WorldWideScience

Sample records for degrade plant cell

  1. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides

    NARCIS (Netherlands)

    Vries, de R.P.; Visser, J.

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a m

  2. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

    Science.gov (United States)

    Kubicek, Christian P; Starr, Trevor L; Glass, N Louise

    2014-01-01

    Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.

  3. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Science.gov (United States)

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  4. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  5. Plant Cell Wall Degradation by Saprophytic Bacillus subtilis Strains: Gene Clusters Responsible for Rhamnogalacturonan Depolymerization▿

    Science.gov (United States)

    Ochiai, Akihito; Itoh, Takafumi; Kawamata, Akiko; Hashimoto, Wataru; Murata, Kousaku

    2007-01-01

    Plant cell wall degradation is a premier event when Bacillus subtilis, a typical saprophytic bacterium, invades plants. Here we show the degradation system of rhamnogalacturonan type I (RG-I), a component of pectin from the plant cell wall, in B. subtilis strain 168. Strain 168 cells showed a significant growth on plant cell wall polysaccharides such as pectin, polygalacturonan, and RG-I as a carbon source. DNA microarray analysis indicated that three gene clusters (yesOPQRSTUVWXYZ, ytePQRST, and ybcMOPST-ybdABDE) are inducibly expressed in strain 168 cells grown on RG-I. Cells of an industrially important bacterium, B. subtilis strain natto, fermenting soybeans also express the gene cluster including the yes series during the assimilation of soybean used as a carbon source. Among proteins encoded in the yes cluster, YesW and YesX were found to be novel types of RG lyases releasing disaccharide from RG-I. Genetic and enzymatic properties of YesW and YesX suggest that strain 168 cells secrete YesW, which catalyzes the initial cleavage of the RG-I main chain, and the resultant oligosaccharides are converted to disaccharides through the extracellular exotype YesX reaction. The disaccharide is finally degraded into its constituent monosaccharides through the reaction of intracellular unsaturated galacturonyl hydrolases YesR and YteR. This enzymatic route for RG-I degradation in strain 168 differs significantly from that in plant-pathogenic fungus Aspergillus aculeatus. This is, to our knowledge, the first report on the bacterial system for complete RG-I main chain degradation. PMID:17449691

  6. Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization.

    Science.gov (United States)

    Ochiai, Akihito; Itoh, Takafumi; Kawamata, Akiko; Hashimoto, Wataru; Murata, Kousaku

    2007-06-01

    Plant cell wall degradation is a premier event when Bacillus subtilis, a typical saprophytic bacterium, invades plants. Here we show the degradation system of rhamnogalacturonan type I (RG-I), a component of pectin from the plant cell wall, in B. subtilis strain 168. Strain 168 cells showed a significant growth on plant cell wall polysaccharides such as pectin, polygalacturonan, and RG-I as a carbon source. DNA microarray analysis indicated that three gene clusters (yesOPQRSTUVWXYZ, ytePQRST, and ybcMOPST-ybdABDE) are inducibly expressed in strain 168 cells grown on RG-I. Cells of an industrially important bacterium, B. subtilis strain natto, fermenting soybeans also express the gene cluster including the yes series during the assimilation of soybean used as a carbon source. Among proteins encoded in the yes cluster, YesW and YesX were found to be novel types of RG lyases releasing disaccharide from RG-I. Genetic and enzymatic properties of YesW and YesX suggest that strain 168 cells secrete YesW, which catalyzes the initial cleavage of the RG-I main chain, and the resultant oligosaccharides are converted to disaccharides through the extracellular exotype YesX reaction. The disaccharide is finally degraded into its constituent monosaccharides through the reaction of intracellular unsaturated galacturonyl hydrolases YesR and YteR. This enzymatic route for RG-I degradation in strain 168 differs significantly from that in plant-pathogenic fungus Aspergillus aculeatus. This is, to our knowledge, the first report on the bacterial system for complete RG-I main chain degradation.

  7. The degradation of potato virus M (PVM particles in plant cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available Degradation of potato virus M particles was observed in the cells of Solanum tuberosum, Solanum rostratum, Lycopersicon esculentum and Lycopersicon chilense plants infected with this virus. PVM particles found in the cytoplasm of infected parenchyma cells grouped together in the form of inclusions, often found near the tonoplast. The ends of the virus particles and the tonoplast came into close contact. Cytoplasmic protrusions containing PVM particles, reaching into vacuoles were formed in those places. In addition to a large central vacuole, small vacuoles were observed in cells containing PVM particles. Various stages of degradation of cytoplasmic protrusions were observed both in the large and small vacuoles.

  8. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  9. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens

    2011-12-01

    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  10. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts

    Directory of Open Access Journals (Sweden)

    Normand Philippe

    2008-01-01

    genomes, suggesting that plant cell wall polysaccharide degradation may not be crucial to root infection, or that this degradation varies among strains. We hypothesize that the relative lack of secreted polysaccharide-degrading enzymes in Frankia reflects a strategy used by these bacteria to avoid eliciting host defense responses. The esterases, lipases, and proteases found in the core Frankia secretome might facilitate hyphal penetration through the cell wall, release carbon sources, or modify chemical signals. The core secretome also includes extracellular solute-binding proteins and Frankia-specific hypothetical proteins that may enable the actinorhizal symbiosis.

  11. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  12. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.

    Science.gov (United States)

    Sornyotha, Somphit; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2010-01-01

    The objective of this work was to remove linamarin in starch from cassava (Manihot esculenta Crantz cv. KU-50) roots, a high-cyanogen variety by using plant cell wall-degrading enzymes, xylanase and cellulase. The combination of xylanase from Bacillus firmus K-1 and xylanase and cellulase from Paenibacillus curdlanolyticus B-6 at the ratio of 1:9 showed the maximum synergism at 1.8 times for hydrolyzing cassava cortex cell walls and releasing linamarase. Combined enzyme treatment enhanced linamarin liberation from the parenchyma by 90%. In addition, when the combined enzymes were applied for detoxification during cassava starch production, a low-cyanide-product was obtained with decreased linamarin concentration (96%) compared to non-enzyme treated tissues. Based on these results, xylanase and cellulase treatment is a good method for low-cyanide-cassava starch production and could be applied for detoxification of cassava products during processing.

  13. Plant biomass degradation by fungi.

    Science.gov (United States)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Endosperm degradation during seed development of Echinocystis lobata (Cucurbitaceae) as a manifestation of programmed cell death (PCD) in plants.

    Science.gov (United States)

    Wojciechowska, Marzena; Olszewska, Maria J

    2003-01-01

    Programmed cell death (PCD) is an active, genetically controlled process that ultimately leads to elimination of unnecessary or damaged cells from multicellular organism. It occurs during normal growth and development or in response to a variety of environmental triggers and is indispensable for survival of the organism. In Echinocystis lobata the endosperm, an ephemeral tissue in angiosperm plants, undergoes distinct cytological, physiological and molecular changes during seed development and maturation. As a result, mature seeds are deprived of this tissue. The endosperm was analyzed at the consecutive stages of seed development. The morphological changes of cells were studied at light and electron microscope levels. In this paper we report that endosperm cells undergo morphological and biochemical changes characteristic of apoptosis, a particular type of PCD, i.e. cell shrinkage, chromatin condensation, nuclear fragmentation, and cytoplasm degradation, while the ultrastructure of mitochondria seems to be less changed. Furthermore, the progression of DNA degradation has been shown by agarose gel electrophoresis (ladder pattern of DNA fragmentseparation), TUNEL and comet assay. It isconcluded that during seed maturation, endosperm degradation process is accompanied by typical PCD-related changes of cell morphology and internucleosomal DNA cleavage.

  15. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    Directory of Open Access Journals (Sweden)

    Kirsch Roy

    2012-11-01

    Full Text Available Abstract Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs. The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH families: GH11 (xylanases, GH28 (polygalacturonases or pectinases, and GH45 (β-1,4-glucanases or cellulases. Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs families as well as polygalacturonase-inhibiting proteins (PGIPs were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome

  16. Carbohydrate-active enzymes in pythium and their role in plant cell wall and storage polysaccharide degradation.

    Directory of Open Access Journals (Sweden)

    Marcelo M Zerillo

    Full Text Available Carbohydrate-active enzymes (CAZymes are involved in the metabolism of glycoconjugates, oligosaccharides, and polysaccharides and, in the case of plant pathogens, in the degradation of the host cell wall and storage compounds. We performed an in silico analysis of CAZymes predicted from the genomes of seven Pythium species (Py. aphanidermatum, Py. arrhenomanes, Py. irregulare, Py. iwayamai, Py. ultimum var. ultimum, Py. ultimum var. sporangiiferum and Py. vexans using the "CAZymes Analysis Toolkit" and "Database for Automated Carbohydrate-active Enzyme Annotation" and compared them to previously published oomycete genomes. Growth of Pythium spp. was assessed in a minimal medium containing selected carbon sources that are usually present in plants. The in silico analyses, coupled with our in vitro growth assays, suggest that most of the predicted CAZymes are involved in the metabolism of the oomycete cell wall with starch and sucrose serving as the main carbohydrate sources for growth of these plant pathogens. The genomes of Pythium spp. also encode pectinases and cellulases that facilitate degradation of the plant cell wall and are important in hyphal penetration; however, the species examined in this study lack the requisite genes for the complete saccharification of these carbohydrates for use as a carbon source. Genes encoding for xylan, xyloglucan, (galacto(glucomannan and cutin degradation were absent or infrequent in Pythium spp.. Comparative analyses of predicted CAZymes in oomycetes indicated distinct evolutionary histories. Furthermore, CAZyme gene families among Pythium spp. were not uniformly distributed in the genomes, suggesting independent gene loss events, reflective of the polyphyletic relationships among some of the species.

  17. Synergistic effect of different plant cell wall degrading enzymes is important for virulence of Fusarium graminearum.

    Science.gov (United States)

    Paccanaro, Maria Chiara; Sella, Luca; Castiglioni, Carla; Giacomello, Francesca; Martinez-Rocha, Ana Lilia; D'Ovidio, Renato; Schäfer, Wilhelm; Favaron, Francesco

    2017-08-11

    Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, whilst their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single and double disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared to wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild-type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG and cellulase activities, but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.

  18. Plant biomass degradation by fungi

    NARCIS (Netherlands)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the

  19. Plant biomass degradation by fungi

    NARCIS (Netherlands)

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the

  20. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  1. AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production.

    Science.gov (United States)

    Kõiv, Viia; Andresen, Liis; Mäe, Andres

    2010-06-01

    Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239-246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.

  2. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  3. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  4. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  5. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  6. PLASMALEMMA PATCH CLAMP EXPERIMENTS IN PLANT-ROOT CELLS - PROCEDURE FOR FAST ISOLATION OF PROTOPLASTS WITH MINIMAL EXPOSURE TO CELL-WALL DEGRADING ENZYMES

    NARCIS (Netherlands)

    VOGELZANG, SA; PRINS, HBA

    1992-01-01

    A convenient and rapid isolation procedure for root cell protoplasts suitable for patch clamp experiments. was developed for root cells of tomato (Lycopersicon esculentum and Plantago species, grown on hydroculture. The procedure is based on a minimal exposure of cells to cell wall degrading enzyme

  7. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  8. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  9. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles.

    Science.gov (United States)

    Kirsch, Roy; Gramzow, Lydia; Theißen, Günter; Siegfried, Blair D; Ffrench-Constant, Richard H; Heckel, David G; Pauchet, Yannick

    2014-09-01

    Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Hansen, Mads A.T.; Ahl, Louise I.; Pedersen, Henriette L.

    2014-01-01

    , regardless their extractability in water or only alkali. Based on the results, AX and MLG appear to be loosely bound in the cell wall matrix while the other polysaccharides are bound more tightly and shielded from enzymatic attack by AX and MLG until pretreatment. The gradual solubilisation and digestion...... and by comprehensive microarray polymer profiling (CoMPP). This way, the effects of each degradation step to the intermolecular organisation of specific polysaccharides in the cell walls were elucidated. After pretreatment, the degree of polymerisation (DP) of released xylo-oligosaccharides in both samples was up...... to about 20, but mostly around 3-8, and notably more acetylated in stems. Arabinoxylan (AX) and mixed-linkage glucan (MLG) became water-extractable while xylan, xyloglucan (XG), mannan and glucan remained only alkali-extractable. All polysaccharides became partly digestible after pretreatment however...

  11. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  12. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with roles in Plant Cell Wall Degradation and Virulence

    KAUST Repository

    Lakshman, Dilip

    2016-03-28

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Here we used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions; the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups; and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  13. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  14. Rice transformation with cell wall degrading enzyme genes from Trichoderma atroviride and its effect on plant growth and resistance to fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    Liu Mei; Sun Zong-Xiu; Zhu Jie; Xu Tong; Gary E Harman; Matteo Lorito; Sheri Woo

    2004-01-01

    @@ Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag70 and gluc78from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305. 2 singly and in all possible combinations. The coding sequences were placed downstream of the rice actin promoter and all vectors were used to transform rice plants. A total of more than 1,800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Expression in plant was obtained for all the fungal genes used singly or in combinations. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had a lesser effect. The expression level of endochitinase but not of the exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the positive effect of endochitinase on disease resistance when two genes were co-expressed in transgenic rice. Improved resistance to Magnaporthe grisea was found in all types of regenerated plants, including those with the gluc78 gene alone, while a few lines expressing either ech42 or nag70 appeared to be immune to this pathogen. Transgenic plants expressing the gluc78 gene alone were stunted and only few of them survived, even though they showed resistance to M. grisea. However, combination with either one of the two other genes ( ech42, nag70 ) as included in the same T-DNA region, reduced the negative effect of gluc78 on plant growth. This is the first report of single or multiple of expression of transgens encoding CWDEs that results in resistance to blast and sheath blight in rice.

  15. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó

    2014-01-01

    The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity ofwell-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora ...

  16. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Toussaint, Jean-Patrick; Pham, Thi Thanh My; Barriault, Diane; Sylvestre, Michel [Instiut National de la Recherche Scientifique INRS, Laval, QC (Canada). Inst. Armand-Frappier

    2012-09-15

    Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 x 105 CFU g{sup -1}) was greater than the number remaining in the surrounding sand (4.5 x 104 CFU g{sup -1}). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants. (orig.)

  17. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  18. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall Degrading Enzyme Activity of Fungal Culture Extracts

    Science.gov (United States)

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospe...

  19. An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts.

    Science.gov (United States)

    King, Brian C; Donnelly, Marie K; Bergstrom, Gary C; Walker, Larry P; Gibson, Donna M

    2009-03-01

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass conversion. In order to develop high throughput screening assays for enzyme bioprospecting, a standardized microplate assay was developed for rapid analysis of polysaccharide hydrolysis by fungal extracts, incorporating biomass substrates. Fungi were grown for 10 days on cellulose- or switchgrass-containing media to produce enzyme extracts for analysis. Reducing sugar released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan was quantified using a miniaturized colorimetric assay based on 3,5-dinitrosalicylic acid. Significant interactions were identified among fungal species, growth media composition, assay substrate, and temperature. Within a small sampling of plant pathogenic fungi, some extracts had crude activities comparable to or greater than T. reesei, particularly when assayed at lower temperatures and on biomass substrates. This microplate assay system should prove useful for high-throughput bioprospecting for new sources of novel enzymes for biofuel production.

  20. Lignin degradation during plant litter photodegradation

    Science.gov (United States)

    Lin, Y.; King, J. Y.

    2014-12-01

    Lignin is the second most abundant compound, after cellulose, synthesized by plants. Numerous studies have demonstrated that initial lignin concentration is negatively correlated with litter decomposition rate under both laboratory and field conditions. Thus lignin is commonly considered to be a "recalcitrant" compound during litter decomposition. However, lignin can also serve as a radiation-absorbing compound during photodegradation, the process through which solar radiation breaks down organic matter. Here, we synthesize recent studies concerning lignin degradation during litter photodegradation and report results from our study on how photodegradation changes lignin chemistry at a molecular scale. Recent field studies have found that litter with high initial lignin concentration does not necessarily exhibit high mass loss during photodegradation. A meta-analysis (King et al. 2012) even found a weak negative correlation between initial lignin concentration and photodegradation rate. Contradicting results have been reported with regard to the change in lignin concentration during photodegradation. Some studies have found significant loss of lignin during photodegradation, while others have not. In most studies, loss of lignin only accounts for a small proportion of the overall mass loss. Using NMR spectroscopy, we found significant loss of lignin structural units containing beta-aryl ether linkages during photodegradation of a common grass litter, Bromus diandrus, even though conventional forage fiber analysis did not reveal changes in lignin concentration. Both our NMR and fiber analyses supported the idea that photodegradation induced loss of hemicellulose, which was mainly responsible for the litter mass loss during photodegradation. Our results suggest that photodegradation induces degradation, but not necessarily complete breakdown, of lignin structures and consequently exposes hemicellulose and cellulose to microbial decomposition. We conclude that lignin

  1. The use of plant cell wall-degrading enzymes from newly isolated Penicillium ochrochloron Biourge for viscosity reduction in ethanol production with fresh sweet potato tubers as feedstock.

    Science.gov (United States)

    Huang, Yuhong; Jin, Yanling; Shen, Weiliang; Fang, Yang; Zhang, Guohua; Zhao, Hai

    2014-01-01

    Penicillium ochrochloron Biourge, which was isolated from rotten sweet potato, can produce plant cell wall-degrading enzymes (PCWDEs) with high viscosity reducing capability for ethanol production using fresh sweet potato tubers as feedstock. The enzyme preparation was characterized by a broad enzyme spectrum including 13 kinds of enzymes with the activity to hydrolyze cellulose, hemicellulose, pectin, starch, and protein. The maximum viscosity-reducing capability was observed when the enzyme preparation was obtained after 5 days of fermentation using 20 g/L corncob as a sole carbon source, 4.5 g/L NH4 NO3 as a sole nitrogen source, and an initial medium pH of 6.5. The sweet potato mash treated with the enzyme preparation exhibited much higher fermentation efficiency (92.58%) compared with commercial cellulase (88.06%) and control (83.5%). The enzyme production was then scaled up to 0.5, 5, and 100 L, and the viscosity-reducing rates were found to be 85%, 90%, and 91%, respectively. Thus, P. ochrochloron Biourge displays potential viscosity-reducing capability for ethanol production.

  2. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  3. Degradation of aromatic compounds in plants grown under aseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mithaishvili, T.; Ugrekhelidze, D.; Tsereteli, B.; Sadunishvili, T.; Kvesitadze, G. [Durmishidze Inst. of Biochemistry and Biotechnology, Academy of Sciences of Georgia, Tbilisi (Georgia); Scalla, R. [Lab. des Xenobiotiques, INRA, Toulouse (France)

    2005-02-01

    The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of {sup 14}C specifically labelled benzene derivatives, [1-6-{sup 14}C]-nitrobenzene, [1-6-{sup 14}C]-aniline, [1-{sup 14}C]- and [7-{sup 14}C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and pumpkin (Cucurbita pepo L.) were studied. After penetration in plants, the above xenobiotics are transformed by oxidative or reductive reactions, conjugation with cell endogenous compounds, and binding to biopolymers. The initial stage of oxidative degradation consists in hydroxylation reactions. The aromatic ring can then be cleaved and degraded into organic acids of the Krebs cycle. Ring cleavage is accompanied by {sup 14}CO{sub 2} evolution. Aromatic ring cleavage in plants has thus been demonstrated for different xenobiotics carrying different substitutions on their benzene ring. Conjugation with low molecular peptides is the main pathway of aromatic xenobiotics detoxification. Peptide conjugates are formed both by the initial xenobiotics (except nitrobenzene) and by intermediate transformation products. The chemical nature of the radioactive fragment and the amino acid composition of peptides participating in conjugation were identified. (orig.)

  4. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  5. Plant-polysaccharide-degrading enzymes from basidiomycetes

    NARCIS (Netherlands)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P; Mäkelä, Miia R; van den Brink, J.

    2014-01-01

    SUMMARY: Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-poly

  6. Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation

    Directory of Open Access Journals (Sweden)

    Nathalie Diagne

    2013-01-01

    Full Text Available Degraded lands are defined by soils that have lost primary productivity due to abiotic or biotic stresses. Among the abiotic stresses, drought, salinity, and heavy metals are the main threats in tropical areas. These stresses affect plant growth and reduce their productivity. Nitrogen-fixing plants such as actinorhizal species that are able to grow in poor and disturbed soils are widely planted for the reclamation of such degraded lands. It has been reported that association of soil microbes especially the nitrogen-fixing bacteria Frankia with these actinorhizal plants can mitigate the adverse effects of abiotic and biotic stresses. Inoculation of actinorhizal plants with Frankia significantly improves plant growth, biomass, shoot and root N content, and survival rate after transplanting in fields. However, the success of establishment of actinorhizal plantation in degraded sites depends upon the choice of effective strains of Frankia. Studies related to the beneficial role of Frankia on the establishment of actinorhizal plants in degraded soils are scarce. In this review, we describe some examples of the use of Frankia inoculation to improve actinorhizal plant performances in harsh conditions for reclamation of degraded lands.

  7. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  8. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  9. Degradation diagnostics for lithium ion cells

    Science.gov (United States)

    Birkl, Christoph R.; Roberts, Matthew R.; McTurk, Euan; Bruce, Peter G.; Howey, David A.

    2017-02-01

    Degradation in lithium ion (Li-ion) battery cells is the result of a complex interplay of a host of different physical and chemical mechanisms. The measurable, physical effects of these degradation mechanisms on the cell can be summarised in terms of three degradation modes, namely loss of lithium inventory, loss of active positive electrode material and loss of active negative electrode material. The different degradation modes are assumed to have unique and measurable effects on the open circuit voltage (OCV) of Li-ion cells and electrodes. The presumptive nature and extent of these effects has so far been based on logical arguments rather than experimental proof. This work presents, for the first time, experimental evidence supporting the widely reported degradation modes by means of tests conducted on coin cells, engineered to include different, known amounts of lithium inventory and active electrode material. Moreover, the general theory behind the effects of degradation modes on the OCV of cells and electrodes is refined and a diagnostic algorithm is devised, which allows the identification and quantification of the nature and extent of each degradation mode in Li-ion cells at any point in their service lives, by fitting the cells' OCV.

  10. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  11. Plant Stem Cells

    National Research Council Canada - National Science Library

    Greb, Thomas; Lohmann, Jan U

    2016-01-01

    .... While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we...

  12. The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides.

    Science.gov (United States)

    Grell, Morten N; Linde, Tore; Nygaard, Sanne; Nielsen, Kåre L; Boomsma, Jacobus J; Lange, Lene

    2013-12-28

    The fungus gardens of leaf-cutting ants are natural biomass conversion systems that turn fresh plant forage into fungal biomass to feed the farming ants. However, the decomposition potential of the symbiont Leucocoprinus gongylophorus for processing polysaccharides has remained controversial. We therefore used quantifiable DeepSAGE technology to obtain mRNA expression patterns of genes coding for secreted enzymes from top, middle, and bottom sections of a laboratory fungus-garden of Acromyrmex echinatior leaf-cutting ants. A broad spectrum of biomass-conversion-relevant enzyme genes was found to be expressed in situ: cellulases (GH3, GH5, GH6, GH7, AA9 [formerly GH61]), hemicellulases (GH5, GH10, CE1, GH12, GH74), pectinolytic enzymes (CE8, GH28, GH43, PL1, PL3, PL4), glucoamylase (GH15), α-galactosidase (GH27), and various cutinases, esterases, and lipases. In general, expression of these genes reached maximal values in the bottom section of the garden, particularly for an AA9 lytic polysaccharide monooxygenase and for a GH5 (endocellulase), a GH7 (reducing end-acting cellobiohydrolase), and a GH10 (xylanase), all containing a carbohydrate binding module that specifically binds cellulose (CBM1). Although we did not directly quantify enzyme abundance, the profile of expressed cellulase genes indicates that both hydrolytic and oxidative degradation is taking place. The fungal symbiont of Acromyrmex leaf-cutting ants can degrade a large range of plant polymers, but the conversion of cellulose, hemicellulose, and part of the pectin occurs primarily towards the end of the decomposition process, i.e. in the bottom section of the fungus garden. These conversions are likely to provide nutrients for the fungus itself rather than for the ants, whose colony growth and reproductive success are limited by proteins obtained from ingesting fungal gongylidia. These specialized hyphal tips are hardly produced in the bottom section of fungus gardens, consistent with the ants

  13. Degradation of Total Petroleum Hydrocarbon in Phytoremediation Using Terrestrial Plants

    Directory of Open Access Journals (Sweden)

    Mushrifah Idris

    2014-06-01

    Full Text Available This study focused on the total petroleum hydrocarbon (TPH degradation in phytoremediation of spiked diesel in sand. The diesel was added to the sand that was planted with terrestrial plants. Four selected terrestrial plants used were Paspalum vaginatum Sw, Paspalums crobiculatum L. varbispicatum Hack, Eragrotis atrovirens (Desf. Trin. ex Steud and Cayratia trifolia (L. Domin since all the plants could survive at a hydrocarbon petroleum contaminated site in Malaysia. The samplings were carried out on Day 0, 7, 14, 28, 42 and 72. The analysis of the TPH was conducted by extracting the spiked sand using ultrasonic extraction. The determination of the TPH concentration in the sand was performed using GC-FID. The degradation of TPH depends on the plant species and time of exposure. The highest percentage degradation by P. vaginatum, P. scrobiculatum, E. atrovirens and C. trifolia were 91.9, 74.0, 68.9 and 62.9%, respectively. In conclusion, the ability to degrade TPH by plants were P. vaginatum > P. scrobiculatum > E. atrovirens> C. trifolia.

  14. Dynamics of cell degradation. [nickel cadmium batteries

    Science.gov (United States)

    Mcdermott, P. P.

    1978-01-01

    The use of chemical and physical data as a supplement to linear regression models in the prediction of cell failure is discussed. Principal factors to be considered are the positive thickness and weight, and the negative thickness. A model for cell degradation and failure in accelerated life test cells is presented and predictions based on a teardown analysis are included.

