-mail: cedric.vaillant@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Audit, Benjamin, E-mail: benjamin.audit@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Argoul, Francoise, E-mail: francoise.argoul@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); D' Aubenton-Carafa, Yves, E-mail: daubenton@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France); Thermes, Claude, E-mail: claude.thermes@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France)

    2011-02-15

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  10. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated...... resolution of any genome, and it is illustrated how such detailed studies of this sequence dependent, inherent property of the DNA may reflect on genome organization, gene expression and chromosomal condensation....

  11. Solution-based targeted genomic enrichment for precious DNA samples

    Directory of Open Access Journals (Sweden)

    Shearer Aiden

    2012-05-01

    Full Text Available Abstract Background Solution-based targeted genomic enrichment (TGE protocols permit selective sequencing of genomic regions of interest on a massively parallel scale. These protocols could be improved by: 1 modifying or eliminating time consuming steps; 2 increasing yield to reduce input DNA and excessive PCR cycling; and 3 enhancing reproducible. Results We developed a solution-based TGE method for downstream Illumina sequencing in a non-automated workflow, adding standard Illumina barcode indexes during the post-hybridization amplification to allow for sample pooling prior to sequencing. The method utilizes Agilent SureSelect baits, primers and hybridization reagents for the capture, off-the-shelf reagents for the library preparation steps, and adaptor oligonucleotides for Illumina paired-end sequencing purchased directly from an oligonucleotide manufacturing company. Conclusions This solution-based TGE method for Illumina sequencing is optimized for small- or medium-sized laboratories and addresses the weaknesses of standard protocols by reducing the amount of input DNA required, increasing capture yield, optimizing efficiency, and improving reproducibility.

  12. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  13. An efficient method for genomic DNA extraction from different molluscs species.

    Science.gov (United States)

    Pereira, Jorge C; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique

    2011-01-01

    The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  14. An Efficient Method for Genomic DNA Extraction from Different Molluscs Species

    Directory of Open Access Journals (Sweden)

    Henrique Guedes-Pinto

    2011-11-01

    Full Text Available The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills or quantity of tissue, can explain the lack of efficiency (quality and yield in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia and Muricidae (Gastropoda, with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  15. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  16. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment.

    Science.gov (United States)

    Pal, Siddhartha; Kundu, Anirban; Banerjee, Tirtha Das; Mohapatra, Balaram; Roy, Ajoy; Manna, Riddha; Sar, Pinaki; Kazy, Sufia K

    2017-06-15

    Franconibacter pulveris strain DJ34, isolated from Duliajan oil fields, Assam, was characterized in terms of its taxonomic, metabolic and genomic properties. The bacterium showed utilization of diverse petroleum hydrocarbons and electron acceptors, metal resistance, and biosurfactant production. The genome (4,856,096bp) of this strain contained different genes related to the degradation of various petroleum hydrocarbons, metal transport and resistance, dissimilatory nitrate, nitrite and sulfite reduction, chemotaxy, biosurfactant synthesis, etc. Genomic comparison with other Franconibacter spp. revealed higher abundance of genes for cell motility, lipid transport and metabolism, transcription and translation in DJ34 genome. Detailed COG analysis provides deeper insights into the genomic potential of this organism for degradation and survival in oil-contaminated complex habitat. This is the first report on ecophysiology and genomic inventory of Franconibacter sp. inhabiting crude oil rich environment, which might be useful for designing the strategy for bioremediation of oil contaminated environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Trapping DNA replication origins from the human genome.

    Science.gov (United States)

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-04-17

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins' structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5-3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.

  18. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Science.gov (United States)

    Shi, Chao; Hu, Na; Huang, Hui; Gao, Ju; Zhao, You-Jie; Gao, Li-Zhi

    2012-01-01

    Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  19. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  20. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W.; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  1. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.

    Science.gov (United States)

    Berka, Randy M; Grigoriev, Igor V; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M; Lombard, Vincent; Natvig, Donald O; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P; Allijn, Iris E; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J; Paulsen, Ian T; Elbourne, Liam D H; Baker, Scott E; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  2. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies

    Directory of Open Access Journals (Sweden)

    Phillip eBrumm

    2015-05-01

    Full Text Available In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates.. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan.

  3. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue.

    Science.gov (United States)

    Kader, Tanjina; Goode, David L; Wong, Stephen Q; Connaughton, Jacquie; Rowley, Simone M; Devereux, Lisa; Byrne, David; Fox, Stephen B; Mir Arnau, Gisela; Tothill, Richard W; Campbell, Ian G; Gorringe, Kylie L

    2016-11-15

    Unlocking clinically translatable genomic information, including copy number alterations (CNA), from formalin-fixed paraffin-embedded (FFPE) tissue is challenging due to low yields and degraded DNA. We describe a robust, cost-effective low-coverage whole genome sequencing (LC WGS) method for CNA detection using 5 ng of FFPE-derived DNA. CN profiles using 100 ng or 5 ng input DNA were highly concordant and comparable with molecular inversion probe (MIP) array profiles. LC WGS improved CN profiles of samples that performed poorly using MIP arrays. Our technique enables identification of driver and prognostic CNAs in archival patient samples previously deemed unsuitable for genomic analysis due to DNA limitations.

  4. Differential interactions of plasmid DNA, RNA and genomic DNA with amino acid-based affinity matrices.

    Science.gov (United States)

    Sousa, Angela; Sousa, Fani; Queiroz, João A

    2010-09-01

    The development of a strategy to plasmid DNA (pDNA) purification has become necessary for the development of gene therapy and DNA vaccine production processes in recent years, since this nucleic acid and most of contaminants, such as RNA, genomic DNA and endotoxins, are negatively charged. An ideal separation methodology may be achieved with the use of affinity interactions between immobilized amino acids and nucleic acids. In this study, the binding behaviour of nucleic acids under the influence of different environmental conditions, such as the composition and ionic strength of elution buffer, and the temperature, is compared with various amino acids immobilized on chromatography resins. Supercoiled (sc) plasmid isoform was isolated with all matrices used, but in some cases preferential interactions with other nucleic acids were found. Particularly, lysine chromatography showed to be an ideal technology mainly on RNA purification using low salt concentration. On the other hand, arginine ligands have shown a greater ability to retain the sc isoform comparatively to the other nucleic acids retention, becoming this support more adequate to sc pDNA purification. The temperature variation, competitive elution and oligonucleotides affinity studies also allowed to recognize the dominant interactions inherent to biorecognition of pDNA molecule and the affinity matrices.

  5. Gross genomic damage measured by DNA image cytometry independently predicts gastric cancer patient survival

    NARCIS (Netherlands)

    Belien, J.A.M.; Buffart, T.E.; Gill, A.; Broeckaert, M.A.M.; Quirke, P.; Meijer, G.A.; Grabsch, H.

    2009-01-01

    BACKGROUND: DNA aneuploidy reflects gross genomic changes. It can be measured by flow cytometry (FCM-DNA) or image cytometry (ICM-DNA). In gastric cancer, the prevalence of DNA aneuploidy has been reported to range from 27 to 100%, with conflicting associations with clinicopathological variables. Th

  6. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  7. Volume visualization of multiple alignment of large genomicDNA

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  8. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  9. The development of miniplex primer sets for the analysis of degraded DNA

    Science.gov (United States)

    McCord, Bruce; Opel, Kerry; Chung, Denise; Drabek, Jiri; Tatarek, Nancy; Meadows Jantz, Lee; Butler, John

    2005-05-01

    In this project, a new set of multiplexed PCR reactions has been developed for the analysis of degraded DNA. These DNA markers, known as Miniplexes, utilize primers that have shorter amplicons for use in short tandem repeat (STR) analysis of degraded DNA. In our work we have defined six of these new STR multiplexes, each of which consists of 3 to 4 reduced size STR loci, and each labeled with a different fluorescent dye. When compared to commercially available STR systems, reductions in size of up to 300 basepairs are possible. In addition, these newly designed amplicons consist of loci that are fully compatible with the the national computer DNA database known as CODIS. To demonstrate compatibility with commercial STR kits, a concordance study of 532 DNA samples of Caucasian, African American, and Hispanic origin was undertaken There was 99.77% concordance between allele calls with the two methods. Of these 532 samples, only 15 samples showed discrepancies at one of 12 loci. These occurred predominantly at 2 loci, vWA and D13S317. DNA sequencing revealed that these locations had deletions between the two primer binding sites. Uncommon deletions like these can be expected in certain samples and will not affect the utility of the Miniplexes as tools for degraded DNA analysis. The Miniplexes were also applied to enzymatically digested DNA to assess their potential in degraded DNA analysis. The results demonstrated a greatly improved efficiency in the analysis of degraded DNA when compared to commercial STR genotyping kits. A series of human skeletal remains that had been exposed to a variety of environmental conditions were also examined. Sixty-four percent of the samples generated full profiles when amplified with the Miniplexes, while only sixteen percent of the samples tested generated full profiles with a commercial kit. In addition, complete profiles were obtained for eleven of the twelve Miniplex loci which had amplicon size ranges less than 200 base pairs

  10. NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis.

    Science.gov (United States)

    Wu, Y C; Stanfield, G M; Horvitz, H R

    2000-03-01

    One hallmark of apoptosis is the degradation of chromosomal DNA. We cloned the Caenorhabditis elegans gene nuc-1, which is involved in the degradation of the DNA of apoptotic cells, and found that nuc-1 encodes a homolog of mammalian DNase II. We used the TUNEL technique to assay DNA degradation in nuc-1 and other mutants defective in programmed cell death and discovered that TUNEL labels apoptotic cells only during a transient intermediate stage. Mutations in nuc-1 allowed the generation of TUNEL-reactive DNA but blocked the conversion of TUNEL-reactive DNA to a subsequent TUNEL-unreactive state. Completion of DNA degradation did not occur in the absence of cell-corpse engulfment. Our data suggest that the process of degradation of the DNA of a cell corpse occurs in at least three distinct steps and requires activities provided by both the dying and the engulfing cell.

  11. Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2.

    Science.gov (United States)

    Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf; Steinbüchel, Alexander

    2012-04-01

    The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.

  12. A paradoxical relationship between Resveratrol and copper (II with respect to degradation of DNA and RNA [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Siddharth Subramaniam

    2016-03-01

    Full Text Available Resveratrol (R, a plant polyphenol, is known to reduce Cu (II to Cu (I generating reactive oxygen species that can cleave plasmid DNA. Here we report a surprising observation of a paradoxical relationship between R and Cu whereby plasmid DNA cleaving / degrading activity of R-Cu increased progressively as the ratio of R to Cu was increased i.e., the concentration of Cu was successively reduced with respect to a fixed concentration R. Whereas cleavage of plasmid DNA occurred at low molar ratios of R to Cu, at higher ratios, complete degradation of DNA was achieved. By further increasing the ratio, whereby the concentration of Cu was reduced to very low levels, the DNA degrading activity of R-Cu was lost. This paradoxical relationship is also seen with respect to eukaryotic genomic DNA and RNA. Since R-Cu may have anti-cancer and anti-viral activities, our findings may not only help to improve the therapeutic efficacy of R-Cu but also reduce its toxic side effects with the use of low concentration of Cu.

  13. Characterization of the Arachis (Leguminosae D genome using fluorescence in situ hybridization (FISH chromosome markers and total genome DNA hybridization

    Directory of Open Access Journals (Sweden)

    Germán Robledo

    2008-01-01

    Full Text Available Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH of the 5S and 45S rRNA genes and heterochromatic 4'-6-diamidino-2-phenylindole (DAPI positive bands. We used chromosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the homologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome constitution (D genome of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes.

  14. Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation

    Directory of Open Access Journals (Sweden)

    Docherty Sophia J

    2009-03-01

    Full Text Available Abstract Background DNA methylation plays a vital role in normal cellular function, with aberrant methylation signatures being implicated in a growing number of human pathologies and complex human traits. Methods based on the modification of genomic DNA with sodium bisulfite are considered the 'gold-standard' for DNA methylation profiling on genomic DNA; however, they require relatively large amounts of DNA and may be prohibitively expensive when used on the large sample sizes necessary to detect small effects. We propose that a high-throughput DNA pooling approach will facilitate the use of emerging methylomic profiling techniques in large samples. Results Compared with data generated from 89 individual samples, our analysis of 205 CpG sites spanning nine independent regions of the genome demonstrates that DNA pools can be used to provide an accurate and reliable quantitative estimate of average group DNA methylation. Comparison of data generated from the pooled DNA samples with results averaged across the individual samples comprising each pool revealed highly significant correlations for individual CpG sites across all nine regions, with an average overall correlation across all regions and pools of 0.95 (95% bootstrapped confidence intervals: 0.94 to 0.96. Conclusion In this study we demonstrate the validity of using pooled DNA samples to accurately assess group DNA methylation averages. Such an approach can be readily applied to the assessment of disease phenotypes reducing the time, cost and amount of DNA starting material required for large-scale epigenetic analyses.

  15. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  16. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage.

    Science.gov (United States)

    Pereg, Yaron; Shkedy, Dganit; de Graaf, Petra; Meulmeester, Erik; Edelson-Averbukh, Marina; Salek, Mogjiborahman; Biton, Sharon; Teunisse, Amina F A S; Lehmann, Wolf D; Jochemsen, Aart G; Shiloh, Yosef

    2005-04-05

    Maintenance of genomic stability depends on the DNA damage response, an extensive signaling network that is activated by DNA lesions such as double-strand breaks (DSBs). The primary activator of the mammalian DSB response is the nuclear protein kinase ataxia-telangiectasia, mutated (ATM), which phosphorylates key players in various arms of this network. The activation and stabilization of the p53 protein play a major role in the DNA damage response and are mediated by ATM-dependent posttranslational modifications of p53 and Mdm2, a ubiquitin ligase of p53. p53's response to DNA damage also depends on Mdm2-dependent proteolysis of Mdmx, a homologue of Mdm2 that represses p53's transactivation function. Here we show that efficient damage-induced degradation of human Hdmx depends on functional ATM and at least three sites on the Hdmx that are phosphorylated in response to DSBs. One of these sites, S403, is a direct ATM target. Accordingly, each of these sites is important for Hdm2-mediated ubiquitination of Hdmx after DSB induction. These results demonstrate a sophisticated mechanism whereby ATM fine-tunes the optimal activation of p53 by simultaneously modifying each player in the process.

  17. DNA degradation within mouse brain and dental pulp cells 72 hours postmortem

    Institute of Scientific and Technical Information of China (English)

    Jilong Zheng; Xiaona Li; Di Shan; Han Zhang; Dawei Guan

    2012-01-01

    In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.

  18. Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders

    NARCIS (Netherlands)

    Zheng, S.J.; Henken, G.; Sofiari, E.; Jacobsen, E.; Krens, F.A.

    2001-01-01

    Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a

  19. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-09-01

    Full Text Available Abstract Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs and carbohydrate binding modules (CBMs were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  20. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Science.gov (United States)

    2011-01-01

    Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut. PMID:21892951

  1. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation.

    Science.gov (United States)

    Manzo, Nicola; D'Apuzzo, Enrica; Coutinho, Pedro M; Cutting, Simon M; Henrissat, Bernard; Ricca, Ezio

    2011-09-05

    Spore-forming Bacilli are gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  2. An enzyme-based DNA preparation method for application to forensic biological samples and degraded stains.

    Science.gov (United States)

    Lounsbury, Jenny A; Coult, Natalie; Miranian, Daniel C; Cronk, Stephen M; Haverstick, Doris M; Kinnon, Paul; Saul, David J; Landers, James P

    2012-09-01

    Extraction of DNA from forensic samples typically uses either an organic extraction protocol or solid phase extraction (SPE) and these methods generally involve numerous sample transfer, wash and centrifugation steps. Although SPE has been successfully adapted to the microdevice, it can be problematic because of lengthy load times and uneven packing of the solid phase. A closed-tube enzyme-based DNA preparation method has recently been developed which uses a neutral proteinase to lyse cells and degrade proteins and nucleases [14]. Following a 20 min incubation of the buccal or whole blood sample with this proteinase, DNA is polymerase chain reaction (PCR)-ready. This paper describes the optimization and quantitation of DNA yield using this method, and application to forensic biological samples, including UV- and heat-degraded whole blood samples on cotton or blue denim substrates. Results demonstrate that DNA yield can be increased from 1.42 (±0.21)ng/μL to 7.78 (±1.40)ng/μL by increasing the quantity of enzyme per reaction by 3-fold. Additionally, there is a linear relationship between the amount of starting cellular material added and the concentration of DNA in the solution, thereby allowing DNA yield estimations to be made. In addition, short tandem repeat (STR) profile results obtained using DNA prepared with the enzyme method were comparable to those obtained with a conventional SPE method, resulting in full STR profiles (16 of 16 loci) from liquid samples (buccal swab eluate and whole blood), dried buccal swabs and bloodstains and partial profiles from UV or heat-degraded bloodstains on cotton or blue denim substrates. Finally, the DNA preparation method is shown to be adaptable to glass or poly(methyl methacrylate) (PMMA) microdevices with little impact on STR peak height but providing a 20-fold reduction in incubation time (as little as 60 s), leading to a ≥1 h reduction in DNA preparation time.

  3. The detection of large deletions or duplications in genomic DNA.

    Science.gov (United States)

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  4. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    Science.gov (United States)

    Stirling, Peter C; Hieter, Philip

    2016-07-22

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.

  5. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary......' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners...... heuristics. RESULTS: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect...

  6. An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays

    Directory of Open Access Journals (Sweden)

    Kapur Vivek

    2005-05-01

    Full Text Available Abstract Background DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. Results We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. Conclusion Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray

  7. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    Science.gov (United States)

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects.

  8. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Gorecki, Pawel; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kues, Ursula; Kumar, T. K. Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J.; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Duenas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C.; John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martin, Francis; Cullen, Dan; Grigoriev, Igor V.; Hibbett, David S.

    2012-03-12

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

  9. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  10. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.

    Science.gov (United States)

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul

    2016-07-01

    Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.

  11. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics.

    Science.gov (United States)

    Kantor, Rose S; van Zyl, A Wynand; van Hille, Robert P; Thomas, Brian C; Harrison, Susan T L; Banfield, Jillian F

    2015-12-01

    Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed.

