WorldWideScience

Sample records for degrade host-derived reactive

  1. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  2. Decolourisation and degradation of reactive blue 2 by sulphate ...

    African Journals Online (AJOL)

    This work was performed to determine the influence of heat treatment on sewage sludge and addition of zero valent iron (ZVI) on the degradation and decolourisation of an anthraquinone dye, reactive blue 2 (RB 2). A consortium of sulphate reducing bacteria (SRB) in a biosulphidogenic batch reactor with biodigester ...

  3. Role of reactive species in the photocatalytic degradation of ...

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... Nitrogen doping; photocatalysis; visible light active; reactive species; ... Of a variety of semiconductors, tungsten oxide (WO3) ... sodium chloride (NaCl, Chameleon reagent), sodium nitrate ..... Ammonium. No ion .... produced.

  4. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    Science.gov (United States)

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  5. Polymer degradation in reactive ion etching and its possible application to all dry processes

    International Nuclear Information System (INIS)

    Hiraoka, H.; Welsh, L.W. Jr.

    1981-01-01

    Dry etching processes involving CF 4 -plasma and reactive ion etching become increasingly important for microcircuit fabrication techniques. In these techniques polymer degradation and etch resistance against reactive species like F atoms and CF 3 + ions are the key factors in the processes. It is well-known that classical electron beam resists like poly(methyl methacrylate) and poly(1-butene sulfone) are not suitable for dry etching processes because they degrade rapidly under these etching conditions. In order to find a correlation of etching rate and polymer structures the thickness loss of polymer films have been measured for a variety of polymer films in reactive ion etching conditions, where CF 3 + ions are the major reactive species with an accelerating potential of 500 volts. Because of its high CF 4 -plasma and reactive ion etch resistance, and because of its high electron beam sensitivity, poly(methacrylonitrile) provides a positive working electron beam resist uniquely suited for all dry processes. (author)

  6. Electrochemical degradation of reactive dyes at different DSA compositions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo G. da; Aquino Neto, Sydney; Andrade, Adalgisa R. de, E-mail: ardandra@ffclrp.usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia Ciencias e Letras. Dept. de Quimica

    2011-07-01

    This paper investigates the electrochemical oxidation of the reactive dyes reactive blue 4 (RB-4) and reactive orange 16 (RO-16) on RuO{sub 2} dimensionally stable anode (DSA) electrodes. Electrolysis was achieved under galvanostatic control as a function of supporting electrolyte and electrode composition. The electrolyses, performed in either the presence or absence of NaCl, were able to promote efficient color removal; moreover, at low chloride concentration (0.01 mol L{sup -1}), total color removal was obtained after just 10 min of electrolysis, and a significant increase in total dye combustion was achieved for all the studied anodes in chloride medium (reaching ca. 80% - chemical oxygen demand - COD removal). No significant enhancement in dye color removal or mineralization was observed upon increasing chloride concentration. The influence of oxide composition on dye elimination seems to be significant in both media (with or without chloride), being Ti/Ru{sub 0.30}Ti{sub 0.70}O{sub 2}, the most active material for organic compound oxidation. The oxygen evolution reaction was shown to be a limiting reaction in both supporting electrolytes; i.e., NaCl and Na{sub 2}SO{sub 4}, and its competition with organic compound oxidation remained an obstacle. The adsorbable organo halogens formation study revealed that there is slight consumption of the undesirable species formed within the first minutes of the electrolysis, being Ti/(RuO{sub 2}){sub 0.70}(Ta{sub 2}O{sub 5}){sub 0.30} the most environmentally friendly composition. Both anode composition and chloride concentration affect the formation of these undesirable compounds. (author)

  7. Transcriptome wide annotation of eukaryotic RNase III reactivity and degradation signals.

    Directory of Open Access Journals (Sweden)

    Jules Gagnon

    2015-02-01

    Full Text Available Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions.

  8. Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

    Science.gov (United States)

    Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou

    2015-01-01

    Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180

  9. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  10. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    Science.gov (United States)

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    Science.gov (United States)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  12. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168.

    Science.gov (United States)

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2009-09-01

    Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.

  13. Degradation of clofibric acid in UV/chlorine disinfection process: kinetics, reactive species contribution and pathways.

    Science.gov (United States)

    Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu

    2018-02-01

    As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.

  14. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater

    Science.gov (United States)

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  16. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  17. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    Science.gov (United States)

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  18. Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Senholdt, M.; Novotný, Čeněk; Rehorek, A.

    2007-01-01

    Roč. 42, - (2007), s. 1279-1284 ISSN 1359-5113 R&D Project s: GA ČR GP526/06/P102; GA MŠk LC06066; GA AV ČR IAA6020411 Grant - others:XE(XE) European STREP project ULTRATEC No. NMP2-CT-2003-505892 Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : irpex lacteus * reactive orange 16 * degradation Subject RIV: EE - Microbiology, Virology Impact factor: 2.336, year: 2007

  19. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.