  15. Physiological functions of plant cell coverings.

    Science.gov (United States)

    Hoson, Takayuki

    2002-08-01

    The cell coverings of plants have two important functions in plant life. Plant cell coverings are deeply involved in the regulation of the life cycle of plants: each stage of the life cycle, such as germination, vegetative growth, reproductive growth, and senescence, is strongly influenced by the nature of the cell coverings. Also, the apoplast, which consists of the cell coverings, is the field where plant cells first encounter the outer environment, and so becomes the major site of plant responses to the environment. In the regulation of each stage of the life cycle and the response to each environmental signal, some specific constituents of the cell coverings, such as xyloglucans in dicotyledons and 1,3,1,4-beta-glucans in Gramineae, act as the key component. The physiological functions of plant cell coverings are sustained by the metabolic turnover of these components. The components of the cell coverings are supplied from the symplast, but then they are modified or degraded in the apoplast. Thus, the metabolism of the cell coverings is regulated through the cross-talk between the symplast and the apoplast. The understanding of physiological functions of plant cell coverings will be greatly advanced by the use of genomic approaches. At the same time, we need to introduce nanobiological techniques for clarifying the minute changes in the cell coverings that occur in a small part within each cell.

  16. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  17. Enantioselective degradation of Bromocyclene in sewage plants

    Energy Technology Data Exchange (ETDEWEB)

    Bester, K. [Duisburg-Essen Univ. (Germany). FG Siedlungswasser- und Abfallwirtschaft/Inst. fuer Umweltanalytik

    2004-09-15

    Bromocyclene has been utilised as insecticide against ectoparasites, however the production in Germany was stopped around 1995. Until that time it was used in pet care as well as in sheep farming. Due to its high bioaccumulation it was detected not only in sewage systems and sewage treatment plants, but also in fresh water fish. Enatioselective determination at that time was used to obtain results on the biodegradation of Bromocyclene in fish. Considering the long time period since the phase out of Bromocyclene it was surprising it was easily identified in sludge samples from 2002.

  18. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  19. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  20. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...

  1. Degradation of β-Aryl Ether Bonds in Transgenic Plants

    DEFF Research Database (Denmark)

    Mnich, Ewelina

    Lignin is one of the main building blocks of the plant cell wall. It tethers the cell wall by cross-linking with polysaccharides conferring mechanical strength to plants, aiding water transport and providing a mechanical barrier against pathogens. It is generated by the polymerization of the mono......Lignin is one of the main building blocks of the plant cell wall. It tethers the cell wall by cross-linking with polysaccharides conferring mechanical strength to plants, aiding water transport and providing a mechanical barrier against pathogens. It is generated by the polymerization...

  2. The distribution and degradation of chlormequat in wheat plants

    NARCIS (Netherlands)

    Dekhuijzen, H.M.; Vonk, C.R.

    The distribution and degradation of chlormequat chloride (2-chloro 1,2-14C ethyltrimethylammonium chloride) was determined after uptake by the roots of summer wheat seedlings. This plant regulator was readily translocated from the roots to the above ground parts and converted into choline. Choline

  3. The distribution and degradation of chlormequat in wheat plants

    NARCIS (Netherlands)

    Dekhuijzen, H.M.; Vonk, C.R.

    1974-01-01

    The distribution and degradation of chlormequat chloride (2-chloro 1,2-14C ethyltrimethylammonium chloride) was determined after uptake by the roots of summer wheat seedlings. This plant regulator was readily translocated from the roots to the above ground parts and converted into choline. Choline w

  4. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Yi Xiong

    2014-08-01

    Full Text Available Filamentous fungi that thrive on plant biomass are the major producers of hydrolytic enzymes used to decompose lignocellulose for biofuel production. Although induction of cellulases is regulated at the transcriptional level, how filamentous fungi sense and signal carbon-limited conditions to coordinate cell metabolism and regulate cellulolytic enzyme production is not well characterized. By screening a transcription factor deletion set in the filamentous fungus Neurospora crassa for mutants unable to grow on cellulosic materials, we identified a role for the transcription factor, VIB1, as essential for cellulose utilization. VIB1 does not directly regulate hydrolytic enzyme gene expression or function in cellulosic inducer signaling/processing, but affects the expression level of an essential regulator of hydrolytic enzyme genes, CLR2. Transcriptional profiling of a Δvib-1 mutant suggests that it has an improper expression of genes functioning in metabolism and energy and a deregulation of carbon catabolite repression (CCR. By characterizing new genes, we demonstrate that the transcription factor, COL26, is critical for intracellular glucose sensing/metabolism and plays a role in CCR by negatively regulating cre-1 expression. Deletion of the major player in CCR, cre-1, or a deletion of col-26, did not rescue the growth of Δvib-1 on cellulose. However, the synergistic effect of the Δcre-1; Δcol-26 mutations circumvented the requirement of VIB1 for cellulase gene expression, enzyme secretion and cellulose deconstruction. Our findings support a function of VIB1 in repressing both glucose signaling and CCR under carbon-limited conditions, thus enabling a proper cellular response for plant biomass deconstruction and utilization.

  5. High temperature degradation in power plants and refineries

    Directory of Open Access Journals (Sweden)

    Furtado Heloisa Cunha

    2004-01-01

    Full Text Available Thermal power plants and refineries around the world share many of the same problems, namely aging equipment, high costs of replacement, and the need to produce more efficiently while being increasingly concerned with issues of safety and reliability. For equipment operating at high temperature, there are many different mechanisms of degradation, some of which interact, and the rate of accumulation of damage is not simple to predict. The paper discusses the mechanisms of degradation at high temperature and methods of assessment of such damage and of the remaining safe life for operation.

  6. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  7. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  8. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Science.gov (United States)

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  9. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens.

    Science.gov (United States)

    Morales-Cruz, Abraham; Amrine, Katherine C H; Blanco-Ulate, Barbara; Lawrence, Daniel P; Travadon, Renaud; Rolshausen, Philippe E; Baumgartner, Kendra; Cantu, Dario

    2015-06-19

    Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development. The integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution. This study

  10. Degradation of textile dyes mediated by plant peroxidases.

    Science.gov (United States)

    Shaffiqu, T S; Roy, J Jegan; Nair, R Aswathi; Abraham, T Emilia

    2002-01-01

    The peroxidase enzyme from the plants Ipomea palmata (1.003 IU/g of leaf) and Saccharum spontaneum (3.6 IU/g of leaf) can be used as an alternative to the commercial source of horseradish and soybean peroxidase enzyme for the decolorization of textile dyes, mainly azo dyes. Eight textiles dyes currently used by the industry and seven other dyes were selected for decolorization studies at 25-200 mg/L levels using these plant enzymes. The enzymes were purified prior to use by ammonium sulfate precipitation, and ion exchange and gel permeation chromatographic techniques. Peroxidase of S. spontaneum leaf (specific activity of 0.23 IU/mg) could completely degrade Supranol Green and Procion Green HE-4BD (100%) dyes within 1 h, whereas Direct Blue, Procion Brilliant Blue H-7G and Chrysoidine were degraded >70% in 1 h. Peroxidase of Ipomea (I. palmata leaf; specific activity of 0.827 U/mg) degraded 50 mg/L of the dyes Methyl Orange (26%), Crystal Violet (36%), and Supranol Green (68%) in 2-4 h and Brilliant Green (54%), Direct Blue (15%), and Chrysoidine (44%) at the 25 mg/L level in 1 to 2 h of treatment. The Saccharum peroxidase was immobilized on a hydrophobic matrix. Four textile dyes, Procion Navy Blue HER, Procion Brilliant Blue H-7G, Procion Green HE-4BD, and Supranol Green, at an initial concentration of 50 mg/L were completely degraded within 8 h by the enzyme immobilized on the modified polyethylene matrix. The immobilized enzyme was used in a batch reactor for the degradation of Procion Green HE-4BD and the reusability was studied for 15 cycles, and the half-life was found to be 60 h.

  11. Ultrastructure of autophagy in plant cells: a review.

    Science.gov (United States)

    van Doorn, Wouter G; Papini, Alessio

    2013-12-01

    Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.

  12. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  13. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  14. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  15. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  16. Enantioselective degradation of metalaxyl in grape, tomato, and rice plants.

    Science.gov (United States)

    Wang, Meiyun; Hua, Xiude; Zhang, Qing; Yang, Yu; Shi, Haiyan; Wang, Minghua

    2015-02-01

    Enantioselective biodegradation of chiral pesticide metalaxyl in grape, tomato, and rice plants under field conditions were studied. Metalaxyl enantiomers were completely separated with a resolution (Rs) of 5.01 by high-performance liquid chromatography (HPLC) based on a cellulose tris (3-chloro-4-methyl phenyl carbamate) chiral column (Lux Cellulose-2). Metalaxyl enantiomers from matrixes were extracted by acetonitrile and purged using Cleanert Alumina-A solid phase extraction (SPE). The linearity, recovery, precision, sensitivity, and matrix effect of the method were assessed. The result showed that significant stereoselectivity occurred in grape, tomato, and rice plants. In grape, (+)-S-metalaxyl with a half-life of 5.5 d degraded faster than (-)-R-metalaxyl with that of 6.9 d, and the enantiomer fraction (EF) value reached 0.37 at 21 d. The same enantioselectivity was observed in tomato, and the half-life was 2.2 d for the S-enantiomer and 3.0 d for the R-enantiomer. The EF values decreased from 0.49 of 0 d to 0.26 of 14 d. On the other hand, a preferential degradation of the R-form was found in rice plants, with an EF value of 0.70 at 14 d, and the corresponding half-life was 2.3 d for the R-form and 2.8 d for the S-form. © 2014 Wiley Periodicals, Inc.

  17. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  18. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    Science.gov (United States)

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-07-29

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.

    Science.gov (United States)

    Chouychai, Waraporn; Thongkukiatkul, Amporn; Upatham, Suchart; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung

    2012-07-01

    A study was undertaken to assess if corn (Zea mays L.) can enhance phenanthrene degradation in two soils inoculated with Pseudomonas sp. UG14Lr. Corn increased the number of UG14Lr cells in both soils, especially in the acidic soiL Phenanthrene was degraded to a greater extent in UG14Lr-inoculated or corn-planted soils than uninoculated and unplanted soils. The spiked phenanthrene was completely removed within 70 days in all the treatments in slightly alkaline soil. However, in acidic soil, complete phenanthrene removal was found only in the corn-planted treatments. The shoot and root lengths of corn grown in UG14Lr-inoculated soils were not different from those in non-inoculated soil between the treatments. The results showed that in unplanted soil, low pH adversely affected the survival and phenanthrene degradation ability of UG14Lr. Planting of corn significantly enhanced the survival of UG14Lr cells in both the bulk and rhizospheric soil, and this in turn significantly improved phenanthrene degradation in acidic soil. Re-inoculation of UG14Lr in the acidic soil increased the number of UG14Lr cells and enhanced phenanthrene degradation in unplanted soil. However, in corn-planted acidic soils, re-inoculation of UG14Lr did not further enhance the already active phenanthrene degradation occurring in both the bulk or rhizospheric soils.

  20. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Trichoderma asperellum is a filamentous fungus that is able to produce and secrete a wide range of extracellular hydrolytic enzymes used for plant cell wall degradation. The Trichoderma genus has attracted considerable attention from the biorefinery industry due to the production of cell wall...... degrading enzymes and strong secretion ability of this genus. Here we report extensive transcriptome analysis of plant cell wall degrading enzymes in T. asperellum. The production of cell wall degrading enzymes by T. asperellum was tested on a range of cellulosic materials under various conditions. When T...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  1. ENHANCED DEGRADATION OF CAPTAN BY IMMOBILIZED CELLS OF BACILLUS CIRCULANS

    Directory of Open Access Journals (Sweden)

    Veena More

    2014-10-01

    Full Text Available The possibility of using Bacillus circulans in degrading captan was evaluated by comparing the captan degradation rate by freely suspended and immobilized cells on agar, sodium alginate (SA, polyacrylamide (PA and polyurethane-foam (PUF in batch and repeated batch degradations. Under batch degradations, 50, 60, 72, and 88% of 0.1% captan was degraded by freely suspended cells, agar-, SA-, and PA-immobilized cells, respectively in 72 h; whereas 15, 47.5, 67.7 and 75% of 0.2% captan was degraded by freely suspended cells, agar-, SA-, and PA-immobilized cells, respectively in 72 h. However, 0.1 and 0.2% captan were completely degraded by PUF-immobilized cells in 48 and 72 h, respectively. Under repeated batch degradations, PUF-immobilized cells were reused more than 40 cycles for 72 h without losing the captan degradation ability, while the cells immobilized on agar, SA, and the PA could be reused for 15, 20, and 25 cycles, respectively. A significant 0.1% captan degradation by PUF-immobilized cells was observed at pH 4.0 - 10.0 and 20 - 40 ºC ranges. In contrast, freely suspended cells only degraded captan at optimum pH of 7.0 and 30 ºC. The PUF-immobilized cells were able to significantly degrade captan for 120 days at 4 ºC without losing the captan degradation ability; whereas this ability was lost in 120 days for freely suspended cells. Since the application of captan leads to pollution and reduces soil fertility, the use of immobilized cells of Bacillus circulans can thus be a better cost-effective strategy to decontaminate captan polluted sites.

  2. ENHANCED DEGRADATION OF CAPTAN BY IMMOBILIZED CELLS OF BACILLUS CIRCULANS

    OpenAIRE

    Veena More; Preeti Tallur; More, Sunil S.; Niyonzima, Francois N.; Harichandra Ninnekar

    2014-01-01

    The possibility of using Bacillus circulans in degrading captan was evaluated by comparing the captan degradation rate by freely suspended and immobilized cells on agar, sodium alginate (SA), polyacrylamide (PA) and polyurethane-foam (PUF) in batch and repeated batch degradations. Under batch degradations, 50, 60, 72, and 88% of 0.1% captan was degraded by freely suspended cells, agar-, SA-, and PA-immobilized cells, respectively in 72 h; whereas 15, 47.5, 67.7 and 75% of 0.2% captan was degr...

  3. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    as the requirement criterion while Li–ion batteries where found as the devices which could best fulfil this requirement. Since accurate and fast battery performance models are indispensable for studying the virtual power plant behavior under different operating conditions, impedance-based performance......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  4. Organelle Extensions in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jaideep Mathur; Alena Mammone; Kiah A.Barton

    2012-01-01

    Cell walls lock each cell in a specific position within the supraorganization of a plant.Despite its fixed location,each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning,continued growth and development,and eventual long-term survival of the plant.The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell.In recent years,fluorescent proteinaided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell.One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed,and many organelles extend their surface transiently in rapid response to environmental stimuli.In many cases,the extensions appear as tubules extending from the main organelle.Specific terms such as stromules from plastids,matrixules from mitochondria,and peroxules from peroxisomes have been coined to describe the extensions.Here,we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells.

  5. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  6. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  7. Cell wall integrity signaling and innate immunity in plants.

    Science.gov (United States)

    Nühse, Thomas S

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host's cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments are danger-associated molecular patterns or DAMPs that can trigger defense signaling pathways comparable to microbial signals, but the picture is likely to be more complicated. A wide range of defects in cell wall biosynthesis leads to enhanced pathogen resistance. We are beginning to understand the essential role of cell wall integrity surveillance for plant growth, and the connection of processes like cell expansion, plasma membrane-cell wall contact and secondary wall biosynthesis with plant immunity is emerging.

  8. REGULATION OF CHLOROPHY LL DEGRADATION IN PLANT TISSUES

    Directory of Open Access Journals (Sweden)

    Syvash O. O.

    2017-06-01

    Full Text Available The purpose of the review was to analyze the basic biochemical processes leading to the chlorophyll degradation and ways to control this process in plant product storage. First of all, this is a complex of enzymatic reactions starting with the hydrolysis of chlorophyll with the formation of acyclic diterpene phytol and water-soluble chlorophyllide. An alternative primary reaction is the removal of magnesium from the chlorophyll tetrapyrrole ring to form pheophytin with the participation of Mg2+-dechelatase and/or low-molecular Mg2+-dechelating substances. The chlorophyll breakdown can also be caused by free radicals formed in the peroxidase-catalyzed reaction of Н2О2 with phenolic compounds or fatty acids. The unstable product of chlorophyll peroxidation, C132 –hydroxychlorophyll a decomposes to colorless low-molecular compounds. Expression of the genes of chlorophyll catabolism enzymes is controlled by phytohormones. Methods for controlling the pigment decomposition during storage of plant products are associated with the use of activators and inhibitors of chlorophyll decomposition. The best known inductor of the synthesis of catabolic enzymes is ethylene, widely used to accelerate fruit ripening. Gibberellins, cytokinins and nitric oxide, on the contrary, slow down the loss of chlorophyll.

  9. Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zverlov, Vladimir V.; Hiegl, Wolfgang; Koeck, Daniela E.; Koellmeier, Tanja; Schwarz, Wolfgang H. [Department of Microbiology, Technische Universitaet Muenchen, Freising-Weihenstephan (Germany); Kellermann, Josef [Max Planck Institute for Biochemistry, Am Klopferspitz, Martinsried (Germany)

    2010-12-15

    Adding plant biomass to a biogas reactor, hydrolysis is the first reaction step in the chain of biological events towards methane production. Maize silage was used to enrich efficient hydrolytic bacterial consortia from natural environments under conditions imitating those in a biogas plant. At 55-60 C a more efficient hydrolyzing culture could be isolated than at 37 C. The composition of the optimal thermophilic bacterial consortium was revealed by sequencing clones from a 16S rRNA gene library. A modified PCR-RFLP pre-screening method was used to group the clones. Pure anaerobic cultures were isolated. 70% of the isolates were related to Clostridium thermocellum. A new culture-independent method for identification of cellulolytic enzymes was developed using the isolation of cellulose-binding proteins. MALDI-TOF/TOF analysis and end-sequencing of peptides from prominent protein bands revealed cellulases from the cellulosome of C. thermocellum and from a major cellulase of Clostridium stercorarium. A combined culture of C. thermocellum and C. stercorarium was shown to excellently degrade maize silage. A spore preparation method suitable for inoculation of maize silage and optimal hydrolysis was developed for the thermophilic bacterial consortium. This method allows for concentration and long-term storage of the mixed culture for instance for inoculation of biogas fermenters. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Stem cell differentiation: Post-degradation forces kick in

    Science.gov (United States)

    Vincent, Ludovic G.; Engler, Adam J.

    2013-05-01

    Stem cells alter their morphology and differentiate to particular lineages in response to biophysical cues from the surrounding matrix. When the matrix is degradable, however, cell fate is morphology-independent and is directed by the traction forces that the cells actively apply after they have degraded the matrix.

  11. Celebrating Plant Cells: A Special Issue on Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A special issue on plant cell biology is long overdue for JIPB! In the last two decades or so, the plant biology community has been thrilled by explosive discoveries regarding the molecular and genetic basis of plant growth, development, and responses to the environment, largely owing to recent maturation of model systems like Arabidopsis thaliana and the rice Oryza sativa, as well as the rapid development of high throughput technologies associated with genomics and proteomics.

  12. seed longevity of dominant plant species from degraded savanna in ...

    African Journals Online (AJOL)

    Mgina

    DEGRADED SAVANNA IN SEMI-ARID TANZANIA. HVM Lyaruu .... reclamation of degraded and marginal lands in Tanzania ..... from the Swedish International Development. Authority ... Ministry of. Natural Resources and Tourism, Forestry.

  13. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  14. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  15. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  16. Biochemical and physiological characterisation of the purine degradation pathway in plants

    OpenAIRE

    Werner, Andrea

    2013-01-01

    Plant growth is often limited by nitrogen availability in the soil. Not only do plants depend on efficient nitrogen uptake, they also require effective means to internally redistribute nitrogen during every stage of development. The purine degradation pathway contributes to this nitrogen recycling in plants. In tropical legumes it is also of central importance to the plants’ nitrogen supply under nitrogen-fixing conditions. This is the first time that the complete ureide degradation pathway h...

  17. Plant enhanced degradation of phenanthrene in the contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-mei

    2006-01-01

    The degradative characteristics ofphenanthrene, microbial biomass carbon, plate counts of heterotrophic bacteria and most probable number (MPN) of phenanthrene degraders in non-rhizosphere or rhizosphere soils with uninoculating or inoculating phenanthrene degraders were measured. At the initial concentration of 20 mg phenanthrene/kg soil, the half-lives of phenanthrene in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated non-rhizosphere soil, and inoculated rhizosphere soil were measured to be 81.5, 47.8, 15.1 and 6.4 d, respectively, and corresponding kinetic data fitted first-order kinetics. The highest degradation rate of phenanthrene was observed in inoculated rhizosphere soil. The degradative characteristics of phenanthrene were closely related to the effects of vegetation on soil microbial process. Vegetation could enhance the magnitude ofrhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but barely influence those community components responsible for phenanthrene degradation. Results suggested that combination of vegetation and inoculation with degrading microorganisms of target organic contaminants was a better pathway to enhance degradation of the organic contaminants in soil.

  18. Soil and plant responses to degradation of alpine grassland in source region of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Land degradation has been rapidly taking place in source region of the Yellow River in China. This study was conducted during 2008 in Maduo County to investigate soil and plant changes in relation to land degradation. Several results were derived from this work. First, the soil organic carbon (SOC) and total nitrogen (TN) decreased significantly on the extremely degraded land comparing with the natural grassland. Second, soil bulk density increased as land degradation worsened. Soil bulk density of the extremely degraded land was significantly greater than that of the grassland. Third, pH showed no obvious variation pattern. Finally, aboveground biomass decreased from grassland to the moderately degraded land. But aboveground biomass increased on the extremely degraded land and very extremely degraded land with most aboveground biomass inedible for livestock.

  19. Materials and system degradation in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, D. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering, Green Energy and Fuel Cell Group

    2007-07-01

    Various degradation processes in fuel cell anodes and cathodes can cause the release of fluoride ions that thin the ionomer membrane and allow more gases to permeate the cell. This presentation provided an overview of reliability modelling techniques used to identify the failure modes of material degradation in fuel cells. A reliability model of a fuel cell stack and hydrogen power system was presented in addition to solution methods for Nafion degradation of the main polymer chain. Changes in the molecular weight of Nafion were discussed. A case study of a model was used to demonstrate that reaction slowed as the ionomer on the cathode degraded. Equations were developed for hydrogen crossover, peroxide production; peroxide destruction; F-ion production; thickness change; diffusion through the gas diffusion layer (GDL); and open circuit voltage (OCV). It was concluded that the OCV durability experiments generated a mechanism for degradation of commercial membranes. The modelling study showed that degradation was related to the permeability of hydrogen to the cathode, and oxygen to the anode. It was concluded that at lower oxygen pressures anode degradation was limited, while at higher pressures anode degradation was more significant. A power point presentation of the University of Waterloo's alternative fuel team provided details of the team's recent research activities. tabs., figs.

  20. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available BACKGROUND: Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. METHODOLOGY: Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. CONCLUSION: SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  1. Plant volatiles in polluted atmospheres: stress responses and signal degradation

    National Research Council Canada - National Science Library

    BLANDE, JAMES D; HOLOPAINEN, JARMO K; NIINEMETS, ÜLO

    2014-01-01

    .... Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes...

  2. Results of a screening programme to identify plants or plant extracts that inhibit ruminal protein degradation.

    Science.gov (United States)

    Selje, N; Hoffmann, E M; Muetzel, S; Ningrat, R; Wallace, R J; Becker, K

    2007-07-01

    One aim of the EC Framework V project, 'Rumen-up' (QLK5-CT-2001-00 992), was to find plants or plant extracts that would inhibit the nutritionally wasteful degradation of protein in the rumen. A total of 500 samples were screened in vitro using 14C-labelled casein in a 30-min incubation with ruminal digesta. Eight were selected for further investigation using a batch fermentation system and soya protein and bovine serum albumin as proteolysis substrates; proteolysis was monitored over 12 h by the disappearance of soluble protein and the production of branched SCFA and NH3. Freeze-dried, ground foliage of Peltiphyllum peltatum, Helianthemum canum, Arbutus unedo, Arctostaphylos uva-ursi and Knautia arvensis inhibited proteolysis (P fermentation. The effects showed some resemblance to those obtained in parallel incubations containing 3 mum-monensin, suggesting that K. arvensis may be a plant-derived feed additive that can suppress growth and activity of key proteolytic ruminal micro-organisms in a manner similar to that already well known for monensin.

  3. Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants.

    Science.gov (United States)

    Herrera, Carlos M; García, Isabel M; Pérez, Ricardo

    2008-09-01

    The ecology of nectarivorous microbial communities remains virtually unknown, which precludes elucidating whether these organisms play some role in plant-pollinator mutualisms beyond minor commensalism. We simultaneously assessed microbial abundance and nectar composition at the individual nectary level in flowers of three southern Spanish bumble bee-pollinated plants (Helleborus foetidus, Aquilegia vulgaris, and Aquilegia pyrenaica cazorlensis). Yeasts were frequent and abundant in nectar of all species, and variation in yeast density was correlated with drastic changes in nectar sugar concentration and composition. Yeast communities built up in nectar from early to late floral stages, at which time all nectaries contained yeasts, often at densities between 10(4) and 10(5) cells/mm3. Total sugar concentration and percentage sucrose declined, and percentage fructose increased, with increasing density of yeast cells in nectar. Among-nectary variation in microbial density accounted for 65% (H. foetidus and A. vulgaris) and 35% (A. p. cazorlensis) of intraspecific variance in nectar sugar composition, and 60% (H. foetidus) and 38% (A. vulgaris) of variance in nectar concentration. Our results provide compelling evidence that nectar microbial communities can have detrimental effects on plants and/or pollinators via extensive nectar degradation and also call for a more careful interpretation of nectar traits in the future, if uncontrolled for yeasts.

  4. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  5. Degradation and failure of bolting in nuclear power plants: Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1988-04-01

    A four-year program to resolve the generic safety issue of bolting degradation and failure in nuclear power plants has developed guidelines for material selection, bolting preload control, and plant operation, as well as a realistic method for evaluating the structural integrity of bolted joints. These measures can help improve plant availability while reducing radiation exposure and costs of maintenance and inspection. This report provides the technical basis for resolution of the generic issue of bolting degradation and failure in nuclear power plants.