  12. Genomic and polyploid evolution in genus Avena as revealed by RFLPs of repeated DNA sequences.

    Science.gov (United States)

    Morikawa, Toshinobu; Nishihara, Miho

    2009-06-01

    Phylogenetic relationships and genome affinities were investigated by utilizing all the biological Avena species consisting of 11 diploid species (15 accessions), 8 tetraploid species (9 accessions) and 4 hexaploid species (5 accessions). Genomic DNA regions of As120a, avenin, and globulin were amplified by PCR. A total of 130 polymorphic fragments were detected out of 156 fragments generated by digesting the PCR-amplified fragments with 11 restriction enzymes. The number of fragments generated by PCR-amplification followed by digestion with restriction enzymes was almost the same as those among the three repeated DNA sequences. A high level of genetic distance was detected between A. damascena (Ad) and A. canariensis (Ac) genomes, which reflected their different morphology and reproductive isolation. The A. longiglumis (Al) and A. prostrata (Ap) genomes were closely related to the As genome group. The AB genome species formed a cluster with the AsAs genome artificial autotetraploid and the As genome diploids indicating near-autotetraploid origin. The A. macrostachya is an outbreeding autotetraploid closely related with the C genome diploid and the AC genome tetraploid species. The differences of genetic distances estimated from the repeated DNA sequence divergence among the Avena species were consistent with genome divergences and it was possible to compare the genetic intra- and inter-ploidy relationships produced by RFLPs. These results suggested that the PCR-mediated analysis of repeated DNA polymorphism can be used as a tool to examine genomic relationships of polyploidy species.

  13. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  14. Isolation of high molecular weight DNA suitable for the construction of genomic libraries.

    Science.gov (United States)

    Steven, J; McKechnie, D; Graham, A

    1988-01-01

    Recent advances in molecular biology have made it possible to construct complete gene libraries for any organism that uses DNA as its carrier of genetic information. A gene library should contain a large number of cloned DNA fragments that in total contain the entire donor genome. The construction of a genomic library first requires the isolation of DNA from the donor organism. To be of maximum use in the construction of genomic libraries, DNA isolated from the donor organism should fulfill the following criteria. First, the DNA must represent all sequences in the genome to be cloned. Second, it must be of high molecular weight. Third, no contaminants must taint the DNA so that its use as a substrate for restriction endonucleases and other enzymes used in genetic engineering is uninhibited.

  15. Efficient genomic DNA extraction from low target concentration bacterial cultures using SCODA DNA extraction technology.

    Science.gov (United States)

    So, Austin; Pel, Joel; Rajan, Sweta; Marziali, Andre

    2010-10-01

    Methods for the extraction of nucleic acids are straightforward in instances where there is ample nucleic acid mass in the sample and contamination is minimal. However, applications in areas such as metagenomics, life science research, clinical research, and forensics, that are limited by smaller amounts of starting materials or more dilute samples, require sample preparation methods that are more efficient at extracting nucleic acids. Synchronous coefficient of drag alteration (SCODA) is a novel electrophoretic nucleic acid purification technology that has been tested successfully with both highly contaminated and dilute samples and is a promising candidate for new sample preparation challenges. In this article, as an example of SCODA's performance with limited sample material, we outline a genomic DNA (gDNA) extraction protocol from low abundance cultures of Escherichia coli DH10B. This method is equally well suited to high biomass samples.

  16. A method for the extraction of genomic DNA from human brain tissue fixed and stored in formalin for many years.

    Science.gov (United States)

    Savioz, A; Blouin, J L; Guidi, S; Antonarakis, S E; Bouras, C

    1997-04-01

    We report a method providing access to high molecular weight, polymerase chain reaction (PCR)-amplifiable genomic DNA from brains stored in formalin for many years. It consists mainly of an intensive proteinase K treatment of ground tissue previously embedded in agarose plugs, followed by a washing and an elution step. The method was tested on brains fixed and stored in formalin for up to 46 years. All extracted DNA show an identical pattern of degradation ranging from well-preserved (more than 20 kb) to 400-bp-long fragments. This was demonstrated for DNA extracted from the cerebellums of elderly psychiatric and geriatric patients (of more than 60 years of age), male and female, demented or not, with postmortem delays longer than 1 h and shorter than 1 day. In all these cases PCR amplification of a 838-bp-long beta-actin product was successfully performed when proteinase K treatment was sufficiently effective to generate pure DNA. Thus, high molecular weight, PCR-amplifiable genomic DNA can be extracted from brains stored in formalin for almost half a century.

  17. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    WU Qiong; STELLY David; SONG Guo-li; WANG Kun-bo; WANG Chun-ying; LIU Fang; LI Shao-hui; ZHANG Xiang-di; WANG Yu-hong; LIU San-hong

    2008-01-01

    @@ Gossypium mustelinum [-(AD)4"] is one of five tetraploid species in Gossypium.Three pairs of nucleolar organizer regions (NOR) in (AD)4 were detected by FISH with 45S rDNA as a probe,they also were observed with genomic DNA (gDNA) from Gossypium D genome species as probes.Of the three NORs or GISH-NORs,one was super-major and other two were minor,which was distinctly different from other tetraploid cottons.

  18. Extraction of human genomic DNA from whole blood using a magnetic microsphere method.

    Science.gov (United States)

    Gong, Rui; Li, Shengying

    2014-01-01

    With the rapid development of molecular biology and the life sciences, magnetic extraction is a simple, automatic, and highly efficient method for separating biological molecules, performing immunoassays, and other applications. Human blood is an ideal source of human genomic DNA. Extracting genomic DNA by traditional methods is time-consuming, and phenol and chloroform are toxic reagents that endanger health. Therefore, it is necessary to find a more convenient and efficient method for obtaining human genomic DNA. In this study, we developed urea-formaldehyde resin magnetic microspheres and magnetic silica microspheres for extraction of human genomic DNA. First, a magnetic microsphere suspension was prepared and used to extract genomic DNA from fresh whole blood, frozen blood, dried blood, and trace blood. Second, DNA content and purity were measured by agarose electrophoresis and ultraviolet spectrophotometry. The human genomic DNA extracted from whole blood was then subjected to polymerase chain reaction analysis to further confirm its quality. The results of this study lay a good foundation for future research and development of a high-throughput and rapid extraction method for extracting genomic DNA from various types of blood samples.

  19. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples

    OpenAIRE

    Androniki Psifidi; Dovas, Chrysostomos I.; Georgios Bramis; Thomai Lazou; Russel, Claire L; Georgios Arsenos; Georgios Banos

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven differen...

  20. Complete Genome Sequence of Akkermansia glycaniphila Strain PytT, a Mucin-Degrading Specialist of the Reticulated Python Gut

    Science.gov (United States)

    Ouwerkerk, Janneke P.; Schaap, Peter J.; Ritari, Jarmo; Paulin, Lars; Belzer, Clara

    2017-01-01

    ABSTRACT Akkermansia glycaniphila is a novel Akkermansia species that was isolated from the intestine of the reticulated python and shares the capacity to degrade mucin with the human strain Akkermansia muciniphila MucT. Here, we report the complete genome sequence of strain PytT of 3,074,121 bp. The genomic analysis reveals genes for mucin degradation and aerobic respiration. PMID:28057747

  1. Draft Genome Sequence of Enterobacter aerogenes, a DDE-Degrading and Plant Growth-Promoting Strain Isolated from Cucurbita pepo

    OpenAIRE

    Eevers, Nele; Van Hamme, J.D.; Bottos, E.M.; Weyens, Nele; Vangronsveld, Jaco

    2015-01-01

    We report here the draft genome of Enterobacter aerogenes, a Gram-negative bacterium of the Enterobacteriaceae isolated from Cucurbita pepo root tissue. This bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacity. An analysis of its 4.5-Mb draft genome will enhance the understanding of DDE degradation pathways and phytoremediation applications for DDE-contaminated soils.

  2. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  3. Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core shell magnetic nanoparticles

    Science.gov (United States)

    Xie, Xin; Nie, Xiaorong; Yu, Bingbin; Zhang, Xu

    2007-04-01

    A series of protocols are proposed to extract genomic DNA from whole blood at different scales using carboxyl-functionalized magnetic nanoparticles as solid-phase absorbents. The enrichment of leucocytes and the adsorption of genomic DNA can be achieved with the same carboxyl-functionalized magnetic nanoparticles. The DNA bound to the bead surfaces can be used directly as PCR templates. By coupling cell separation and DNA purification, the whole operation can be accomplished in a few minutes. Our simplified protocols proved to be rapid, low cost, and biologically and chemically non-hazardous, and are therefore promising for microfabrication of a DNA-preparation chip and routine laboratory use.

  4. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA...... circularization is conserved between strains at these loci. In sum, the Circle-Seq method has broad applicability for genome-scale screening for eccDNA in eukaryotes as well as for detecting specific eccDNA types....

  5. Determination of the Early Time of Death by Computerized Image Analysis of DNA Degradation: Which Is the Best Quantitative Indicator of DNA Degradation?

    Institute of Scientific and Technical Information of China (English)

    LIU Lijiang; SHU Xiji; REN Liang; ZHOU Hongyan; LI Yan; LIU Wei; ZHU Cheng; LIU Liang

    2007-01-01

    This study evaluated the correlation between DNA degradation of the splenic lymphocytes and the early time of death, examined the early time of death by computerized image analysis technique (CIAT) and identified the best parameter that quantitatively reflects the DNA degradation.The spleen tissues from 34 SD rats were collected, subjected to cell smearing every 2 h within the first 36 h after death, stained by Feulgen-Van's staining, three indices reflecting DNA content in splenic lymphocytes, including integral optical density (IOD), average optical density (AOD), average gray scale (AG) were measured by the image analysis. Our results showed that IOD and AOD decreased and AG increased over time within the first 36 h. A stepwise linear regression analysis showed that only AG was fitted. A correlation between the postmortem interval (PMI) and AG was identified and the corresponding regression equation was obtained. Our study suggests that CIAT is a useful and promising tool for the estimation of early PMI with good objectivity and reproducibility,and AG is a more effective and better quantitative indicator for the estimation of PMI within the first 36 h after death in rats.

  6. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris;

    2016-01-01

    for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA...

  7. The architecture of ArgR-DNA complexes at the genome-scale in> Escherichia coli

    DEFF Research Database (Denmark)

    Cho, Suhyung; Cho, Yoo-Bok; Kang, Taek Jin;

    2015-01-01

    DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA co...

  8. Germinal transmission of site-specific excised genomic DNA by the bacterial ParA resolvase

    Science.gov (United States)

    Genome engineering is an essential tool in research and product development. Behind some of the recent advances in plant gene transfer is the development of site-specific recombination systems that enable the precise manipulation of DNA, e.g. the deletion, integration or translocation of DNA. DNA ...

  9. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.

    Science.gov (United States)

    Wong, Nicholas C; Ng, Jane; Hall, Nathan E; Lunke, Sebastian; Salmanidis, Marika; Brumatti, Gabriela; Ekert, Paul G; Craig, Jeffrey M; Saffery, Richard

    2013-07-01

    Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.

  10. 改良CTAB法提取连钱草基因组DNA%A Modified CTAB Method for Extraction of Genome DNA from Glechoma Longituba

    Institute of Scientific and Technical Information of China (English)

    鄢嘉; 罗娟; 王小刚

    2011-01-01

    Objective: To improve the method of extraction high-quality genomic DNA from Glechoma longituba. Methods: The different concentrations of CTAB extraction buffer were adopted for the genomic DNA extraction. The total DNA was detected by UV scanning, electrophoresis and PCR amplification. Results: The genomic DNA extracted with 2% concentration of CTAB is in high-purity and good integrity. DNA was not degraded significantly and RNA was completely digested. PCR fragments show clear and good polymorphism. Conclusion- The modified CTAB method is suitable for the PCR amplification and other molecular biology researches.%目的:建立高质量的连钱草基因组DNA的提取方法.方法:在传统十六烷基三甲基溴化铵(CTAB)法的基础上加以改良,比较不同浓度CTAB对提取的连钱草基因组DNA质量的影响,并对所得的DNA采用紫外分光光度计、电泳和PCR扩增等方法进行检测.结果:用2%浓度的CTAB处理所获得的基因组DNA质量较好,蛋白质残留少,RNA消化彻底,DNA无明显降解,进行PCR扩增得到的条带清晰,多态性好.结论:改良CTAB法提取的连钱草基因组DNA适合进行以PCR为基础的分子生物学研究.

  11. Draft Genome Sequence of Uncultivated Firmicutes (Peptococcaceae SCADC) Single Cells Sorted from Methanogenic Alkane-Degrading Cultures

    Science.gov (United States)

    Tan, BoonFei; Charchuk, Rhianna; Li, Carmen; Nesbø, Camilla; Abu Laban, Nidal

    2014-01-01

    The draft genome of an uncultivated bacterium affiliated with the Peptococcaceae was reconstructed by co-assembling Illumina MiSeq sequences from three single cells sorted by microfluidics from two methanogenic alkane-degrading cultures. Peptococcaceae SCADC (short-chain alkane-degrading culture) may be genetically capable of anaerobic alkane activation by fumarate addition in the absence of sulfate. PMID:25212628

  12. Draft Genome Sequence of Oil-Degrading Bacterium Gallaecimonas pentaromativorans Strain YA_1 from the Southwest Indian Ocean

    Science.gov (United States)

    Xu, Yiyuan; Ren, Chong; Chen, Ruixuan

    2016-01-01

    Gallaecimonas pentaromativorans has been previously reported to be capable of degrading crude oil and diesel oil. G. pentaromativorans strain YA_1 was isolated from the southwest Indian Ocean and can degrade crude oil. This study reports the draft genome sequence of G. pentaromativorans, which can provide insights into the mechanisms of microbial oil biodegradation. PMID:27491993

  13. Draft Genome Sequence of Oil-Degrading Bacterium Gallaecimonas pentaromativorans Strain YA_1 from the Southwest Indian Ocean.

    Science.gov (United States)

    Xu, Yiyuan; Ren, Chong; Chen, Ruixuan; Zeng, Runying

    2016-08-04

    Gallaecimonas pentaromativorans has been previously reported to be capable of degrading crude oil and diesel oil. G. pentaromativorans strain YA_1 was isolated from the southwest Indian Ocean and can degrade crude oil. This study reports the draft genome sequence of G. pentaromativorans, which can provide insights into the mechanisms of microbial oil biodegradation.

  14. Genome Sequence of a Typical Ultramicrobacterium, Curvibacter sp. Strain PAE-UM, Capable of Phthalate Ester Degradation.

    Science.gov (United States)

    Ma, Dan; Hao, Zhenyu; Sun, Rui; Bartlam, Mark; Wang, Yingying

    2016-01-14

    Curvibacter sp. strain PAE-UM, isolated from river sediment, is a typical ultramicrobacterium capable of phthalate ester degradation. The genome of Curvibacter sp. PAE-UM consists of 3,284,473 bp, and its information will provide insights into the molecular mechanisms underlying its degradation ability.

  15. Genome Sequence of a Typical Ultramicrobacterium, Curvibacter sp. Strain PAE-UM, Capable of Phthalate Ester Degradation

    OpenAIRE

    Ma, Dan; Hao, Zhenyu; Sun, Rui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Curvibacter sp. strain PAE-UM, isolated from river sediment, is a typical ultramicrobacterium capable of phthalate ester degradation. The genome of Curvibacter sp. PAE-UM consists of 3,284,473 bp, and its information will provide insights into the molecular mechanisms underlying its degradation ability.

  16. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation.

    Directory of Open Access Journals (Sweden)

    Young-Jin Park

    Full Text Available Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes and carbohydrate degradation (392 CAZymes, along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi- cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-cellulose biomass related industries further increase the significance of F. velutipes as a new model.

  17. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation.

    Science.gov (United States)

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model.

  18. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants.

    Science.gov (United States)

    Kosa, Peter; Valach, Matus; Tomaska, Lubomir; Wolfe, Kenneth H; Nosek, Jozef

    2006-01-01

    We determined complete mitochondrial DNA sequences of the two yeast species, Candida orthopsilosis and Candida metapsilosis, and compared them with the linear mitochondrial genome of their close relative, C.parapsilosis. Mitochondria of all the three species harbor compact genomes encoding the same set of genes arranged in the identical order. Differences in the length of these genomes result mainly from the presence/absence of introns. Multiple alterations were identified also in the sequences of the ribosomal and transfer RNAs, and proteins. However, the most striking feature of C.orthopsilosis and C.metapsilosis is the existence of strains differing in the molecular form of the mitochondrial genome (circular-mapping versus linear). Their analysis opens a unique window for understanding the role of mitochondrial telomeres in the stability and evolution of molecular architecture of the genome. Our results indicate that the circular-mapping mitochondrial genome derived from the linear form by intramolecular end-to-end fusions. Moreover, we suggest that the linear mitochondrial genome evolved from a circular-mapping form present in a common ancestor of the three species and, at the same time, the emergence of mitochondrial telomeres enabled the formation of linear monomeric DNA forms. In addition, comparison of isogenic C.metapsilosis strains differing in the form of the organellar genome suggests a possibility that, under some circumstances, the linearity and/or the presence of telomeres provide a competitive advantage over a circular-mapping mitochondrial genome.

  19. How evolution of genomes is reflected in exact DNA sequence match statistics.

    Science.gov (United States)

    Massip, Florian; Sheinman, Michael; Schbath, Sophie; Arndt, Peter F

    2015-02-01

    Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution.

  20. Complete Genome Sequence of Raoultella ornithinolytica Strain S12, a Lignin-Degrading Bacterium Isolated from Forest Soil.

    Science.gov (United States)

    Bao, Wenying; Zhou, Yun; Jiang, Jingwei; Xu, Zhihui; Hou, Liyuan; Leung, Frederick Chi-Ching

    2015-03-19

    We report the complete genome sequence of Raoultella ornithinolytica strain S12, isolated from a soil sample collected from areas bordering rotten wood and wet soil on Mt. Zijin, Nanjing. The complete genome of this bacterium may contribute toward the discovery of efficient lignin-degrading pathways.

  1. Innovative Graphite Oxide-Cellulose Based Material Specific for Genomic DNA Extraction

    Science.gov (United States)

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro

    2015-11-01

    Extraction of genomic DNA from various types of samples is often challenging for commercial silica spin column. In this study, we proposed graphite oxide (GO)/cellulose composite as an alternative material for genomic DNA extraction. The purity of DNA and extraction efficiency were compared to that of commercial silica product. In this study, the total weight % of GO was fixed at 4.15% in GO/Cellulose composite. Chewed gum, nail clip, cigarette bud paper, animal tissue and hair sample were used as various genomic DNA sources for extraction experiments. Among all types of samples, the extraction efficiencies were 4 to 12 times higher than that of commercial silica spin column. The absorbance ratio of 260 nm to 280 nm (A260/A280) of all samples ranged between 1.6 and 2.0. The results demonstrated that GO/Cellulose composites might serve as an innovative solid support material for genomic DNA extraction.

  2. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules.

    Science.gov (United States)

    Mayjonade, Baptiste; Gouzy, Jérôme; Donnadieu, Cécile; Pouilly, Nicolas; Marande, William; Callot, Caroline; Langlade, Nicolas; Muños, Stéphane

    2016-10-01

    De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.