    Science.gov (United States)

    Gore, Mohan M; Saharan, Virendra Kumar; Pinjari, Dipak V; Chavan, Prakash V; Pandit, Aniruddha B

    2014-05-01

    In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2 nanoparticles on biochar.

    Science.gov (United States)

    Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema; Dinpazhoh, Laleh

    2017-11-01

    ZrO 2 -biochar (ZrO 2 -BC) nanocomposite was prepared by a modified sonochemical/sol-gel method. The physicochemical properties of the prepared nanocomposite were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller model. The sonocatalytic performance of ZrO 2 -BC was investigated in sonochemical degradation of Reactive Yellow 39 (RY39). The high observed sonocatalytic activity of the ZrO 2 -BC sample could be interpreted by the mechanisms of sonoluminescence and hot spots. Parameters including ZrO 2 -BC dosage, solution pH, initial RY39 concentration and ultrasonic power were selected as the main operational parameters and their influence on RY39 degradation efficiency was examined. A 96.8% degradation efficiency was achieved with a ZrO 2 -BC dosage of 1.5g/L, pH of 6, initial RY39 concentration of 20mg/L and ultrasonic power of 300W. In the presence of OH radical scavengers, RY39 degradation was significantly inhibited, providing evidence for the key role of hydroxyl radicals in the process. The sonodegradation intermediates were identified using gas chromatography-mass spectroscopy and the possible decomposition route was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  2. Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment.

    Science.gov (United States)

    Lau, Yen-Yie; Wong, Yee-Shian; Ang, Tze-Zhang; Ong, Soon-An; Lutpi, Nabilah Aminah; Ho, Li-Ngee

    2018-03-01

    The theme of present research demonstrates performance of copper (II) sulfate (CuSO 4 ) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO 4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO 4 . Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp 2 carbon to form C-C of the sp 3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k 1 is 6.5224 whereas the degradation rate constant with catalyst, k 2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.

  3. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  4. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  5. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  6. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  7. Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M. N.; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-01-01

    In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74-82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.

  8. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  9. Degradation of pesticides with RSDL® (reactive skin decontamination lotion kit) lotion: LC-MS investigation.

    Science.gov (United States)

    Fentabil, Messele; Gebremedhin, Mulu; Purdon, J Garfield; Cochrane, Laura; Goldman, Virginia Streusand

    2018-09-01

    This study examined the degradation of organophosphate (OP) and carbamate pesticides using RSDL ® (Reactive Skin Decontamination Lotion Kit) lotion. Degradation occurs from a nucleophilic substitution (SN) reaction between an ingredient in the RSDL lotion, potassium 2,3-butanedione monoximate (KBDO), with susceptible sites in the pesticides. Evaluation at several molar ratios of KBDO:test articles using liquid chromatography-mass spectrometry (LC-MS) techniques was performed. The OP test articles, parathion, paraoxon, parathion-methyl, paraoxon-methyl and chlorpyrifos were effectively degraded at molar ratios of four and above in less than 6min contact time. Malathion and malaoxon were similarly converted to inactive by-products at molar ratios as low as two in less than 4min. A minimum molar ratio of nine was found to be effective against the carbamate pesticide carbofuran. In the case of aldicarb, complete destruction was achieved at a molar ratio of fifteen and a reaction time of one hour. It is important to note that these studies are based on a direct liquid phase RSDL lotion reaction with the toxic chemicals without the added physical removal decontamination efficacy component provided by the sponge component of the RSDL kit. The RSDL kit is intended to be used to remove or neutralize chemical warfare agents (CWA) and T-2 toxin from the skin. In actual use, the majority of the CWA decontamination occurs through the combined action of the sponge in both removing the chemical from the skin, and in rapidly mixing the chemicals at a high molar ratio of KBDO:CWA within the pores of the sponge to enhance rapid neutralization of the chemical. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intercomparison of reactive transport models applied to degradation of a concrete / clay interface

    International Nuclear Information System (INIS)

    Burnol, A.; Blanc, P.; Tournassat, C.; Lassin, A.; Gaucher, E.C.

    2005-01-01

    Full text of publication follows: Assuming a future disposal of spent nuclear fuel in deep geologic formation of Callovian- Oxfordian argillite in France, concrete will be used extensively to construct the disposal chambers in the host formation, and also as radioactive waste containment material. After being sealed, the repository will become saturated with interstitial waters from the Callovian-Oxfordian argillite, which will produce high pH solutions through interaction with the concrete. The aggressiveness of these alkaline solutions may weaken the clay's confinement properties (bentonite and argillite) with respect to long-lived radionuclides by change of the mineralogy. Conversely, the clayey formation with a high partial pressure of CO 2 represents an aggressive media for the concrete. The hydrogeological and chemical reactions of deep-underground systems are therefore intimately coupled and reactive transport models are increasingly used for performance assessment of nuclear waste disposal [1]. The main objective of this study is to present an intercomparison study using different reactive transport codes, where among PHREEQC1D [2], PHAST [3] and TOUGHREACT [4] applied to determine, in space and time, the extension of the alkaline perturbation and the associated degradation of concrete. The calculations were carried out after the definition of a complete mineralogy for both media. The experimental work made in the European Ecoclay II project [5] allowed a selection of reaction paths and of new phases for the thermodynamic database. Calculations were carried out over a simulated period of 100,000 years at different temperatures. Results of the different codes are compared and discussed. [1] De Windt L., Burnol A., Montarnal P., Van Der Lee.J., (2003) Intercomparison of reactive transport models applied to UO 2 oxidative dissolution and uranium migration., Journal of Contaminant Hydrology, 61, 1-4, 303-312; [2] Parkhurst D.L., Appelo C.A.J. (1999) - User

  11. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    OpenAIRE

    Kenzom, T.; Srivastava, P.; Mishra, S.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-...