  6. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance, spectral slope

  7. The physics of photon induced degradation of perovskite solar cells

    OpenAIRE

    Pranav H. Joshi; Liang Zhang; Istiaque M. Hossain; Hisham A. Abbas; Ranjith Kottokkaran; Satyapal P. Nehra; Mahendra Dhaka; Max Noack; Vikram L. Dalal

    2016-01-01

    Lead-trihalide perovskite solar cells are an important photovoltaic technology. We investigate the effect of light induced degradation on perovskite solar cells. During exposure, the open-circuit voltage (Voc) of the device increases, whereas the short-circuit current (Isc) shows a decrease. The degradation can be completely recovered using thermal annealing in dark. We develop a model based on light induced generation of ions and migration of these ions inside the material to explain the cha...

  8. Nuclear lamina in plant cells

    Institute of Scientific and Technical Information of China (English)

    汪健; 杨澄; 翟中和

    1996-01-01

    By using selective extraction and diethylene glycol distearate (DGD) embedment and embedment-free electron microscopy, the nuclear lamina was demonstrated in carrot and Ginkgo male generative cells. Western blotting revealed that the nuclear lamina was composed of A-type and B-type lamins which contained at least 66-ku and 84-ku or 66-ku and 86-ku polypeptides, respectively. These lamin proteins were localized at the nudear periphery as shown by immunogold-labelling. In situ hybridization for light microscope and electron microscope showed that plant cells have the homologous sequences of animal lamin cDNA. The sorting site of lamin mRNA is mainly distributed in the cytoplasm near the nudear envelope. The data have verified that there indeed exists nudear lamina in plant cells.

  9. Degradation of bulk diffusion length in CZ silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, J.H.; King, R.R.; Mitchell, K.W. [Siemens Solar Industries, Camarillo, CA (United States)

    1995-08-01

    Commercially-produced, unencapsulated, CZ silicon solar cells can lose 3 to 4% of their initial efficiency after exposure to light. After this initial, rapid ( < 30 min.) decrease, the cell power output remains stable. The cell performance recovers in a matter of hours in the dark at room temperature, and degrades again under light exposure. The different conditions under which CZ silicon cells degrade, and the reverse process, annealing, are characterized with the methods of spectral response and current-voltage (I-V) measurements. Iron impurities are a possible cause of this effect.

  10. Degradation of β-Aryl Ether Bonds in Transgenic Plants

    DEFF Research Database (Denmark)

    Mnich, Ewelina

    of the monolignols coniferyl alcohol, p-coumaryl alcohol and sinapyl alcohol which during radical-mediated oxidative coupling bind together forming different linkage types. Lignin is the main obstacle in biofuel production as it forms a mechanical barrier limiting accessibility for polysaccharide hydrolyzing enzymes...... system to degrade lignin. An important step in this degradation is cleavage of the most abundant lignin linkage type, β-aryl ether. It is cleaved in a three step reaction catalyzed by a dehydrogenase, a glutathione S-transferase and a glutathione lyase. Due to the nature of the enzymatic reactions...

  11. Evaluation on degradation of cable in nuclear power plant by boric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munhwan; Song, Geundong; Kim, Yeonku; Maeng, Wanyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Exposures to these conditions for long periods of times can cause a degradation of cable. Borated water is used in the primary systems of PWR plants to control the reactivity during normal plant operation and refueling, and under potential accident conditions. If borated water leaks from primary and secondary systems, significant corrosion problems can develop. However, little research has been carried out on the effects of cable degradation by borated water. In this experiment, TGA, indenting test, and FT-IR were performed to evaluate the degradation of cable by borated water. An evaluation of cable degradation by borated water was carried out. A TGA analysis, the measurement of cable microhardness and an FT-IR analysis before and after spraying with boric acid (B:170,000ppm). It is considered that there is no significant degradation of cables due to spraying with boric acid. More studies on long-term experiments for severe conditions are now progressing.

  12. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    Science.gov (United States)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  13. Degradation of munitions and chlorinated solvents by aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, N.L.

    1995-04-22

    Nitroreductase and dehalogenase enzymes have been isolated from sediments and soils. Using enzyme linked immunospecific assays (ELISA), a number of aquatic plants have been identified as sources of the enzymes. The plants were then brought back into the laboratory and evaluated as candidates for further remediation studies.

  14. Naturally occurring phenanthrene degrading bacteria associated with seeds of various plant species.

    Science.gov (United States)

    Fernet, Jennifer L; Lawrence, John R; Germida, James J

    2016-01-01

    Seeds of 11 of 19 plant species tested yielded naturally occurring phenanthrene degrading bacteria when placed on phenanthrene impression plates. Seed associated phenanthrene degrading bacteria were mostly detected on caragana, Canada thistle, creeping red fescue, western wheatgrass, and tall wheat grass. Based on 16S rRNA analysis the most common bacteria isolated from these seeds were strains belonging to the genera Enterobacteria, Erwinia, Burkholderia, Pantoea, Pseudomonas, and Sphingomonas. These plants may provide an excellent source of pre-adapted bacterial-plant associations highly suitable for use in remediation of contaminated soil environments.

  15. Coupling cell proliferation and development in plants.

    Science.gov (United States)

    Gutierrez, Crisanto

    2005-06-01

    Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.

  16. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products.

    Science.gov (United States)

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%.

  17. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.|info:eu-repo/dai/nl/07493662X

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  18. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  19. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...... of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  20. Apoptotic-like programmed cell death in plants.

    Science.gov (United States)

    Reape, Theresa J; McCabe, Paul F

    2008-01-01

    Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.

  1. Luminescence imaging of polymer solar cells: visualization of progressing degradation

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, Marco; Roesch, Roland; Hoppe, Harald [Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We apply luminescence imaging as tool for the non-destructive visualization of degradation processes within bulk heterojunction polymer solar cells. The imaging technique is based on luminescence detection with a highly sensitive silicon-ccd camera and is able to visualize the with time advancing degradation patterns of polymer solar cells. The devices investigated have been aged under defined conditions and were characterized periodically with current-voltage-sweeps. This allows determining the time evolution of the photovoltaic parameters and - in combination with the luminescence images - understanding differences in the observed degradation behaviour. The versatile usability of the method is demonstrated in a correlation between local reduction of lateral luminescence and a fast decrease of the short-circuit-current due to the loss of active area. Differences in the degradation of photovoltaic parameters under varied aging conditions are discussed.

  2. Crystallinity dependent thermal degradation in organic solar cell

    Science.gov (United States)

    Lee, Hyunho; Sohn, Jiho; Tyagi, Priyanka; Lee, Changhee

    2017-01-01

    An operating solar cell undergoes solar heating; thus, the degradation study of organic photo-voltaic (OPV) with a thermal stress is required for their practical applications. We present a thermal degradation study on OPVs fabricated with photo-active polymers having different crystalline phase. Light intensity dependent analysis for different thermal stress duration is performed. In crystalline, the degradation majorly occurs due to drop in open-circuit voltage while in amorphous one it is due to drop in short-circuit current. Physical mechanism in both systems is explained and supported by the X-ray diffraction, morphological and optical characterization.

  3. UV Degradation and Recovery of Perovskite Solar Cells

    Science.gov (United States)

    Lee, Sang-Won; Kim, Seongtak; Bae, Soohyun; Cho, Kyungjin; Chung, Taewon; Mundt, Laura E.; Lee, Seunghun; Park, Sungeun; Park, Hyomin; Schubert, Martin C.; Glunz, Stefan W.; Ko, Yohan; Jun, Yongseok; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-01-01

    Although the power conversion efficiency of perovskite solar cells has increased from 3.81% to 22.1% in just 7 years, they still suffer from stability issues, as they degrade upon exposure to moisture, UV light, heat, and bias voltage. We herein examined the degradation of perovskite solar cells in the presence of UV light alone. The cells were exposed to 365 nm UV light for over 1,000 h under inert gas at perovskite material. PMID:27909338

  4. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  5. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  6. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  7. Regio- and stereoselectivities in plant cell biotransformation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H. [Okayama Univ. of Science (Japan)

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  8. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

    Science.gov (United States)

    Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P

    2015-08-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush.

  9. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  10. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  11. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.

  12. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia's headwaters.

    Science.gov (United States)

    Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun

    2014-10-01

    A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.

  13. Microbiological degradation of pentane by immobilized cells of Arthrobacter sp.

    Science.gov (United States)

    Ionata, Elena; De Blasio, Paola; La Cara, Francesco

    2005-02-01

    The increasing production of several plastics such as expanded polystyrene, widely used as packaging and building materials, has caused the release of considerable amounts of pentane employed as an expanding agent. Today many microorganisms are used to degrade hydrocarbons in order to minimize contamination caused by several industrial activities. The aim of our work was to identify a suitable microorganism to degrade pentane. We focused our attention on a strain of Arthrobacter sp. which in a shake-flask culture produced 95% degradation of a 10% mixture of pentane in a minimal medium after 42 days of incubation at 20 degrees C. Arthrobacter sp. cells were immobilized on a macroporous polystyrene particle matrix that provides a promising novel support for cell immobilization. The method involved culturing cells with the expanded polystyrene in shake-flasks, followed by in situ growth within the column. Scanning electron microscopy analysis showed extensive growth of Arthrobacter sp. on the polymeric surface. The immobilized microorganism was able to actively degrade a 10% mixture of pentane, allowing us to obtain a bioconversion yield of 90% after 36 h. Moreover, in repeated-batch operations, immobilized Arthrobacter sp. cells were able to maintain 85-95% pentane degradation during a 2 month period. Our results suggest that this type of bioreactor could be used in pentane environmental decontamination.

  14. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Science.gov (United States)

    Kumar, Pankaj; Bilen, Chhinder; Feron, Krishna; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.

    2014-05-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and P3HT:indene-C60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ˜50% performance restoration over several degradation/regeneration cycles.

  15. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.

    Science.gov (United States)

    Cheema, Sardar Alam; Imran Khan, Muhammad; Shen, Chaofeng; Tang, Xianjin; Farooq, Muhammad; Chen, Lei; Zhang, Congkai; Chen, Yingxu

    2010-05-15

    The present study was conducted to investigate the capability of four plant species (tall fescue, ryegrass, alfalfa, and rape seed) grown alone and in combination to the degradation of phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs) in spiked soil. After 65 days of plant growth, plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds, plant uptake and accumulation and residual concentrations of phenanthrene and pyrene were determined. Our results showed that presence of vegetation significantly enhanced the dissipation of phenanthrene and pyrene from contaminated soils. Higher degradation rates of PAHs were observed in the combined plant cultivation (98.3-99.2% phenanthrene and 88.1-95.7% pyrene) compared to the single plant cultivation (97.0-98.0% phenanthrene and 79.8-86.0% pyrene). Contribution of direct plant uptake and accumulation of phenanthrene and pyrene was very low compared to the plant enhanced dissipation. By contrast, plant-promoted biodegradation was the predominant contribution to the remediation enhancement. The correlation analysis indicates a negative relation between biological activities (dehydrogenase activity and WSP compounds) and residual concentrations of phenanthrene and pyrene in planted soils. Our results suggest that phytoremediation could be a feasible choice for PAHs contaminated soil. Moreover, the combined plant cultivation has potential to enhance the process. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells.

    Directory of Open Access Journals (Sweden)

    Francesca Cecchinato

    Full Text Available Magnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg.The degradation parameters of magnesium-silver (Mg2Ag, magnesium-gadolinium (Mg10Gd and magnesium-rare-earth (Mg4Y3RE alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development.The pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.

  17. Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants.

    Science.gov (United States)

    Marucchini, Cesare; Zadra, C

    2002-01-01

    A high proportion of agrochemicals are chiral compounds. Since stereoisomers often show different biological and physiological properties, the biological and metabolic responses to these compounds and their fate in the environment are expected to be different. In this work we investigate a possible stereo and/or enantioselective degradation in soil and plants (sunflower) of the fungicide Metalaxyl (rac-Metalaxyl) and the new compound Metalaxyl-M ((-)-(R)-Metalaxyl) and propose procedures for extraction, cleanup, chromatographic separation of enantiomers, and determination of the R : S ratio by using an HPLC chiral column. The degradation of the two stereoisomers of Metalaxyl proved to be enantioselective and dependent on the media: the (+)-(S)-enantiomer showed a faster degradation in plants, while the (-)-(R)-enantiomer showed a faster degradation in soil. In this study there was no evidence that racemization of Metalaxyl-M took place either in soil or in sunflowers. Copyright 2002 Wiley-Liss, Inc.

  18. The physics of photon induced degradation of perovskite solar cells

    Science.gov (United States)

    Joshi, Pranav H.; Zhang, Liang; Hossain, Istiaque M.; Abbas, Hisham A.; Kottokkaran, Ranjith; Nehra, Satyapal P.; Dhaka, Mahendra; Noack, Max; Dalal, Vikram L.

    2016-11-01

    Lead-trihalide perovskite solar cells are an important photovoltaic technology. We investigate the effect of light induced degradation on perovskite solar cells. During exposure, the open-circuit voltage (Voc) of the device increases, whereas the short-circuit current (Isc) shows a decrease. The degradation can be completely recovered using thermal annealing in dark. We develop a model based on light induced generation of ions and migration of these ions inside the material to explain the changes in Isc, Voc, capacitance and dark current upon light exposure and post-exposure recovery. There was no change in defect density in the material upon exposure.

  19. The physics of photon induced degradation of perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Pranav H. Joshi

    2016-11-01

    Full Text Available Lead-trihalide perovskite solar cells are an important photovoltaic technology. We investigate the effect of light induced degradation on perovskite solar cells. During exposure, the open-circuit voltage (Voc of the device increases, whereas the short-circuit current (Isc shows a decrease. The degradation can be completely recovered using thermal annealing in dark. We develop a model based on light induced generation of ions and migration of these ions inside the material to explain the changes in Isc, Voc, capacitance and dark current upon light exposure and post-exposure recovery. There was no change in defect density in the material upon exposure.

  20. Trichloroacetic acid in Norway spruce/soil-system. II. Distribution and degradation in the plant.

    Science.gov (United States)

    Forczek, S T; Uhlírová, H; Gryndler, M; Albrechtová, J; Fuksová, K; Vágner, M; Schröder, P; Matucha, M

    2004-07-01

    Independently from its origin, trichloroacetic acid (TCA) as a phytotoxic substance affects coniferous trees. Its uptake, distribution and degradation were thus investigated in the Norway spruce/soil-system using 14C labeling. TCA is distributed in the tree mainly by the transpiration stream. As in soil, TCA seems to be degraded microbially, presumably by phyllosphere microorganisms in spruce needles. Indication of TCA biodegradation in trees is shown using both antibiotics and axenic plants.

  1. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  2. Plant response to heavy metals and organic pollutants in cell culture and at whole plant level

    Energy Technology Data Exchange (ETDEWEB)

    Golan-Goldhirsh, A.; Barazani, O. [Ben-Gurion Univ. of The Negev, The Jacob Blaustein Inst. for Desert Research, Albert Katz Dept. of Dryland Biotechnologies, Desert Plant Biotechnology Lab., Sede Boqer Campus (Israel); Nepovim, A.; Soudek, P.; Vanek, T. [Inst. of Organic Chemistry and Biochemistry (Czech Republic); Smrcek, S.; Dufkova, L.; Krenkova, S. [Faculty of Natural Sciences, Charles Univ. (Czech Republic); Yrjala, K. [Univ. of Helsinki, Dept. of Biosciences, Div. of General Microbiology, Helsinki (Finland); Schroeder, P. [Inst. for Soil Ecology, GSF National Research Center for Environment and Health, Neuherberg, Oberschleissheim (Germany)

    2004-07-01

    Background. Increasing awareness in the last decade concerning environmental quality had prompted research into 'green solutions' for soil and water remediation, progressing from laboratory in vitro experiments to pot and field trials. In vitro cell culture experiments provide a convenient system to study basic biological processes, by which biochemical pathways, enzymatic activity and metabolites can be specifically studied. However, it is difficult to relate cell cultures, calli or even hydroponic experiments to the whole plant response to pollutant stress. In the field, plants are exposed to additional a-biotic and biotic factors, which complicate further plant response. Hence, we often see that in vitro selected species perform poorly under soil and field conditions. Soil physical and chemical properties, plant-mycorrhizal association and soil-microbial activity affect the process of contaminant degradation by plants and/or microorganisms, pointing to the importance of pot and field experiments. Objective. This paper is a joint effort of a group of scientists in COST action 837. It represents experimental work and an overview on plant response to environmental stress from in vitro tissue culture to whole plant experiments in soil. Results. Results obtained from in vitro plant tissue cultures and whole plant hydroponic experiments indicate the phytoremediation potential of different plant species and the biochemical mechanisms involved in plant tolerance. In pot experiments, several selected desert plant species, which accumulated heavy metal in hydroponic systems, succeeded in accumulating the heavy metal in soil conditions as well. Conclusions and recommendations. In vitro plant tissue cultures provide a useful experimental system for the study of the mechanisms involved in the detoxification of organic and heavy metal pollutants. However, whole plant experimental systems, as well as hydroponics followed by pot and field trials, are essential when

  3. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications...

  4. Stability and degradation mechanisms in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Bernhard

    2012-04-26

    This thesis deals with stability improvements and the investigation of degradation mechanisms in organic solar cells. Organic solar cells have been in the focus of extensive academic research for over almost two decades and are currently entering the market in small scale applications. For successful large scale applications, next to the improvement of the power conversion efficiency, the stability of organic solar cells has to be increased. This thesis is dedicated to the investigation of novel materials and architectures to study stability-related issues and degradation mechanisms in order to contribute to the basic understanding of the working principles of organic solar cells. Here, impedance spectroscopy, a frequency domain technique, is used to gain information about stability and degradation mechanisms in organic solar cells. In combination with systematic variations in the preparation of solar cells, impedance spectroscopy gives the possibility to differentiate between interface and bulk dominated effects. Additionally, impedance spectroscopy gives access to the dielectric properties of the device, such as capacitance. This offers among other things the opportunity to probe the charge carrier concentration and the density of states. Another powerful way of evaluation is the combination of experimentally obtained impedance spectra with equivalent circuit modelling. The thesis presents results on novel materials and solar cell architectures for efficient hole and electron extraction. This indicates the importance of knowledge over interlayers and interfaces for improving both the efficiency and stability of organic solar cells.

  5. Effects of processing technologies combined with cell wall degrading enzymes on in vitro degradability of barley.

    Science.gov (United States)

    de Vries, S; Pustjens, A M; Schols, H A; Hendriks, W H; Gerrits, W J J

    2012-12-01

    Effects of processing technologies and cell wall degrading enzymes on in vitro degradation of barley were tested in a 5 × 2 factorial arrangement: 5 technologies (unprocessed, wet-milling, extrusion, autoclaving, and acid-autoclaving), with or without enzymes. Upper gastrointestinal tract digestion (Boisen incubation) and large intestinal fermentation (gas production technique) were simulated in duplicate. All technologies increased digestion of DM (13 to 43% units) and starch (22 to 51% units) during Boisen incubation, compared with the unprocessed control (P starch (≈ 20% units), and CP (≈ 10% units) in unprocessed and autoclaved barley (P starch present in the Boisen residues. In conclusion, wet-milling, extrusion, and acid-autoclaving improved in vitro starch and CP digestion in barley, which is related to the cell wall matrix disruption. Addition of xylanases and β-glucanases improved in vitro starch and CP digestion only in unprocessed barley or barley poorly affected by processing.

  6. Modeling of PEM fuel cell Pt/C catalyst degradation

    Science.gov (United States)

    Bi, Wu; Fuller, Thomas F.

    Pt/C catalyst degradation remains as one of the primary limitations for practical applications of proton exchange membrane (PEM) fuel cells. Pt catalyst degradation mechanisms with the typically observed Pt nanoparticle growth behaviors have not been completely understood and predicted. In this work, a physics-based Pt/C catalyst degradation model is proposed with a simplified bi-modal particle size distribution. The following catalyst degradation processes were considered: (1) dissolution of Pt and subsequent electrochemical deposition on Pt nanoparticles in cathode; (2) diffusion of Pt ions in the membrane electrode assembly (MEA); and (3) Pt ion chemical reduction in membrane by hydrogen permeating through the membrane from the negative electrode. Catalyst coarsening with Pt nanoparticle growth was clearly demonstrated by Pt mass exchange between small and large particles through Pt dissolution and Pt ion deposition. However, the model is not adequate to predict well the catalyst degradation rates including Pt nanoparticle growth, catalyst surface area loss and cathode Pt mass loss. Additional catalyst degradation processes such as new Pt cluster formation on carbon support and neighboring Pt clusters coarsening was proposed for further simulative investigation.

  7. Microfluidic platforms for plant cells studies.

    Science.gov (United States)

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  8. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement

    Directory of Open Access Journals (Sweden)

    Shamsa Akbar

    Full Text Available ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1 within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4 and Ochrobactrum sp. (FCp1. These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1 within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1 was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5

  9. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  10. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Arend Jan Schouten

    2011-10-01

    Full Text Available Polycaprolactone (PCL polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn. The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.

  11. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...

  12. Influence of plant growth on degradation of linear alkylbenzene sulfonate in sludge-amended soil.

    Science.gov (United States)

    Mortensen, G K; Egsgaard, H; Ambus, P; Jensen, E S; Grøn, C

    2001-01-01

    Widespread application of sewage sludge to agricultural soils in Denmark has led to concern about the possible accumulation and effects of linear alkylbenzene sulfonate (LAS) in the soil ecosystem. Therefore, we have studied the uptake and degradation of LAS in greenhouse pot experiments. Sewage sludge was incorporated into a sandy soil to give a range from very low to very high applications (0.4 to 90 Mg dry wt. ha(-1)). In addition, LAS was added as water solutions. The soil was transferred to pots and sown with barley (Hordeum vulgare L. cv. Apex), rape (Brassica napus L. cv. Hyola 401), or carrot (Daucus carota L.). Also, plant-free controls were established. For all additions there was no plant uptake above the detection limit at 0.5 mg LAS kg(-1) d.w, but plant growth stimulated the degradation. With a growth period of 30 d, LAS concentrations in soil from pots with rape had dropped from 27 to 1.4 mg kg(-1) dry wt., but in plant-free pots the concentration decreased only to 2.4 mg kg(-1) dry wt. When LAS was added as a spike, the final concentration in soil from planted pots was 0.7 mg kg(-1) dry wt., but in pots without plants the final concentration was much higher (2.5 mg kg(-1) dry wt.). During degradation, the relative fraction of homologues C10, C11, and C12 decreased, while C13 increased.

  13. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific

  14. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plan

  15. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    NARCIS (Netherlands)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schuckel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho; van Elsas, Jan Dirk

    2016-01-01

    The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M),

  16. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach

    NARCIS (Netherlands)

    Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C.

    1998-01-01

    The effects of plant phytase on the gastric degradation of phytic acid and digestibilities of DM and P, and their diurnal variation were evaluated in pigs from 90 to 115 kg BW fitted with simple duodenal T-cannulas. Three diets were fed to three pigs in four collection periods according to a cross-o

  17. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment.

    Science.gov (United States)

    Barriuso, Blanca; Astiasarán, Iciar; Ansorena, Diana

    2016-04-01

    The interest in plant sterols enriched foods has recently enhanced due to their healthy properties. The influence of the unsaturation degree of different fatty acids methyl esters (FAME: stearate, oleate, linoletate and linolenate) on a mixture of three plant sterols (PS: campesterol, stigmasterol and β-sitosterol) was evaluated at 180 °C for up to 180 min. Sterols degraded slower in the presence of unsaturated FAME. Both PS and FAME degradation fit a first order kinetic model (R(2)>0.9). Maximum oxysterols concentrations were achieved at 20 min in neat PS and 120 min in lipid mixtures and this maximum amount decreased with increasing their unsaturation degree. In conclusion, the presence of FAME delayed PS degradation and postponed oxysterols formation. This protective effect was further promoted by increasing the unsaturation degree of FAME. This evidence could help industries to optimize the formulation of sterol-enriched products, so that they could maintain their healthy properties during cooking or processing.

  18. Application of the comet assay in studies of programmed cell death (PCD) in plants

    OpenAIRE

    2014-01-01

    Programmed cell death (PCD) in plants is an intensively investigated process. One of the main characteristics of PCD in both animal and plant organisms is the non-random, internucleosomal fragmentation of nuclear DNA, usually analysed using total DNA gel electrophoresis or TUNEL method. In this paper we present application of the "comet assay" (Single Cell Gel Electrophoresis) for detection of nDNA degradation in studies of PCD during plant life cycle. We analyzed three types of tissue: anthe...

  19. Cell-penetrating peptides: From mammalian to plant cells

    OpenAIRE

    Eudes, François; Chugh, Archana

    2008-01-01

    Internalization of cell-penetrating peptides, well described in mammalian cell system, has recently been reported in a range of plant cells by three independent groups. Despite fundamental differences between animal cell and plant cell composition, the CPP uptake pattern between the mammalian system and the plant system is very similar. Tat, Tat-2 pVEC and transportan internalisation is concentration dependent and non saturable, enhanced at low temperature (4°C), and receptor independent. The...

  20. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  1. Repair and degradation systems in irradiated animal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ivannik, B.P.; Proskuryakov, S.Ya.; Ryabchenko, N.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    It was shown that primary radiosensitivity of DNA depends on the rate of DNA repair. In Zajdela hepatoma cells, cycloheximide administered immediately or 2 h before irradiation of animals does not influence DNA repair. Cycloheximide administered 4 h before irradiation of rats with a dose of 30 Gy arrests DNA repair in thymocytes and Zajdela hepatoma cells. At the same time, in cells of rat lymph nodes and spleen, under similar conditions, cycloheximide does not influence DNA repair and inhibits the secondary DNA degradation.

  2. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    Science.gov (United States)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  3. Plant stem cells as innovation in cosmetics.

    Science.gov (United States)

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  4. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  5. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  6. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  7. [On plant stem cells and animal stem cells].

    Science.gov (United States)

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  8. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman.