  3. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    Qiong Wu; Fang Liu; Shaohui Li; Guoli Song; Chunying Wang; Xiangdi Zhang; Yuhong Wang

    2013-01-01

    Gossypium mustelinum ((AD)4) is one of five disomic species in Gossypium.Three 45S ribosomal DNA (rDNA) loci were detected in (AD)4 with 45S rDNA as probe,and three pairs of brighter signals were detected with genomic DNA (gDNA) of Gossypium D genome species as probes.The size and the location of these brighter signals were the same as those detected with 45S rDNA as probe,and were named GISH-NOR.One of them was super-major,which accounted for the fact that about one-half of its chromosome at metaphase was located at chromosome 3,and other two were minor and located at chromosomes 5 and 9,respectively.All GISH-NORs were located in A sub-genome chromosomes,separate from the other four allopolypioid cotton species.GISH-NOR were detected with D genome species as probe,but not A.The greatly abnormal sizes and sites of (AD)4 NORs or GISH-NORs indicate a possible mechanism for 45S rDNA diversification following (AD)4 speciation.Comparisons of GISH intensities and GISH-NOR production with gDNA probes between A and D genomes show that the better relationship of (AD)4 is with A genome.The shortest two chromosomes of A sub-genome of G.mustelinum were shorter than the longest chromosome of D sub-genome chromosomes.Therefore,the longest 13 chromosomes of tetraploid cotton being classified as A sub-genome,while the shorter 13 chromosomes being classified as D sub-genome in traditional cytogenetic and karyotype analyses may not be entirely correct.

  4. DNA methylation of Sleeping Beauty with transposition into the mouse genome.

    Science.gov (United States)

    Park, Chang Won; Kren, Betsy T; Largaespada, David A; Steer, Clifford J

    2005-08-01

    The Sleeping Beauty transposon is a recently developed non-viral vector that can mediate insertion of transgenes into the mammalian genome. Foreign DNA elements that are introduced tend to invoke a host-defense mechanism resulting in epigenetic changes, such as DNA methylation, which may induce transcriptional inactivation of mammalian genes. To assess potential epigenetic modifications associated with Sleeping Beauty transposition, we investigated the DNA methylation pattern of transgenes inserted into the mouse genome as well as genomic regions flanking the insertion sites with bisulfite-mediated genomic sequencing. Transgenic mouse lines were created with two different Sleeping Beauty transposons carrying either the Agouti or eGFP transgene. Our results showed that DNA methylation in the keratin-14 promoter and Agouti transgene were negligible. In addition, two different genomic loci flanking the Agouti insertion site exhibited patterns of DNA methylation similar to wild-type mice. In contrast, high levels of DNA methylation were observed in the eGFP transgene and its ROSA26 promoter. These results indicate that transposition via Sleeping Beauty into the mouse genome may result in a significant level of de novo DNA methylation. This may depend on a number of different factors including the cargo DNA sequence, chromosomal context of the insertion site, and/or host genetic background.

  5. Comparative Analysis of Genomes in Oryza sativa, O.officinalis, and O. meyeriana with C0t-1 DNA and Genomic DNA of Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) were applied to somatic chromosomes preparations of Oryza sativa, O. officinalis, and O. meyeriana with labeled probes of C0t-1 DNA and genomic DNA from the cultivated rice. The coverage percentage (%) and size (Mb) of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana were 47.1 ±0.16, 38.61 ±0.13, 44.38±0.13, and 212.33± 1.21,269.42 ± 0.89, 532.56± 1.68 Mb, respectively. The coverage percentage and size of genomic DNA from O. sativa in O. officinalis and O. meyeriana were 91.0, 93.6% and 634, 1 123 Mb, respectively, in which 365 and 591 Mb in O. officinalis and O. meyeriana were from O. sativa genomic DNA, but not from repetitive sequences of O. sativa, and the uncoverage genome size in O. officinalis and O. meyeriana were 64 and 78 Mb, respectively. In addition, karyotype analysis was conducted based on the signal bands of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana. The results showed that highly and moderately repetitive sequences in Oryza genus were conserved as the functional genes during evolution. The repetitive sequences reduplication may be one of the important causes of the genome enlargement of O. officinalis and O. meyeriana, and O. officinalis genome enlarged more slowly when compared with O. meyeriana. Based on the above results, it is concluded that O. officinalis and O. meyeriana were formed by reduplication, rearrangement, and gene selective loss during the evolution process.

  6. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  7. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants.

    Science.gov (United States)

    Kang, Tae-Jin; Yang, Moon-Sik

    2004-09-02

    DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1). After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  8. Epigenetic control of mobile DNA as an interface between experience and genome change

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2014-04-01

    Full Text Available Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

  9. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing.

    Directory of Open Access Journals (Sweden)

    Longfei Jiang

    Full Text Available Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP. The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ.

  10. The chromatin response to DNA breaks: leaving a mark on genome integrity.

    Science.gov (United States)

    Smeenk, Godelieve; van Attikum, Haico

    2013-01-01

    Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.

  11. Application of Gelatin-Coated Magnetic Particles for Isolation of Genomic DNA from Bones.

    Science.gov (United States)

    Khanpetch, Pongsak; Intorasoot, Sorasak; Prasitwattanseree, Sukon; Mekjaidee, Karnda; Mahakkanukrauh, Pasuk

    2015-07-01

    To develop a method for human genomic DNA extraction from bone using gelatin-coated magnetic particles. Thirty human metacarpal with the bone age ranging from 36 to 93 years were included in the present study. Genomic DNA was extracted from bones using gelatin-coated magnetic particles. The concentration and purity of DNA were analyzed in comparison with a reference method. In addition, the quality of extracted DNA was examined for sex determination by conventional polymerase chain reaction (PCR). The average DNA concentration using gelatin coated magnetic particles exhibited approximately 15 times higher than a reference method with an insignificantly difference of the DNA purity in both methods. Twelve (40%) and fifteen (50%) samples out of thirty DNA isolated using established and reference method, respectively, could be amplified and sex correctly determined by PCR. Gelatin coated magnetic particle is rapid, simple, and well-suited for isolation of DNA from bones.

  12. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available BACKGROUND: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. METHODOLOGY/PRINCIPAL FINDINGS: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. CONCLUSION: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  13. The development of reduced size STR amplicons as tools for analysis of degraded DNA.

    Science.gov (United States)

    Butler, John M; Shen, Yin; McCord, Bruce R

    2003-09-01

    New multiplex PCR sets of commonly used short tandem repeat (STR) markers have been developed to produce PCR products that are reduced in size when compared to standard commercial STR kits. The reduction in size of these amplicons can facilitate the examination and analysis of degraded DNA evidence by improving amplification efficiency. This "miniSTR" approach will permit current forensic practitioners to use STR markers and instrumentation already present in their laboratories and to generate genotyping data that is directly comparable to reference samples and searchable through the FBI's Combined DNA Index System (CODIS) databases. This paper discusses the development of these new primer sets and presents some initial results in the analysis of degraded and aged DNA samples. A method for removal of problematic fluorescent dye artifacts is also described. Comparison studies in over 100 samples have verified that these miniSTR primers can provide fully concordant results to commercial STR kits and can provide improved signal from degraded DNA specimens. These miniplex sets should prove valuable in the analysis of samples where allele dropout and reduced sensitivity of larger STR alleles occurs.

  14. Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-09-01

    Full Text Available Lifen Zhang,* Zhenzhen Chen,* Yanfeng LiState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou, People's Republic of China*These authors contributed equally to this workAbstract: Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]–polyethyleneimine [PEI]–SS were synthesized through the addition of low molecular weight (800 Da PEI cross-linked with SS (PEI-SS to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3 with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers.Keywords: Pluronic, PEI, gene vector, dual-degradable, disulfide-containing linker

  15. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Directory of Open Access Journals (Sweden)

    Børglum Anders D

    2011-07-01

    Full Text Available Abstract Background The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix. Results This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P Conclusion Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.

  16. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  17. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    Directory of Open Access Journals (Sweden)

    Momchilo Vuyisich

    2014-01-01

    Full Text Available Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg. There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp., which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used.

  18. Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis.

    Science.gov (United States)

    Ravin, Nikolai V; Mardanov, Andrey V; Beletsky, Alexey V; Kublanov, Ilya V; Kolganova, Tatiana V; Lebedinsky, Alexander V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G

    2009-04-01

    Desulfurococcus kamchatkensis is an anaerobic organotrophic hyperthermophilic crenarchaeon isolated from a terrestrial hot spring. Its genome consists of a single circular chromosome of 1,365,223 bp with no extrachromosomal elements. A total of 1,474 protein-encoding genes were annotated, among which 205 are exclusive for D. kamchatkensis. The search for a replication origin site revealed a single region coinciding with a global extreme of the nucleotide composition disparity curve and containing a set of crenarchaeon-type origin recognition boxes. Unlike in most archaea, two genes encoding homologs of the eukaryotic initiator proteins Orc1 and Cdc6 are located distantly from this site. A number of mobile elements are present in the genome, including seven transposons representing IS607 and IS200/IS605 families and multiple copies of miniature inverted repeat transposable elements. Two large clusters of regularly interspaced repeats are present; none of the spacer sequences matches known archaeal extrachromosomal elements, except one spacer matches the sequence of a resident gene of D. kamchatkensis. Many of the predicted metabolic enzymes are associated with the fermentation of peptides and sugars, including more than 30 peptidases with diverse specificities, a number of polysaccharide degradation enzymes, and many transporters. Consistently, the genome encodes both enzymes of the modified Embden-Meyerhof pathway of glucose oxidation and a set of enzymes needed for gluconeogenesis. The genome structure and content reflect the organism's nutritionally diverse, competitive natural environment, which is periodically invaded by viruses and other mobile elements.

  19. Magnetic Scanometric DNA Microarray Detection of Methyl Tertiary Butyl Ether Degrading Bacteria for Environmental Monitoring

    Science.gov (United States)

    Chan, Mei-Lin; Jaramillo, Gerardo; Hristova, Krassimira R.; Horsley, David A.

    2010-01-01

    A magnetoresistive biosensing platform based on a single magnetic tunnel junction (MTJ) scanning probe and DNA microarrays labeled with magnetic particles has been developed to provide an inexpensive, sensitive and reliable detection of DNA. The biosensing platform was demonstrated on a DNA microarray assay for quantifying bacteria capable of degrading methyl tertiary-butyl ether (MTBE), where concentrations as low as 10 pM were detectable. Synthetic probe bacterial DNA was immobilized on a microarray glass slide surface, hybridized with the 48 base pair long biotinylated target DNA and subsequently incubated with streptavidin-coated 2.8 μm diameter magnetic particles. The biosensing platform then makes use of a micron-sized MTJ sensor that was raster scanned across a 3 mm by 5 mm glass slide area to capture the stray magnetic field from the tagged DNA and extract two dimensional magnetic field images of the microarray. The magnetic field output is then averaged over each 100 μm diameter DNA array spot to extract the magnetic spot intensity, analogous to the fluorescence spot intensity used in conventional optical scanners. The magnetic scanning result is compared with results from a commercial laser scanner and particle coverage optical counting to demonstrate the dynamic range and linear sensitivity of the biosensing platform as a potentially inexpensive, sensitive and portable alternative for DNA microarray detection for field applications. PMID:20889328

  20. Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP assays in using in vitro methylated genomic DNA

    Directory of Open Access Journals (Sweden)

    Jia Jinsong

    2010-09-01

    Full Text Available Abstract Background DNA methylation contributes to the regulation of gene expression during development and cellular differentiation. The recently developed Methylated DNA ImmunoPrecipitation (MeDIP assay allows a comprehensive analysis of this epigenetic mark at the genomic level in normal and disease-derived cells. However, estimating the efficiency of the MeDIP technique is difficult without previous knowledge of the methylation status of a given cell population. Attempts to circumvent this problem have involved the use of in vitro methylated DNA in parallel to the investigated samples. Taking advantage of this stratagem, we sought to improve the sensitivity of the approach and to assess potential biases resulting from DNA amplification and hybridization procedures using MeDIP samples. Findings We performed MeDIP assays using in vitro methylated DNA, with or without previous DNA amplification, and hybridization to a human promoter array. We observed that CpG content at gene promoters indeed correlates strongly with the MeDIP signal obtained using in vitro methylated DNA, even when lowering significantly the amount of starting material. In analyzing MeDIP products that were subjected to whole genome amplification (WGA, we also revealed a strong bias against CpG-rich promoters during this amplification procedure, which may potentially affect the significance of the resulting data. Conclusion We illustrate the use of in vitro methylated DNA to assess the efficiency and accuracy of MeDIP procedures. We report that efficient and reproducible genome-wide data can be obtained via MeDIP experiments using relatively low amount of starting genomic DNA; and emphasize for the precaution that must be taken in data analysis when an additional DNA amplification step is required.

  1. Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol.

    Science.gov (United States)

    Johns, M B; Paulus-Thomas, J E

    1989-08-01

    We have developed a new, rapid method for the extraction of human genomic DNA from whole blood samples. Traditionally, genomic DNA has been extracted from blood by overnight proteinase K digestion of lysed peripheral lymphocytes followed by phenol/chloroform extraction. In addition to being time consuming, the use of phenol involves inherent risks due to the toxic nature of the reagent. Our method for the extraction of DNA from whole blood uses sodium perchlorate and chloroform instead of phenol with a significant time savings realized as well as fewer hazards to the technician. Furthermore, DNA prepared by this new method is an excellent substrate for restriction endonuclease digestion and Southern hybridization analysis.

  2. Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices.

    Directory of Open Access Journals (Sweden)

    Yurong Xin

    Full Text Available BACKGROUND: Emerging evidence suggests that DNA methylation plays an expansive role in the central nervous system (CNS. Large-scale whole genome DNA methylation profiling of the normal human brain offers tremendous potential in understanding the role of DNA methylation in brain development and function. METHODOLOGY/SIGNIFICANT FINDINGS: Using methylation-sensitive SNP chip analysis (MSNP, we performed whole genome DNA methylation profiling of the prefrontal, occipital, and temporal regions of cerebral cortex, as well as cerebellum. These data provide an unbiased representation of CpG sites comprising 377,509 CpG dinucleotides within both the genic and intergenic euchromatic region of the genome. Our large-scale genome DNA methylation profiling reveals that the prefrontal, occipital, and temporal regions of the cerebral cortex compared to cerebellum have markedly different DNA methylation signatures, with the cerebral cortex being hypermethylated and cerebellum being hypomethylated. Such differences were observed in distinct genomic regions, including genes involved in CNS function. The MSNP data were validated for a subset of these genes, by performing bisulfite cloning and sequencing and confirming that prefrontal, occipital, and temporal cortices are significantly more methylated as compared to the cerebellum. CONCLUSIONS: These findings are consistent with known developmental differences in nucleosome repeat lengths in cerebral and cerebellar cortices, with cerebrum exhibiting shorter repeat lengths than cerebellum. Our observed differences in DNA methylation profiles in these regions underscores the potential role of DNA methylation in chromatin structure and organization in CNS, reflecting functional specialization within cortical regions.

  3. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip.

    Science.gov (United States)

    Cortijo, Sandra; Wardenaar, René; Colomé-Tatché, Maria; Johannes, Frank; Colot, Vincent

    2014-01-01

    DNA methylation is an epigenetic mark that is essential for preserving genome integrity and normal development in plants and mammals. Although this modification may serve a variety of purposes, it is best known for its role in stable transcriptional silencing of transposable elements and epigenetic regulation of some genes. In addition, it is increasingly recognized that alterations in DNA methylation patterns can sometimes be inherited across multiple generations and thus are a source of heritable phenotypic variation that is independent of any DNA sequence changes. With the advent of genomics, it is now possible to analyze DNA methylation genome-wide with high precision, which is a prerequisite for understanding fully the various functions and phenotypic impact of this modification. Indeed, several so-called epigenomic mapping methods have been developed for the analysis of DNA methylation. Among these, immunoprecipitation of methylated DNA followed by hybridization to genome tiling arrays (MeDIP-chip) arguably offers a reasonable compromise between cost, ease of implementation, and sensitivity to date. Here we describe the application of this method, from DNA extraction to data analysis, to the study of DNA methylation genome-wide in Arabidopsis.

  4. Simplified extraction of good quality genomic DNA from a variety of plant materials: 1

    National Research Council Canada - National Science Library

    Vijay Kumari; Anshu Bansal; Raghavendra Aminedi; Dhakshi Taneja; Niranjan Das

    2012-01-01

      Depending on the nature and complexity of plant material, proper method needs to be employed for extraction of genomic DNA, along with its performance evaluation by different molecular techniques...

  5. A protocol for high-quality genomic DNA extraction from legumes

    National Research Council Canada - National Science Library

    Agbagwa, I O; Datta, S; Patil, P G; Singh, P; Nadarajan, N

    2012-01-01

    ... in less researched crops in laboratories in developing countries. We modified and optimized the existing CTAB method for plant genomic DNA extraction by avoiding liquid nitrogen usage and lyophilization...

  6. Accurate determination of DNA yield from individual mosquitoes for population genomic applications

    Institute of Scientific and Technical Information of China (English)

    Craig S.Wilding; D.Weetman; K.Steen; M.J.Donnelly

    2009-01-01

    Accurate estimates of DNA quantity are likely to become increasingly important for successful genomic screening of insect populations via recently developed, highly multiplexed genotyping assays and high-throughput sequencing methods. Here we show that genomic DNA extractions from single Anopheles gambiae Giles using a standard commercial kit-based methodology yield extracts with concentrations below the linear range of spectrophotometric absorbance at 260 nm. Concentrations determined by spectrophotometry were not reproducible, and are therefore neither accurate nor reliable. However,DNA quantification using a fluorescent nucleic acid stain (PicoGreenR) gave highly reproducible concentration estimates, and indicated that, on average, single mosquitoes yielded approximately 300 ng of DNA. Such a total yield is currently insufficient for many highthroughput genome screening applications, necessitating whole genome amplification of all or most individuals in a population prior to genotyping.

  7. Simplified extraction of good quality genomic DNA from a variety of ...

    African Journals Online (AJOL)

    enoh

    2012-03-22

    Mar 22, 2012 ... Unlike other methods, no detergent was included in the isolation steps. ... from cationic and/or anionic detergents, different chemicals and .... Table 1. Spectrophotometric analysis of different plant genomic DNA preparations.

  8. Development of DNA-Free Sediment for Ecological Assays with Genomic Endpoints (NAC SETAC)

    Science.gov (United States)

    Recent advances in genomics are currently being exploited to discern ecological changes that have conventionally been measured using laborious counting techniques. For example, next generation sequencing technologies can be used to create DNA libraries from benthic community ass...

  9. Development of DNA-Free Sediment for Ecological Assays with Genomic Endpoints

    Science.gov (United States)

    Recent advances in genomics are currently being exploited to discern ecological changes that have conventionally been measured using laborious counting techniques. For example, next generation sequencing technologies can be used to create DNA libraries from benthic community ass...

  10. Comparative Analysis on Genomes from Oryza alta and Oryza latifolia by C0t-1 DNA

    Institute of Scientific and Technical Information of China (English)

    WANG De-bin; WANG Yang; WU Qi; ZHAO Hou-ming; LI Gang; QIN Rui; WANG Chun-tai; LIU Hong

    2010-01-01

    In order to reveal the origin and evolutionary relationship between two CCDD genome species, Oryza alta and Oryza latifolia, fluorescence in situ hybridization (FISH) was adopted to analyze the genomes of the two species with C0t-1 DNA from O. alta as a probe. Karyotype was also comparatively analyzed between O. alta and O. latifolia based on their similar band patterns of the hybridization signals. There were a high homology and close relationship between O. alta and O. latifolia, however, the distinction between the hybridization signals was also clear. C0t-1 DNA was proved to be species- and genome type-specific. It is suggested that C0t-1 DNA-FISH could be more efficient to analyze the genomic relationship between different species. According to the comparative analysis of highly and moderately repetitive DNA sequences between the two allotetraploidy species, O. alta and O. latifolia, the possible origin and evolutionary mechanism of allotetraploidy of Oryza were discussed.

  11. Extraction of high molecular weight genomic DNA from soils and sediments.

    Science.gov (United States)

    Lee, Sangwon; Hallam, Steven J

    2009-11-10

    The soil microbiome is a vast and relatively unexplored reservoir of genomic diversity and metabolic innovation that is intimately associated with nutrient and energy flow within terrestrial ecosystems. Cultivation-independent environmental genomic, also known as metagenomic, approaches promise unprecedented access to this genetic information with respect to pathway reconstruction and functional screening for high value therapeutic and biomass conversion processes. However, the soil microbiome still remains a challenge largely due to the difficulty in obtaining high molecular weight of sufficient quality for large insert library production. Here we introduce a protocol for extracting high molecular weight, microbial community genomic DNA from soils and sediments. The quality of isolated genomic DNA is ideal for constructing large insert environmental genomic libraries for downstream sequencing and screening applications. The procedure starts with cell lysis. Cell walls and membranes of microbes are lysed by both mechanical (grinding) and chemical forces (beta-mercaptoethanol). Genomic DNA is then isolated using extraction buffer, chloroform-isoamyl alcohol and isopropyl alcohol. The buffers employed for the lysis and extraction steps include guanidine isothiocyanate and hexadecyltrimethylammonium bromide (CTAB) to preserve the integrity of the high molecular weight genomic DNA. Depending on your downstream application, the isolated genomic DNA can be further purified using cesium chloride (CsCl) gradient ultracentrifugation, which reduces impurities including humic acids. The first procedure, extraction, takes approximately 8 hours, excluding DNA quantification step. The CsCl gradient ultracentrifugation, is a two days process. During the entire procedure, genomic DNA should be treated gently to prevent shearing, avoid severe vortexing, and repetitive harsh pipetting.

  12. Greater than X kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA.

    Science.gov (United States)

    Mulcahy, Daniel G; Macdonald, Kenneth S; Brady, Seán G; Meyer, Christopher; Barker, Katharine B; Coddington, Jonathan

    2016-01-01

    Advances in biodiversity genomic sequencing will increasingly depend on the availability of DNA samples-and their quantifiable metadata-preserved in large institutional biorepositories that are discoverable to the scientific community. Improvements in sequencing technology constantly provide longer reads, such that longer fragment length, higher molecular weight, and overall "genome-quality" DNA (gDNA) will be desirable. Ideally, biorepositories should publish numerical scale measurements of DNA quality useful to the user community. However, the most widely used technique to evaluate DNA quality, the classic agarose gel, has yet to be quantified. Here we propose a simple and economical method using open source image analysis software to make gDNA gel images quantifiable, and propose percentage of gDNA "greater than X kb" as a standard of comparison, where X is a band from any widely used DNA ladder with desirably large band sizes. We employ two metadata standards ("DNA Threshold" and "Percent above Threshold") introduced as part of the Global Genome Biodiversity Network (GGBN) Darwin Core extension. We illustrate the method using the traditionally used HindIII ladder and the 9,416 base-pair (bp) band as a standard. We also present data, for two taxa, a vertebrate (fish) and an invertebrate (crab), on how gDNA quality varies with seven tissue preservation methods, time since death, preservation method (i.e. buffers vs. cold temperatures), and storage temperature of various buffers over time. Our results suggest that putting tissue into a buffer prior to freezing may be better than directly into ultra-cold conditions.

  13. Greater than X kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA

    Science.gov (United States)

    Macdonald, Kenneth S.; Meyer, Christopher; Barker, Katharine B.; Coddington, Jonathan

    2016-01-01

    Advances in biodiversity genomic sequencing will increasingly depend on the availability of DNA samples—and their quantifiable metadata—preserved in large institutional biorepositories that are discoverable to the scientific community. Improvements in sequencing technology constantly provide longer reads, such that longer fragment length, higher molecular weight, and overall “genome-quality” DNA (gDNA) will be desirable. Ideally, biorepositories should publish numerical scale measurements of DNA quality useful to the user community. However, the most widely used technique to evaluate DNA quality, the classic agarose gel, has yet to be quantified. Here we propose a simple and economical method using open source image analysis software to make gDNA gel images quantifiable, and propose percentage of gDNA “greater than X kb” as a standard of comparison, where X is a band from any widely used DNA ladder with desirably large band sizes. We employ two metadata standards (“DNA Threshold” and “Percent above Threshold”) introduced as part of the Global Genome Biodiversity Network (GGBN) Darwin Core extension. We illustrate the method using the traditionally used HindIII ladder and the 9,416 base-pair (bp) band as a standard. We also present data, for two taxa, a vertebrate (fish) and an invertebrate (crab), on how gDNA quality varies with seven tissue preservation methods, time since death, preservation method (i.e. buffers vs. cold temperatures), and storage temperature of various buffers over time. Our results suggest that putting tissue into a buffer prior to freezing may be better than directly into ultra-cold conditions. PMID:27761327

  14. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  15. Delineation of Methyl-DNA Binding Protein Interactions in the Prostate Cancer Genome (PC110091)

    Science.gov (United States)

    2014-03-01

    DNA Binding Protein Interactions in the Prostate Cancer Genome (PC110091) PRINCIPAL INVESTIGATOR: Roderick T Hori, PhD...13. SUPPLEMENTARY NOTES Prostate Cancer, Methylated DNA, Methyl- CpG Binding Domain, Chromatin Immunoprecipitation 14. ABSTRACT The purpose...of this study is to generate a genome-wide association profile of Methyl- CpG Domain-containing (MBD) proteins, such as MeCP2, MBD1, MBD2 and MBD4, in

  16. Human DNA Ligase I Interacts with and Is Targeted for Degradation by the DCAF7 Specificity Factor of the Cul4-DDB1 Ubiquitin Ligase Complex.

    Science.gov (United States)

    Peng, Zhimin; Liao, Zhongping; Matsumoto, Yoshihiro; Yang, Austin; Tomkinson, Alan E

    2016-10-14

    The synthesis, processing, and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and coordinates the activity of several DNA replication proteins, including the enzymes flap endonuclease 1 (FEN-1) and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. Although it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Because DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins is coordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.

  17. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    Science.gov (United States)

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

  18. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  19. Substitutions of short heterologous DNA segments of intragenomic or extragenomic origins produce clustered genomic polymorphisms

    DEFF Research Database (Denmark)

    Harms, Klaus; Lunnan, Asbjørn; Hülter, Nils;

    2016-01-01

    In a screen for unexplained mutation events we identified a previously unrecognized mechanism generating clustered DNA polymorphisms such as microindels and cumulative SNPs. The mechanism, short-patch double illegitimate recombination (SPDIR), facilitates short single-stranded DNA molecules...... to invade and replace genomic DNA through two joint illegitimate recombination events. SPDIR is controlled by key components of the cellular genome maintenance machinery in the gram-negative bacterium Acinetobacter baylyi. The source DNA is primarily intragenomic but can also be acquired through horizontal...... gene transfer. The DNA replacements are nonreciprocal and locus independent. Bioinformatic approaches reveal occurrence of SPDIR events in the gram-positive human pathogen Streptococcus pneumoniae and in the human genome....

  20. Whole-genome DNA methylation profiling using MethylCap-seq.

    Science.gov (United States)

    Brinkman, Arie B; Simmer, Femke; Ma, Kelong; Kaan, Anita; Zhu, Jingde; Stunnenberg, Hendrik G

    2010-11-01

    MethylCap-seq is a robust procedure for genome-wide profiling of DNA methylation. The approach consists of the capture of methylated DNA using the MBD domain of MeCP2, and subsequent next-generation sequencing of eluted DNA. Elution of the captured methylated DNA is done in steps using a salt gradient, which stratifies the genome into fractions with different CpG density. The enrichment reached within the individual eluates allows for cost-effective deep sequence coverage. The profiles together yield a detailed genome-wide map of methylated regions and readily allows detection of DNA methylation in known and novel regions. Here, we describe principles and details of the MethylCap-seq procedure using different sources of starting material. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Experimental genomics: The application of DNA microarrays in cellular and molecular biology studies

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellular and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quant itative fashion. DNA microarrays can be used to measure levels of gene expressio n for tens of thousands of gene simultaneously and take advantage of all availab le sequence information for experimental design and data interpretation in pursu it of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a catalogue of all the genes and informati on about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in genome and gene function analysis, gene expression studies, biological signal and defense system, cell cyclereg ulation, mechanism of transcriptional regulation, proteomics, and the functional ity of food component.

  2. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  3. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  4. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Science.gov (United States)

    Lykidis, Athanasios; Pérez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J; Ivanova, Natalia N; Hooper, Sean D; Lapidus, Alla; Lucas, Susan; González, Bernardo; Kyrpides, Nikos C

    2010-03-22

    Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. Its genome consists of four replicons (two chromosomes and two plasmids) containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000). Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation) seems to be shaped mostly by the acquisition of "specialized" plasmids. The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  5. High Telomerase Activity Correlates with the Stabilities of Genome and DNA Ploidy in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Hideki Izumi

    2002-01-01

    Full Text Available Malignant tumors have telomerase activity, which is thought to play a critical role in tumor growth. However, the relation between telomerase activity and genomic DNA status in tumor cells is poorly understood. In the present study, we examined telomerase activity in 13 clear cell type renal cell carcinomas (CRCCs with similar clinicopathologic features by telomeric repeat amplification protocol assay (TRAP. Based on TRAP assay results, we divided the CRCCs into two groups: a high telomerase activity group and a low/no telomerase activity group. We then analyzed genomic aberration, DNA ploidy, and telomere status in these two groups by comparative genomic hybridization (CGH, laser scanning cytometry (LSC, and telomere-specific fluorescence in situ hybridization (T-FISH, respectively. CGH showed the high telomerase activity group to have fewer genomic changes than the low/no telomerase activity group, which had many genomic aberrations. Moreover, with LSC, DNA diploid cells were found more frequently in the high telomerase activity group than in the low/no telomerase activity group. In addition, T-FISH revealed strong telomere signal intensity in the high telomerase activity group compared with that of the low/no telomerase activity group. These results suggest that telomerase activity is linked to genomic DNA status and that high telomerase activity is associated with genomic stability, DNA ploidy, and telomere length in CRCC.

  6. Genotyping whole-genome-amplified DNA from 3- to 25-year-old neonatal dried blood spot samples with reference to fresh genomic DNA.

    Science.gov (United States)

    Hollegaard, Mads Vilhelm; Thorsen, Poul; Norgaard-Pedersen, Bent; Hougaard, David Michael

    2009-07-01

    Stored surplus of dried blood spot (DBS) samples from neonatal screening programs constitute a vast potential for large genetic epidemiological studies. However, age of the samples and the small amounts of DNA available may limit their usage. In this study we validate genotyping accuracy and efficiency of whole-genome-amplified DNA (wgaDNA) obtained from stored DBS samples, with reference to fresh genomic DNA from the same individuals. DBS samples from 29 volunteers, stored for up to 25 years, in the Danish Neonatal Screening Biobank were included and three DNA extraction methods, each using one 3.2 mm disk, were evaluated. Four whole-genome amplification kits, and one re-amplification kit, were used. Thirty-one SNPs were genotyped using the Sequenom platform and the wgaDNA samples calls were compared with their references for accuracy and efficiency evaluation. The genotype calls done blinded by the user had in many setups a 100% call- and concordance rate. Our results showed that genotyping performance is dependent on the combination of extraction procedure and amplification method, whereas years of storage did not seem to influence in this study. Based on these results we conclude that DBS samples should be considered a reliable and potential resource for future genotyping studies.

  7. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat

    Science.gov (United States)

    In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17,000Mb), repeat DNA accounts for ~ 90% of the genome of which transposable elements (TEs) constitute 60-80 %. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs between the homologous wheat genomes are co...

  8. Rapid DNA Library Construction for Functional Genomic and Metagenomic Screening▿ †

    OpenAIRE

    2007-01-01

    A rapid protocol was developed for constructing plasmid libraries from small quantities of genomic/metagenomic DNA. The technique utilizes linker amplification with topoisomerase cloning and allows for inducible transcription in Escherichia coli. As proof of principle, several anti-Bacillus lysins were cloned from bacteriophage genomes and an aerolysin was cloned from a metagenomic sample.

  9. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    Science.gov (United States)

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  10. Quantitative assessment of the effect of uracil-DNA glycosylase on amplicon DNA degradation and RNA amplification in reverse transcription-PCR

    Directory of Open Access Journals (Sweden)

    Kleiboeker Steven B

    2005-04-01

    Full Text Available Abstract Although PCR and RT-PCR provided a valuable approach for detection of pathogens, the high level of sensitivity of these assays also makes them prone to false positive results. In addition to cross-contamination with true positive samples, false positive results are also possible due to "carry-over" contamination of samples with amplicon DNA generated by previous reactions. To reduce this source of false positives, amplicon generated by reactions in which dUTP was substituted for dTTP can be degraded by uracil DNA glycosylase (UNG. UNG does not degrade RNA but will cleave contaminating uracil-containing DNA while leaving thymine-containing DNA intact. The availability of heat-labile UNG makes use of this approach feasible for RT-PCR. In this study, real-time RT-PCR was used to quantify UNG degradation of amplicon DNA and the effect of UNG on RNA detection. Using the manufacturers' recommended conditions, complete degradation of DNA was not observed for samples containing 250 copies of amplicon DNA. Doubling the UNG concentration resulted in degradation of the two lowest concentrations of DNA tested, but also resulted in an increase of 1.94 cycles in the CT for RNA detection. To improve DNA degradation while minimizing the effect on RNA detection, a series of time, temperature and enzyme concentrations were evaluated. Optimal conditions were found to be 0.25 U UNG per 25 μl reaction with a 20 min, 30°C incubation prior to RT-PCR. Under these conditions, high concentrations of amplicon DNA could be degraded while the CT for RNA detection was increased by 1.2 cycles.

  11. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.

    Science.gov (United States)

    Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H

    2011-08-01

    Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F(1) offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F(1) dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing.

  12. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    Science.gov (United States)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  13. Modified DOP-PCR for improved STR typing of degraded DNA from human skeletal remains and bloodstains.

    Science.gov (United States)

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; Gill-King, Harrell; King, Jonathan; Sajantila, Antti; Budowle, Bruce

    2016-01-01

    Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors. Published by Elsevier Ireland Ltd.

  14. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Hélène Gaillard

    2014-03-01

    Full Text Available During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3'-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR. This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability.

  15. Cleavage Factor I Links Transcription Termination to DNA Damage Response and Genome Integrity Maintenance in Saccharomyces cerevisiae

    Science.gov (United States)

    Gaillard, Hélène; Aguilera, Andrés

    2014-01-01

    During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3′-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability. PMID:24603480

  16. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    DEFF Research Database (Denmark)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte;

    2014-01-01

    , precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap......Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better...... compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective....

  17. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  18. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  19. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47.

    Science.gov (United States)

    Bergmann, Franz; Selesi, Draženka; Weinmaier, Thomas; Tischler, Patrick; Rattei, Thomas; Meckenstock, Rainer U

    2011-05-01

    Anaerobic degradation of polycyclic aromatic hydrocarbons (PAHs) is an important process during natural attenuation of aromatic hydrocarbon spills. However, knowledge about metabolic potential and physiology of organisms involved in anaerobic degradation of PAHs is scarce. Therefore, we introduce the first genome of the sulfate-reducing Deltaproteobacterium N47 able to catabolize naphthalene, 2-methylnaphthalene, or 2-naphthoic acid as sole carbon source. Based on proteomics, we analysed metabolic pathways during growth on PAHs to gain physiological insights on anaerobic PAH degradation. The genomic assembly and taxonomic binning resulted in 17 contigs covering most of the sulfate reducer N47 genome according to general cluster of orthologous groups (COGs) analyses. According to the genes present, the Deltaproteobacterium N47 can potentially grow with the following sugars including d-mannose, d-fructose, d-galactose, α-d-glucose-1P, starch, glycogen, peptidoglycan and possesses the prerequisites for butanoic acid fermentation. Despite the inability for culture N47 to utilize NO(3) (-) as terminal electron acceptor, genes for nitrate ammonification are present. Furthermore, it is the first sequenced genome containing a complete TCA cycle along with the carbon monoxide dehydrogenase pathway. The genome contained a significant percentage of repetitive sequences and transposase-related protein domains enhancing the ability of genome evolution. Likewise, the sulfate reducer N47 genome contained many unique putative genes with unknown function, which are candidates for yet-unknown metabolic pathways.

  20. Complete Genome Sequence of the WHO International Standard for Hepatitis B Virus DNA

    Science.gov (United States)

    Jenkins, Adrian; Minhas, Rehan

    2017-01-01

    ABSTRACT   The World Health Organization (WHO) international standard (IS) for hepatitis B virus (HBV) DNA for use in nucleic acid amplification assays was characterized by determining the complete genome sequence, which was assigned genotype A. This information will aid the design, development, and evaluation of HBV DNA amplification assays. PMID:28209818

  1. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it po

  2. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA

  3. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  4. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  5. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  6. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Wahlberg, Per

    2013-01-01

    BACKGROUND: Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic...

  8. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damag

  9. De Novo DNA Assembly with a Genetic Algorithm Finds Accurate Genomes Even with Suboptimal Fitness

    NARCIS (Netherlands)

    Bucur, Doina; Squillero, Giovanni; Sim, Kevin

    We design an evolutionary heuristic for the combinatorial problem of de-novo DNA assembly with short, overlapping, accurately sequenced single DNA reads of uniform length, from both strands of a genome without long repeated sequences. The representation of a candidate solution is a novel segmented

  10. A special issue on DNA damage responses and genome maintenance

    Institute of Scientific and Technical Information of China (English)

    GuoMin Li; David J Chen; Sankar Mitra; John J Turchi

    2008-01-01

    @@ There is nothing more fundamental than the genome for the existence and main-tenance of all living beings. The importance of the genome is increasingly appreciated as recent discoveries have revealed that changes in the human genome, regardless of being inherited or induced, can result in diseases that either significantly shorten lives (as seen in cancer) or dramatically affect the quality of lives (often seen in neurodegenerative diseases). Therefore, maintaining genome integrity is critical for not only the con-tinuation of a species in evolution (although mutations may be occasionally beneficial during evolution) but also for longevity and general health.