    Science.gov (United States)

    Karimi, Maryam; Hassanshahian, Mehdi

    2016-01-01

    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mgL(-1) was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  9. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    Directory of Open Access Journals (Sweden)

    Maryam Karimi

    2016-03-01

    Full Text Available Abstract Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11 that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275 mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  10. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    Science.gov (United States)

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  11. Radiation-induced degradation of sodium alginate and its plant growth promotion effect

    Directory of Open Access Journals (Sweden)

    H.L. Abd El-Mohdy

    2017-02-01

    Full Text Available Alginate was irradiated as a solid with 60Co gamma rays in the dose range of 20–100 kGy to investigate the effect of radiation on alginates. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses which occurs with addition of chemical initiator to NaAlg during irradiation process that leads to a synergistic effect, which remarkably increases the degradation efficiency of alginate. The factors affecting the degradation process such as irradiation dose and potassium per-sulfate (KPS addition were studied. The average molecular weight of the irradiated alginate was investigated in detail by using several complementary techniques such as chromatography and viscometry. The lowest molecular weight of alginate resulted at 100 kGy and added KPS, whereas the highest one at 20 kGy in absence of KPS. Characterization of the oligoalginates obtained by radiation degradation was performed by FT-IR and UV–vis spectroscopy, XRD and TGA. The effect of water-soluble radiation-induced alginate fractions on the growth promotion of Faba bean plant was studied. The highest plant growth and seed yield compared with control occurred for plants sprayed with low molecular weight NaAlg fractions (treated with 100 kGy and added KPS.

  12. Effect of radiation-degraded chitosan on growth promotion of flower plant in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Le Quang; Ha, Vo Thi Thu; Hai, Le; Hien, Nguyen Quoc [Vietnam Atomic Energy Commission, Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Radiation is a useful tool for degradation of polysaccharides, such as starch, carrageenan, alginate and chitin/chitosan. The viscosity molecular weight (Mw) of chitosan with 80% degree of deacetylation was reduced to 1.5 x 10{sup 5} by irradiation of 50kGy in solid phase. The solution of 10% of chitosan with Mw ca. 15 x 10{sup 5} was then irradiated at doses ranging 10-250kGy for further degradation and the products were supplemented into cultural media for testing of plant growth promotion effect. The results indicated that irradiated chitosan showed a strong growth-promotion effect on the increase of the length of shoot, the length of root and fresh biomass for flower plants namely Limonium latifolium, Eustoma grandiflorum and Chrysanthemum morifolium in tissue culture. The growth-promotion effect was obtained by the treatments with 50ppm of chitosan irradiated at the doses of 75-100kGy in 10% solution. The suitable concentrations of chitosan irradiated at 100kGy are ca. 100ppm for C. morifolium, 30ppm for E. grandiflorum and 40ppm for L. latifolium. In addition, our study also indicated that the survival ratio of transferred flower plantlets treated with irradiated chitosan was improved after acclimatizing for 30 days in the greenhouse. Accordingly, it is concluded that degraded chitosan obtained by radiation degradation technique is effective as a plant growth promoter as well as irradiated alginate. (author)

  13. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about...... the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death......, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  14. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    Science.gov (United States)

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    Science.gov (United States)

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  17. Isolation and characterization of agar-degrading endophytic bacteria from plants.

    Science.gov (United States)

    Song, Tao; Zhang, Weijia; Wei, Congchong; Jiang, Tengfei; Xu, Hui; Cao, Yi; Cao, Yu; Qiao, Dairong

    2015-02-01

    Agar is a polysaccharide extracted from the cell walls of some macro-algaes. Among the reported agarases, most of them come from marine environment. In order to better understand different sources of agarases, it is important to search new non-marine native ones. In this study, seven agar-degrading bacteria were first isolated from the tissues of plants, belonging to three genera, i.e., Paenibacillus sp., Pseudomonas sp., and Klebsiella sp. Among them, the genus Klebsiella was first reported to have agarolytic ability and the genus Pseudomonas was first isolated from non-marine environment with agarase activity. Besides, seven strains were characterized by investigating the growth and agarase production in the presence of various polysaccharides. The results showed that they could grow on several polysaccharides such as araban, carrageenan, chitin, starch, and xylan. Besides, they could also produce agarase in the presence of different polysaccharides other than agar. Extracellular agarases from seven strains were further analyzed by SDS-PAGE combined with activity staining and estimated to be 75 kDa which has great difference from most reported agarases.

  18. Application of the comet assay in studies of programmed cell death (PCD in plants

    Directory of Open Access Journals (Sweden)

    Maria Charzyńska

    2014-01-01

    Full Text Available Programmed cell death (PCD in plants is an intensively investigated process. One of the main characteristics of PCD in both animal and plant organisms is the non-random, internucleosomal fragmentation of nuclear DNA, usually analysed using total DNA gel electrophoresis or TUNEL method. In this paper we present application of the "comet assay" (Single Cell Gel Electrophoresis for detection of nDNA degradation in studies of PCD during plant life cycle. We analyzed three types of tissue: anther tapetum, endosperm and mesophyll which were prepared in different ways to obtain a suspension of viable cells (without cell walls. The comet assay gives a possibility of examination of the nDNA degradation in individual cell. This method is significant for studies of the plant tissue differentiation and senescence especially in the cases when it is not possible to isolate large number of cells at the same developmental stage.

  19. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  20. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  1. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  2. Catalysts of plant cell wall loosening

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  3. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K.

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  4. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.

    Science.gov (United States)

    Guerrero, Antonio; You, Jingbi; Aranda, Clara; Kang, Yong Soo; Garcia-Belmonte, Germà; Zhou, Huanping; Bisquert, Juan; Yang, Yang

    2016-01-26

    The stability of perovskite solar cells is one of the major challenges for this technology to reach commercialization, with water believed to be the major degradation source. In this work, a range of devices containing different cathode metal contacts in the configuration ITO/PEDOT:PSS/MAPbI3/PCBM/Metal are fully electrically characterized before and after degradation caused by steady illumination during 4 h that induces a dramatic reduction in power conversion efficiency from values of 12 to 1.8%. We show that a decrease in performance and generation of the S-shape is associated with chemical degradation of the metal contact. Alternatively, use of Cr2O3/Cr as the contact enhances the stability, but modification of the energetic profile during steady illumination takes place, significantly reducing the performance. Several techniques including capacitance-voltage, X-ray diffraction, and optical absorption results suggest that the properties of the bulk perovskite layer are little affected in the device degradation process. Capacitance-voltage and impedance spectroscopy results show that the electrical properties of the cathode contact are being modified by generation of a dipole at the cathode that causes a large shift of the flat-band potential that modifies the interfacial energy barrier and impedes efficient extraction of electrons. Ionic movement in the perovskite layer changes the energy profile close to the contacts, modifying the energy level stabilization at the cathode. These results provide insights into the degradation mechanisms of perovskite solar cells and highlight the importance to further study the use of protecting layers to avoid the chemical reactivity of the perovskite with the external contacts.

  5. Stem cell function during plant vascular development.

    Science.gov (United States)

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-23

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation.

  6. UV Degradation and Recovery of Perovskite Solar Cells

    Science.gov (United States)

    Lee, Sang-Won; Kim, Seongtak; Bae, Soohyun; Cho, Kyungjin; Chung, Taewon; Mundt, Laura E.; Lee, Seunghun; Park, Sungeun; Park, Hyomin; Schubert, Martin C.; Glunz, Stefan W.; Ko, Yohan; Jun, Yongseok; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-12-01

    Although the power conversion efficiency of perovskite solar cells has increased from 3.81% to 22.1% in just 7 years, they still suffer from stability issues, as they degrade upon exposure to moisture, UV light, heat, and bias voltage. We herein examined the degradation of perovskite solar cells in the presence of UV light alone. The cells were exposed to 365 nm UV light for over 1,000 h under inert gas at <0.5 ppm humidity without encapsulation. 1-sun illumination after UV degradation resulted in recovery of the fill factor and power conversion efficiency. Furthermore, during exposure to consecutive UV light, the diminished short circuit current density (Jsc) and EQE continuously restored. 1-sun light soaking induced recovery is considered to be caused by resolving of stacked charges and defect state neutralization. The Jsc and EQE bounce-back phenomenon is attributed to the beneficial effects of PbI2 which is generated by the decomposition of perovskite material.

  7. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  8. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  9. Understory flora and community physiognomy of planted forests in the degraded purple soil ecosystem, South China

    Institute of Scientific and Technical Information of China (English)

    YUZhan-yuan; YUEYong-jie; GUOJian-fen; CHENGuang-shui; XIEJin-sheng; HEZong-ming; YANGYu-sheng

    2005-01-01

    The flora and community physiognomy of degraded plantation ecosystems on purple soil were investigated in Ninghua County of Fujian Province, China to understand the relationship between plant diversity and ecosystem processes.. Four different restoration communities (labeled as ecological restoration treatment I, II, Ill and IV) were selected by space-time replacement method according to the erosion intensity in degraded purple soil ecosystem. The results showed that there were totally 86 plant species belonging to 78 genera and 43 families in the degraded purple soil ecosystem. Of the 15 types of distribution area in spermatophyte genus, 12 types were found in the purple soil ecosystem. Along restoration gradient from low to high, plant growth type and life form spectra became abundant more and more, and the spermatophyte genera for each distribution area type and genera numbers for different foliage characters increased as well. It is concluded that the plant flora and physiognomy in ecological restoration process become more complex and diverse, indicating that the forest ecosystem on purple soil tends to be more stable.

  10. Pathological modifications of plant stem cell destiny

    Science.gov (United States)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  11. Plant cells: immobilization and oxygen transfer.

    NARCIS (Netherlands)

    Hulst, A.C.

    1987-01-01

    The study described in this thesis is part of the integrated project 'Biotechnological production of non-persistent bioinsecticides by means of plant cells invitro ' and was done in close cooperation with the research Institute Ital within the framework of NOVAPLANT. The plant cells us

  12. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  13. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  14. Transport vesicle formation in plant cells.

    Science.gov (United States)

    Hwang, Inhwan; Robinson, David G

    2009-12-01

    In protein trafficking, transport vesicles bud from donor compartments and carry cargo proteins to target compartments with which they fuse. Thus, vesicle formation is an essential step in protein trafficking. As for mammals, plant cells contain the three major types of vesicles: COPI, COPII, and CCV and the major molecular players in vesicle-mediated protein transport are also present. However, plant cells generally contain more isoforms of the coat proteins, ARF GTPases and their regulatory proteins, as well as SNAREs. In addition, plants have established some unique subfamilies, which may reflect plant cell-specific conditions such as the absence of an ER-Golgi intermediate compartment and the combined activities of the TGN and early endosome. Thus, even though we are still at an early stage in understanding the physiological function of these proteins, it is already clear that vesicle-mediated protein transport in plant cells displays both similarities as well as differences in animal cells.

  15. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner

    2005-01-01

    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  16. Microtubule networks for plant cell division

    NARCIS (Netherlands)

    Keijzer, de Jeroen; Mulder, B.M.; Janson, M.E.

    2014-01-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called

  17. Light-induced protein degradation in human-derived cells.

    Science.gov (United States)

    Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi

    2017-05-27

    Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Degradation modes of alkaline fuel cells and their components

    Science.gov (United States)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  19. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  20. Dimethoate degradation in plants and during processing of yerba maté leaves

    Directory of Open Access Journals (Sweden)

    Schmalko Miguel E.

    2002-01-01

    Full Text Available The objective of this research was to study degradation kinetics of dimethoate in plants of Ilex paraguariensis Saint Hilaire (or yerba maté and during its processing. To determine dimethoate concentration, a capillary gas chromatography technique with a mass selective detector was used. Half-life times in plants ranked between 9.8 and 11.8 days. During processing, with a blanching and two drying steps, dimethoate concentration decayed to a 22.7% of its initial value (in dry basis; while during seasoning step (at 45degreesC, half-life time was 17.3 days. With these values, preharvest safety interval was determined.

  1. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  2. Predictive based monitoring of nuclear plant component degradation using support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, Statistics; Alamaniotis, Miltiadis [Purdue Univ., West Lafayette, IN (United States). School of Nuclear Engineering; Tsoukalas, Lefteri H. [Purdue Univ., West Lafayette, IN (United States). School of Nuclear Engineering

    2015-02-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component’s respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  3. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  4. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  5. Plasma Membrane Protein Ubiquitylation and Degradation as Determinants of Positional Growth in Plants

    Institute of Scientific and Technical Information of China (English)

    Barbara Korbei; Christian Luschnig

    2013-01-01

    Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Cross-talk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localiza-tion and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.

  6. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  7. Trapped charge-driven degradation of perovskite solar cells

    Science.gov (United States)

    Ahn, Namyoung; Kwak, Kwisung; Jang, Min Seok; Yoon, Heetae; Lee, Byung Yang; Lee, Jong-Kwon; Pikhitsa, Peter V.; Byun, Junseop; Choi, Mansoo

    2016-01-01

    Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition. PMID:27830709

  8. Trapped charge-driven degradation of perovskite solar cells

    Science.gov (United States)

    Ahn, Namyoung; Kwak, Kwisung; Jang, Min Seok; Yoon, Heetae; Lee, Byung Yang; Lee, Jong-Kwon; Pikhitsa, Peter V.; Byun, Junseop; Choi, Mansoo

    2016-11-01

    Perovskite solar cells have shown unprecedent performance increase up to 22% efficiency. However, their photovoltaic performance has shown fast deterioration under light illumination in the presence of humid air even with encapulation. The stability of perovskite materials has been unsolved and its mechanism has been elusive. Here we uncover a mechanism for irreversible degradation of perovskite materials in which trapped charges, regardless of the polarity, play a decisive role. An experimental setup using different polarity ions revealed that the moisture-induced irreversible dissociation of perovskite materials is triggered by charges trapped along grain boundaries. We also identified the synergetic effect of oxygen on the process of moisture-induced degradation. The deprotonation of organic cations by trapped charge-induced local electric field would be attributed to the initiation of irreversible decomposition.

  9. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    Science.gov (United States)

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  10. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    Directory of Open Access Journals (Sweden)

    Adam E Vorsino

    Full Text Available Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75 as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1. This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  11. Formaldehyde degradation by Ralstonia eutropha in an immobilized cell bioreactor.

    Science.gov (United States)

    Habibi, Alireza; Vahabzadeh, Farzaneh

    2013-01-01

    The formaldehyde (FA) degradation ability of the loofa-immobilized Ralstonia eutropha cells in a packed bed reactor was modeled using a statistically based design of the experiment (DOE) considering application of response surface methodology (RSM). The simultaneous effects of four operative test factors on the cells performance in terms of FA degradation rate and extent of the chemical oxygen demand (COD) removal were monitored. The combination of factors at initial FA concentration of 629.7 mg L(-1)h(-1), recycling substrate flow rate of 4.4 mL min(-1), aeration rate of 1.05 vvm, and the system's temperature of 28.8°C resulted the optimal conditions for the FA biodegradation rate and COD removal efficiency. Loofa porous structure was found to be a protective environment for the cells in exposing to the toxic substances and the scanning electron microscopy (SEM) images revealed extensive cells penetration within this support. Oxygen transfer analysis in the form of evaluating K la value was also carried out and at the optimum conditions of the DOE was equaled to 9.96 h(-1)and oxygen uptake rate was 35.6 mg L(-1)h(-1).

  12. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  13. PEM fuel cell catalyst degradation mechanism and mathematical modeling

    Science.gov (United States)

    Bi, Wu

    The durability of carbon-supported platinum oxygen reduction electrocatalysts is one of the limiting factors for their commercial applications in PEM fuel cell cathodes. In this work, we applied both experimental and numerical tools to study Pt/C catalyst degradation mechanisms. An accelerated catalyst degradation protocol through cycling the cathode potential in a square-wave profile was applied to study cell performances, Pt/C catalyst ORR activity, and active surface area losses. Post-mortem analyses of cathode Pt particle size were conducted by X-ray diffraction. Changes of platinum distributions in CCMs were studied by SEM/EDS analyses with surface coated Au as the reference element. The mechanisms of platinum deposition in membrane were investigated. It was confirmed by the SEM/EDS Pt distribution analyses that the deposited Pt atoms originated from the cathode. It was hypothesized that dissolved Pt ions from the cathode diffused into the membrane and were reduced by the permeated hydrogen from the anode. These deposited Pt atoms catalyzed the combustion of permeated oxygen and hydrogen. Pt band was predicted and experimentally confirmed at the location where the permeated hydrogen and oxygen completely reacted with each other. An active research thrust for PEM fuel cells is the development of membranes for high temperature (above 80°C) and low humidity operations. However a large tradeoff the benefits running fuel cell at relatively high temperatures was observed due to the accelerated cathode degradation processes. And at low humidity conditions, the cathode degradation rate decreased due to the slow transport of soluble platinum ions in possible narrowed/limited water (or ionic) channel networks in polymer electrolytes. From the Pt dissolution experiments in 0.5 M HClO4 solution, large positive effects of holding potentials on dissolution rates and soluble Pt concentrations were observed. Without an external holding potential, Pt dissolution rate was

  14. Investigation of thermal and electrochemical degradation of fuel cell catalysts

    Science.gov (United States)

    Cai, Mei; Ruthkosky, Martin S.; Merzougui, Belabbes; Swathirajan, Swathy; Balogh, Michael P.; Oh, Se H.

    A significant problem hindering large-scale implementation of proton exchange membrane (PEM) fuel cell technology is the loss of performance during extended operation and automotive cycling. Recent investigations of the deterioration of cell performance have revealed that a considerable part of the performance loss is due to the degradation of the electrocatalyst. In this study, an attempt is made to experimentally simulate the degradation processes such as carbon corrosion and platinum (Pt) surface area loss using an accelerated thermal sintering protocol. Two types of Tanaka fuel cell catalyst samples were heat-treated at 250 °C in humidified helium (He) gas streams and several oxygen (O 2) concentrations. The catalysts were then cycled electrochemically in pellet electrodes to determine the hydrogen adsorption (HAD) area and its evolution in subsequent electrochemical cycling. Samples that had undergone different degrees of carbon corrosion and Pt sintering were characterized for changes in carbon mass, active Pt surface area, BET (Brunauer, Emmett and Teller) surface area, and Pt crystallite size. Studies of the effect of oxygen and water concentration on two Tanaka catalysts, dispersed on carbon supports with varying BET areas, revealed that carbon oxidation in the presence of Pt follows two pathways: an oxygen pathway that leads to mass loss due to formation of gaseous products, and a water pathway that results in mass gains, especially for high BET area supports. These processes may be assisted by the formation of highly reactive OH and OOH type radicals. Platinum surface area loss, measured at varying oxygen concentrations and as a function of sintering time using X-ray diffraction (XRD), CO chemisorption, and electrochemical hydrogen adsorption, reveal an important role for carbon corrosion rather than an increase in Pt particle size for the surface area loss. Platinum surface area loss during 10 h of thermal degradation was equivalent to electrochemical

  15. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  16. Ubiquitin chain topology and its impact on plant cell signalling

    Directory of Open Access Journals (Sweden)

    Charlotte Kirsten Walsh

    2014-04-01

    Full Text Available Ubiquitin is a peptide modifier able to form polymers of varying length and linkage as part of a powerful signalling system. Perhaps the best-known aspect of this protein’s function is as the driver of targeted protein degradation through the Ubiquitin Proteasome System (UPS. Through the formation of lysine 48-linked polyubiquitin chains, it is able to direct the degradation of tagged proteins by the 26S proteasome, indirectly controlling many processes within the cell. However, recent research has indicated that ubiquitin performs a multitude of other roles within the cell beyond protein degradation. It is able to form 6 other ‘atypical’ linkages though lysine residues at positions 6, 11, 27, 29, 33 and 63. These atypical chains perform a range of diverse functions, including the regulation of iron uptake in response to perceived deficiency, repair of double stranded breaks in the DNA, and regulation of the auxin response through the non-proteasomal degradation of auxin efflux carrier protein PIN1. This review explores the role ubiquitin chain topology plays in plant cellular function. We aim to highlight the importance of these varying functions and the future challenges to be encountered within this field.

  17. Induction of Apoptosis in Protoplasts and Suspension Cultures of Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many studies have showed that apoptosis exists in plants. Our study shows that (1) menadione(VK3) induces apoptosis in suspension cultures of carrot cells; (2) heat shock induces apoptosis in suspension cultures of tobacco cells; and (3) ethrel induces apoptosis in carrot protoplasts. Some important indications of apoptosis were observed, including DNA laddering, TUNEL-positive reaction, condensation and degradation of nuclei.

  18. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine....... The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process...... cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after...

  19. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells

    DEFF Research Database (Denmark)

    Standal, Therese; Seidel, Carina; Hjertner, Øyvind

    2002-01-01

    Multiple myeloma (MM) is a hematologic malignancy characterized by accumulation of plasma cells in the bone marrow (BM). Bone destruction is a complication of the disease and is usually associated with severe morbidity. The balance between receptor activator of nuclear factor-kappaB (NF......-kappaB) ligand and osteoprotegerin (OPG) is of major importance in bone homeostasis. We have recently shown that serum OPG levels are lower in patients with myeloma than in healthy individuals. Here we show that myeloma cells can bind, internalize, and degrade OPG, thereby providing a possible explanation...... for the lower levels of OPG in the BM of patients with MM. This process is dependent on interaction of OPG with heparan sulfates on the myeloma cells. The results suggest a novel biologic mechanism for the bone disease associated with MM and that treatment of the bone disease with OPG lacking the heparin...

  20. Investigation of Solar Cells Power Degradation Due to Electrostatic Discharge

    Directory of Open Access Journals (Sweden)

    Hossein Fayazi

    2014-07-01

    Full Text Available Satellites are surrounded with protons, electrons and heavy charged particles. Space radiation impact on satellite sub-systems cause several anomalies which are important problem for satellite designers. Until recently, the majority of spacecraft primary power systems used solar arrays and rechargeable batteries to supply 28 V. For low-inclination spacecraft, 28 V systems have not been observed to arc. As the power requirements for spacecraft increased, however, high-voltage solar arrays were baselined to minimize total mass and increase power production efficiency. With the advent of 100 V systems in the late 1980s, arcing began to be observed on a number of spacecraft. The mechanism proposed in this paper, described electrical and physical degradation of solar cells due to electrostatic discharge anomalies on satellites. The cell was characterized again after arcing to determine the change in efficiency. This paper details the process for designing the circuit to create the arcing, and the different setups used to degrade the cells electrically and physically. It also describes the final setups to be used in space laboratory. This model is designed using Matlab and SPENVIS. Identification and simulation this mechanism is an important step in solar array design for space application

  1. Electron Tomography in Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.

  2. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  3. Degradation in perovskite solar cells stored under different environmental conditions

    Science.gov (United States)

    Chauhan, Abhishek K.; Kumar, Pankaj

    2017-08-01

    Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47  ±  5%, temperature 23  ±  4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47  ±  5%, temperature 23  ±  4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained  >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the

  4. 3'-5' RNA degradation pathways in human cells

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon

    RNA synthesis and degradation are key steps in the regulation of gene expression in all living organisms. During the course of his PhD studies, Michal Lubas centred his research on the nuclear and cytoplasmic RNA turnover of both noncoding and coding RNAs in human cells. His proteomic studies...... of the cytoplasmic 3'-5' exoribonuclease hDIS3L2. Using low throughout and high throughput techniques, both in vivo and in vitro, he characterised the nuclease and disclosed the role of hDIS3L2 in cytoplasmic mRNA metabolism....

  5. Effects of a coal-fired power plant on the rock lichen Rhizoplaca melanophthalma: chlorophyll degradation and electrolyte leakage

    Science.gov (United States)

    Belnap, Jayne; Harper, Kimball T.

    1990-01-01

    Chlorophyll degradation and electrolyte leakage were measured for the umbilicate desert lichen Rhizoplaca melanophthalma (Ram.) Leuck. & Poelt in the vicinity of a coal-fired power plant near Page, Arizona. Patterns of lichen damage indicated by chlorophyll degradation were similar to those indicated by electrolyte leakage. Regression analyses of chlorophyll degradation as well as electrolyte leakage on distance from the power plant were significant (p lichen damage decreased with increasing distance from the power plant. Mean values for both variables at the two sites closest to the power plant (7 and 12 km) differed significantly from values for the two sites farthest from the plant (21 and 42 km; p < 0.001). Mean values within each group (7 and 12 km; 21 and 42 km) do not differ significantly for either parameter. It is suggested that effluents from the power plant combine with local weather factors to produce the observed levels of damage.

  6. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation.

    Science.gov (United States)

    Gujas, Bojan; Rodriguez-Villalon, Antia

    2016-01-01

    In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.

  7. Plant phosphoglycerolipids: the gatekeepers of vascular cell differentiation

    Directory of Open Access Journals (Sweden)

    Bojan eGujas

    2016-02-01

    Full Text Available In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.

  8. Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China)

    Science.gov (United States)

    Baranova, Alina; Schickhoff, Udo; Shunli, Wang; Ming, Jin

    2015-04-01

    Qilian Mountains are the water source region for the low arid reaches of HeiHe river basin (Gansu province, NW China). Due to overstocking and overgrazing during the last decades adverse ecological ef¬fects, in particular on soil properties and hydrological cycle, are to be expected in growing land areas. Vegetation cover is very important to prevent erosion process and to sustain stable subsurface runoff and ground water flow. The aim of this research is to identify plant communities, detecting grazing-induced and spatially differentiated changes in vegetation patterns, and to evaluate status of pasture land degradation.The study area is located in the spring/autumn pasture area of South Qilian Mountains between 2600-3600 m a.s.l., covering five main vegetation types: spruce forest, alpine shrubland, shrubby grassland, mountain grassland, degraded mountain grassland. In order to analyze gradual changes in vegetation patterns along altitudinal and grazing gradients and to classify related plant communities, quantitative and qualitative relevé data were collected (coverage, species composition, abundance of unpalatable plants, plant functional types, etc.). Vegetation was classified using hierarchical cluster analyses. Indirect Detrended Correspondence Analysis (DCA) was used to analyze variation in relationships between vegetation, environmental factors, and grazing impact. According to DCA results, distribution of the plant communities was strongly affected by altitude and exposition. Grassland floristic gradients showed greater dependence on grazing impact, which correlated contrarily with soil organic content, soil moisture and pH. Highest numbers of species richness and alpha diversity were detected in alpine shrubland vegetation type. Comparing the monitoring data for the recent nine years, a trend of deterioration, species successions and shift in dominant species becomes obvious. Species indicating degrading site environmental conditions were identified

  9. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  10. Effect of genotype on chemical composition, ruminal degradability and in vitro fermentation characteristics of maize residual plants.

    Science.gov (United States)

    Zeller, F M E; Edmunds, B L; Schwarz, F J

    2014-10-01

    The objective of this study was to determine the changes to residual plant feeding value of early- and late-maturing maize varieties. The influence of the cell wall carbohydrate composition, in terms of neutral and acid detergent fibre (NDF and ADF) content, NDF and dry matter (DM) degradability, and in vitro organic matter digestibility and gas production on the feeding value of a range of maize genotypes, was measured. The different genotypes were allotted into two maturity groups (MG I--early to mid-early: S210-S240; MG II--mid-late to late: S 250-S280) and harvested at four different harvest dates (depending on the DM content of the kernels). The maize varieties of MG I had lower NDF and ADF contents and higher ruminal DM degradability, in vitro digestibility and gas production and thus a higher feeding value than MG II at the same stage of physiological maturity. A strong negative relationship between NDF content and the ruminal DM degradability (r = -0.81) was observed. The data indicate that the early-maturing varieties permit a larger flexibility in harvesting due to a longer period of starch inclusion into the kernel whilst simultaneously maintaining a good supply of rumen-available fibre. Conclusively, the higher feeding value of the early-maturing varieties, based on lower NDF and high DM digestibility, permits more flexibility in the harvesting period over the later-maturing varieties.

  11. Quantification of fluorescent reporters in plant cells.

    Science.gov (United States)

    Pound, Michael; French, Andrew P; Wells, Darren M

    2015-01-01

    Fluorescent reporters are powerful tools for plant research. Many studies require accurate determination of fluorescence intensity and localization. Here, we describe protocols for the quantification of fluorescence intensity in plant cells from confocal laser scanning microscope images using semiautomated software and image analysis techniques.

  12. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

    Science.gov (United States)

    Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy

    2016-01-01

    The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction.

  13. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  14. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  15. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  16. Plant cells in vitro under altered gravity.

    Science.gov (United States)

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  17. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  18. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  19. Degradation of Flexible, ITO-Free Oligothiophene Organic Solar Cells.

    Science.gov (United States)

    Bormann, Ludwig; Nehm, Frederik; Sonntag, Luisa; Chen, Fan-Yu; Selzer, Franz; Müller-Meskamp, Lars; Eychmüller, Alexander; Leo, Karl

    2016-06-15

    We investigate the degradation of organic solar cells based on an oligothiophene (DCV5T-Me) small molecule donor and the acceptor C60. Two different flexible, transparent bottom electrode types are employed: a transparent metal electrode (TME) and silver nanowires (AgNWs). They exhibit high optical transparency up to 86% and a sheet resistance as low as 12Ω/□. Power conversion efficiencies of 7.0%, 5.7%, and 7.2% on TME, AgNWs, and indium tin oxide (ITO, reference) are reached, respectively. The solar cells are protected against moisture ingress utilizing a flexible alumina thin-film, exhibiting water vapor transmission rates down to 3 × 10(-5) g m(-2) day(-1) at 38 °C and 90% relative humidity (RH). Implementation of this ultrabarrier as top and bottom encapsulation enables fabrication of fully flexible devices. A decrease in PCE to 80% of initial values is observed after 1000 ± 50 h on flexible, encapsulated TME but only 20 ± 5 h on AgNWs in a climate of 38 °C/50% RH. Degradation in AgNW-based devices is attributed to electrode decomposition.

  20. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  1. Isolation of plant cell wall proteins

    OpenAIRE

    Jamet, Elisabeth; Boudart, Georges; Borderies, Gisèle; Charmont, Stéphane; Lafitte, Claude; Rossignol, Michel; Canut, Hervé; Pont-Lezica, Rafael F

    2007-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins; (iii) the presence of proteins ...

  2. Enhanced Degradation of Diesel in the Rhizosphere of after Inoculation with Diesel-Degrading and Plant Growth-Promoting Bacterial Strains.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Vangronsveld, Jaco; Monterroso, Carmen

    2016-05-01

    The association of plants and rhizospheric bacteria provides a successful strategy to clean up contaminated soils. The purpose of this work was to enhance diesel degradation in rhizosphere by inoculation with selected bacterial strains: a diesel degrader (D), plant growth-promoting (PGP) strains, or a combination (D+PGP). Plants were set up in pots with the A or B horizon of an umbric Cambisol (A and B) spiked with diesel (1.25%, w/w). After 1 mo, the dissipation of diesel range organics (DRO) with respect to = 0 (i.e., 1 wk after preparing the pots with the seedlings) concentration was significantly higher in inoculated than in noninoculated (NI) pots: The highest DRO losses were found in A D+PGP pots (close to 15-20% higher than NI) and in B D pots (close to 10% higher). The water-extractable DRO fraction was significantly higher at = 30 d (15-25%) compared with = 0 (<5%), probably due to the effects of plant root exudates and biosurfactants produced by the degrader strain. The results of this experiment reflect the importance of the partnerships between plants and bacterial inoculants and demonstrate the relevance of the effect of bacterial biosurfactants and plant root exudates on contaminant bioavailability, a key factor for enhancing diesel rhizodegradation. The association of lupine with D and PGP strains resulted in a promising combination for application in the rhizoremediation of soils with moderate diesel contamination.

  3. Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU.

    Science.gov (United States)

    Ibrahim, Salihu; Shukor, Mohd Y; Syed, Mohd A; Johari, Wan L W; Shamaan, Nor A; Sabullah, Mohd K; Ahmad, Siti A

    2016-01-01

    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.

  4. Reversible degradation of inverted organic solar cells by concentrated sunlight.

    Science.gov (United States)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A; Krebs, Frederik C

    2011-06-03

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O(2) desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.

  5. Effect of Arbuscular Mycorrhizal Inoculation on Plant Growth and Phthalic Ester Degradation in Two Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-Rui; YIN Rui; LIN Xian-Gui; CAO Zhi-Hong

    2005-01-01

    A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with cowpea seeds. After 60 days the positive impact of AM inoculation on the growth of cowpea was more pronounced in the red soil than in the yellow-brown soil, with significantly higher (P < 0.01)mycorrhizal colonization rate, shoot dry weight and total P content in shoot tissues for the red soil. Both in the yellowbrown and red soils, AM inoculation significantly (P < 0.01) reduced shoot DEHP content, implying that AM inoculation could inhibit the uptake and translocation of DEHP from roots to the aboveground parts. However, with AM inoculation no positive contribution to the degradation of DEHP was found.

  6. Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available BACKGROUND: Carboxyl/cholinesterases (CCEs are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified. METHODOLOGY: In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components. CONCLUSION: We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant-Degrading Enzyme active towards a host plant volatile.

  7. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely......Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific...

  8. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  9. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria.

    Science.gov (United States)

    Oliveira, Vanessa; Gomes, Newton C M; Almeida, Adelaide; Silva, Artur M S; Simões, Mário M Q; Smalla, Kornelia; Cunha, Ângela

    2014-03-01

    Salt marsh sediments are sinks for various anthropogenic contaminants, giving rise to significant environmental concern. The process of salt marsh plant survival in such environment is very intriguing and at the same time poorly understood. The plant–microbe interactions may play a key role in the process of environment and in planta detoxification.In this study, a combination of culture-dependent and culture-independent molecular approaches [enrichment cultures, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA sequencing] were used to investigate the effect of petroleum hydrocarbons (PH) contamination on the structure and function[polycyclic aromatic hydrocarbon (PAH) dioxygenase genes] of endophytic bacterial communities of salt marsh plant species (Halimione portulacoides and Sarcocornia perennis)in the estuarine system Ria de Aveiro (Portugal). Pseudomonads dominated the cultivable fraction of the endophytic communities in the enrichment cultures. In a set of fifty isolates tested, nine were positive for genes encoding for PAH dioxygenases (nahAc)and four were positive for plasmid carrying genes encoding PAH degradation enzymes(nahAc). Interestingly, these plasmids were only detected in isolates from most severely PH-polluted sites. The results revealed site-specific effects on endophytic communities,related to the level of PH contamination in the sediment, and plant-species-specific ‘imprints’ in community structure and in genes encoding for PAH dioxygenases. These results suggest a potential ecological role of bacterial plant symbiosis in the process of plant colonization in urban estuarine areas exposed to PH contamination.

  10. Quantitative Aspects of Cyclosis in Plant Cells.

    Science.gov (United States)

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  11. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    Science.gov (United States)

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  12. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Strand

    2004-09-27

    The research objectives for this report are: (1) Transform poplar and other tree species to extend and optimize chlorinated hydrocarbon (CHC) oxidative activities. (2) Determine the mechanisms of CHC oxidation in plants. (3) Isolate the genes responsible for CHC oxidation in plants. We have made significant progress toward an understanding of the biochemical mechanism of CHC transformation native to wild-type poplar. We have identified chloral, trichloroethanol, trichloroacetic acid, and dichloroacetic acid as products of TCE metabolism in poplar plants and in tissue cultures of poplar cells.(Newman et al. 1997; Newman et al. 1999) Use of radioactively labeled TCE showed that once taken up and transformed, most of the TCE was incorporated into plant tissue as a non-volatile, unextractable residue.(Shang et al. 2001; Shang and Gordon 2002) An assay for this transformation was developed and validated using TCE transformation by poplar suspension cells. Using this assay, it was shown that two different activities contribute to the fixation of TCE by poplar cells: one associated with cell walls and insoluble residues, the other associated with a high molecular weight, heat labile fraction of the cell extract, a fixation that was apparently catalyzed by plant enzymes.

  13. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Scheveneels, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June `96, when the steam generators will be replaced, is justified.

  14. Interfacial thermal degradation in inverted organic solar cells

    Science.gov (United States)

    Greenbank, William; Hirsch, Lionel; Wantz, Guillaume; Chambon, Sylvain

    2015-12-01

    The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed in devices containing MoO3 and silver as hole transporting layers and electrode materials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.

  15. Interfacial thermal degradation in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Greenbank, William; Hirsch, Lionel; Wantz, Guillaume; Chambon, Sylvain, E-mail: sylvain.chambon@ims-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33405 Talence (France)

    2015-12-28

    The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed in devices containing MoO{sub 3} and silver as hole transporting layers and electrode materials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.

  16. Ricin Trafficking in Plant and Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Robert A. Spooner

    2011-06-01

    Full Text Available Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans. The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin and Ricinus communis agglutinin l (RCA. These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  17. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  18. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  19. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors.

    Science.gov (United States)

    Pellerin, Brian A; Hernes, Peter J; Saraceno, JohnFranco; Spencer, Robert G M; Bergamaschi, Brian A

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)-a regulated class of DBPs-before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA(254)) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C(-1). However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA(254) suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  20. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  1. Laser-mediated perforation of plant cells

    Science.gov (United States)

    Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan

    2007-07-01

    The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.

  2. Injuries caused by animals to young imbuzeiro (Spondias tuberosa Arruda plants in native and degraded caatinga areas

    Directory of Open Access Journals (Sweden)

    Luiza Teixeira de Lima Brito

    2009-12-01

    Full Text Available This study had the objective of evaluating the injuries caused by animals to young imbu tree (Spondias tuberosa Arruda plants in native and degraded Caatinga areas, between the years 1997 and 2002. One thousand imbu tree scions were planted, being 500 in a degraded Caatinga area at the community of Alto do Angico, Petrolina-PE, and 500 in a native Caatinga area at the Caatinga Experimental Station of Embrapa Tropical Semi-Arid, Petrolina-PE. At every 30 days after having planted the scions, data were collected regarding survival and injuries caused by animals to the plants. The results showed that goats are responsible for the reduction on survival rates and for the slow development of young imbu tree in the degraded Caatinga area. In the native Caatinga area, of the collared peccary (Tayassu tajacu and armadillo (Euphractus sexcinctus caused the highest injury levels.

  3. Status of the steam generator tube circumferential ODSCC degradation experienced at the Doel 4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    Since the 1991 outage, the Doel Unit 4 nuclear power plant is known to be affected by circumferential outside diameter intergranular stress corrosion cracking at the hot leg tube expansion transition. Extensive non destructive examination inspections have shown the number of tubes affected by this problem as well as the size of the cracks to have been increasing for the three cycles up to 1993. As a result of the high percentage of tubes found non acceptable for continued service after the 1993 in-service inspection, about 1,700 mechanical sleeves were installed in the steam generators. During the 1994 outage, all the tubes sleeved during the 1993 outage were considered as potentially cracked to some extent at the upper hydraulic transition and were therefore not acceptable for continued service. They were subsequently repaired by laser welding. Furthermore all the tubes not sleeved during the 1993 outage were considered as not acceptable for continued service and were repaired by installing laser welded sleeves. During the 1995 outage, some unexpected degradation phenomena were evidenced in the sleeved tubes. This paper summarizes the status of the circumferential ODSCC experienced in the SG tubes of the Doel 4 plant as well as the other connected degradation phenomena.

  4. UV-Induced cell death in plants.

    Science.gov (United States)

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  5. UV-Induced Cell Death in Plants

    Directory of Open Access Journals (Sweden)

    Chang Ho Kang

    2013-01-01

    Full Text Available Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm, plants are exposed to UV light, which is comprised of UV-C (below 280 nm, UV-B (280–320 nm and UV-A (320–390 nm. The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS. Arabidopsis metacaspase-8 (AtMC8 is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1 gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD.

  6. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely......Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific...... determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells. The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged...

  7. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants.

    OpenAIRE

    A. Cebolla; J. M. Vinardell; Kiss, E; Oláh, B; Roudier, F; Kondorosi, A; Kondorosi, E

    1999-01-01

    Plant organs develop mostly post-embryonically from persistent or newly formed meristems. After cell division arrest, differentiation frequently involves endoreduplication and cell enlargement. Factors controlling transition from mitotic cycles to differentiation programmes have not been identified yet in plants. Here we describe ccs52, a plant homologue of APC activators involved in mitotic cyclin degradation. The ccs52 cDNA clones were isolated from Medicago sativa root nodules, which exhib...

  8. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  9. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    Science.gov (United States)

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  10. Osmosis in Poisoned Plant Cells.

    Science.gov (United States)

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  11. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  12. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Stuart E.

    2002-06-01

    Several varieties of transgenic poplar containing cytochrome P-450 2E1 have been constructed and are undergoing tests. Strategies for improving public acceptance and safety of transgenic poplar for chlorinated hydrocarbon phytoremediation are being developed. We have discovered a unique rhizobium species that lives within the stems of poplar and we are investigating whether this bacterium contributes nitrogen fixed from the air to the plant and whether this endophyte could be used to introduce genes into poplar. Studies of the production of chloride ion from TCE have shown that our present P-450 constructs did not produce chloride more rapidly than wild type plants. Follow-up studies will determine if there are other rate limiting downstream steps in TCE metabolism in plants. Studies of the metabolism of carbon tetrachloride in poplar cells have provided evidence that the native plant metabolism is due to the activity of oxidative enzymes similar to the mammalian cytochrome P-450 2E1.

  13. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  14. Organic solar cells: Degradation processes and approaches to enhance performance

    Science.gov (United States)

    Fungura, Fadzai

    Organic solar cells (OSCs) have attracted a lot of attention due to their potential as flexible, lightweight, and low-cost renewable energy sources. Significant improvements have been made in increasing the devices' power conversion efficiency (PCE) and extensive efforts to understand degradation mechanisms and increase OSCs' lifetimes are ongoing. OSCs with higher than 10% efficiency have been reported. Enhanced stability and efficiency of inverted poly(3-hexylthiophene) (P3HT) solar cells with Cesium (Cs) halides were achieved by spin-coating Bphen (4,7-di(phenyl)-1,10-phenanthroline) on the halide layer and adding an 100nm polystyrene beads layer on the blank side of the OSC. To investigate photodegradation in a low-bandgap polymer, PBDTTT-EFT (benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-b]-thiophene), PBDTTT-EFT:PCBM bulk heterojunction (BHJ) solar cells were irradiated under 1X sun intensity and their electronic measurements were monitored over time. The electronic measurements revealed an increase in deep defect density in the polymer and at the donor-acceptor (D/A) interface of BHJ SCs and an increase in charge recombination as well as a decrease in external quantum efficiency, charge collection, short circuit current, open circuit voltage and hole mobility. Filtering blue and UV light resulted in drastically reduced photodegradation. Electron paramagnetic resonance measurements were performed on the photodegraded polymer and BHJ films, and revealed for the first time experimental evidence for metastable carbon dangling bonds (g=2.0029+/-0.0004) formed by blue/UV irradiation of the films. Dark EPR showed an increase in densities of other spin-active sites in the polymer, fullerene and polymer:fullerene blends in agreement with electronic measurements. The EPR results revealed that the carbon dangling bonds were at the D/A interface. These studies helped to better understand degradation mechanisms in a low-bandgap polymer, PBDTTT-EFT, ways to enhance

  15. Recent advances in plant cell wall proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  16. Spectro-Microscopy of Living Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Klaus Harter; Alfred J. Meixner; Frank Schleifenbaum

    2012-01-01

    Spectro-microscopy,a combination of fluorescence microscopy with spatially resolved spectroscopic techniques,provides new and exciting tools for functional cell biology in living organisms.This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context.The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells.Moreover,the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT).Furthermore,a new spectro-microscopic technique,fluorescence intensity decay shape analysis microscopy (FIDSAM),has been developed.FIDSAM is capable of imaging lowexpressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts.In addition,FIDSAM provides a very effective and sensitive tool on the basis of F(o)rster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction.Finally,we report on the quantitative analysis of the photosystem Ⅰ and Ⅱ (PSⅠ/PSⅡ) ratio in the chloroplasts of living Arabidopsis plants at room temperature,using high-resolution,spatially resolved fluorescence spectroscopy.With this technique,it was not only possible to measure PSⅠ/PSⅡ ratios,but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSⅠ/PSⅡ ratio to different light conditions.In summary,the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches.Therefore,novel cell physiological and molecular topics can be addressed and valuable insights into molecular and

  17. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  18. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : Keratin degradation and growth promotion.

    Science.gov (United States)

    Anwar, Mohmmad Shahbaz; Siddique, Mohammad Tahir; Verma, Amit; Rao, Yalaga Rama; Nailwal, Tapan; Ansari, Mohammad; Pande, Veena

    2014-01-01

    Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry.

  19. On the degradation of fuel cell catalyst. From model systems to high surface area catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M. [Copenhagen Univ. (Denmark). Dept. of Chemistry

    2010-07-01

    In the presented work, as an alternative accelerated degradation tests in the form of half-cell measurements combined with identical location transmission electron microscopy (IL-TEM){sup 10,} {sup 11} are presented. It is demonstrated that for different catalysts the degradation mechanism can be scrutinized in detail. Thus this approach enables the systematic investigation of fuel cell catalyst degradation in a reduced period of time. (orig.)

  20. Sphingomonas taxi, Isolated from Cucurbita pepo, Proves to Be a DDE-Degrading and Plant Growth-Promoting Strain.

    Science.gov (United States)

    Eevers, Nele; Van Hamme, Jonathan D; Bottos, Eric M; Weyens, Nele; Vangronsveld, Jaco

    2015-05-14

    The draft genome of Sphingomonas taxi, a strain of the Sphingomonadaceae isolated from Cucurbita pepo root tissue, is presented. This Gram-negative bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacities. An analysis of its 3.9-Mb draft genome will enhance the understanding of DDE-degradation pathways and phytoremediation applications for DDE-contaminated soils. Copyright © 2015 Eevers et al.

  1. Draft Genome Sequence of Enterobacter aerogenes, a DDE-Degrading and Plant Growth-Promoting Strain Isolated from Cucurbita pepo

    OpenAIRE

    Eevers, Nele; Van Hamme, J.D.; Bottos, E.M.; Weyens, Nele; Vangronsveld, Jaco

    2015-01-01

    We report here the draft genome of Enterobacter aerogenes, a Gram-negative bacterium of the Enterobacteriaceae isolated from Cucurbita pepo root tissue. This bacterium shows 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE)-degrading potential and plant growth-promoting capacity. An analysis of its 4.5-Mb draft genome will enhance the understanding of DDE degradation pathways and phytoremediation applications for DDE-contaminated soils.

  2. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  3. Plant cells : immobilization and oxygen transfer

    NARCIS (Netherlands)

    Hulst, A.C.

    1987-01-01

    The study described in this thesis is part of the integrated project 'Biotechnological production of non-persistent bioinsecticides by means of plant cells invitro ' and was done in close cooperation with the research Institute Ital within the framework

  4. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack,...

  5. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  6. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates of the ca...

  7. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  8. Degradation and failure of bolting in nuclear power plants: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1988-04-01

    These two volumes provide the documentation for industry resolution of the US Nuclear Regulatory Commission (NRC) generic issue B-29, Degradation and Failure of Bolting in Nuclear Power Plants. The issue was identified as a consequence of concerns about the structural integrity of component supports circa 1980. When bolting integrity became a separate issue in 1982, the utility industry responded by forming a Task Group on Bolting under the aegis of the Atomic Industrial Forum (AIF) and the Materials Properties Council (MPC). The AIF/MPC Task Group on Bolting formulated a comprehensive nineteen-task action plan aimed at resolution of the issue, with implementation of the plan, the responsibility of EPRI and the affected Owner's Groups. EPRI organized a matrix-managed Generic Bolted Joint Integrity Program to carry out the research, with the results reported herein.

  9. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    Science.gov (United States)

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade.

  10. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Rosseel, Thomas M [ORNL; Field, Kevin G [ORNL; Pape, Yann Le [Oak Ridge National Laboratory (ORNL)

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  11. Steam generator tube support plate degradation in French plants: maintenance strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gauchet, J.-P. [EDF, NPP Operations/Maintenance Dept. (France); Gillet, N. [FRAMATOME, Steam Generator Dept. (France); Stindel, M. [EDF, Central Labs. (France)

    1998-07-01

    This paper reports on the degradations of Steam Generator (SG) Tube Support Plates (TSPs) observed in French plants and the maintenance strategy adopted to continue operating the plant without any decrease of the required safety level. Only drilled carbon steel TSPs of early SGs are affected. Except the particular damage of the TSP8 of FESSENHEIM 2 caused by chemical cleaning procedures implemented in 1992, two main problems were observed almost exclusively on the upper TSP: Ligaments ruptured near the aseismic block located at 215 degrees. This degradation is perfectly detectable by bobbin coil inspection. It occurs very early in the life of the SG as can be seen from the records of previous inspections and no evolution of the signals was observed. This damage can be detected for 51M model SGs on several sites; Wastage of the ligaments resulting in enlargement of flow holes with in some cases complete consumption of a ligament. This damage was only observed for SGs of at GRAVELINES. This damage evolved cycle after cycle. Detailed studies were performed to analyze tubing behavior when a tube is not supported by the upper TSP because of missing ligaments. These studies evaluated the risk of vibratory instability, the behavior of both the TSP and the tubing in case of a seismic event or a LOCA and finally the behavior of the TSP in case of a Steam Line Break. Concerning vibratory instability it was possible to define zones where stability could not be demonstrated. Dampine, cables and sentinel plugs were then used when necessary to eliminate the risk of Steam Generator Tube Rupture (SGTR). For accidental conditions, it could be shown that no unacceptable damage occurs and that the core cooling function of the SG is always maintained if some tubes are plugged. From this analysis, It was possible to define the inspection programs for the different plants taking into account the specific situation of each plant regarding the damages detected. These programs include

  12. Enhancement of micropollutant degradation at the outlet of small wastewater treatment plants.

    Directory of Open Access Journals (Sweden)

    Luca Rossi

    Full Text Available The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole. The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments.

  13. Fluorescence activated cell sorting of plant protoplasts.

    Science.gov (United States)

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-02-18

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  14. Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling.

    Science.gov (United States)

    Kwong, Lina; Bijlsma, Maarten F; Roelink, Henk

    2014-09-12

    The distribution of Sonic Hedgehog (Shh) is a highly regulated and critical process for development. Several negative feedback mechanisms are in place, including the Shh-induced upregulation of Hedgehog-interacting protein (Hhip). Hhip sequesters Shh, leading to a non-cell autonomous inhibition of the pathway. Hhip overexpression has a severe effect on neural tube development, raising the question why normal sites of Hhip expression have a seemingly unimpaired response to Shh. Here we show that although Hhip is able to leave its sites of synthesis to inhibit Shh non-cell autonomously, activation of Smoothened (Smo) drastically increases Hhip internalization and degradation cell autonomously. Although Hhip is unable to cell autonomously inhibit the consequences of Smo activation, it can inhibit the Shh response non-cell autonomously. Our data provide a mechanism by which the Shh ligand can activate the response and negate cell autonomous effects of Hhip, while Hhip can still induce non-cell autonomous inhibition.

  15. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  16. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  17. Cell wall degradation is required for normal starch mobilisation in barley endosperm.

    Science.gov (United States)

    Andriotis, Vasilios M E; Rejzek, Martin; Barclay, Elaine; Rugen, Michael D; Field, Robert A; Smith, Alison M

    2016-09-13

    Starch degradation in barley endosperm provides carbon for early seedling growth, but the control of this process is poorly understood. We investigated whether endosperm cell wall degradation is an important determinant of the rate of starch degradation. We identified iminosugar inhibitors of enzymes that degrade the cell wall component arabinoxylan. The iminosugar 1,4-dideoxy-1, 4-imino-l-arabinitol (LAB) inhibits arabinoxylan arabinofuranohydrolase (AXAH) but does not inhibit the main starch-degrading enzymes α- and β-amylase and limit dextrinase. AXAH activity in the endosperm appears soon after the onset of germination and resides in dimers putatively containing two isoforms, AXAH1 and AXAH2. Upon grain imbibition, mobilisation of arabinoxylan and starch spreads across the endosperm from the aleurone towards the crease. The front of arabinoxylan degradation precedes that of starch degradation. Incubation of grains with LAB decreases the rate of loss of both arabinoxylan and starch, and retards the spread of both degradation processes across the endosperm. We propose that starch degradation in the endosperm is dependent on cell wall degradation, which permeabilises the walls and thus permits rapid diffusion of amylolytic enzymes. AXAH may be of particular importance in this respect. These results provide new insights into the mobilization of endosperm reserves to support early seedling growth.