  11. Beyond the genome: The ethics of DNA testing

    Energy Technology Data Exchange (ETDEWEB)

    Fackelmann, K.A.

    1994-11-05

    This article looks at the implications of identification of specific genes in the human genome. Ethical questions concerning inherited conditions include privacy, paternity, judgement, society versus individual.

  12. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  13. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Science.gov (United States)

    Afek, Ariel; Cohen, Hila; Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B

    2015-08-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Directory of Open Access Journals (Sweden)

    Ariel Afek

    2015-08-01

    Full Text Available Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large

  15. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma.

    Science.gov (United States)

    Srinivasainagendra, Vinodh; Sandel, Michael W; Singh, Bhupendra; Sundaresan, Aishwarya; Mooga, Ved P; Bajpai, Prachi; Tiwari, Hemant K; Singh, Keshav K

    2017-03-29

    Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and

  16. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Copley, Shelley D. [University of Colorado; Rokicki, Joseph [University of Colorado; Turner, Pernilla [University of Colorado; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  17. Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage

    Science.gov (United States)

    Fang, Hua; Xu, Tianheng; Cao, Duantao; Cheng, Longyin; Yu, Yunlong

    2016-08-01

    A novel bacterium capable of utilizing metamitron as the sole source of carbon and energy was isolated from contaminated soil and identified as Rhodococcus sp. MET based on its morphological characteristics, BIOLOG GP2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate MET showed a 6,340,880 bp genome with a 62.47% GC content and 5,987 protein-coding genes. In total, 5,907 genes were annotated with the COG, GO, KEGG, Pfam, Swiss-Prot, TrEMBL, and nr databases. The degradation rate of metamitron by the isolate MET obviously increased with increasing substrate concentrations from 1 to 10 mg/l and subsequently decreased at 100 mg/l. The optimal pH and temperature for metamitron biodegradation were 7.0 and 20-30 °C, respectively. Based on genome annotation of the metamitron degradation genes and the metabolites detected by HPLC-MS/MS, the following metamitron biodegradation pathways were proposed: 1) Metamitron was transformed into 2-(3-hydrazinyl-2-ethyl)-hydrazono-2-phenylacetic acid by triazinone ring cleavage and further mineralization; 2) Metamitron was converted into 3-methyl-4-amino-6(2-hydroxy-muconic acid)-1,2,4-triazine-5(4H)-one by phenyl ring cleavage and further mineralization. The coexistence of diverse mineralization pathways indicates that our isolate may effectively bioremediate triazinone herbicide-contaminated soils.

  18. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Muntean, Cristina M; Lapusan, Alexandra; Mihaiu, Liora; Stefan, Razvan

    2014-01-05

    In this work we present a method for detection of DNA isolated from nonpathogenic Escherichia coli strains, respectively. Untreated and UV irradiated bacterial DNAs were analyzed by FT-IR spectroscopy, to investigate their screening characteristic features and their structural radiotolerance at 253.7nm. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 800-1800cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Also, UV damage at the DNA molecular level is of interest. Strain dependent UV degradation of DNA from E. coli has been observed. Particularly, alterations in nucleic acid bases, base pairing and base stacking have been found. Also changes in the DNA conformation and deoxyribose were detected. Based on this work, specific E. coli DNA-ligand interactions, drug development and vaccine design for a better understanding of the infection mechanism caused by an interference between pathogenic and nonpathogenic bacteria and for a better control of disease, respectively, might be further investigated using Fourier transform infrared spectroscopy. Besides, understanding the pathways for UV damaged DNA response, like nucleic acids repair mechanisms is appreciated.

  19. Difficulties of sex determination from forensic bone degraded DNA: A comparison of three methods.

    Science.gov (United States)

    Quincey, Danielle; Carle, Georges; Alunni, Véronique; Quatrehomme, Gérald

    2013-09-01

    Sex determination is of paramount importance in forensic anthropology. Numerous anthropological methods have been described, including visual assessments and various measurements of bones. Nevertheless, whatever the method used, the percentage of correct classification of a single bone usually varies between 80% and 95%, due to significant intra- and inter-population variations, and sometimes variations coming from secular trends. DNA is increasingly used in a forensic context. But forensic DNA extraction from bone raises several issues, because the samples are very often badly altered and/or in very small quantity. Nuclear DNA is difficult to get from degraded samples, according to low copy number, at least in comparison with mitochondrial DNA. In a forensic context (as in a paeleoanthropological context) DNA sex determination is usually complicated by the weak amount of DNA, the degraded nature of nucleic acids, the presence of enzymatic inhibitors in DNA extracts, the possible faint amplification of Y band and the risk of contamination during either excavation or manipulation of samples. The aim of this work was to compare three methods of DNA sex determination from bones: procedure #1 using a single PCR amplification, procedure #2 using a double PCR amplification, and procedure #3 adding bleaching for decontamination of the bone, instead of simply rubbing the bone. These processes were applied to samples of bones (49 samples coming from 39 individuals) that were in various states of post mortem alteration. The main results are the following. (i) No DNA could be extracted from three skulls (parietal bones, mastoid process), the compact bone of one rib, and the diaphysis of one femur; (ii) there was a contamination in three skulls; and (iii) the Y band did not appear in two male cases, with one of the three procedures (male tibia, procedure #2) and with procedures #2 and #3 (male femur). This study emphasises the main issue while working with altered bones: the

  20. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    Science.gov (United States)

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  1. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  2. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  3. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    Science.gov (United States)

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  4. Regulation of DnaA Assembly and Activity: Taking Directions From the Genome

    OpenAIRE

    2011-01-01

    To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein, DnaA, and its interactions with the unique replication origin, oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replication complexes. In oriC, closely spaced high and low affinity recognition sites d...

  5. Genomic profiling of plastid DNA variation in the Mediterranean olive tree

    Directory of Open Access Journals (Sweden)

    Dorado Gabriel

    2011-05-01

    Full Text Available Abstract Background Characterisation of plastid genome (or cpDNA polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L. by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels. They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals. Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea.

  6. Genome-Wide Mapping of in Vivo Protein-DNA Interactions

    OpenAIRE

    Johnson, David S.; Mortazavi, Ali; Myers, Richard M.; Wold, Barbara

    2007-01-01

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element–1 si...

  7. DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation.

    Directory of Open Access Journals (Sweden)

    Sara eMishamandani

    2014-02-01

    Full Text Available Marine hydrocarbon-degrading bacteria perform a fundamental role in the oxidation and ultimate removal of crude oil and its petrochemical derivatives in coastal and open ocean environments. Those with an almost exclusive ability to utilize hydrocarbons as a sole carbon and energy source have been found confined to just a few genera. Here we used stable isotope probing (SIP, a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate hydrocarbon-degrading bacteria in coastal North Carolina sea water (Beaufort Inlet, USA with uniformly labeled [13C]n-hexadecane. The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from n-hexadecane enrichments were identified to belong to the genus Alcanivorax, with ≤98% sequence identity to the closest type strain – thus representing a putative novel phylogenetic taxon within this genus. Unexpectedly, we also identified 13C-enriched sequences in heavy DNA fractions that were affiliated to the genus Methylophaga. This is a contentious group since, though some of its members have been proposed to degrade hydrocarbons, substantive evidence has not previously confirmed this. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Alcanivorax and Methylophaga to determine their abundance in incubations amended with unlabeled n-hexadecane. Both showed substantial increases in gene copy number during the experiments. Subsequently, we isolated a strain representing the SIP-identified Methylophaga sequences (99.9% 16S rRNA gene sequence identity and used it to show, for the first time, direct evidence of hydrocarbon degradation by a cultured Methylophaga sp. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of hydrocarbon-degrading bacteria in the marine environment.

  8. The role of DNA twist in the packaging of viral genomes.

    Science.gov (United States)

    Rollins, Geoffrey C; Petrov, Anton S; Harvey, Stephen C

    2008-03-01

    We performed molecular dynamics simulations of the genome packaging of bacteriophage P4 using two coarse-grained models of DNA. The first model, 1DNA6 (one pseudo-atom per six DNA basepairs), represents DNA as a string of beads, for which DNA torsions are undefined. The second model, 3DNA6 (three pseudo-atoms per six DNA basepairs), represents DNA as a series of base planes with torsions defined by the angles between successive planes. Bacteriophage P4 was packaged with 1DNA6, 3DNA6 in a torsionally relaxed state, and 3DNA6 in a torsionally strained state. We observed good agreement between the packed conformation of 1DNA6 and the packed conformations of 3DNA6. The free energies of packaging were in agreement, as well. Our results suggest that DNA torsions can be omitted from coarse-grained bacteriophage packaging simulations without significantly altering the DNA conformations or free energies of packaging that the simulations predict.

  9. Draft Genome Sequence of Nocardioides luteus Strain BAFB, an Alkane-Degrading Bacterium Isolated from JP-7-Polluted Soil

    Science.gov (United States)

    Brown, Lisa M.; Gunasekera, Thusitha S.

    2017-01-01

    ABSTRACT Nocardioides luteus strain BAFB is a Gram-positive bacterium that efficiently degrades C8 to C11 alkanes aerobically. The draft genome of N. luteus BAFB is 5.76 Mb in size, with 5,358 coding sequences and 69.9% G+C content. The genes responsible for alkane degradation are present in this strain. PMID:28126947

  10. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  11. High-throughput DNA Stretching in Continuous Elongational Flow for Genome Sequence Scanning

    Science.gov (United States)

    Meltzer, Robert; Griffis, Joshua; Safranovitch, Mikhail; Malkin, Gene; Cameron, Douglas

    2014-03-01

    Genome Sequence Scanning (GSS) identifies and compares bacterial genomes by stretching long (60 - 300 kb) genomic DNA restriction fragments and scanning for site-selective fluorescent probes. Practical application of GSS requires: 1) high throughput data acquisition, 2) efficient DNA stretching, 3) reproducible DNA elasticity in the presence of intercalating fluorescent dyes. GSS utilizes a pseudo-two-dimensional micron-scale funnel with convergent sheathing flows to stretch one molecule at a time in continuous elongational flow and center the DNA stream over diffraction-limited confocal laser excitation spots. Funnel geometry has been optimized to maximize throughput of DNA within the desired length range (>10 million nucleobases per second). A constant-strain detection channel maximizes stretching efficiency by applying a constant parabolic tension profile to each molecule, minimizing relaxation and flow-induced tumbling. The effect of intercalator on DNA elasticity is experimentally controlled by reacting one molecule of DNA at a time in convergent sheathing flows of the dye. Derivations of accelerating flow and non-linear tension distribution permit alignment of detected fluorescence traces to theoretical templates derived from whole-genome sequence data.

  12. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  13. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  14. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms.

    Science.gov (United States)

    Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H

    2012-07-01

    The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.

  15. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Science.gov (United States)

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  16. A new approach for cloning hLIF cDNA from genomic DNA isolated from the oral mucous membrane.

    Science.gov (United States)

    Cui, Y H; Zhu, G Q; Chen, Q J; Wang, Y F; Yang, M M; Song, Y X; Wang, J G; Cao, B Y

    2011-11-25

    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the study of life science, but it is difficult to obtain by traditional reverse transcription. We employed a novel strategy to clone human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA, which was directly isolated from the mucous membrane of mouth. The hLIF sequence, which is 609 bp long and is composed of three exons, can be acquired within a few hours by amplifying each exon and splicing all of them using overlap-PCR. This new approach developed is simple, time- and cost-effective, without RNA preparation or cDNA synthesis, and is not limited to the specific tissues for a particular gene and the expression level of the gene.

  17. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    Science.gov (United States)

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system.

  18. Database of Periodic DNA Regions in Major Genomes

    Directory of Open Access Journals (Sweden)

    Felix E. Frenkel

    2017-01-01

    Full Text Available Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial, C. elegans, D. melanogaster, and A. thaliana genomes.

  19. Database of Periodic DNA Regions in Major Genomes

    Science.gov (United States)

    2017-01-01

    Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial), C. elegans, D. melanogaster, and A. thaliana genomes. PMID:28182099

  20. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  1. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    Science.gov (United States)

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-05-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.

  2. The cDNA and Genomic DNA Organization of a Novel Toxin SHT-I from Spider Ornithoctonus huwena

    Institute of Scientific and Technical Information of China (English)

    Peng QIAO; Xiao-Pan ZUO; Zhi-Fang CHAI; Yong-Hua JI

    2004-01-01

    In present study the full-length cDNA of a novel toxin from the venom gland of spider Ornithoctonus huwena, named as SHT-I, has been cloned using the strategy of rapid amplification of cDNA ends, and then the whole genomic sequence of SHT-I (Selenocosmia huwena toxin-I) was determined using sequence-specific primers synthesized based on the acquired 3' and 5' ends of SHT-I cDNA sequence. It is unexpectedly found that intron was lacking in the genomic sequence of SHT-I. The result might evoke an interesting question whether the gene code of inhibitor cystine-knot peptides from spider venom is distinct from that of those known toxic peptides of scorpion and cone snail.

  3. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Directory of Open Access Journals (Sweden)

    Tran Duc

    2010-05-01

    Full Text Available Abstract Background Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the

  4. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  5. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  6. Studies on the Interaction between Zinc-Hydroxybenzoite Complex and Genomic DNA

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2006-04-01

    Full Text Available Zinc-Hydroxybenzoite ([Zn (H206] (p-HO-C6H4COO22H20 complex which wassynthesized and characterized by instrumental methods and the DNA samples which hadbeen isolated from cattle were allowed to interact at 37 oC for different time periods. Theinteraction of genomic DNA with this complex has been followed by agarose gelelectrophoresis at 50 V for 2 h. When DNA samples were allowed to interact with this metalcomplex, it was found that band intensities changed with the concentrations of the complex.In the result of interaction between this complex and genomic DNA samples, it wasdetermined that the intensities of bands were changed at the different concentrations of thecomplex. The brightness of the bands was increased and mobility of the bands wasdecreased, indicating the occurrence of increased covalent binding of the metal complexwith DNA. In this study it was concluded that the damage effect of ascorbate was reducedby Zinc-Hydroxybenzoite.

  7. Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration

    Directory of Open Access Journals (Sweden)

    Warawut Chuthammathat

    2005-12-01

    Full Text Available DNA contents of oil palm (Elaeis guineensis Jacq. cultivars were analyzed by flow cytometry using different external reference plant species. Analysis using corn (Zea mays line CE-777 as a reference plant gave the highest DNA content of oil palm (4.72±0.23 pg 2C-1 whereas the DNA content was found to be lower when using soybean (Glycine max cv. Polanka (3.77±0.09 pg 2C-1 or tomato (Lycopersicon esculentum cv. Stupicke (4.25±0.09 pg 2C-1 as a reference. The nuclear DNA contents of Dura (D109, Pisifera (P168 and Tenera (T38 cultivars were 3.46±0.04, 3.24±0.03 and 3.76±0.04 pg 2C-1 nuclei, respectively, using soybean as a reference. One haploid genome of oil palm therefore ranged from 1.56 to 1.81±109 base pairs. DNA contents from one-year-old calli and cell suspension of oil palm were found to be significantly different from those of seedlings. It thus should be noted that genomic DNA alteration occurred in these cultured tissues. We therefore confirm that flow cytometric analysis could verify cultivars, DNA content and genomic DNA alteration of oil palm using soybean as an external reference standard.

  8. Small terminase couples viral DNA binding to genome-packaging ATPase activity.

    Science.gov (United States)

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C; Cingolani, Gino

    2012-08-08

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.

  9. Characterization of the DNA of the hamster papovavirus: I. Genom length and molecular cloning.

    Science.gov (United States)

    Vogel, F; Zimmermann, W; Krause, H; Scherneck, S

    1984-01-01

    The complete genome of the hamster papovavirus (HaPV) which was isolated from virions found in multiple skin tumors of the Syrian hamsters was measured by electron microscopy and cloned in Escherichia coli using the certified plasmid vector pBR322. The cloned viral DNA were characterized by digestion of the recombinant DNA with various restriction enzymes followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested uncloned DNA and by electron microscopy to determine the genome size of cloned HaPV DNA. The restriction enzyme analysis of the cloned HaPV DNA showed the same cleavage pattern as the corresponding fragments from the uncloned DNA. No major insertions or deletions could be detected by heteroduplex analysis between cloned HaPV DNA and the starting material. The estimated genome size of 5.52 kb for HaPV DNA is approx. 300 bases larger than those determined for other known papovaviruses as SV40 or polyoma.

  10. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  11. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  12. Microfluidic DNA fragmentation for on-chip genomic analysis

    NARCIS (Netherlands)

    Shui, Lingling; Bomer, Johan G.; Jin, Mingliang; Carlen, Edwin T.; Berg, van den Albert

    2011-01-01

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions

  13. Microfluidic DNA fragmentation for on-chip genomic analysis

    NARCIS (Netherlands)

    Shui, Lingling; Bomer, Johan G.; Jin, Mingliang; Carlen, Edwin; van den Berg, Albert

    2011-01-01

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions

  14. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    Science.gov (United States)

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  15. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora.

    Science.gov (United States)

    Fernández-Fueyo, Elena; Ruiz-Dueñas, Francisco J; Miki, Yuta; Martínez, María Jesús; Hammel, Kenneth E; Martínez, Angel T

    2012-05-11

    The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.

  16. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES causes preferential uptake of conspecific DNA, but the function(s behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein

  17. Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos I.; Bramis, Georgios; Lazou, Thomai; Russel, Claire L.; Arsenos, Georgios; Banos, Georgios

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals. PMID:25635817

  18. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples.

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos I; Bramis, Georgios; Lazou, Thomai; Russel, Claire L; Arsenos, Georgios; Banos, Georgios

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.

  19. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples.

    Directory of Open Access Journals (Sweden)

    Androniki Psifidi

    Full Text Available Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.

  20. Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver

    Directory of Open Access Journals (Sweden)

    Michel Lebel

    2011-01-01

    Full Text Available The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.

  1. A robust universal method for extraction of genomic DNA from bacterial species.

    Science.gov (United States)

    Atashpaz, Sina; Khani, Sajjad; Barzegari, Abolfazl; Barar, Jaleh; Vahed, Sepideh Zununi; Azarbaijani, Reza; Omidi, Yadollah

    2010-01-01

    The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCI. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method f r large-scale DNA isolation fromvarious bacterial species.

  2. Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System

    Science.gov (United States)

    Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao

    2017-01-01

    The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387

  3. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  4. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.

    Directory of Open Access Journals (Sweden)

    John K Pace

    2009-05-01

    Full Text Available DNA double-strand breaks (DSBs are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.