  18. Cell wall degradation is required for normal starch mobilisation in barley endosperm

    Science.gov (United States)

    Andriotis, Vasilios M. E.; Rejzek, Martin; Barclay, Elaine; Rugen, Michael D.; Field, Robert A.; Smith, Alison M.

    2016-01-01

    Starch degradation in barley endosperm provides carbon for early seedling growth, but the control of this process is poorly understood. We investigated whether endosperm cell wall degradation is an important determinant of the rate of starch degradation. We identified iminosugar inhibitors of enzymes that degrade the cell wall component arabinoxylan. The iminosugar 1,4-dideoxy-1, 4-imino-l-arabinitol (LAB) inhibits arabinoxylan arabinofuranohydrolase (AXAH) but does not inhibit the main starch-degrading enzymes α- and β-amylase and limit dextrinase. AXAH activity in the endosperm appears soon after the onset of germination and resides in dimers putatively containing two isoforms, AXAH1 and AXAH2. Upon grain imbibition, mobilisation of arabinoxylan and starch spreads across the endosperm from the aleurone towards the crease. The front of arabinoxylan degradation precedes that of starch degradation. Incubation of grains with LAB decreases the rate of loss of both arabinoxylan and starch, and retards the spread of both degradation processes across the endosperm. We propose that starch degradation in the endosperm is dependent on cell wall degradation, which permeabilises the walls and thus permits rapid diffusion of amylolytic enzymes. AXAH may be of particular importance in this respect. These results provide new insights into the mobilization of endosperm reserves to support early seedling growth. PMID:27622597

  19. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  20. Redox regulation in plant programmed cell death.

    Science.gov (United States)

    De Pinto, M C; Locato, V; De Gara, L

    2012-02-01

    Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. © 2011 Blackwell Publishing Ltd.

  1. Inventarization of potential plant for phytoremediation on degraded land and water mined

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2005-01-01

    Full Text Available One of the most important problems in degraded mined ecosystem is contamination of soil and water by toxic substances, mainly heavy metal such as Pb and others such as cyanide. Phytoremediation could be used as an alternative technique to overcome this problem. Phytoremediation is defined as clean up of pollutans primarily mediated by photosynthetic plants. These plants have several beneficial characteristics such as the ability to accumulate metal in their shoots and an especially high tolerance to heavy metals. This research was carried out to study the potencies of local species to accumulate Pb and cyanide. Seventeen species were collected from mined waste area (namely tailing area and then the cyanide and Pb accumulated in each species were analyzed. The result showed that some species accumulated Pb and cyanide in high concentration such as Ipomoea sp. (35.70 ppm cyanida and Mikania cordata (Burm.f. B.L.Robinson (11.65 ppm Pb. A series of research is needed to prove that these species are potential as heavy metal and cyanide accumulators.

  2. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    Science.gov (United States)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. Analytical and Experimental Studies of the Degradation in Hydrogenated Amorphous Silicon Solar Cells and Materials.

    Science.gov (United States)

    Yeung, Ping Fai

    1995-01-01

    An improved understanding of a-Si:H pin solar cells stability was obtained by studying light induced degradation in a-Si:H films and in devices. The current -voltage characteristics and the quantum efficiencies of a-Si:H pin solar cells were measured as a function of intrinsic layer thickness, bias light intensity and degradation condition. Photoconductivity measurements on device quality intrinsic a-Si:H thin film materials showed that the majority carrier (electron) mutau product degraded from 3times 10^{-7}rm cm ^2/V to 2times 10^{ -7}rm cm^2/V after 6 minutes of 50-Suns light illumination. Using a dual beam technique with steady white light and modulated monochromatic light, a degradation profile was detected in the degraded materials. These results suggest that inhomogeneous degradation may be important to understanding the stability of a-Si:H pin solar cells. An analytical model was developed for degradation in a-Si:H pin solar cells based on inhomogeneous degradation, which was used to explain the 'blue-dip' effect observed in the quantum efficiencies of degraded cells. A new method was developed to investigate the minority carrier (hole) diffusion length in device quality a-Si:H films as a function of degradation. This method uses the Schottky barrier structure to establish a depletion region, which can be controlled by the applied voltage and the bias light intensity. Modulated blue light is used to generate electron hole pairs near the ohmic contacts, and the holes diffuse across the neutral region to be collected. The modulated current is related to the diffusion length of the holes due to this current limiting hole transport. Comparing the results of this new technique to that of the Photocarrier Grating method, the electron drift mobility was found to degrade from rm 2.5cm^2/Vs to rm 0.15cm^2/Vs after 6 minutes of 50-Suns degradation.

  4. Characterization of Plant Functions Using Cultured Plant Cells, and Biotechnological Applications

    National Research Council Canada - National Science Library

    SATO, Fumihiko

    2013-01-01

    .... On the other hand, the use of plant cell cultures for the more basic characterization of plant functions is rather limited due to the difficulties associated with functional differentiation in cell cultures...

  5. Plant thin cell layers: update and perspectives

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2015-12-01

    Full Text Available Thin cell layers (TCLs are small and versatile explants for the in vitro culture of plants. At face value, their morphogenic productivity may appear to be less than conventional explants, but once the plant growth correction factor and geometric factor have been applied, the true (potential productivity exceeds that of a conventional explant. It is for this reason that for almost 45 years, TCLs have been applied to the in vitro culture of almost 90 species or hybrids, mainly ornamentals and orchids, but also to field and vegetable crops and medicinal plants. Focusing on 12 new studies that have emerged in the recent past (2013-2015, this paper brings promise to other horticultural species that could benefit from the use of TCLs.

  6. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  7. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    Directory of Open Access Journals (Sweden)

    M.S. Usha

    2010-12-01

    Full Text Available Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM to 500 ppm (1.15 mM degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM and 57% degradation at 500 ppm (1.5 mM. Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus.

  8. Plant single-cell and single-cell-type metabolomics.

    Science.gov (United States)

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  10. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants.

    Science.gov (United States)

    Adamczyk, Bartosz; Godlewski, Mirosław; Smolander, Aino; Kitunen, Veikko

    2009-10-01

    Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.

  11. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    Science.gov (United States)

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  12. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Ronald; Nunez, Oswaldo [Laboratorio de Fisicoquimica Organica y Quimica Ambiental, Departamento de Procesos y Sistemas, Universidad Simon Bolivar, Apartado Postal 89000, Caracas (Venezuela)

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  13. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    Science.gov (United States)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-06-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  14. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    Science.gov (United States)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-02-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  15. Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato.

    Science.gov (United States)

    Karmakar, Rajib; Bhattacharya, Ramcharan; Kulshrestha, Gita

    2009-07-22

    The metabolism of thiamethoxam [(EZ)-3-(2-chloro-1,3-thiazol-5-yl-methyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene (nitro) amine] was investigated in whole plant, callus, and heterotrophic cell suspension culture of aseptically and field grown tomato (Lycopersicon esculentum Mill.) plants. The structure of the metabolites was elucidated by chromatographic (HPLC) and spectroscopic (IR, NMR, and MS) methods. Thiamethoxam metabolism proceeded by the formation of a urea derivative, a nitroso product, and nitro guanidine. Both urea and nitro guanidine metabolites further degraded in plants, and a mechanism has been proposed. In the plant, organ-specific differences in thiamethoxam metabolism were observed. Only one metabolite was formed in whole plant against four in callus and eight metabolites in cell suspension culture under aseptic conditions. Out of six metabolites of thiamethoxam in tomato fruits in field conditions, five were similar to those formed in the cell suspension culture. In the cell suspension culture, thiamethoxam degraded to maximum metabolites within 72 h, whereas in plants, such extensive conversion could only be observed after 10 days.

  16. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

    NARCIS (Netherlands)

    Jovanovic, Danijela; Roukes, Frans V.; Loeber, Andrea; Engels, Gerwin E.; van Oeveren, Willem; van Seijen, Xavier J. Gallego; van Luyn, Marja J. A.; Harmsen, Martin C.; Schouten, Arend Jan

    2011-01-01

    Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suit

  17. Isolation of plant cell wall proteins.

    Science.gov (United States)

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  18. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds

    NARCIS (Netherlands)

    Scheublin, T.R.; Deusch, S.; Moreno-Forero, S.K.; Müller, J.A.; van der Meer, J.R.; Leveau, J.H.J.

    2014-01-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.

  19. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices.

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2015-05-01

    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices.

  20. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation

    NARCIS (Netherlands)

    de Lima Brossi, Maria Julia; Jiménez Avella, Diego; Cortes Tolalpa, Larisa; van Elsas, Jan

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH

  1. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  2. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.

    Science.gov (United States)

    Reis, A R; Sakakibara, Y

    2012-01-01

    In order to evaluate the removal performance of trace phenolic endocrine-disrupting chemicals (EDCs) by aquatic plants, batch and continuous experiments were conducted using floating and submerged plants. The EDCs used in this study were bisphenol A, 2,4-dichlorophenol, 4-tert-octylphenol, pentachlorophenol, and nonylphenol. The feed concentration of each EDC was set at 100 μg/L. Continuous experiments showed that every EDC except pentachlorophenol was efficiently removed by different aquatic plants through the following reaction, catalyzed by peroxidases: EDCs+H(2)O(2)→Products+H(2)O(2). Peroxidases were able to remove phenolic EDCs in the presence of H(2)O(2) over a wide pH range (from 3 to 9). Histochemical localization of peroxidases showed that they were located in every part of the root cells, while highly concentrated zones were observed in the epidermis and in the vascular tissues. Although pentachlorophenol was not removed in the continuous treatment, it was rapidly removed by different aquatic plants when Fe(2+) was added, and this removal occurred simultaneously with the consumption of endogenous H(2)O(2). These results demonstrated the occurrence of a biological Fenton reaction and the importance of H(2)O(2) as a key endogenous substance in the treatment of EDCs and refractory toxic pollutants.

  3. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation.

    Science.gov (United States)

    Park, Ji Hun; Kim, Kyunghwan; Lee, Juno; Choi, Ji Yu; Hong, Daewha; Yang, Sung Ho; Caruso, Frank; Lee, Younghoon; Choi, Insung S

    2014-11-10

    Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the practical use of functional cells as well as for single cell-based biology. We report that an artificial shell, composed of tannic acid (TA) and Fe(III) , on individual Saccharomyces cerevisiae controllably degrades on-demand, while protecting the yeast from multiple external aggressors, including UV-C irradiation, lytic enzymes, and silver nanoparticles. Cell division is suppressed by the TA-Fe(III) shell, but restored fully upon shell degradation. The formation of a TA-Fe(III) shell would provide a versatile tool for achieving the chemical version of "sporulation and germination".

  4. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    NARCIS (Netherlands)

    Yamada, T.; Takatsu, Y.; Kasumi, K.; Ichimura, K.; Doorn, van W.G.

    2006-01-01

    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the num

  5. Ni/YSZ anode – Effect of pre-treatments on cell degradation and microstructures

    DEFF Research Database (Denmark)

    Hauch, Anne; Jørgensen, Peter Stanley; Brodersen, Karen

    2011-01-01

    Anode supported (Ni/YSZ–YSZ–LSM/YSZ) solid oxide fuel cells were tested and the degradation over hundreds of hours was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the Ni/YSZ anode degradation and all tests were operated at 750°C, a current density of ...

  6. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    NARCIS (Netherlands)

    Yamada, T.; Takatsu, Y.; Kasumi, K.; Ichimura, K.; Doorn, van W.G.

    2006-01-01

    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the

  7. Degradation chemistry of RuLL´(NCS)2 complexes in the Dye-sensitized solar cell

    DEFF Research Database (Denmark)

    Lund, Torben

    will present and overview of our degradation investigations of the ruthenium dyes N719, Z907 and C106 with the general structure RuLL´(NCS)2 and show how detailed degradation mechanistic knowledge is important in the developing of DSC cells with improved thermal dye stability. The various ruthenium dye...

  8. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  9. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  10. The potential of single-cell profiling in plants.

    Science.gov (United States)

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  11. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants

    Science.gov (United States)

    Delis, Costas; Krokida, Afrodite; Tomatsidou, Anastasia; Tsikou, Daniela; Beta, Rafailia A.A.; Tsioumpekou, Maria; Moustaka, Julietta; Stravodimos, Georgios; Leonidas, Demetres D.; Balatsos, Nikolaos A. A.; Papadopoulou, Kalliope K.

    2016-01-01

    ABSTRACT We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted. PMID:26619288

  12. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  13. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/kv

    Directory of Open Access Journals (Sweden)

    Noboru Yamauchi

    2013-09-01

    Full Text Available In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM. This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  14. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants.

    Science.gov (United States)

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J

    2014-12-05

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.

  15. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  16. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry.

    Directory of Open Access Journals (Sweden)

    Aria Eshraghi

    2014-07-01

    Full Text Available Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs, are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD machinery, Derlin-2 (Derl2, the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT. In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.

  17. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry.

    Science.gov (United States)

    Eshraghi, Aria; Dixon, Shandee D; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C; Damoiseaux, Robert; Blanke, Steven R; Bradley, Kenneth A

    2014-07-01

    Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.

  18. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  19. Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant

    Science.gov (United States)

    Durant, Neal D.; Wilson, Liza P.; Bouwer, Edward J.

    1995-01-01

    A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7 m) and deep (24.7 m) areas of the subsurface in both relatively clean (biodegradation (7±1% to 13±2%) in the presence of N03 was observed in two samples. Compound removals were first order with respect to substrate concentration during the first 10-15 days of incubation. Compound biodegradation plateaued in the later stages of incubation (15-40 days), most likely from diminishing bioavailability and nutrient and oxygen depletion. Population densities in the sediments were typically low, with viable aerobic counts ranging from 0 to 10 5 CFU gdw -1, viable anaerobic counts ranging from 0 to 104 CFU gdw -1, and total counts (AODC) usually 10-fold greater than viable counts. Total counts exhibited a strong ( p Bacteria were metabolically active in samples from groundwaters with low pH (3.7) and high naphthalene concentrations (11,000 μg L -1). Data from these enumeration and microcosm studies suggest that natural in situ biodegradation is occurring at the site.

  20. Fundamental study of mechanical and chemical degradation mechanisms of PEM fuel cell membranes

    Science.gov (United States)

    Yoon, Wonseok

    One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by

  1. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  2. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into

  3. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into n

  4. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants

    Institute of Scientific and Technical Information of China (English)

    Changming Yang; Mengmeng Wang; Haiyan Chen; Jianhua Li

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis,Zizaaia aquatica,and Acorus calamus.The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants.A.calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils,as compared with Z aquatica and P.australis.Half-life time of butachlor degradation in the rhizospheric soils of P.australis,Z.aquatica,and A.calamus were 7.5,9.8 and 5.4 days,respectively.Residual butachlor concentration in A.calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z.aquatica and P.australis rhizosphere soils,respectively,indicating that A.calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant.In general,microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition,despite the riparian plant types.However,rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species.Compared to Z.aquatica and P.australis,A.calamus showed significantly larger microbial number,higher enzyme activities and soil respiration rates in the rhizosphere soils.The results indicated that A.calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butaehlor contamination from agricultural nonpoint pollution.

  5. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    Science.gov (United States)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  6. Degradation Behavior of Moroxydine Hydrochloride in Rice Plant and Field Water Using High Performance Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    ZHAO Lin

    2014-10-01

    Full Text Available Through field experiments, which were conducted in Zhaodong County of Heilongjiang Province, Zhulou County of Henan Province and Jurong County of Jiangsu Province, the degradation dynamics of moroxydine hydrochloride in rice plant and field water were investigated.The detection was performed by tandem mass spectrometry with electrospray ionization in positive mode(ESI+. The results showed that the average recoveries of rice plant and field water at three spiked levels (0.005, 0.05, 0.5 mg·kg -1were found in the range of 92.50%-109.20% with RSD 6.10%-6.90% and 86.40%-107.2% with RSD 0.73%-3.10%, respectively. Limits of detection(LODof plant and water were 0.005 mg·kg -1. The degradation kinetic equation showed that the half-life of moroxydine hydrochloride in rice plant and field water was 1.2-4.7 d,1.0-3.5 d, respectively. The moroxydine hydrochloride was proved to be an easily degradable pesticide.

  7. Mechanisms promoting and inhibiting the process of proteasomal degradation of cells

    Directory of Open Access Journals (Sweden)

    Pedrycz Agnieszka

    2016-03-01

    Full Text Available Defects in the process of degradation of unneeded cellular proteins underlie many diseases. This article discusses one of the most important systems of removal of abnormal proteins. It describes the process of ubiquitination of proteins for proteasome degradation. It also describes the structure of the 26S and 20S proteasomes and the mechanism of ubiquitin-proteasome system. Proteasome proteolytic system is highly specialized and organized. Protease-proteasome 26S is particularly important for proper cell functioning. It recognizes and degrades marked proteins. Inhibition of proteasome pathway leads to cell cycle arrest and apoptosis.

  8. The potential of single-cell profiling in plants

    OpenAIRE

    Efroni, Idan; Birnbaum, Kenneth D

    2016-01-01

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized ce...

  9. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Changguang Shi

    Full Text Available Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs and the effects on the degradation of chlorophyll, nitrogen (N concentration in leaves and culms, total non-structural carbohydrate (TNC in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies, but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and

  10. APC/C activity during the cell cycle. Shifting gears in protein degradation

    NARCIS (Netherlands)

    Boekhout, M.

    2015-01-01

    For correct cell division to take place, many different mechanisms ensure genomic integrity and formation healthy daughter cells. One mechanism that has evolved to provide a safe passage from one cell cycle phase into the next, is protein degradation. With our work we provide new insights into activ

  11. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  12. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  13. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Directory of Open Access Journals (Sweden)

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  14. [Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being].

    Science.gov (United States)

    Long, Ren; Wang, Wei-ping; Xiong, Ping

    2005-08-01

    To probe the correlation between the postmortem interval (PMI) and the DNA degradation of costicartilage and dental pulp cells in human being after death, and to seek a new method for estimating PMI. The image cytometry was used to measure the DNA degradation under different ambient temperatures (30-35 degrees C, 15-20 degrees C) in 0-15 days after death. The average DNA content of two kinds of tissue was degradated with the prolongation of PMI. But there was a plateau period of 0-4 days for dental pulp cells of human being in 15-20 degrees C. There was a high negative correlativity PPMI. PMI could be estimated accurately according to the DNA degradation of costicartilage and dental pulp cells in human being after death.

  15. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.;

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough interf...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved.......Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...

  16. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  17. Plant protoplast fusion and growth of intergeneric hybrid cells.

    Science.gov (United States)

    Kao, K N; Constabel, F; Michayluk, M R; Gamborg, O L

    1974-01-01

    Interspecific and intergeneric fusions of plant protoplasts were induced by polyethylene glycol (PEG) 1540 or 4000. The frequency of heterokaryocyte formation (or rate of fusion) was much higher when PEG was eluted with a high pH-high Ca(2+) solution or a salt solution than when it was eluted with a protoplast culture medium. The frequency of heterokaryocyte formation was also affected by the types of enzymes used for wall degradation, duration of enzyme incubation and molality of the PEG solutions.The maximum frequency of heterokaryocyte formation was 23% for V. hajastana Grossh.-soybean (Glycine max L.) and barley (Hordeum vulgare L.)-soybean, 35% for pea (Pisum sativum L.)-soybean, 20% for pea-V. hajastana, 14% for corn (Zea mays L.)-soybean and 10% for V. villosa Roth-V. hajastana.40% of the barley-soybean, corn-soybean and pea-soybean heterokaryocytes divided at least once. Some divided many times and formed clusters of up to 100 cells in 2 weeks. The heterokaryocytes of soybean-V. hajastana, V. villosa-V. hajastana also divided. Of the PEG-treated protoplasts of N. langsdorffii and N. glauca 13.5% developed into tumor-like calli. The morphology of these calli was very much like that of the tumors produced on amphidiploid plants of N. langsdorffii x glauca.Nuclear staining indicated that heterokaryocytes of V. hajastana-soybean, pea-soybean, corn-soybean and barley-soybean could undergo mitosis. Nuclear divisions in a heterokaryocyte were usually synchronized or almost synchronized. Nuclear fusion and true hybrid formation usually occurred during the first mitotic division after protoplast fusion. A hybrid of barley-soybean in third cell division was observed. The frequency of heterokaryocytes which underwent nuclear fusion has not been determined. Multipole formation and chimeral cell colonies were also observed.

  18. Mechanisms of accelerated degradation in the front cells of PEMFC stacks and some mitigation strategies

    Science.gov (United States)

    Li, Pengcheng; Pei, Pucheng; He, Yongling; Yuan, Xing; Chao, Pengxiang; Wang, Xizhong

    2013-11-01

    The accelerated degradation in the front cells of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and durability of the whole stack. Most researches only focus on the size and configuration of the gas intake manifold, which may lead to the maldistribution of flow and pressure. In order to find out the mechanisms of the accelerated degradation in the front cells, an extensive program of experimental and simulation work is initiated and the results are reported. It is found that after long-term lifetime tests the accelerated degradation in the front cells occurs in all three fuel cell stacks with different flow-fields under the U-type feed configuration. Compared with the rear cells of the stack, the voltage of the front cells is much lower at the same current densities and the membrane electrode assembly(MEA) has smaller active area, more catalyst particle agglomeration and higher ohmic impedance. For further investigation, a series of three dimensional isothermal numerical models are built to investigate the degradation mechanisms based on the experimental data. The simulation results reveal that the dry working condition of the membrane and the effect of high-speed gas scouring the MEA are the main causes of the accelerated degradation in the front cells of a PEM fuel cell stack under the U-type feed configuration. Several mitigation strategies that would mitigate these phenomena are presented: removing cells that have failed and replacing them with those of the same aging condition as the average of the stack; choosing a Z-type feed pattern instead of a U-type one; putting several air flow-field plates without MEA in the front of the stack; or exchanging the gas inlet and outlet alternately at a certain interval. This paper specifies the causes of the accelerated degradation in the front cells and provides the mitigation strategies.

  19. Influence of rhizosphere microbial ecophysiological parameters from different plant species on butachlor degradation in a riparian soil.

    Science.gov (United States)

    Yang, Changming; Wang, Mengmeng; Li, Jianhua

    2012-01-01

    Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.

  20. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  1. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core

    Directory of Open Access Journals (Sweden)

    Markus Himmelsbach

    2016-03-01

    Full Text Available Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  2. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core.

    Science.gov (United States)

    Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner

    2016-02-10

    Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  3. Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    Solid oxide fuel cells produced at Risø DTU have been tested as solid oxide electrolysis cells for steam electrolysis by applying an external voltage. Varying the sealing on the hydrogen electrode side of the setup verifies that the previously reported passivation over the first few hundred hours...... of electrolysis testing was an effect of the applied glass sealing. Degradation of the cells during long-term galvanostatic electrolysis testing [850°C, −1/2 A/cm2, p(H2O)/p(H2)=0.5/0.5] was analyzed by impedance spectroscopy and the degradation was found mainly to be caused by increasing polarization resistance...... associated with the hydrogen electrode. A cell voltage degradation of 2%/1000 h was obtained. Postmortem analysis of cells tested at these conditions showed that the electrode microstructure could withstand at least 1300 h of electrolysis testing, however, impurities were found in the hydrogen electrode...

  4. Evolution and diversity of green plant cell walls.

    Science.gov (United States)

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  5. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  6. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    Science.gov (United States)

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC.

  7. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro.

    Science.gov (United States)

    Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K

    2015-01-01

    In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.

  8. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells.

    Science.gov (United States)

    Cochran, David B; Gray, Lindsay N; Anderson, Kimberly W; Dziubla, Thomas D

    2016-10-01

    Cancer and the inflammatory system share a complex intertwined relationship. For instance, in response to an injury or stress, vascular endothelial cells will express cell adhesion molecules as a means of recruiting leukocytes. However, circulating tumor cells (CTCs) have been shown to highjack this expression for the adhesion and invasion during the metastatic cascade. As such, the initiation of endothelial cell inflammation, either by surgical procedures (cancer resection) or chemotherapy can inadvertently increase the metastatic potential of CTCs. Yet, systemic delivery of anti-inflammatories, which weaken the entire immune system, may not be preferred in some treatment settings. In this work, we demonstrate that a long-term releasing flavone-based polymer and subsequent nanoparticle delivery system can inhibit tumor cell adhesion, through the suppression of endothelial cell adhesion molecule expression. The degradation of a this anti-inflammatory polymer provides longer term, localized release profile of active therapeutic drug in nanoparticle form as compared with that of the free drug, permitting more targeted anti-metastatic therapies. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1438-1447, 2016.

  9. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems.

    Science.gov (United States)

    Kleiner, Karin; Ehrenberg, Helmut

    2017-06-01

    Owing to the high energy and power density of lithium-ion cells (1200 Wh kg(-1) and 200 Wh kg(-1)) and due to their compact design, they are used as energy storage devices in many contemporary mobile applications such as telecommunication systems, notebooks and domestic appliances. Meanwhile their application is not limited only to consumer electronics, they are also standard in hybrid electric (HEVs) and electric vehicles (EVs). However, the profitable application of lithium-ion cells in the automobile industry requires lower costs, lower safety risks, a higher specific energy density and a longer lifetime under everyday conditions. All these aspects are directly or indirectly related to the degradation of the materials in a lithium-ion cell. One possibility for reducing the costs is a second life application of the cells after their usage in (H)EVs. In order to enable this, the safety risks at the end of life of a cell operated in a vehicle have to be reliably predicted. This requires a fundamental knowledge about underlying material degradations during operation. The safety risk of a lithium-ion cell increases during operation because the voltage windows in which the electrodes are cycled shift, resulting in a higher possibility that at least one electrode is operated in a meta- or unstable state. Furthermore, higher impedances due to material degradations lead to increasing heat generation and therefore to an increase in the risk of failure. Higher energy densities can be achieved by raising the end of charge voltage of a cell, causing additional safety risks because many cathode materials tend to decompose at high voltages. Another possibility for achieving higher energy densities is to use nickel-rich or lithium-excess cathode materials, since cathodes are currently limiting the capacity of lithium-ion cells. But these systems show a poor cycling stability (a higher degradation rate). The lifetime of a lithium-ion cell is limited by the degradation of the

  10. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    B. Gessesse

    2015-11-01

    Full Text Available Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001. Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  11. Plant biomass degradation by gut microbiomes: more of the same or something new?