  5. A high-throughput, high-quality plant genomic DNA extraction protocol.

    Science.gov (United States)

    Li, H; Li, J; Cong, X H; Duan, Y B; Li, L; Wei, P C; Lu, X Z; Yang, J B

    2013-10-15

    The isolation of high-quality genomic DNA (gDNA) is a crucial technique in plant molecular biology. The quality of gDNA determines the reliability of real-time polymerase chain reaction (PCR) analysis. In this paper, we reported a high-quality gDNA extraction protocol optimized for real-time PCR in a variety of plant species. Performed in a 96-well block, our protocol provides high throughput. Without the need for phenol-chloroform and liquid nitrogen or dry ice, our protocol is safer and more cost-efficient than traditional DNA extraction methods. The method takes 10 mg leaf tissue to yield 5-10 µg high-quality gDNA. Spectral measurement and electrophoresis were used to demonstrate gDNA purity. The extracted DNA was qualified in a restriction enzyme digestion assay and conventional PCR. The real-time PCR amplification was sufficiently sensitive to detect gDNA at very low concentrations (3 pg/µL). The standard curve of gDNA dilutions from our phenol-chloroform-free protocol showed better linearity (R(2) = 0.9967) than the phenol-chloroform protocol (R(2) = 0.9876). The results indicate that the gDNA was of high quality and fit for real-time PCR. This safe, high-throughput plant gDNA extraction protocol could be used to isolate high-quality gDNA for real-time PCR and other downstream molecular applications.

  6. Diversity Suppression-Subtractive Hybridization Array for Profiling Genomic DNA Polymorphisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Genomic DNA polymorphisms are very useful for tracing genetic traits and studying biological diversity among species. Here, we present a method we call the "diversity suppression-subtractive hybridization array" for effectively profiling genomic DNA polymorphisms. The method first obtains the subtracted gDNA fragments between any two species by suppression subtraction hybridization (SSH) to establish a subtracted gDNA library,from which diversity SSH arrays are created with the selected subtracted clones. The diversity SSH array hybridizes with the DIG-labeled genomic DNA of the organism to be assayed. Six closely related Dendrobium species were studied as model samples. Four Dendrobium species as testers were used to perform SSH. A total of 617 subtracted positive clones were obtained from four Dendrobium species, and the average ratio of positive clones was 80.3%. We demonstrated that the average percentage of polymorphic fragments of pairwise comparisons of four Dendrobium species was up to 42.4%. A dendrogram of the relatedness of six Dendrobium species was produced according to their polymorphic profiles. The results revealed that the diversity SSH array is a highly effective platform for profiling genomic DNA polymorphisms and dendrograms.

  7. Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa.

    Science.gov (United States)

    Zaitlin, David; Pierce, Andrew J

    2010-12-01

    The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet (Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea, Saintpaulia, and Streptocarpus, all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia, a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%-26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine-cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon (Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ~633 × 10⁶ base pairs, which is approximately 40% of the previously published estimate.

  8. Draft genome sequence of Micrococcus luteus strain O'Kane implicates metabolic versatility and the potential to degrade polyhydroxybutyrates

    Directory of Open Access Journals (Sweden)

    Radwa A. Hanafy

    2016-09-01

    Full Text Available Micrococcus luteus is a predominant member of skin microbiome. We here report on the genomic analysis of Micrococcus luteus strain O'Kane that was isolated from an elevator. The partial genome assembly of Micrococcus luteus strain O'Kane is 2.5 Mb with 2256 protein-coding genes and 62 RNA genes. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, galactose, fructose, mannose, alanine, aspartate, asparagine, glutamate, glutamine, glycine, serine, cysteine, methionine, arginine, proline, histidine, phenylalanine, and fatty acids. Genomic comparison to other M. luteus representatives identified the potential to degrade polyhydroxybutyrates, as well as several antibiotic resistance genes absent from other genomes.

  9. Insights into specific DNA recognition during the assembly of a viral genome packaging machine.

    Science.gov (United States)

    de Beer, Tonny; Fang, Jenny; Ortega, Marcos; Yang, Qin; Maes, Levi; Duffy, Carol; Berton, Nancy; Sippy, Jean; Overduin, Michael; Feiss, Michael; Catalano, Carlos Enrique

    2002-05-01

    Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy. Its fold contains a unique winged helix-turn-helix (wHTH) motif within a novel scaffold. Surprisingly, a predicted P loop ATP binding motif is in fact the wing of the DNA binding motif. Structural and genetic analysis has identified determinants of DNA recognition specificity within the wHTH motif and the DNA recognition sequence. The structure reveals an unexpected DNA binding mode and provides a mechanistic basis for the concerted action of gpNu1 and Escherichia coli integration host factor during assembly of the packaging machinery.

  10. Evolution of ribosomal DNA-derived satellite repeat in tomato genome

    Directory of Open Access Journals (Sweden)

    Hur Cheol-Goo

    2009-04-01

    Full Text Available Abstract Background Tandemly repeated DNA, also called as satellite DNA, is a common feature of eukaryotic genomes. Satellite repeats can expand and contract dramatically, which may cause genome size variation among genetically-related species. However, the origin and expansion mechanism are not clear yet and needed to be elucidated. Results FISH analysis revealed that the satellite repeat showing homology with intergenic spacer (IGS of rDNA present in the tomato genome. By comparing the sequences representing distinct stages in the divergence of rDNA repeat with those of canonical rDNA arrays, the molecular mechanism of the evolution of satellite repeat is described. Comprehensive sequence analysis and phylogenetic analysis demonstrated that a long terminal repeat retrotransposon was interrupted into each copy of the 18S rDNA and polymerized by recombination rather than transposition via an RNA intermediate. The repeat was expanded through doubling the number of IGS into the 25S rRNA gene, and also greatly increasing the copy number of type I subrepeat in the IGS of 25-18S rDNA by segmental duplication. Homogenization to a single type of subrepeat in the satellite repeat was achieved as the result of amplifying copy number of the type I subrepeat but eliminating neighboring sequences including the type II subrepeat and rRNA coding sequence from the array. FISH analysis revealed that the satellite repeats are commonly present in closely-related Solanum species, but vary in their distribution and abundance among species. Conclusion These results represent that the dynamic satellite repeats were originated from intergenic spacer of rDNA unit in the tomato genome. This result could serve as an example towards understanding the initiation and the expansion of the satellite repeats in complex eukaryotic genome.

  11. Genome Sizes in Hepatica Mill: (Ranunculaceae Show a Loss of DNA, Not a Gain, in Polyploids

    Directory of Open Access Journals (Sweden)

    B. J. M. Zonneveld

    2010-01-01

    , and a possible pentaploid. The somatic nuclear DNA contents (2C-value, as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14% loss of nuclear DNA in the natural allopolyploids was found.

  12. Extraction of high quality genomic DNA from microsamples of human blood.

    Science.gov (United States)

    Ma, H W; Cheng, J; Caddy, B

    1994-01-01

    A simple and efficient method for extracting human genomic DNA from microsamples of blood has been developed. This method used sodium perchlorate, chloroform, polymerised silica gel and a dumbbell-shape tube, instead of proteinase K and phenol. The entire process took less than two hours, and high molecular weight DNA, in high yield and purity, was obtained from a few microlitres of human blood. DNA prepared in this way can be easily digested with restriction endonucleases and has been employed for DNA profiling and the polymerase chain reaction.

  13. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  14. Draft Genome Perspective of Staphylococcus saprophyticus Strain SU8, an N-Acyl Homoserine Lactone-Degrading Bacterium.

    Science.gov (United States)

    Chan, Kok-Gan; Sulaiman, Joanita; Yong, Delicia Ann; Tee, Kok Keng; Yin, Wai-Fong; Priya, Kumutha

    2015-09-24

    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities.

  15. Genomic DNA binding to ZnO microrods

    Science.gov (United States)

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.

    2015-08-01

    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  16. Capacitive DNA sensor for rapid and sensitive detection of whole genome human herpesvirus-1 dsDNA in serum.

    Science.gov (United States)

    Cheng, Cheng; Oueslati, Rania; Wu, Jayne; Chen, Jiangang; Eda, Shigetoshi

    2017-06-01

    This work presents a rapid, highly sensitive, low-cost, and specific capacitive DNA sensor for detection of whole genome human herpesvirus-1 DNA. This sensor is capable of direct DNA detection with a response time of 30 s, and it can be used to test standard buffer or serum samples. The sensing approach for DNA detection is based on alternating current (AC) electrokinetics. By applying an inhomogeneous AC electric field on sensor electrodes, positive dielectrophoresis is induced to accelerate DNA hybridization. The same applied AC signal also directly measures the hybridization of target with the probe on the sensor surface. Experiments are conducted to optimize the AC signal, as well as the buffers for probe immobilization and target DNA hybridization. The assay is highly sensitive and specific, with no response to human herpesvirus-2 DNA at 5 ng/mL and a LOD of 1.0 pg/mL (6.5 copies/μL or 10.7 aM) in standard buffer. When testing the double stranded (ds) DNA spiked in human serum samples, the sensor yields a LOD of 20.0 pg/mL (129.5 copies/μL or 0.21 femtomolar (fM)) in neat serum. In this work, the target is whole genome dsDNA, consequently the test can be performed without the use of enzyme or amplification, which considerably simplifies the sensor operation and is highly suitable for point of care disease diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ancient genomics.

    Science.gov (United States)

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  18. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    Science.gov (United States)

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754

  19. Degradation of DNA in Haemophilus influenzae cells after x-ray irradiation. II. Comparison with theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, M.L.

    1976-01-01

    Models of the kinetics of degradation of DNA in bacterial cells following exposure to x-rays are developed and tested using data obtained with various strains of Haemophilus influenzae cells. Different mathematical models allow for different initial distributions of DNA lengths, depending on cell phase and assumed replication model, and for unilateral or bilateral degradation from initiation points, which are taken as single-strand breaks. In order to explain the observed magnitude and time course of degradation an interruption-of-degradation probability, which may be interpreted as the result of an x-ray inducible inhibitor, is introduced. Interruption of degradation is interpreted as an early and essential, but not necessarily sufficient, step for repair of DNA. Empirical best fits to the kinetic data were obtained by iterative calculation methods based on varying the rate parameters. Depending somewhat on the strain and cell phase, the data seem best described by assuming bilateral degradation, perhaps at different rates, whose total for log phase wild-type cells is roughly 5 x 10/sup 3/ nucleotides/min and an interruption rate of about 0.03/min. For stationary phase the total degradation rate is greater and the probability of degradation unchanged. Differences in the kinetics between strains are discussed briefly.

  20. Engineering large viral DNA genomes using the CRISPR-Cas9 system.

    Science.gov (United States)

    Suenaga, Tadahiro; Kohyama, Masako; Hirayasu, Kouyuki; Arase, Hisashi

    2014-09-01

    Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.

  1. Amplification of Whole Tumor Genomes and Gene-by-Gene Mapping of Genomic Aberrations from Limited Sources of Fresh-Frozen and Paraffin-Embedded DNA

    Science.gov (United States)

    Bredel, Markus; Bredel, Claudia; Juric, Dejan; Kim, Young; Vogel, Hannes; Harsh, Griffith R.; Recht, Lawrence D.; Pollack, Jonathan R.; Sikic, Branimir I.

    2005-01-01

    Sufficient quantity of genomic DNA can be a bottleneck in genome-wide analysis of clinical tissue samples. DNA polymerase Phi29 can be used for the random-primed amplification of whole genomes, although the amplification may introduce bias in gene dosage. We have performed a detailed investigation of this technique in archival fresh-frozen and formalin-fixed/paraffin-embedded tumor DNA by using cDNA microarray-based comparative genomic hybridization. Phi29 amplified DNA from matched pairs of fresh-frozen and formalin-fixed/paraffin-embedded tumor samples with similar efficiency. The distortion in gene dosage representation in the amplified DNA was nonrandom and reproducibly involved distinct genomic loci. Regional amplification efficiency was significantly linked to regional GC content of the template genome. The biased gene representation in amplified tumor DNA could be effectively normalized by using amplified reference DNA. Our data suggest that genome-wide gene dosage alterations in clinical tumor samples can be reliably assessed from a few hundred tumor cells. Therefore, this amplification method should lend itself to high-throughput genetic analyses of limited sources of tumor, such as fine-needle biopsies, laser-microdissected tissue, and small paraffin-embedded specimens. PMID:15858140

  2. CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVER REGENERATION FROM RAT

    Institute of Scientific and Technical Information of China (English)

    董菁; 成军; 王勤环; 施双双; 王刚; 斯崇文

    2002-01-01

    Objective.To search for genomic DNA sequence of the augmenter of liver regeneration (ALR) of rat.Methods.Polymerase chain reaction (PCR) with specific primers was used to amplify the sequence from the rat genome.Results.A piece of genomic DNA sequence and a piece of pseudogene of rat ALR were identified.The lengths of the gene and pseudogene are 1508 bp and 442 bp,respectively.The ALR gene of rat includes 3 exons and 2 introns.The 442 bp DNA sequence may represent a pseudogene or a ALR related peptide.Predicted amino acid sequence analysis showed that there were 14 different amino acid residues between the gene and pseudogene.ALR related peptide is 84 amino acid residues in length and relates closely to ALR protein.Conclusion.There might be a multigene family of ALR in rat.

  3. Genomic DNA extraction method from Annona senegalensis Pers ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-02-05

    Feb 5, 2014 ... Technology, Federal Polytechnic Bali, Taraba State, Nigeria. Accepted ... (CTAB) method is used to isolate DNA from tissues containing high levels of polysaccharides. The ... Isolation of plant nucleic acids for use in Southern.

  4. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many...... hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  5. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples

    OpenAIRE

    Psifidi, Androniki; Dovas, Chrysostomos I.; Banos, Georgios

    2010-01-01

    Isolation of amplifiable genomic DNA is a prerequisite for the genetic assessment of diseases and disease susceptibility in farm animals. Milk somatic cells are a practical, animal friendly and cost-effective source of genomic DNA in milking ruminants. In this study, six different DNA extraction methods were optimized, evaluated and compared for the isolation of DNA from ovine milk samples. Methods I and 2 were direct applications of two commercial kits, Nucleospin (R) Blood and Nucleospin (R...

  6. Complete mitochondrial DNA genome of tetraploid Carassius auratus gibelio.

    Science.gov (United States)

    Li, Zhong; Liang, Hong-Wei; Zou, Gui-Wei

    2016-01-01

    The complete mitochondrial genome was sequenced from the tetraploid Carassius auratus gibelio in this study. The genome sequence was 16,576 bp in length. The mitochondrial genome contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 2 non-coding regions (control region and origin of light-strand replication). All genes were encoded on the heavy strain except for ND6 and eight tRNA genes. The overall base composition is 31.61% A, 25.81% T, 26.62% G, 15.96% C, with an A+T bias of 57.42%. The complete mitogenome data provides useful genetic markers for the studies on the molecular identification, population genetics, phylogenetic analysis and conservation genetics.

  7. DNA sequencing leads to genomics progress in China

    Institute of Scientific and Technical Information of China (English)

    WU JiaYan; XIAO JingFa; ZHANG RuoSi; YU Jun

    2011-01-01

    1 Science in the large-scale sequencing era Ten years ago,the first draft sequence assembly of the human genome was completed [1],bringing biomedical research one-step closer toward the goal of revolutionizing diagnosis,prevention,and treatment of human diseases.Recently,journalists from the journal Nature surveyed more than 1000 life scientists regarding this laudable aim [2],obtaining substantially negative responses [3].However,almost all of those surveyed had been influenced,in one way or another,by the availability of the human genome sequence,and they also agreed with the notion that the "sequence is the start." The complexity of genome biology and almost every aspect of human biology is far greater than previously thought [4].

  8. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  9. Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues.

    Science.gov (United States)

    van Eijk, Ronald; van Puijenbroek, Marjo; Chhatta, Amiet R; Gupta, Nisha; Vossen, Rolf H A M; Lips, Esther H; Cleton-Jansen, Anne-Marie; Morreau, Hans; van Wezel, Tom

    2010-01-01

    Kirsten RAS (KRAS) is a small GTPase that plays a key role in Ras/mitogen-activated protein kinase signaling; somatic mutations in KRAS are frequently found in many cancers. The most common KRAS mutations result in a constitutively active protein. Accurate detection of KRAS mutations is pivotal to the molecular diagnosis of cancer and may guide proper treatment selection. Here, we describe a two-step KRAS mutation screening protocol that combines whole-genome amplification (WGA), high-resolution melting analysis (HRM) as a prescreen method for mutation carrying samples, and direct Sanger sequencing of DNA from formalin-fixed, paraffin-embedded (FFPE) tissue, from which limited amounts of DNA are available. We developed target-specific primers, thereby avoiding amplification of homologous KRAS sequences. The addition of herring sperm DNA facilitated WGA in DNA samples isolated from as few as 100 cells. KRAS mutation screening using high-resolution melting analysis on wgaDNA from formalin-fixed, paraffin-embedded tissue is highly sensitive and specific; additionally, this method is feasible for screening of clinical specimens, as illustrated by our analysis of pancreatic cancers. Furthermore, PCR on wgaDNA does not introduce genotypic changes, as opposed to unamplified genomic DNA. This method can, after validation, be applied to virtually any potentially mutated region in the genome.

  10. Comparison of Two Methods for the Isolation of Genomic DNA from Cyathostomin Adult Parasites

    Directory of Open Access Journals (Sweden)

    Juliana Bana ISHII

    2017-07-01

    Full Text Available Cyathostomins are the most common and important group of large intestine nematodes, infecting horses worldwide. The current control strategy is associated with the development of anthelmintic resistance, which has been reported worldwide. Therefore, experiments with this family of parasites have become progressively important to provide their monitoring and control strategies. The aim of the present study was to propose a faster and more economic assay for isolation of genomic DNA from the adult stage of Cyathostomin parasites than reported. Adult parasites were collected from a single horse from a farm in São José dos Pinhais, PR, Brazil, and were identified. Genomic DNA was isolated from ten individual female adult parasites using a standardized procedure developed. Then, extraction from ten individual female was carried out by another DNA extraction method. DNA concentration from both methods were measured and compared. We obtained a good DNA quality with this standardized procedure. As a result of this analysis, we propose a modified phenol-chloroform method, which will contribute to assays that require DNA extraction from adult worms for genomic DNA sequences of cyathostomin, or species-specific identification.

  11. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Directory of Open Access Journals (Sweden)

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  12. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  13. A network of multi-tasking proteins at the DNA replication fork preserves genome stability.

    Directory of Open Access Journals (Sweden)

    Martin E Budd

    2005-12-01

    Full Text Available To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

  14. A Novel Method of Genomic DNA Extraction for Cactaceae

    OpenAIRE

    Fehlberg, Shannon D.; Jessica M. Allen; Kathleen Church

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and compl...