    Science.gov (United States)

    Morrison, Mark; Pope, Phillip B; Denman, Stuart E; McSweeney, Christopher S

    2009-06-01

    Herbivores retain within their gastrointestinal tract a microbiome that specializes in the rapid hydrolysis and fermentation of lignocellulosic plant biomass. With the emergence of high-throughput DNA sequencing technologies and related 'omics' approaches, along with demands to better utilize lignocellulose materials as a feedstock for second-generation biofuels, these gut microbiomes are thought to be a potential source of novel biotechnologies relevant to meeting these needs. This review provides an insight into the new findings that have arisen from the (meta)genomic analysis of specialist cellulolytic bacteria and gut microbiomes of herbivorous insects, ruminants, native Australian marsupials, and other obligate herbivores. In addition to there being more of the same in terms of cellulases and cellulosomes, there also appears to be something 'new' in terms of the compositional and functional attributes of the plant cell wall deconstruction systems employed by these bacteria. However, future dissection and capture of useful biotechnologies via metagenomics will need more than the production of data using next generation sequencing technologies.

  12. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    Science.gov (United States)

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.

  13. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute  towards a fundamental understanding of the  molecular basis of

  14. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  15. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Science.gov (United States)

    2011-01-01

    The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles. PMID:21439072

  16. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Directory of Open Access Journals (Sweden)

    Sengupta Tapas K

    2011-03-01

    Full Text Available Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  17. Auxin regulation of cell polarity in plants.

    Science.gov (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  18. Reversing and Repairing Microstructure Degradation in Solid Oxide Cells During Operation

    DEFF Research Database (Denmark)

    Graves, Christopher R.

    2013-01-01

    The elevated operating temperature of solid oxide electrochemical cells (SOCs) can lead to long-term degradation of cell components due to instability of materials and microstructures. However, this unique possibility for microstructural changes to occur can also be advantageously exploited...... to counteract performance loss, by careful control of operating parameters and cell design. This paper describes four recently discovered methods of in situ reversal or repair of microstructure degradation: (1) The newest method is the elimination of severe electrolysis-induced degradation at high current...... density by reversible battery-like operation, cycling between electrolysis mode and fuel-cell mode. Also reported are new examples of beneficial effects of (2) redox cycling, (3) exsolution of nano-catalysts, and (4) high cathodic polarization, all of which can be used to maintain or even improve...

  19. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  20. Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU

    OpenAIRE

    More, Veena S.; Tallur, Preeti N.; Niyonzima, Francois N.; More, Sunil S.

    2015-01-01

    A bacterium capable of degrading pendimethalin was isolated from the contaminated soil samples and identified as Bacillus lehensis XJU based on 16S rRNA gene sequence analysis. 6-Aminopendimethalin and 3,4-dimethyl 2,6-dinitroaniline were identified as the metabolites of pendimethalin degradation by the bacterium. The biodegradation of pendimethalin by freely suspended and the immobilized cells of B. lehensis on various matrices namely agar, alginate, polyacrylamide, and polyurethane foam was...

  1. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency, fill factor, and IV curves were collected at regular inter...

  2. Degradation of CIGS solar cells due to the migration of alkali-elements

    NARCIS (Netherlands)

    Theelen, M.; Barreau, N.; Hans, V.; Steijvers, H.; Vroon, Z.; Zeman, M.

    2015-01-01

    Non-encapsulated CIGS solar cells with different contents of sodium (Na) and potassium (K) were simultaneously exposed to damp heat and illumination. The solar cells with higher alkali (Na, K) content exhibited higher initial conversion efficiencies, but degraded severely within 100 hours, while sam

  3. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation.

    Science.gov (United States)

    Fath, A; Bethke, P C; Jones, R L

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  4. Cell wall degradation in the autolysis of filamentous fungi.

    Science.gov (United States)

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  5. Plant and animal stem cells: similar yet different.

    Science.gov (United States)

    Heidstra, Renze; Sabatini, Sabrina

    2014-05-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.

  6. Effect of dynamic operation on chemical degradation of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Jung, Minjae; Williams, Keith A.

    2011-03-01

    Dynamic operation is known as one of the factors for accelerating chemical degradation of the polymer electrolyte membrane in a polymer electrolyte membrane fuel cell (PEMFC). However, little effort has been made dealing with the quantification of the degradation process. In this investigation, cyclic current operation is carried out on a fuel cell system, and the frequency effect of cyclic operation on chemical degradation is investigated. The dynamic behavior of a fuel cell system is analyzed first with the modified Randles model, where the charge double layer is modeled by three components; a charge transfer resistance (Rct), and two RC cells for the Warburg impedance. After calculating each parameter value through exponential curve fitting, the dynamic behaviors of the three components are simulated using MATLAB Simulink®. Fluoride release as a function of the frequency of cyclic operation is evaluated by measuring the concentration of fluoride ion in effluent from a fuel cell exhaust. The frequency effect on chemical degradation is explained by comparing the simulated results and the fluoride release results. Two possible reasons for the accelerated degradation at cyclic operation are also suggested.

  7. Understanding Light-Induced Degradation of c-Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.; Basnyat, P.; Devayajanam, S.; Shet, S.; Mehta, V.; Binns, J.; Appel, J.

    2012-06-01

    We discuss results of our investigations toward understanding bulk and surface components of light-induced degradation (LID) in low-Fe c-Si solar cells. The bulk effects, arising from boron-oxygen defects, are determined by comparing degradation of cell parameters and their thermal recovery, with that of the minority-carrier lifetime (964;) in sister wafers. We found that the recovery of 964; in wafers takes a much longer annealing time compared to that of the cell. We also show that cells having SiN:H coating experience a surface degradation (ascribed to surface recombination). The surface LID is seen as an increase in the q/2kT component of the dark saturation current (J02). The surface LID does not recover fully upon annealing and is attributed to degradation of the SiN:H-Si interface. This behavior is also exhibited by mc-Si cells that have very low oxygen content and do not show any bulk degradation.

  8. Assessment of hydrocarbon degradation potentials in plant-microbe interaction system with oil sludge contamination: A sustainable solution.

    Science.gov (United States)

    Dhote, Monika; Kumar, Anil; Jajoo, Anjana; Juwarkar, Asha

    2017-05-25

    A pot culture experiment was conducted for 90 days for evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real field oil sludge contaminated soil. Five different treatments include, (T1) control, 2% oil sludge contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiver zizanioide; (T4), bio-augmentation along with Vertiver zizanioide and (T5), bio-augmentation with Vertiver zizanioide and bulking agent. During the study, oil reduction, TPH and degradation of its fractions was determined. Physic-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88% and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1) TPH reduction was 78% and 37% respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatment T4 and T5 was found to 91% and 92%. In microbial (T2) and Vertiver treatment (T3) degradation of aromatic fraction was 83% and 68% respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content, water holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that plant-microbe-soil system helps to restore soil quality and can be used as an effective tool for remediation of oil sludge contaminated sites.

  9. Effects of combination of plant and microorganism on degradation of simazine in soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The degradative characteristics of simazine (SIM), microbial biomass carbon, plate counts of heterotrophic bacteria and most probably number (MPN) of SIM degraders in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated nonrhizosphere soil, and inoculated rhizosphere soil were measured. At the initial concentration of 20 mg SIM/kg soil, the half-lives of SIM in the four treated soils were measured to be 73.0, 52.9, 16.9, and 7.8 d, respectively, and corresponding kinetic data fitted first-order kinetics. The experimental results indicated that higher degradation rates of SIM were observed in rhizosphere soils, especially in inoculated rhizosphere soil. The degradative characteristics of SIM were closely related to microbial process. Vegetation could enhance the magnitude of rhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but did little to influence those community components responsible for SIM degradation. This suggested that rhizosphere soil inoculated with microorganisms-degrading target herbicides was a useful pathway to achieve rapid degradation of the herbicides in soil.

  10. Cell degradation of a Na–NiCl2 (ZEBRA) battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Xiaochuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sprenkle, Vincent L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-23

    In this work, the parameters influencing the degradation of a Na-NiCl2 (ZEBRA) battery were investigated. Planar Na-NiCl2 cells using β”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influence the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.

  11. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies.

    Science.gov (United States)

    Hermawan, Hendra; Purnama, Agung; Dube, Dominique; Couet, Jacques; Mantovani, Diego

    2010-05-01

    Biodegradable stents have shown their potential to be a valid alternative for the treatment of coronary artery occlusion. This new class of stents requires materials having excellent mechanical properties and controllable degradation behaviour without inducing toxicological problems. The properties of the currently considered gold standard material for stents, stainless steel 316L, were approached by new Fe-Mn alloys. The degradation characteristics of these Fe-Mn alloys were investigated including in vitro cell viability. A specific test bench was used to investigate the degradation in flow conditions simulating those of coronary artery. A water-soluble tetrazolium test method was used to study the effect of the alloy's degradation product to the viability of fibroblast cells. These tests have revealed the corrosion mechanism of the alloys. The degradation products consist of metal hydroxides and calcium/phosphorus layers. The alloys have shown low inhibition to fibroblast cells' metabolic activities. It is concluded that they demonstrate their potential to be developed as degradable metallic biomaterials.

  12. Rapid monitoring of RNA degradation activity in vivo for mammalian cells.

    Science.gov (United States)

    Tani, Hidenori; Sato, Hiroaki; Torimura, Masaki

    2017-04-01

    We have developed a rapid fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA degradation activity in mammalian cells. In this technique, double-stranded RNA (dsRNA) fluorescent probes are used. The dsRNA fluorescent probes consist of a 5' fluorophore-labeled strand hybridized to a 3' quencher-labeled strand, and the fluorescent dye is quenched by a quencher dye. When the dsRNA is degraded by nascent RNases in cells, the fluorescence emission of the fluorophore is induced following the degradation of the double strands. The degradation rates of the dsRNA are decelerated in response to chemical or environmental toxicity; therefore, in the case of cellular toxicity, the dsRNA is not degraded and remains intact, thus quenching the fluorescence. Unlike in conventional cell-counting assays, this new assay eliminates time-consuming steps, and can be used to simply evaluate the cellular toxicity via a single reaction. Our results demonstrate that this assay can rapidly quantify the RNA degradation rates in vivo within 4 h for three model chemicals. We propose that this assay will be useful for monitoring cellular toxicity in high-throughput applications.

  13. Pac-Man for biotechnology: co-opting degrons for targeted protein degradation to control and alter cell function.

    Science.gov (United States)

    Yu, Geng; Rosenberg, Julian N; Betenbaugh, Michael J; Oyler, George A

    2015-12-01

    Protein degradation in normal living cells is precisely regulated to match the cells' physiological requirements. The selectivity of protein degradation is determined by an elaborate degron-tagging system. Degron refers to an amino acid sequence that encodes a protein degradation signal, which is oftentimes a poly-ubiquitin chain that can be transferred to other proteins. Current understanding of ubiquitination dependent and independent protein degradation processes has expanded the application of degrons for targeted protein degradation and novel cell engineering strategies. Recent findings suggest that small molecules inducing protein association can be exploited to create degrons that target proteins for degradation. Here, recent applications of degron-based targeted protein degradation in eukaryotic organisms are reviewed. The degron mediated protein degradation represents a rapidly tunable methodology to control protein abundance, which has broad application in therapeutics and cellular function control and monitoring.

  14. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  15. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Kuijken, R.C.P.; Buisman, C.J.N.

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential

  16. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-01-01

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if t

  17. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if

  18. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  19. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper;

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus......, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...... material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial...

  20. Experimental approaches to study plant cell walls during plant-microbe interactions.

    Science.gov (United States)

    Xia, Ye; Petti, Carloalberto; Williams, Mark A; DeBolt, Seth

    2014-01-01

    Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act as the first barrier of defense against biotic and abiotic stress. In addition to providing structural integrity, plant cell walls serve an important function in connecting cells to their extracellular environment by sensing and transducing signals to activate cellular responses, such as those that occur during pathogen infection. This mini review will summarize current experimental approaches used to study cell wall functions during plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses, and metabolic profiling techniques.

  1. Experimental approaches to study plant cell walls during plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Ye eXia

    2014-10-01

    Full Text Available Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act as the first barrier of defense against biotic and abiotic stress. In addition to providing structural integrity, plant cell walls serve an important function in connecting cells to their extracellular environment by sensing and transducing signals to activate cellular responses, such as those that occur during pathogen infection. This mini review will summarize current experimental approaches used to study cell wall functions during plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses, and metabolic profiling techniques

  2. Monitoring the alkane monooxygenase gene alkB in different soil interfaces during plant litter degradation of C3 and C4 plants

    Science.gov (United States)

    Schulz, S.; Munch, J. C.; Schloter, M.

    2009-04-01

    Hydrocarbons like n-alkanes are ubiquitous in the environment as a result of anthropogenic contamination (e.g. oil spills) as well as a part of an ecosystem's biomass. For example n-alkanes become released during plant litter degradation; consequently they become a high abundant carbon source for microorganism. One possibility for the prokaryotic hydrocarbon metabolisation is an aerobic degradation pathway where the initial step is catalysed by the membrane bound alkane monooxygenase alkB. We analysed the influence of alkanes on the abundance of the alkB gene in different interfaces of the litter-soil system during the degradation of maize and pea litter. Therefore soil samples of a sandy and a loamy soil have been incubated with straw of maize and pea plants up to 30 weeks with constant soil moisture and temperature. Using quantitative real-time PCR we were able to monitor the changes of the abundance and the expression rates of alkB. In our experiments we focused on the straw layer, the litter/soil interface and the soil 1 cm below this interface (bulk soil). Our results clearly demonstrate time and space dependent abundance patterns of alkB genes and transcripts in the different layers studied, which are additionally shaped by the soil type used.

  3. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines.

    Science.gov (United States)

    Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta

    2014-09-01

    Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of degradable MG-ND-ZN-ZR alloy on osteoblastic cell function.

    Science.gov (United States)

    Wang, Y; Ouyang, Y; Pang, X; Mao, L; Yuan, G; Jiang, Y; He, Y

    2012-01-01

    This study aimed to investigate the effects of a novel patented Mg-3Nd-0.2Zn-0.4Zr (weight %, JDBM) alloy on osteoblastic cell function, as these cells play an important role in bone repair and remodeling. The associated effects of the JDBM alloy on osteoblastic cell function involving cell adhesion, cell proliferation, and mineralization were investigated using scanning electron microscopy (SEM), MTT assay and ambramycin staining, respectively. At the same time, the in vitro degradation behavior of the JDBM alloy in cell culture medium was evaluated by the weight-loss method and SEM. Pure magnesium was used as control. The results showed that osteoblastic cells cultured on JDBM alloy samples manifested better cell adhesion, improved cell proliferation and increased mineralization ability, compared with cells seeded on pure magnesium samples. Our data indicate that the JDBM alloy has excellent bioactivity, improving the cell function of osteoblastic cells seeded on it.

  5. Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, T.Y.

    1991-09-01

    Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

  6. Degradation analysis of 18650-type lithium-ion cells by operando neutron diffraction

    Science.gov (United States)

    Shiotani, Shinya; Naka, Takahiro; Morishima, Makoto; Yonemura, Masao; Kamiyama, Takashi; Ishikawa, Yoshihisa; Ukyo, Yoshio; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2016-09-01

    In-situ and operando neutron diffraction are used to analyze the degradation of 18650-type Li-ion cells. Structural characterization of the electrode materials is performed by applying the Rietveld refinement technique to the in-situ data. The structural refinement of both electrodes in the degraded cells indicates that the amount of active Li-ions is reduced by 14.4% and 13.7% in the cathode and anode, respectively. This reduction is good in agreement with the capacity loss determined electrochemically. The results suggest that capacity loss might be mainly caused by loss of active Li-ions due to side reactions such as solid electrolyte interface (SEI) growth. Furthermore, operando measurements are performed to examine the deterioration of the electrode and active materials. Because the structural evolution depending on capacity is increased in the cathode of degraded cells, it is presumed that the cathode active material has deteriorated due to phase transitions.

  7. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.

    Science.gov (United States)

    Krönke, Jan; Udeshi, Namrata D; Narla, Anupama; Grauman, Peter; Hurst, Slater N; McConkey, Marie; Svinkina, Tanya; Heckl, Dirk; Comer, Eamon; Li, Xiaoyu; Ciarlo, Christie; Hartman, Emily; Munshi, Nikhil; Schenone, Monica; Schreiber, Stuart L; Carr, Steven A; Ebert, Benjamin L

    2014-01-17

    Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.

  8. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Skjøt-Arkil, Helene; Register, Thomas C

    2010-01-01

    BACKGROUND: Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular......-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women...... with aortic calcifications compared to those without. CONCLUSIONS: Human macrophage foam cells degrade the atherosclerotic plaques though cathepsin K mediated processes, resulting in increase in levels of CTX-I. Serum CTX-I was not elevated in women with aortic calcification, likely due to the contribution...

  9. Origin of the Degradation of Triple Junction Solar Cells at low Temperature

    Directory of Open Access Journals (Sweden)

    Park Seonyong

    2017-01-01

    Full Text Available The degradation of solar cells under irradiation by high energy particles (electrons, protons is the consequence of the introduction of defects trapping minority carriers, which are then not collected by the junction. However, at low temperature, defects located in the space charge region can also induce a tunneling current that results in an apparent decreases of the maximum power. The degradation produced by this tunneling current can depend on temperature, since the concentration of defects created by an irradiation is usually temperature dependent, and can be larger than the degradation associated with carrier recombination. For instance, as we shall see below, an irradiation with 1 MeV electrons at 120 K with a fluence of 3.0 × 1015 /cm2 induces a decrease of less than 10 % in the short-circuit current (Isc and open-circuit voltage (Voc of triple junction (TJ cells, but a decrease of about 40 % in the maximum power (Pmax, which implies that more than half of the total degradation of Pmax should be assigned to another loss mechanism, tunneling in this case. In this work, we demonstrate that this additional degradation must indeed be ascribed to a tunneling process and we investigate the variation of the tunneling current versus fluence induced by electron irradiation in TJ cells, in order to tentatively ascribe the tunneling components to specific sub-cells.

  10. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    Science.gov (United States)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  11. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    Science.gov (United States)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, Plabour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  12. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    A harmonious mix of renewable and alternative energy sources, including fuel cells is necessary to mitigate problems associated with the current fossil fuel based energy system, like air pollution, Greenhouse Gas (GHG) emissions, and economic dependence on oil, and therefore on unstable areas...... of the globe. Fuel cells can harness the excess energy from other renewable sources, such as the big players in the renewable energy market, Photovoltaic (PV) panels and wind turbines, which inherently suffer from intermittency problems. The excess energy can be used to produce hydrogen from water or can...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined...

  13. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  14. Epigenetic memory and cell fate reprogramming in plants.

    Science.gov (United States)

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  15. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  16. High Energy Electron Radiation Degradation of Gallium Arsenide Solar Cells.

    Science.gov (United States)

    1986-03-01

    relative spectral output of the Kratos source was determined. This procedure may be algebraically verified since the cell output current, i, is equal...A (cm2), then a unique voltage may be calculated for given values of 0 and C. Algebraically , this equation may be written as ~q A 77e ____ __ 8) C...position as necessary to achieve proper voltage. (d) Place solar cell on test block using plastic tweezers. (e) Start test program by typing " BASICA

  17. Formative cell divisions: principal determinants of plant morphogenesis.

    Science.gov (United States)

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  18. Cell Fate Switch during In Vitro Plant Organogenesis

    Institute of Scientific and Technical Information of China (English)

    Xiang Yu Zhao; Ying Hua Su; Zhi Juan Cheng; Xian Sheng Zhang

    2008-01-01

    Plant mature cells have the capability to reverse their state of differenUation and produce new organs under cultured conditions. Two phases, dedifferentiation and redifferentiation, are commonly characterized during in vitro organogenesis.In these processes, cells undergo fate switch several times regulated by both extrinsic and intrinsic factors, which are associated with reentry to the cell cycle, the balance between euchromatin and heterochromatin, reprogramming of gene expression, and so forth. This short article reviews the advances in the mechanism of organ regeneration from plant somatic cells in molecular, genomic and epigenetic aspects, aiming to provide important information on the mechanism underlying cell fate switch during in vitro plant organogenesis.

  19. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  20. Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell due to Ageing

    Directory of Open Access Journals (Sweden)

    Parth Bhatt

    2016-01-01

    Full Text Available This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs. The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V characteristics are analyzed. Short circuit current density (JSC decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS. An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.

  1. The First Observation on Plant Cell Fossils in China

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; CUI Jinzhong

    2007-01-01

    For a long time, paleontologists have been focusing on hard parts of organisms during different geological periods while soft parts are rarely reported. Well-preserved plant cells, if found in fossils, are treated only as a rarity. Recent progress in research on fossil cytoplasm indicates that plant cytoplasm not only has excellent ultrastructures preserved but also may be a quite commonly seen fossil in strata. However, up to now there is no report of plant cell fossils in China yet. Here plant cell fossils are reported from Huolinhe Coal Mine (the early Cretaceous), Inner Mongolia, China. The presence of plant cytoplasm fossils in two cones on the same specimen not only provides further support for the recently proposed hypothesis on plant cytoplasm fossilization but also marks the first record of plant cytoplasm fossils in China, which suggests a great research potential in this new area.

  2. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  3. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    Science.gov (United States)

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible.

  4. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  5. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation

    OpenAIRE

    Shao, Wanchen; Dong, Juan

    2016-01-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a s...

  6. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    Science.gov (United States)

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m(2) and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.

  7. RNAi screening for characterisation of ER-associated degradation pathways in mammalian cells

    DEFF Research Database (Denmark)

    Månsson, Mats David Joakim

    It is estimated that one third of all synthesized proteins in mammalian cells traverse the secretory pathway. Folding of proteins in the ER on their way to secretion is highly regulated. Proteins that are unable to achieve their native conformation are degraded by the ubiquitin-proteasome system...... fluorescence-based RNAi screens in mammalian cells on TCR-α-GFP and HANSκLC, for identification of ERAD pathways. By validating the obtained screening hits we concluded that UBE2J2 is involved in TCR-α-GFP degradation, possibly by ubiquitination of C-terminal serine residues in TCR-α-GFP. Additionally, we also...

  8. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development an

  9. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development

  10. Reversible degradation of inverted organic solar cells by concentrated sunlight

    OpenAIRE

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A.; Frederik C. Krebs

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of...

  11. The Effect of the PLA Degradation Chemical on cell Proliferation

    Science.gov (United States)

    Feng, Kuan-Che

    PLA is a material easy to manufacture. The biodegradability makes it a perfect material for tissue engineering. Several conditions for biodegradability experiments for spin-coating Polylactic acid thin films were tried. Polylactic acid thin films were immersed in different solution for different times. Thickness, morphology and mechanical properties were analyzed after the Polylactic acid thin films immersing test. Dermal fibroblasts were plated on the Polylactic acid thin films, culturing with conditioning medium. Thickness, morphology, mechanical properties and cell count were analyzed after the Polylactic acid thin films cell culture test.

  12. Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed.

    Science.gov (United States)

    Hatsch, Didier; Phalip, Vincent; Petkovski, Elizabet; Jeltsch, Jean-Marc

    2006-07-07

    The transcription of a set of 32 putative xylanase genes from Fusarium graminearum was examined by quantitative PCR after growth on different carbon sources (hop cell wall, xylan, xylose, or carboxymethylcellulose). Growing on plant cell wall medium, this fungus displays a great diversity of expression of xylan-related genes, with 30 being induced. A second level of diversity exists because expression patterns can be very different for loci encoding enzymes with the same activity (the same EC number). The wealth of xylan-degrading enzymes and the differential expression confer on the fungus a great flexibility of reaction to variation in its environment.

  13. Heavy metals in a degraded soil treated with sludge from water treatment plant

    Directory of Open Access Journals (Sweden)

    Teixeira Sandra Tereza

    2005-01-01

    Full Text Available The application of water treatment sludge (WTS to degraded soil is an alternative for both residue disposal and degraded soil reclaim. This study evaluated effects of the application of water treatment sludge to a Typic Hapludox soil degraded by tin mining in the National Forest of Jamari, State of Rondonia, Brazil, on the content of heavy metals. A completely randomized experimental design with five treatments was used: control (n = 4; chemical control, which received only liming (n = 4; and rates D100, D150 and D200, which corresponded to 100, 150 and 200 mg of N-sludge kg-1 soil (n = 20, respectively. Thirty days after liming, period in which soil moisture was kept at 70% of the retention capacity, soil samples were taken and analyzed for total and extractable Fe, Cu, Mn, Zn, Cd, Pb, Ni, and Cr. The application of WTS increased heavy-metal contents in the degraded soil. Although heavy metals were below their respective critical limits, sludge application onto degraded areas may cause hazardous environmental impact and thus must be monitored.

  14. Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G.

    Science.gov (United States)

    Watharkar, Anuprita D; Khandare, Rahul V; Kamble, Apurva A; Mulla, Asma Y; Govindwar, Sanjay P; Jadhav, Jyoti P

    2013-02-01

    Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent. In vitro cultures of P. grandiflora were obtained by seed culture method. The decolorization experiments were carried out using wild as well as tissue-cultured plants independently. The enzymatic analysis of the plant roots was performed before and after decolorization of BBG. Metabolites formed after dye degradation were analyzed using UV-vis spectroscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Phytotoxicity studies were performed. Characterization of dye mixture and textile effluent was also studied. The wild and tissue-cultured plants of P. grandiflora showed the decolorized BBG up to 86 %. Significant increase in the activities of lignin peroxidase, laccase, NADH-2,6-dichlorophenol-indophenol reductase, and tyrosinase was found in the roots of the plants. Three metabolites of BBG were identified as 3-{[ethyl(phenyl)amino]methyl}benzenesulfonic acid, 3-{[methyl (phenyl)amino]methyl}benzenesulfonic amino acid, and sodium-3-[(cyclohexa-2,5-dien-1-ylideneamino)methyl]benzenesulfonate. Textile effluent sample and a synthetic mixture of dyes were also decolorized by P. grandiflora. Phytotoxicity test revealed the nontoxic nature of metabolites. P. grandiflora showed the potential to decolorize and degrade BBG to nontoxic metabolites. The plant has efficiently treated a sample of dye mixture and textile effluent.