  15. Analysis of the mycoplasma genome by recombinant DNA technology

    DEFF Research Database (Denmark)

    Christiansen, C; Frydenberg, J; Christiansen, Gunna

    1984-01-01

    A library of DNA fragments from Mycoplasma sp. strain PG50 has been made in the vector pBR325. Analysis in Escherichia coli minicells of randomly picked clones from this library demonstrated that many plasmids can promote synthesis of mycoplasma protein in the E. coli genetic background. Screening....... The DNA sequence of 16S rRNA and the surrounding control regions has been determined....

  16. Comparison of eight methods of genomic DNA extraction from babassu.

    Science.gov (United States)

    Viana, J P G; Borges, A N C; Lopes, A C A; Gomes, R L F; Britto, F B; Lima, P S C; Valente, S E S

    2015-12-22

    Babassu (Orbignya phalerata Martius) is one of the most important palms in Brazil because of the largest morphological variation, wide geographic distribution, and high socio-economic importance. The diversity present in babassu germplasm should be protected against loss to ensure their use with high productivity. Study of the available variability in populations of babassu is necessary to develop conservation strategies. The study of genetic variability can be conducted using molecular markers and many of these studies require significant quantity of high-quality DNA. The present study aimed to effect comparison among eight DNA extraction methods in case of O. phalerata. The quality and concentration of nucleic acids were analyzed by spectrophotometry and integrity of DNA was ascertained by agarose gel electrophoresis. The spectrophotometry revealed that some methods resulted in high levels of concentration of nucleic acids, in which values of the ratio A260/280 and A260/230 were outside the range of purity. The agarose gel electrophoresis established the concentration and integrity of DNA. The methods of Murray and Thompson (1980) and Ferreira and Grattapaglia (1998) did not result in satisfactory quantities of DNA. Conversely, the method proposed by Khanuja et al. (1999) resulted in DNA of adequate quality and quantity that could be satisfactorily used for amplification reactions performed with two ISSR primers.

  17. A Possible Role of DNA Superstructures in Genome Evolution

    Science.gov (United States)

    Anselmi, Claudio; de Santis, Pasquale; Paparcone, Raffaella; Savino, Maria; Scipioni, Anita

    2004-02-01

    The concept of DNA as a simple repository of the gene information has changed in that of a polymorphic macromolecule, which plays a relevant part in the management of the complex biochemical transformations in living matter. As a consequence of the slight stereochemical differences between base pairs, the direction of the DNA double helix axis undergoes deterministic writhing. A useful representation of such sequence-dependent structural distortions is the curvature diagram. Here, it is reported as an evolution simulation obtained by extensive point mutations along a biologically important DNA tract. The curvature changes, consequence of the point mutations, were compared to the related experimental gel electrophoresis mobility. The curvature of most mutants decreases and the mobility increases accordingly, suggesting the curvature of that tract is genetically selected. Moreover, DNA images by scanning force microscopy, show evidence of a sequence-dependent adhesion of curved DNA tracts to inorganic crystal surfaces. In particular, mica shows a large affinity towards the TT-rich dinucleotide sequences. This suggests a possible mechanism of selection of curved DNA regions, characterized by AA ˙ TT dinucleotides in phase with double-helical periodicity, in the very early evolution steps.

  18. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules.

    Science.gov (United States)

    Reza, Faisal; Glazer, Peter M

    2015-01-01

    Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome.

  19. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage

    OpenAIRE

    Pereg, Yaron; Shkedy, Dganit; de Graaf, Petra; Meulmeester, Erik; Edelson-Averbukh, Marina; Salek, Mogjiborahman; Biton, Sharon; Teunisse, Amina F.A.S.; Lehmann, Wolf D.; Jochemsen, Aart G.; Shiloh, Yosef

    2005-01-01

    Maintenance of genomic stability depends on the DNA damage response, an extensive signaling network that is activated by DNA lesions such as double-strand breaks (DSBs). The primary activator of the mammalian DSB response is the nuclear protein kinase ataxia–telangiectasia, mutated (ATM), which phosphorylates key players in various arms of this network. The activation and stabilization of the p53 protein play a major role in the DNA damage response and are mediated by ATM-dependent posttransl...

  20. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.

    Science.gov (United States)

    Ruiz-Dueñas, Francisco J; Lundell, Taina; Floudas, Dimitrios; Nagy, Laszlo G; Barrasa, José M; Hibbett, David S; Martínez, Angel T

    2013-01-01

    The genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) were sequenced to expand our knowledge on the diversity of ligninolytic and related peroxidase genes in this Basidiomycota order that includes most wood-rotting fungi. The survey was completed by analyzing the heme-peroxidase genes in the already available genomes of seven more Polyporales species representing the antrodia, gelatoporia, core polyporoid and phlebioid clades. The study confirms the absence of ligninolytic peroxidase genes from the manganese peroxidase (MnP), lignin peroxidase (LiP) and versatile peroxidase (VP) families, in the brown-rot fungal genomes (all of them from the antrodia clade), which include only a limited number of predicted low redox-potential generic peroxidase (GP) genes. When members of the heme-thiolate peroxidase (HTP) and dye-decolorizing peroxidase (DyP) superfamilies (up to a total of 64 genes) also are considered, the newly sequenced B. adusta appears as the Polyporales species with the highest number of peroxidase genes due to the high expansion of both the ligninolytic peroxidase and DyP (super)families. The evolutionary relationships of the 111 genes for class-II peroxidases (from the GP, MnP, VP, LiP families) in the 10 Polyporales genomes is discussed including the existence of different MnP subfamilies and of a large and homogeneous LiP cluster, while different VPs mainly cluster with short MnPs. Finally, ancestral state reconstructions showed that a putative MnP gene, derived from a primitive GP that incorporated the Mn(II)-oxidation site, is the precursor of all the class-II ligninolytic peroxidases. Incorporation of an exposed tryptophan residue involved in oxidative degradation of lignin in a short MnP apparently resulted in evolution of the first VP. One of these ancient VPs might have lost the Mn(II)-oxidation site being at the origin of all the LiP enzymes, which are found only in

  1. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    Science.gov (United States)

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal.

  2. Genotyping performance assessment of whole genome amplified DNA with respect to multiplexing level of assay and its period of storage.

    Directory of Open Access Journals (Sweden)

    Daniel W H Ho

    Full Text Available Whole genome amplification can faithfully amplify genomic DNA (gDNA with minimal bias and substantial genome coverage. Whole genome amplified DNA (wgaDNA has been tested to be workable for high-throughput genotyping arrays. However, issues about whether wgaDNA would decrease genotyping performance at increasing multiplexing levels and whether the storage period of wgaDNA would reduce genotyping performance have not been examined. Using the Sequenom MassARRAY iPLEX Gold assays, we investigated 174 single nucleotide polymorphisms for 3 groups of matched samples: group 1 of 20 gDNA samples, group 2 of 20 freshly prepared wgaDNA samples, and group 3 of 20 stored wgaDNA samples that had been kept frozen at -70°C for 18 months. MassARRAY is a medium-throughput genotyping platform with reaction chemistry different from those of high-throughput genotyping arrays. The results showed that genotyping performance (efficiency and accuracy of freshly prepared wgaDNA was similar to that of gDNA at various multiplexing levels (17-plex, 21-plex, 28-plex and 36-plex of the MassARRAY assays. However, compared with gDNA or freshly prepared wgaDNA, stored wgaDNA was found to give diminished genotyping performance (efficiency and accuracy due to potentially inferior quality. Consequently, no matter whether gDNA or wgaDNA was used, better genotyping efficiency would tend to have better genotyping accuracy.

  3. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...... mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions....

  4. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Kletzin, Arnulf; Raddatz, Guenter

    2004-01-01

    covering 3 Gbp of community DNA from two different soil samples, a sandy ecosystem and a mixed forest soil. In a fosmid end sequencing approach including 5376 sequence tags of approximately 700 bp length, we show that mostly bacterial and, to a much lesser extent, archaeal and eukaryotic genome fragments......, are presented and discussed. We thereby extend the genomic information of uncultivated crenarchaeota from soil and offer hints to specific metabolic traits present in this group....

  5. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH.

    Science.gov (United States)

    Bienko, Magda; Crosetto, Nicola; Teytelman, Leonid; Klemm, Sandy; Itzkovitz, Shalev; van Oudenaarden, Alexander

    2013-02-01

    We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.

  6. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.

    Science.gov (United States)

    Vu, Giang T H; Cao, Hieu X; Reiss, Bernd; Schubert, Ingo

    2017-02-28

    In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.

  7. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  8. cDNA2Genome: A tool for mapping and annotating cDNAs

    Directory of Open Access Journals (Sweden)

    Suhai Sandor

    2003-09-01

    Full Text Available Abstract Background In the last years several high-throughput cDNA sequencing projects have been funded worldwide with the aim of identifying and characterizing the structure of complete novel human transcripts. However some of these cDNAs are error prone due to frameshifts and stop codon errors caused by low sequence quality, or to cloning of truncated inserts, among other reasons. Therefore, accurate CDS prediction from these sequences first require the identification of potentially problematic cDNAs in order to speed up the posterior annotation process. Results cDNA2Genome is an application for the automatic high-throughput mapping and characterization of cDNAs. It utilizes current annotation data and the most up to date databases, especially in the case of ESTs and mRNAs in conjunction with a vast number of approaches to gene prediction in order to perform a comprehensive assessment of the cDNA exon-intron structure. The final result of cDNA2Genome is an XML file containing all relevant information obtained in the process. This XML output can easily be used for further analysis such us program pipelines, or the integration of results into databases. The web interface to cDNA2Genome also presents this data in HTML, where the annotation is additionally shown in a graphical form. cDNA2Genome has been implemented under the W3H task framework which allows the combination of bioinformatics tools in tailor-made analysis task flows as well as the sequential or parallel computation of many sequences for large-scale analysis. Conclusions cDNA2Genome represents a new versatile and easily extensible approach to the automated mapping and annotation of human cDNAs. The underlying approach allows sequential or parallel computation of sequences for high-throughput analysis of cDNAs.

  9. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.

    Science.gov (United States)

    Zhou, Zhongwu; Kadam, Ulhas S; Irudayaraj, Joseph

    2013-11-15

    Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    Science.gov (United States)

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  11. Molecular verification of the integration of Tripsacum dactyloides DNA into wheat genome through wide hybridization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    RAPD and RFLP analyses of double haploid lines which derived from hybridization between hexaploid wheat (Triticum aestivum L.2n=42) and eastern gamagrass (Tripsacum dactyloides L.2n=4x=72) are reported.Two of the 340 Operon primers have been screened,which stably amplified Tripsacum dactyloides (male parent) specific bands in the double haploid lines.These results confirm the fact that Tripsacum dactyloides DNA has been integrated into wheat genome by sexual hybridization at molecular level.This idea has been further testified by RFLP analysis.Application and potentials of transferring Tripsacum dactyloides DNA into wheat genome by sexual hybridization in wheat breeding are discussed.

  12. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA.

    Science.gov (United States)

    Bishop, Corey J; Tzeng, Stephany Y; Green, Jordan J

    2015-01-01

    Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells.

  13. Sugar Cane Genome Numbers Assumption by Ribosomal DNA FISH Techniques

    NARCIS (Netherlands)

    Thumjamras, S.; Jong, de H.; Iamtham, S.; Prammanee, S.

    2013-01-01

    Conventional cytological method is limited for polyploidy plant genome study, especially sugar cane chromosomes that show unstable numbers of each cultivar. Molecular cytogenetic as fluorescent in situ hybridization (FISH) techniques were used in this study. A basic chromosome number of sugar cane

  14. Reconstruction of a Bacterial Genome from DNA Cassettes

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Dupont; John Glass; Laura Sheahan; Shibu Yooseph; Lisa Zeigler Allen; Mathangi Thiagarajan; Andrew Allen; Robert Friedman; J. Craig Venter

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolic processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.

  15. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H. influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions....

  16. Targeted enrichment of genomic DNA regions for next generation sequencing

    NARCIS (Netherlands)

    Mertens, F.; El-Sharawy, A.; Sauer, S.; Van Helvoort, J.; Van der Zaag, P.J.; Franke, A.; Nilsson, M.; Lehrach. H.; Brookes, A.

    2011-01-01

    In this review we discuss the latest targeted enrichment methods, and aspects of their utilization along with second generation sequencing for complex genome analysis. In doing so we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a pow

  17. Genome-wide analysis of DNA methylation dynamics during early human development.

    Science.gov (United States)

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  18. Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

    Science.gov (United States)

    Miyazaki, Ryo; Bertelli, Claire; Benaglio, Paola; Canton, Jonas; De Coi, Nicoló; Gharib, Walid H; Gjoksi, Bebeka; Goesmann, Alexander; Greub, Gilbert; Harshman, Keith; Linke, Burkhard; Mikulic, Josip; Mueller, Linda; Nicolas, Damien; Robinson-Rechavi, Marc; Rivolta, Carlo; Roggo, Clémence; Roy, Shantanu; Sentchilo, Vladimir; Siebenthal, Alexandra Von; Falquet, Laurent; van der Meer, Jan Roelof

    2015-01-01

    Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.

  19. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window

    Directory of Open Access Journals (Sweden)

    Lucie Gallot-Lavallée

    2017-01-01

    Full Text Available The nucleocytoplasmic large DNA viruses (NCLDV are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets—many of which are from algae and aquatic protists—contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.

  20. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  1. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window.

    Science.gov (United States)

    Gallot-Lavallée, Lucie; Blanc, Guillaume

    2017-01-20

    The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets-many of which are from algae and aquatic protists-contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.

  2. Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome

    Institute of Scientific and Technical Information of China (English)

    YUANJINDUO; JINXIUSHI; 等

    1999-01-01

    Novel pseudogenes homologous to the mitochondrial (mt) 16S rRNA gene were detected via different approaches.Eight preudogenes were sequenced.Copy number polymorphism of the mtDNA pseudogenes was observed among randomly chosen individuals,and even among siblings.A mtDNA pseudogene in the Ychromosome was observed in a YAC clone carrying only repetitive sequence tag site(STS).PCR screening of human yeast artificial chromosome (YAC)libraries showed that there were at least 5.7×105 bp of the mtDNA pseudogenes in each haploid nuclear genome.Possible involvement of the mtDNA pseudogenes in the variable part of the human nuclear genome is discussed.

  3. The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability

    Science.gov (United States)

    Steinacher, Roland; Osman, Fekret; Dalgaard, Jacob Z.; Lorenz, Alexander; Whitby, Matthew C.

    2012-01-01

    Bidirectionally moving DNA replication forks merge at termination sites composed of accidental or programmed DNA–protein barriers. If merging fails, then regions of unreplicated DNA can result in the breakage of DNA during mitosis, which in turn can give rise to genome instability. Despite its importance, little is known about the mechanisms that promote the final stages of fork merging in eukaryotes. Here we show that the Pif1 family DNA helicase Pfh1 plays a dual role in promoting replication fork termination. First, it facilitates replication past DNA–protein barriers, and second, it promotes the merging of replication forks. A failure of these processes in Pfh1-deficient cells results in aberrant chromosome segregation and heightened genome instability. PMID:22426535

  4. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  5. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  6. Taenia hydatigena: isolation of mitochondrial DNA, molecular cloning, and physical mitochondrial genome mapping.

    Science.gov (United States)

    Yap, K W; Thompson, R C; Rood, J I; Pawlowski, I D

    1987-06-01

    Mitochondrial DNA was isolated from Taenia hydatigena, T. crassiceps, and Echinococcus granulosus using a cetyltrimethylammonium bromide precipitation technique. The technique is simple, rapid, reproducible, and does not require extensive high speed ultracentrifugation. The advantage of using mitochondrial DNA from taeniid cestodes for comparative restriction analysis was demonstrated. Mitochondrial DNA of T. hydatigena was isolated as covalently closed circular molecules. These were linearized by single digestion with BamHI and the molecular weight was estimated from the linear form of 17.6 kb. The mitochondrial DNA of T. hydatigena is therefore similar in size and structure to that of many other animal species. The entire mitochondrial genome was cloned into pBR322 in Escherichia coli and a restriction map of the recombinant molecule was constructed. The potential of using the cloned mitochondrial genome as a probe in speciation studies as well as for providing functional information on the role of the cestode mitochondrion is discussed.

  7. [Bacterial infections as seen from the eukaryotic genome: DNA double strand breaks, inflammation and cancer].

    Science.gov (United States)

    Lemercier, Claudie

    2014-01-01

    An increasing number of studies report that infection by pathogenic bacteria alters the host genome, producing highly hazardous DNA double strand breaks for the eukaryotic cell. Even when DNA repair occurs, it often leaves "scars" on chromosomes that might generate genomic instability at the next cell division. Chronic intestinal inflammation promotes the expansion of genotoxic bacteria in the intestinal microbiote which in turn triggers tumor formation and colon carcinomas. Bacteria act at the level of the host DNA repair machinery. They also highjack the host cell cycle to allow themselves time for replication in an appropriate reservoir. However, except in the case of bacteria carrying the CDT nuclease, the molecular mechanisms responsible for DNA lesions are not well understood, even if reactive oxygen species released during infection make good candidates. © 2014 médecine/sciences – Inserm.

  8. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition.

    Science.gov (United States)

    Knudsen, Berith E; Bergmark, Lasse; Munk, Patrick; Lukjancenko, Oksana; Priemé, Anders; Aarestrup, Frank M; Pamp, Sünje J

    2016-01-01

    Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial resistance from different reservoirs. Here, we compare in a stepwise approach a total of eight commercially available DNA extraction kits and 16 procedures based on these for three specimen types (human feces, pig feces, and hospital sewage). We assess DNA extraction using spike-in controls and different types of beads for bead beating, facilitating cell lysis. We evaluate DNA concentration, purity, and stability and microbial community composition using 16S rRNA gene sequencing and for selected samples using shotgun metagenomic sequencing. Our results suggest that inferred community composition was dependent on inherent specimen properties as well as DNA extraction method. We further show that bead beating or enzymatic treatment can increase the extraction of DNA from Gram-positive bacteria. Final DNA quantities could be increased by isolating DNA from a larger volume of cell lysate than that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10.6084/m9.figshare.3475406. IMPORTANCE Sequencing-based analyses of microbiomes may lead to a breakthrough in our understanding of the microbial worlds associated with humans

  9. Genomic DNA characterization of pork spleen by Raman spectroscopy

    Science.gov (United States)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO microstructures were synthesized by the Sol-Gel method and afterward combined with porcine spleen DNA extracted in the previous stages, following standardized cell lysis, deproteinization, and precipitation processes. Raman spectroscopy was used for the characterization of structures of ZnO and ZnO-DNA complex, and the results show the respective bands of ZnO wurtzite hexagonal phase for modes E2 (M), A1(TO), E2(High), E1(LO), and 2LO. Due to the SERS effect in the spectral range from 200 to 1800 cm,-1 Raman bands caused by vibrations of the deoxyribose C-O-C binding were also observed, producing deformation of the ring as shown in the 559 cm-1 peak. The broad band at 782 cm-1, together with the complex vibration of the string 5'-COPO-C3', is over a wide band of thymine (790 cm-1) or cytosine (780 cm-1). A prominent band near 1098 cm-1 assigned to symmetric stretching vibration phosphodioxy group (PO2-) DNA backbone is most favoured in intensity by the addition of ZnO particles originated by the SERS effect. This effect suggests a possible mechanism for enhancing the Raman signal due to the electromagnetic interaction between a DNA molecule and the flat surface of the ZnO rod.

  10. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  11. BuD, a helix–loop–helix DNA-binding domain for genome modification

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  12. Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.

    Science.gov (United States)

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-08-14

    The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.

  13. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    Science.gov (United States)

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters.

  14. Genomic DNA isolation of Acrocomia aculeata (Arecaceae) from leaf and stipe tissue samples for PCR analysis.

    Science.gov (United States)

    Lanes, E C M; Nick, C; Kuki, K N; Freitas, R D; Motoike, S Y

    2013-09-23

    Macaw palm, Acrocomia aculeata is an oleaginous species of the Arecaceae family; it has been identified as one of the most promising plants for sustainable production of renewable energy, especially biodiesel. We developed an efficient protocol of genomic DNA extraction for A. aculeata using leaf and stipe tissues, based on the cationic hexadecyltrimethylammonium bromide method, and we evaluated the quantity, purity, and integrity of the resultant DNA. We also determined whether these procedures interfere with PCR amplification using SSR molecular markers. The lowest concentration of DNA was obtained from stipe tissues (135 ng/μL), while fresh leaf tissues provided the highest concentration of DNA (650 ng/μL). Good quality DNA was obtained from fresh leaf, lyophilized leaf, and stipe tissues (relative purity, 1.79-1.89 nm). Differences in quantity and quality of DNA extracted from different tissues did not interfere with general patterns of PCR amplification based on SSR markers.

  15. Methylated DNA is over-represented in whole-genome bisulfite sequencing data

    Directory of Open Access Journals (Sweden)

    Lexiang eJi

    2014-10-01

    Full Text Available The development of whole-genome bisulfite sequencing (WGBS has led to a number of exciting discoveries about the role of DNA methylation leading to a plethora of novel testable hypotheses. Methods for constructing sodium bisulfite-converted and amplified libraries have recently advanced to the point that the bottleneck for experiments that use WGBS has shifted to data analysis and interpretation. Here we present empirical evidence for an over-representation of reads from methylated DNA in WGBS. This enrichment for methylated DNA is exacerbated by higher cycles of PCR and is influenced by the type of uracil-insensitive DNA polymerase used for amplifying the sequencing library. Future efforts to computationally correct for this enrichment bias will be essential to increasing the accuracy of determining methylation levels for individual cytosines. It is especially critical for studies that seek to accurately quantify DNA methylation levels in populations that may segregate for allelic DNA methylation states.

  16. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Menck Carlos FM

    2007-03-01

    Full Text Available Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA, endonuclease III (nth, O6-methylguanine-DNA methyltransferase (ada gene, photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular

  17. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  18. Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Zaixing Jiang[1,2,3; Shuai Zhang[2,3; Chuanxu Yang[2; Jorgen Kjems[2; Yudong Huang[1; Flemming Besenbacher[2; Mingdong Dong[2

    2015-01-01

    3D DNA origami holds tremendous potential for the encapsulation and selective release of therapeutic drugs. Observations of the real-time performance of these structures in physiological environments will contribute to the development of future applications. We investigated the degradation kinetics of 3D DNA box origami in serum by using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allowed to characterize the stages of serum effects on individual 3D DNA boxes origami with nanometer resolution. Our results indicate that the digestion process is a combination of rapid collapse and slow degradation phases. Damage to box origami occurs mainly in the collapse phase. Thus, the structural stability of 3D DNA box origami should be improved, especially in the collapse phase, before these structures are used in clinical applications.

  19. Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene.

    Science.gov (United States)

    Abu Laban, Nidal; Tan, BoonFei; Dao, Anh; Foght, Julia

    2015-01-15

    The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [(13)C6]toluene-degrading enrichment culture. The "Desulfobulbaceae bacterium Tol-SR" genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam.

  20. Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Donghong Ju

    Full Text Available BACKGROUND: The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. The integrity of the Rpn4-proteasome feedback loop is critical for cell viability under stressed conditions. We have demonstrated that inhibition of Rpn4 degradation sensitizes cells to DNA damage, particularly in response to high doses of DNA damaging agents. The underlying mechanism, however, remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using yeast genetics and biochemical approach we show that inhibition of Rpn4 degradation displays a synthetic growth defect with deletion of the MEC1 checkpoint gene and sensitizes several checkpoint mutants to DNA damage. In addition, inhibition of Rpn4 degradation leads to a defect in repair of double-strand breaks (DSBs by nonhomologous end-joining (NHEJ. The expression levels of several key NHEJ genes are downregulated and the recruitment of Yku70 to a DSB is reduced by inhibition of Rpn4 degradation. We find that Rpn4 and the proteasome are recruited to a DSB, suggesting their direct participation in NHEJ. Inhibition of Rpn4 degradation may result in a concomitant delay of release of Rpn4 and the proteasome from a DSB. CONCLUSION/SIGNIFICANCE: This study provides the first evidence for the role of proteasomal degradation of Rpn4 in NHEJ.

  1. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform.

    Science.gov (United States)

    Ma, Lan; Lei, Zhen; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-05-10

    DNA methylation is a crucial epigenetic modification and is closely related to tumorigenesis. Herein, a surface ligation-based high throughput method combined with bisulfite treatment is developed for analysis of methylated genomic DNA. In this method, a DNA microarray is employed as a reaction platform, and resonance light scattering (RLS) of nanoparticles is used as the detection principle. The specificity stems from allele-specific ligation of Taq DNA ligase, which is further enhanced by improving the fidelity of Taq DNA ligase in a heterogeneous reaction. Two amplification techniques, rolling circle amplification (RCA) and silver enhancement, are employed after the ligation reaction and a gold nanoparticle (GNP) labeling procedure is used to amplify the signal. As little as 0.01% methylated DNA (i.e. 2 pmol L(-1)) can be distinguished from the cocktail of methylated and unmethylated DNA by the proposed method. More importantly, this method shows good accuracy and sensitivity in profiling the methylation level of genomic DNA of three selected colonic cancer cell lines. This strategy provides a high throughput alternative with reasonable sensitivity and resolution for cancer study and diagnosis.

  2. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform.

    Science.gov (United States)

    Geng, Tao; Bao, Ning; Sriranganathanw, Nammalwar; Li, Liwu; Lu, Chang

    2012-11-06

    The vast majority of genetic analysis of cells involves chemical lysis for release of DNA molecules. However, chemical reagents required in the lysis interfere with downstream molecular biology and often require removal after the step. Electrical lysis based on irreversible electroporation is a promising technique to prepare samples for genetic analysis due to its purely physical nature, fast speed, and simple operation. However, there has been no experimental confirmation on whether electrical lysis extracts genomic DNA from cells in a reproducible and efficient fashion in comparison to chemical lysis, especially for eukaryotic cells that have most of the DNA enclosed in the nucleus. In this work, we construct an integrated microfluidic chip that physically traps a low number of cells, lyses the cells using electrical pulses rapidly, then purifies and concentrates genomic DNA. We demonstrate that electrical lysis offers high efficiency for DNA extraction from both eukaryotic cells (up to ∼36% for Chinese hamster ovary cells) and bacterial cells (up to ∼45% for Salmonella typhimurium) that is comparable to the widely used chemical lysis. The DNA extraction efficiency has dependence on both the electric parameters and relative amount of beads used for DNA adsorption. We envision that electroporation-based DNA extraction will find use in ultrasensitive assays that benefit from minimal dilution and simple procedures.

  3. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity.

    Science.gov (United States)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-08-15

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damage checkpoint RFC and the sister chromatid cohesion RFC. As expected from its genetic interactions, elg1 mutants are sensitive to DNA damage. Elg1 is redundant with Rad24 in the DNA damage response and contributes to activation of the checkpoint kinase Rad53. We find that elg1 mutants display DNA replication defects and genome instability, including increased recombination and mutation frequencies, and minichromosome maintenance defects. Mutants in elg1 show genetic interactions with pathways required for processing of stalled replication forks, and are defective in recovery from DNA damage during S phase. We propose that Elg1-RFC functions both in normal DNA replication and in the DNA damage response.

  4. Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk.

    Science.gov (United States)

    Usman, T; Yu, Y; Liu, C; Fan, Z; Wang, Y

    2014-04-29

    Isolation of sufficient quantities of high quality DNA is a prerequisite for molecular studies. Milk somatic cells can be used; however, inhibitors such as fats and proteins make milk a difficult medium for extracting large amounts of quality DNA. We optimized, evaluated and compared three methods, Modified Nucleospin Blood Kit method, Modified TianGen Kit method and Phenol-Chloroform method for genomic DNA extraction from bovine milk. Individual cows' milk and bulk milk samples were collected from a China agricultural university dairy farm. Genomic DNA extracted from each milk sample by the three methods was evaluated for quantity and purity by spectrophotometry and gel electrophoresis, as well as PCR and sequencing. All the three methods were found suitable for genomic DNA isolation from bovine milk, PCR applications, and sequencing. Comparing the three methods, we found that the Modified Nucleospin Blood Kit method was significantly better than the Phenol-Chloroform method in terms of quantity as well as quality (amount, concentration, 260/280 nm and 260/230 nm absorbance ratio), whereas, the Modified TianGen Kit method was more efficient than the Phenol-Chloroform method and cheaper than the Modified Nucleospine Blood Kit method; it yielded reasonably good quantities of good quality DNA and would be suitable for large-scale genotyping of lactating cows.

  5. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes.

    Science.gov (United States)

    Shen, Li; Inoue, Azusa; He, Jin; Liu, Yuting; Lu, Falong; Zhang, Yi

    2014-10-02

    With the exception of imprinted genes and certain repeats, DNA methylation is globally erased during preimplantation development. Recent studies have suggested that Tet3-mediated oxidation of 5-methylcytosine (5mC) and DNA replication-dependent dilution both contribute to global paternal DNA demethylation, but demethylation of the maternal genome occurs via replication. Here we present genome-scale DNA methylation maps for both the paternal and maternal genomes of Tet3-depleted and/or DNA replication-inhibited zygotes. In both genomes, we found that inhibition of DNA replication blocks DNA demethylation independently from Tet3 function and that Tet3 facilitates DNA demethylation largely by coupling with DNA replication. For both genomes, our data indicate that replication-dependent dilution is the major contributor to demethylation, but Tet3 plays an important role, particularly at certain loci. Our study thus defines the respective functions of Tet3 and DNA replication in paternal DNA demethylation and reveals an unexpected contribution of Tet3 to demethylation of the maternal genome.

  6. Comparative analysis of A, B,C and D genomes in the genus Oryza with C0t-1 DNA of C genome

    Institute of Scientific and Technical Information of China (English)

    LAN Weizhen; QIN Rui; LI Gang; HE Guangcun

    2006-01-01

    Fluorescence in situ hybridization (FISH)was applied to somatic chromosomes preparations of Oryza officinalis Wall. (CC), O. sativa L. (AA)×O. officinalis F1 hybrid (AC), backcross progenies BC1 (AAC and ACC), O. latifolia Desv. (CCDD), O. alta Swallen (CCDD) and O. punctata Kotschy (BBCC)with a labelled probe of Cot-1 DNA from O. officinalis.In O. officinalis, the homologous chromosomes showed similar signal bands probed by C0t-1 DNA and karyotype analysis was conducted based on the band patterns. Using no blocking DNA, the probe identified the chromosomes of C genome clearly, but detected few signals on chromosomes of A genome in the F1 hybrid and two backcross progenies of BC1.It is obvious that the highly and moderately repetitive DNA sequences were considerably different between C and A genomes. The chromosomes of C genome were also discriminated from the chromosomes of D-and B-genome in the tetraploid species O. latifolia, O.alta and O. punctata by C0t-1 DNA-FISH. Comparison of the fluorescence intensity on the chromosomes of B, C and D genomes in O. latifolia, O. alta,and O. punctata indicated that the differentiations between C and D genomes are less than that between C and B genomes. The relationship between C and D genomes in O. alta is closer than that of C and D genomes in O. latifolia. This would be one of the causes for the fact that both the genomes are of the same karyotype (CCDD) but belong to different species. The above results showed that the C0t-1 DNA had a high specificity of genome and species. In this paper, the origin of allotetraploid in genus Oryza is also discussed.

  7. Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae.

    Science.gov (United States)

    Clark-Curtiss, J E; Jacobs, W R; Docherty, M A; Ritchie, L R; Curtiss, R

    1985-03-01

    Molecular analysis of DNA from Mycobacterium leprae, "Mycobacterium lufu," and Mycobacterium vaccae has demonstrated that the G + C (guanine plus cytosine) contents of the DNAs are 56, 61, and 65%, respectively, and that the genome sizes are 2.2 X 10(9), 3.1 X 10(9), and 3.1 X 10(9) daltons, respectively. Because of the significant differences in both G + C content and genome size among M. leprae, "M. lufu," and M. vaccae DNAs, these species are not related, although hybridization experiments under nonstringent conditions, with two separate cloned M. leprae DNA inserts as probes, indicate that there are some conserved sequences among the DNAs. The G + C content of Dasypus novemcinctus (armadillo, the animal of choice for cultivating M. leprae) DNA was determined to be 36%. Genomic libraries potentially representing more than 99.99% of each genome were prepared by cloning into the cosmid vector, pHC79, in Escherichia coli K-12. A genomic library representing approximately 95% of the genome of M. vaccae was prepared in pBR322. M. leprae DNA was subcloned from the pHC79::M. leprae library into an expression vector, pYA626. This vector is a 3.8-kilobase derivative of pBR322 in which the promoter region of the asd (aspartate semialdehyde dehydrogenase) gene from Streptococcus mutans has been inserted in place of the EcoRI-to-PstI fragment of pBR322. Several (44% of those tested) pYA626::M. leprae recombinants and one pBR322::M. vaccae recombinant synthesized new polypeptides in minicells of E. coli, indicating that mycobacterial DNA can be expressed in E. coli K-12, although expression is probably dependent upon use of nonmycobacterial promoters recognized by the E. coli transcription-translation apparatus.

  8. Complete mitochondrial DNA genome of Zacco platypus (Cypriniformes: Cyprinidae).

    Science.gov (United States)

    Ueng, Yih-Tsong; Chen, Kun-Neng; Han, Chiao-Chuan; Cheng, Chung-Yao; Li, Yi-Min

    2015-04-01

    The complete mitochondrial genome of Zacco platypus (Cypriniformes, Cyprinidae), which has broader distribution range and diverse genetic structure than other species under the genus Zacco, was first determined in this study. The mitochondrial genome is 16,612 base pairs (bp) in length, encoding 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and 1 non-coding control region. Its gene arrangement and translation direction were identical to those of other typical vertebrate. Control region (D-Loop), of 929 bp lengths long, is located between tRNA(Pro) and tRNA(Phe). The overall base composition of the heavy strand shows T 27.02%, C 26.23%, A 28.94% and G 17.82%, with a slight AT bias of 55.95%.

  9. Complete mitochondrial DNA genome of Microphysogobio brevirostris (Cypriniformes: Cyprinidae).

    Science.gov (United States)

    Cheng, Chung-Yao; Wang, Jiang-Ping; Ho, Chuan-Wen; Cheng, Ju-Wen; Ueng, Yih-Tsong

    2015-04-01

    In this study, we sequenced the complete mitochondrial genome of Microphysogobio brevirostris (Cypriniformes, Cyprinidae), an endemic primary freshwater fish in Taiwan. This mitochondrial genome, consisting of 16,608 base pairs (bp), encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a non-coding control region as those found in other vertebrates, with the gene synteny identical to that of typical vertebrates. Control region (D-Loop), of 929 bp lengths long, is located between tRNA(Pro) and tRNA(Phe). The overall base composition of the heavy strand shows T 26.28%, C 26.62%, A 30.26%, and G 16.85%, with a slight AT bias of 56.53%.

  10. A comparative encyclopedia of DNA elements in the mouse genome.

    Science.gov (United States)

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  11. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    Science.gov (United States)

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  12. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  13. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  14. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil▿†

    Science.gov (United States)

    Jones, Maiysha D.; Singleton, David R.; Sun, Wei; Aitken, Michael D.

    2011-01-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP. PMID:21398486

  15. Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil.

    Science.gov (United States)

    Jones, Maiysha D; Singleton, David R; Sun, Wei; Aitken, Michael D

    2011-05-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the (13)C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-(13)C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from (13)C-enriched DNA and were designated "anthracene group 1." Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.

  16. Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2T)

    Energy Technology Data Exchange (ETDEWEB)

    Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  18. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.

    Science.gov (United States)

    Ley, Timothy J; Mardis, Elaine R; Ding, Li; Fulton, Bob; McLellan, Michael D; Chen, Ken; Dooling, David; Dunford-Shore, Brian H; McGrath, Sean; Hickenbotham, Matthew; Cook, Lisa; Abbott, Rachel; Larson, David E; Koboldt, Dan C; Pohl, Craig; Smith, Scott; Hawkins, Amy; Abbott, Scott; Locke, Devin; Hillier, Ladeana W; Miner, Tracie; Fulton, Lucinda; Magrini, Vincent; Wylie, Todd; Glasscock, Jarret; Conyers, Joshua; Sander, Nathan; Shi, Xiaoqi; Osborne, John R; Minx, Patrick; Gordon, David; Chinwalla, Asif; Zhao, Yu; Ries, Rhonda E; Payton, Jacqueline E; Westervelt, Peter; Tomasson, Michael H; Watson, Mark; Baty, Jack; Ivanovich, Jennifer; Heath, Sharon; Shannon, William D; Nagarajan, Rakesh; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; DiPersio, John F; Wilson, Richard K

    2008-11-06

    Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

  19. A mathematical model of DNA degradation: Possible role of magnetic nanoparticles

    CERN Document Server

    Binhi, V N

    2007-01-01

    A mathematical model of genome degradation is proposed that takes into account a variable rate of mutation and increasing number of cells in a developing human organism. The model explains known properties of cancer development, in particular, a synergism between different mutagens and an increased probability of cancer in the early years of life. An iteration equation is suggested that uses only a few model parameters and describes basic regularities observed in cancer onset. In the model context, relatively small chronic variations in the intracellular content of free radicals may markedly affect the probability of a cell to become a cancer cell. On the other hand, magnetic nanoparticles are shown to be an endogenous source of chronic magnetic exposure that increases the local concentration of free radicals. An enhanced level of leukaemia in early childhood is assumed to originate from magnetic nanoparticles located in hematopoietic stem cells.