  15. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to

  16. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to determi

  17. Cancer cell metabolism regulates extracellular matrix degradation by invadopodia

    NARCIS (Netherlands)

    Horssen, R. van; Buccione, R.; Willemse, M.P.; Cingir, S.; Wieringa, B.; Attanasio, F.

    2013-01-01

    Transformed cancer cells have an altered metabolism, characterized by a shift towards aerobic glycolysis, referred to as 'the Warburg phenotype'. A change in flux through mitochondrial OXPHOS and cytosolic pathways for ATP production and a gain of capacity for biomass production in order to sustain

  18. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to determi

  19. The role of root border cells in plant defense.

    Science.gov (United States)

    Hawes, M C; Gunawardena, U; Miyasaka, S; Zhao, X

    2000-03-01

    The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.

  20. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin;

    2016-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected...... at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due...... to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year....

  1. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    Directory of Open Access Journals (Sweden)

    Charles Owens

    2015-12-01

    Full Text Available We report on the degradation of organic photovoltaic (OPV cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year.

  2. DNA degradation within mouse brain and dental pulp cells 72 hours postmortem

    Institute of Scientific and Technical Information of China (English)

    Jilong Zheng; Xiaona Li; Di Shan; Han Zhang; Dawei Guan

    2012-01-01

    In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.

  3. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  4. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-01-01

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering. PMID:27091175

  5. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  6. Production of recombinant proteins in suspension-cultured plant cells.

    Science.gov (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  7. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center

    2017-03-16

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plant cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.

  8. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    Science.gov (United States)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  9. Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp.JM2 isolated from active sewage sludge of chemical plant

    Institute of Scientific and Technical Information of China (English)

    Jing Ma; Li Xu; Lingyun Jia

    2012-01-01

    It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area.A bacterial strain JM2,which uses phenanthrene as its sole carbon source,was isolated from the active sewage sludge from a chemical plant in Jilin,China and identified as Pseudomonas based on 16S rDNA gene sequence analysis.Although the optimal growth conditions were determined to be pH 6.0 and 37℃,JM2 showed a broad pH and temperature profile.At pH 4.5 and 9.3,JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days.In addition,when the temperature was as low as 4℃,JM2 could degrade up to 24% fluorene and 12% phenanthrene.This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions.Moreover,a nutrient augmentation study showed that adding formate into media could promote PAH degradation,while the supplement of salicylate had an inhibitive effect.Furthermore,in a metabolic pathway study,salicylate,phthaiic acid,and 9-fluorenone were detected during the degradation of fluorene or phenanthrene.In conclusion,Pseudomonas sp.JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions.It might be useful in the bioremediation of PAHs.

  10. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  11. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  12. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  13. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cécile eALBENNE

    2013-05-01

    Full Text Available Plant cell wall proteins (CWPs progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cells walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last ten years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii the main protein families identified and the still missing peptides; (iii the persistent issue of the non-canonical CWPs; (iv the present challenges to overcome technological bottlenecks; and (v the perspectives beyond cell wall proteomics to understand CWP functions.

  14. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  15. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  16. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line

    Science.gov (United States)

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-09-01

    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy.

  17. Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Chen, Ming; Hendriksen, Peter Vang;

    2016-01-01

    Establishing the spatial distribution of the various chemical and electrochemical potentials in an operating SOEC is critical as several degradation mechanisms are tightly connected to them, but at the same time very challenging to achieve experimentally. Such distributions are presented here on ......, thereby helping to rationalize microstructural and chemical changes observed in post-mortem analysis. Finally, measures to mitigate degradation by changing conditions of operation, material or electrode properties or overall cell geometry are suggested.......Establishing the spatial distribution of the various chemical and electrochemical potentials in an operating SOEC is critical as several degradation mechanisms are tightly connected to them, but at the same time very challenging to achieve experimentally. Such distributions are presented here...... conductivities in the electrolyte, the gas composition, temperature, and pressure on the current density distribution over the cell and the oxygen activity distribution within the electrolyte. The developed model is further used to simulate long-term durability experiments during different stages of operation...

  18. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  19. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants.

    Science.gov (United States)

    Mackuľak, Tomáš; Mosný, Michal; Škubák, Jaroslav; Grabic, Roman; Birošová, Lucia

    2015-03-01

    In this study we analyzed and characterized 29 psychoactive remedies, illicit drugs and their metabolites in single stages of wastewater treatment plants in the capital city of Slovakia. Psychoactive compounds were present within all stages, and tramadol was detected at a very high concentration (706 ng/L). Significant decreases of codeine, THC-COOH, cocaine and buprenorphine concentration were observed in the biological stage. Consequently, we were interested in the possibility of alternative tertiary post-treatment of effluent water with the following aquatic plants: Cabomba caroliniana, Limnophila sessiliflora, Egeria najas and Iris pseudacorus. The most effective plant for tertiary cleansing was I. pseudacorus which demonstrated the best pharmaceutical removal capacity. After 48 h codeine and citalopram was removed with 87% efficiency. After 96 h were all analyzed compounds were eliminated with efficiencies above 58%.

  20. Methadone induces CAD degradation and AIF-mediated necrotic-like cell death in neuroblastoma cells.

    Science.gov (United States)

    Perez-Alvarez, Sergio; Iglesias-Guimarais, Victoria; Solesio, María E; Melero-Fernandez de Mera, Raquel María; Yuste, Víctor J; Galindo, María F; Jordán, Joaquín

    2011-04-01

    Methadone (d,l-methadone hydrochloride) is a full-opioid agonist, originally developed as a substitution for heroin or other opiates abusers. Nowadays methadone is also being applied as long-lasting analgesics in cancer, and it is proposed as a promising agent for leukemia therapy. Previously, we have demonstrated that high concentrations of methadone (0.5mM) induced necrotic-like cell death in SH-SY5Y cells. The pathway involved is caspase-independent but involves impairment of mitochondrial ATP synthesis and mitochondrial cytochrome c release. However, the downstream mitochondrial pathways remained unclear. Here, we studied the participation of apoptosis inducing factor (AIF) in methadone-induced cell death. Methadone resulted in a translocation of AIF from mitochondria to the nucleus. Translocation was inhibited by cyclosporine A, but not by lack of Bax protein. Therefore the effect seems mediated by the formation of the mitochondrial transition pore, but is apparently independent of Bax. Furthermore, methadone-treated SH-SY5Y nuclei show characteristics that are typical for stage I nuclear condensation. Methadone did not induce degradation of DNA into oligonucleosomal fragments or into high molecular weight DNA fragments. Absence of DNA fragmentation coincided with a considerable decrease in the levels of the caspase-actived endonuclase DNase and its chaperone-inhibitor ICAD. In conclusion, our results provide mechanistic insights into the molecular mechanisms that underlie methadone-induced cell death. This knowledge may prove useful to develop novel strategies to prevent toxic side-effects of methadone thereby sustaining its use as therapeutical agent against tumors.

  1. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  2. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  3. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    Science.gov (United States)

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  4. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin-Film Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The stability of intrinsic and Al-doped single- and bi-layer ZnO for thin-film CuInGaSe2 solar cells, along with Al-doped Zn1-xMgxO alloy and Sn-doped In2O3 (ITO) and F-doped SnO2, was evaluated by direct exposure to damp heat (DH) at 85oC and 85% relative humidity. The results show that the DH-induced degradation rates followed the order of Al-doped ZnO and Zn1-xMgxO >> ITO > F:SnO2. The degradation rates of Al:ZnO were slower for films of higher thickness, higher substrate temperature in sputter-deposition, and with dry-out intervals. As inferred from the optical micro-imaging showing the initiation and propagation of degrading patterns and regions, the degradation behavior appears similar for all TCOs, despite the obvious difference in the degradation rate. A degradation mechanism is proposed to explain the temporal process involving thermal hydrolysis.

  5. Localized degradation of foreign DNA strands in cells: Only excising the first nucleotide of 5' region.

    Science.gov (United States)

    Li, Hui; Shen, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2017-09-15

    Intracellular delivery of foreign DNA probes sharply increases the efficiency of various biodetection protocols. Spherical nucleic acid (SNA) conjugate is a new type of probe that consists of a dense oligonucleotide shell attached typically to a gold nanoparticle core. They are widely used as novel labels for in vitro biodetection and intracellular assay. However, the degradation of foreign DNA still remains a challenge that can cause significant signal leakage (false positive signal). Hence, the site and behavior of intracellular degradation need to be investigated. Herein, we discover a localized degradation behavior that only excises the first nucleotide of 5' terminal from a DNA strand, whereas the residual portion of this strand is unbroken in MCF-7 cell. This novel degradation action totally differs from previous opinion that foreign DNA strand would be digested into tiny fragments or even individual nucleotides in cellular environment. On the basis of these findings, we propose a simple and effective way to avoid degradation-caused false positive that one can bypass the degradable site and choose a secure region to label fluorophore along the DNA stand, when using DNA probes for intracellular biodetection. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.

    Science.gov (United States)

    Nadal, Marina; Garcia-Pedrajas, Maria D; Gold, Scott E

    2010-12-01

    Many fungal plant pathogens are known to produce extracellular enzymes that degrade cell wall elements required for host penetration and infection. Due to gene redundancy, single gene deletions generally do not address the importance of these enzymes in pathogenicity. Cell wall degrading enzymes (CWDEs) in fungi are often subject to carbon catabolite repression at the transcriptional level such that, when glucose is available, CWDE-encoding genes, along with many other genes, are repressed. In Saccharomyces cerevisiae, one of the main players controlling this process is SNF1, which encodes a protein kinase. In this yeast, Snf1p is required to release glucose repression when this sugar is depleted from the growth medium. We have employed a reverse genetic approach to explore the role of the SNF1 ortholog as a potential regulator of CWDE gene expression in Ustilago maydis. We identified U. maydis snf1 and deleted it from the fungal genome. Consistent with our hypothesis, the relative expression of an endoglucanase and a pectinase was higher in the wild type than in the Δsnf1 mutant strain when glucose was depleted from the growth medium. However, when cells were grown in derepressive conditions, the relative expression of two xylanase genes was unexpectedly higher in the Δsnf1 strain than in the wild type, indicating that, in this case, snf1 negatively regulated the expression of these genes. Additionally, we found that, contrary to several other fungal species, U. maydis Snf1 was not required for utilization of alternative carbon sources. Also, unlike in ascomycete plant pathogens, deletion of snf1 did not profoundly affect virulence in U. maydis.

  7. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions

    Science.gov (United States)

    Habib, K.; Husain, A.; Al-Hazza, A.

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rps) to the polarization resistance of the OPV cell in air (Rpair). In other words, the criterion lim(Rps/Rpair) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rpair became equal (increased) to Rps as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rps were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  8. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions.

    Science.gov (United States)

    Habib, K; Husain, A; Al-Hazza, A

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rp(s)) to the polarization resistance of the OPV cell in air (Rp(air)). In other words, the criterion lim(Rp(s)/Rp(air)) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rp(air) became equal (increased) to Rp(s) as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rp(s) were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  9. Developments in application of light and scanning electron microscopy techniques for cell wall degradation studies.

    NARCIS (Netherlands)

    Engels, F.M.

    1996-01-01

    The results of recent technological developments in light and scanning electron microscopy closely used for research on forage cell wall degradation in ruminants, are reviewed. The indigestibility of forages by rumen microorganisms used to be ascribed mainly to an overall presence of lignin in the p

  10. The impact of atmospheric species on the degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.; Foster, C.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.

    2015-01-01

    CIGS solar cells were exposed to liquid water purged with the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N2) and air in order to investigate their chemical degradation behavior. The samples were analyzed by electrical, compositional and optical me

  11. Altered calmodulin degradation and signaling in non-neuronal cells from Alzheimer's disease patients.

    Science.gov (United States)

    Esteras, Noemí; Muñoz, Úrsula; Alquézar, Carolina; Bartolomé, Fernando; Bermejo-Pareja, Félix; Martín-Requero, Ángeles

    2012-03-01

    Previous work indicated that changes in Ca(2+)/calmodulin (CaM) signaling pathway are involved in the control of proliferation and survival of immortalized lymphocytes from Alzheimer's disease (AD) patients. We examined the regulation of cellular CaM levels in AD lymphoblasts. An elevated CaM content in AD cells was found when compared with control cells from age-matched individuals. We did not find significant differences in the expression of the three genes that encode CaM: CALM1, 2, 3, by real time RT-PCR. However, we observed that the half-life of CaM was higher in lymphoblasts from AD than in control cells, suggesting that degradation of CaM is impaired in AD lymphoblasts. The rate of CaM degradation was found to be dependent on cellular Ca(2+) and ROS levels. CaM degradation occurs mainly via the ubiquitin-proteasome system. Increased levels of CaM were associated with overactivation of PI3K/Akt and CaMKII. Our results suggest that increased levels of CaM synergize with serum to overactivate PI3K/Akt in AD cells by direct binding of CaM to the regulatory α-subunit (p85) of PI3K. The systemic failure of CaM degradation, and thus of Ca(2+)/CaM-dependent signaling pathways, may be important in the etiopathogenesis of AD.

  12. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  13. A Cell Wall-degrading Endopolygalacturonase Secreted by Colletotrichum lindemuthianum.

    Science.gov (United States)

    English, P D; Maglothin, A; Keegstra, K; Albersheim, P

    1972-03-01

    Cultures of Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner have been induced to secrete an endopolygalacturonase (polygalacturonide glycanohydrolase EC3.2. 1.15). This enzyme has been brought to a high state of purity by ion exchange, gel filtration, and agarose affinity chromatography. The enzyme has optimal activity at pH 5, has an apparent molecular weight as determined by gel filtration of about 70,000, and prefers polygalacturonic acid to pectin as its substrate. The enzyme, while hydrolyzing only 1% of the glycosidic bonds, reduces the viscosity of a polygalacturonic solution by 50%. Nevertheless, the initial as well as the final products of polygalacturonic acid hydrolysis are predominantly tri- and digalacturonic acid and, to a lesser extent, monogalacturonic acid. The purified enzyme catalyzes the removal of about 80% of the galacturonic acid residues of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus) as well as from the walls isolated from 8-day-old Red Kidney bean (Phaseolus vulgaris) hypocotyls.

  14. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    Science.gov (United States)

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  15. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  16. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  17. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...... angiosperms. This analysis has enabled cell wall diversity to be placed in a phylogenetic context, and, when integrated with transcriptomic and genomic analysis has contributed to our understanding of important aspects of plant evolution....

  18. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    Directory of Open Access Journals (Sweden)

    Thi Thanh My Pham

    Full Text Available There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB degradation, we determined the concentration of

  19. Research study on high energy radiation effect and environment solar cell degradation methods

    Science.gov (United States)

    Horne, W. E.; Wilkinson, M. C.

    1974-01-01

    The most detailed and comprehensively verified analytical model was used to evaluate the effects of simplifying assumptions on the accuracy of predictions made by the external damage coefficient method. It was found that the most serious discrepancies were present in heavily damaged cells, particularly proton damaged cells, in which a gradient in damage across the cell existed. In general, it was found that the current damage coefficient method tends to underestimate damage at high fluences. An exception to this rule was thick cover-slipped cells experiencing heavy degradation due to omnidirectional electrons. In such cases, the damage coefficient method overestimates the damage. Comparisons of degradation predictions made by the two methods and measured flight data confirmed the above findings.

  20. Degradation chemistry of RuLL´(NCS)2 complexes in the Dye-sensitized solar cell

    DEFF Research Database (Denmark)

    Lund, Torben

    In the last decade dye-sensitized solar cells (DSCs) have extensively been studied. From an economical point of view DSCs are of high interest because the manufacturing costs of DSCs devices are significantly lower in contrast to the costs of other solar devices such as silicon cells. One...... on the surface of a semiconductor anode (TiO2). In order to be able to predict the life time of the dye during solar cell operation it is essential to map all the possible side reactions and their rates initiated from the excited (S*), oxidized (S+) and ground state of the sensitizer (S). In my lecture I...... will present and overview of our degradation investigations of the ruthenium dyes N719, Z907 and C106 with the general structure RuLL´(NCS)2 and show how detailed degradation mechanistic knowledge is important in the developing of DSC cells with improved thermal dye stability. The various ruthenium dye...

  1. Analysis of silicon solar cell degradation in space using PC-1D

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E.G. (IMEC, Leuven (Belgium) DEE (UPC), Barcelona (Spain)); Demesmaeker, E.; Ghannam, M.; Nijs, J. (DEE (UPC), Barcelona (Spain))

    1992-04-01

    This work presents a computation method to evaluate the life expectance of cells in space. The effects of the radiation environment are taken into account as a reduction of carrier lifetime. This reduction is calculated for each particle type as a function of the incident energy and the traveled depth inside the cell. Afterwards the calculated lifetimes are supplied to the PC-1D in order to obtain the electrical characteristics of the cell. The method allows one to calculate the equivalent damage relative to 1 MeV electrons of the different particles in the space environment. But its main feature lies in the direct calculation of the cell degradation by adding the contribution to lifetime reduction of each particle type. Results on efficiency degradation versus time in a circular orbit of 4630 km and 90deg inclination are shown for different cover glass thicknesses. (orig.).

  2. Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM.

    Science.gov (United States)

    Yang, Bin; Dyck, Ondrej; Ming, Wenmei; Du, Mao-Hua; Das, Sanjib; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2016-11-30

    High-resolution in situ transmission electron microscopy (TEM) and electron energy loss spectroscopy were applied to systematically investigate morphological and structural degradation behaviors in perovskite films during different environmental exposure treatments. In situ TEM experiment indicates that vacuum itself is not likely to cause degradation in perovskites. In addition, these materials were found to degrade significantly when they were heated to ∼50-60 °C (i.e., a solar cell's field operating temperature) under illumination. This observation thus conveys a critically important message that the instability of perovskite solar cells at such a low temperature may limit their real field commercial applications. It was further unveiled that oxygen most likely attacks the CH3NH3(+) organic moiety rather than the PbI6 component of perovskites during ambient air exposure at room temperature. This finding grants a deeper understanding of the perovskite degradation mechanism and suggests a way to prevent degradation of perovskites by tailoring the organic moiety component.

  3. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    Science.gov (United States)

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  4. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures. 

  5. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    OpenAIRE

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-oc...

  6. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.

    Science.gov (United States)

    Ramos, Araceli M; Gally, Marcela; Szapiro, Gala; Itzcovich, Tatiana; Carabajal, Maira; Levin, Laura

    Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes [pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase] by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3U/ml and polymethylgalacturonase between 0.15 and 1.3U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36U/l and 63U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Cell wall degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA species

    Institute of Scientific and Technical Information of China (English)

    Sanz L; Hermosa M R; González F J; Monte E

    2004-01-01

    @@ Species of the fungus Trichoderma, a genus of Hyphomycetes, are ubiquitous in the environment, but especially in soil. They have been used in a wide range of commercial applications including the production of hydrolases and in the biological control of plant diseases. A fundamental part of the Trichoderma antifungal system consists of a series of genes coding for a surprising variety of extracellular cell wall degrading enzymes (CWDE).Characterisation and identification of strains at the species level is the first step in utilizing the full potential of fungi in specific applications. One aim when isolating Trichoderma strains is to identify those which can be used in new agricultural and industrial applications. In the past it was not uncommon that biocontrol strains were defined as T. harzianum Rifai, due to the limited classification system of the genus Trichoderma. In recent years, several PCR-based molecular techniques have been used to detect and discriminate among microorganisms. Sequence analysis of the ITS regions of the ribosomal DNA and gene fragments as those corresponding to tef1 gene have been helpful in the neotypification, description and characterization of species in the genus Trichoderna.Another useful method for the identification of Trichoderma strains is the randomly amplified polymorphic DNA (RAPD) technique.Isozyme polymorphisms evaluation of five putative extracellular lytic enzymes loci (β-1,3-glucanase, β-1,6-glucanase, cellulase, chitinase and protease antivities) were carried out using representative strains of defined molecular groups. CWDE groupings obtained from biocontrol strains are discussed in relation to their phylogenetic location and antifungal activities.Compiling morphological, biochemical and sequence information data into a common database would provide a useful resource that could be used to accurately name new haplotypes identified in the future and correctly place them within the genus Trichoderma.

  8. Mechanisms of developmentally controlled cell death in plants.

    Science.gov (United States)

    Van Durme, Matthias; Nowack, Moritz K

    2016-02-01

    During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. A. [Tennessee Univ., Knoxville, TN (United States); Walton, B. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and 14C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of 14C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the 14C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  10. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  11. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation

    Science.gov (United States)

    Mesmar, Joelle; McLellan, Hazel; Yang, Chengwei; Craig, Adam; Zhang, Cunjin; Moore, Jonathan David; Tian, Zhendong; Birch, Paul R. J.; Sadanandom, Ari

    2017-01-01

    Hypersensitive response programmed cell death (HR-PCD) is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses. PMID:28056034

  12. Curcumin Promotes KLF5 Proteasome Degradation through Downregulating YAP/TAZ in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-08-01

    Full Text Available KLF5 (Krüppel-like factor 5 plays critical roles in normal and cancer cell proliferation through modulating cell cycle progression. In this study, we demonstrated that curcumin targeted KLF5 by promoting its proteasome degradation, but not by inhibiting its transcription in bladder cancer cells. We also demonstrated that lentivirus-based knockdown of KLF5 inhibited cancer cell growth, while over-expression of a Flag-tagged KLF5 could partially reverse the effects of curcumin on cell growth and cyclin D1 expression. Furthermore, we found that curcumin could down-regulate the expression of Hippo pathway effectors, YAP and TAZ, which have been reported to protect KLF5 protein from degradation. Indeed, knockdown of YAP by small interfering RNA caused the attenuation of KLF5 protein, but not KLF5 mRNA, which was reversed by co-incubation with proteasome inhibitor. A xenograft assay in nude mice finally proved the potent inhibitory effects of curcumin on tumor growth and the pro-proliferative YAP/TAZ/KLF5/cyclin D1 axis. Thus, our data indicates that curcumin promotes KLF5 proteasome-dependent degradation through targeting YAP/TAZ in bladder cancer cells and also suggests the therapeutic potential of curcumin in the treatment of bladder cancer.

  13. Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells

    Science.gov (United States)

    Kim, Jung Lim; Kim, Bo Ram; Na, Yoo Jin; Jo, Min Jee; Jeong, Yoon A.; Lee, Suk-Young; Lee, Sun Il; Lee, Yong Yook; Oh, Sang Cheul

    2016-01-01

    Metformin is an anti-diabetic drug with a promising anti-cancer potential. In this study, we show that subtoxic doses of metformin effectively sensitize human colorectal cancer (CRC) cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which induces apoptosis. Metformin alone did not induce apoptosis, but significantly potentiated TRAIL-induced apoptosis in CRC cells. CRC cells treated with metformin and TRAIL showed activation of the intrinsic and extrinsic pathways of caspase activation. We attempted to elucidate the underlying mechanism, and found that metformin significantly reduced the protein levels of myeloid cell leukemia 1 (Mcl-1) in CRC cells and, the overexpression of Mcl-1 inhibited cell death induced by metformin and/or TRAIL. Further experiments revealed that metformin did not affect mRNA levels, but increased proteasomal degradation and protein stability of Mcl-1. Knockdown of Mule triggered a significant decrease of Mcl-1 polyubiquitination. Metformin caused the dissociation of Noxa from Mcl-1, which allowed the binding of the BH3-containing ubiquitin ligase Mule followed by Mcl-1ubiquitination and degradation. The metformin-induced degradation of Mcl-1 required E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Our study is the first report indicating that metformin enhances TRAIL-induced apoptosis through Noxa and favors the interaction between Mcl-1 and Mule, which consequently affects Mcl-1 ubiquitination. PMID:27517746

  14. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency.

  15. In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain.

    Science.gov (United States)

    Wang, Yujing; Song, Jing; Zhao, Wei; He, Xiaoli; Chen, Jun; Xiao, Ming

    2011-08-15

    For bioremediation of contaminated environments, a bacterial strain, SZH16, was isolated and found to reduce phenol concentration in a selective medium. Using the reaction vessel containing the soil mixed with phenol and bacteria, we found that the single strain degraded efficiently the phenol level in soil samples. The strain was identified as Pseudomonas aeruginosa on the basis of biochemical tests and by comparison of 16S rDNA sequences, and phosphate solubilization and IAA production were not observed in the strain. Simultaneous examination of the role of strain SZH16 in the plant growth and phenol biodegradation was performed. Results showed that inoculation of the single strain in the phenol-spiked soil resulted in corn growth promotion and in situ phenol degradation and the increase in plant biomass correlated with the decrease in phenol content. Colonization experiments showed that the population of the SZH16 strain remained relatively constant. All these findings indicated that the corn growth promotion might be due to reduction in phytotoxicity, a result of phenol biodegradation by the single strain SZH16. Furthermore, the strain was found to stimulate corn growth and reduce phenol concentration simultaneously in phenol-containing water, and even historically contaminated field soils. It is attractive for environment remediation and agronomic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Root Border Cells and Their Role in Plant Defense.

    Science.gov (United States)

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-01

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  17. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  18. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  19. Water and oxygen induced degradation of small molecule organic solar cells

    DEFF Research Database (Denmark)

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed...... with isotopic labeling using H218O and 18O2 provided information on where and to what extent the atmosphere had reacted with the device. A comparison was made between the use of a humid (oxygen free) atmosphere, a dry oxygen atmosphere, and a dry (oxygen free) nitrogen atmosphere during testing of devices...

  20. An introduction to plant cell culture: the future ahead.

    Science.gov (United States)

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    20