  12. Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.

    Science.gov (United States)

    Karaoğlu, M Hamdi; Uğurlu, Mehmet

    2010-02-15

    The photocatalytic degradation of Reactive Red 195 (RR195) has been investigated in aqueous suspensions by using ultraviolet (UV), sodium hypochlorite (NaOCl) and TiO(2)/Sep nanoparticles together. To get the TiO(2)/Sep nanoparticle, the nanocrystalline TiO(2) anatase phase on sepiolite was obtained using a sufficient thermal treatment by gradually increasing the temperature from 300, 400 and 500 degrees C for 3h. Then, TiO(2)/Sep materials were characterized using different spectral and technical structural analyses with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influence of pH, catalyst amount, oxidant and initial dye concentration was investigated in all the experiments. Maximum colour and chemical oxygen demand (COD) removal were 99.9% and 78% respectively, at a dye concentration of 250 mg L(-1), NaOCl dosage of 50.37 mM, 0.1 g L(-1) weight of TiO(2)/Sep and pH of 5.45 in 3h. In addition, the pseudo-first order model was applied and r(2) values were noted from 0.92 to 0.99.

  13. Cement reactivity in CO{sub 2} saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W. [Princeton Univ., NJ (United States)

    2007-07-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO{sub 2} saturated brine. The coupling of the transport module and the geochemical module within Dynaflow{sup TM} is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO{sub 3}) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  14. Cement reactivity in CO2 saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    International Nuclear Information System (INIS)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W.

    2007-01-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO 2 saturated brine. The coupling of the transport module and the geochemical module within Dynaflow TM is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO 3 ) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  15. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  16. Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation.

    Science.gov (United States)

    Fung, P C; Poon, C S; Chu, C W; Tsui, S M

    2001-01-01

    Degradation of a dye, C. I . Reactive Red 120, in dyeing waatewater by the process o UV/H2O2/US was studied with a bench-scale reactor under the continuous mode of operation. The effects of dyeing wastewater flow rate and the feeding rate of an oxidant, H2O2, on the color removal efficiency of the process were investigated. The significance of ultrasonic (US) combined with UV irradiation was also investigated and the performances of the process on color removal were evaluated. The results showed that the decoloration process followed a pseudo first-order kinetic model and the UV light is the most significant factor on dye removal. Besides, at higher flow rates, incomplete color removal was observed due to relatively insufficient irradiation time (low degradation rate). In order to achieve a higher degradation rate, the feeding rate of H2O2 should be increased.

  17. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process.

    Science.gov (United States)

    Wu, Zihao; Guo, Kaiheng; Fang, Jingyun; Yang, Xueqin; Xiao, Hong; Hou, Shaodong; Kong, Xiujuan; Shang, Chii; Yang, Xin; Meng, Fangang; Chen, Liwei

    2017-12-01

    The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO 3 - . HO, Cl and CO 3 - are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO 3 - with NDA were determined to be 5.1 (±0.2) × 10 7  M -1 s -1 and 1.4 (±0.1) × 10 7  M -1 s -1 , respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl - and Br - enhanced the contribution of ClBr - and BrCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Ikuo; Takahashi, Hitoshi (Kumamoto Univ. Medical School (Japan). Inst. for Medical Immunology)

    1992-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H{sub 2}O{sub 2})-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H{sub 2}O{sub 2}-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCl) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo(2,2,2)octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H{sub 2}O{sub 2}-chloride, MPO-H{sub 2}O{sub 2}-iodide and LPO-H{sub 2}O{sub 2}-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D{sub 2}O) medium better than that in H{sub 2}O medium. The D{sub 2}O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg. (orig.).

  19. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, NikAthirah; Lee, Sin-Li; Yusuf, Sara Yasina

    2017-10-01

    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their V oc , J sc and P max . The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CRITICALITY CALCULATION FOR THE MOST REACTIVE DEGRADED CONFIGURATIONS OF THE FFTF SNF CODISPOSAL WP CONTAINING AN INTACT IDENT-69 CONTAINER

    International Nuclear Information System (INIS)

    D.R. Moscalu

    2002-01-01

    The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins. The configurations have been identified in a previous analysis (CRWMS M andO 1999a) and the present evaluations include additional relevant information that was left out of the original calculations. The additional information describes the exact distribution of fissile material in each container (DOE 2002a). The effects of the changes that have been included in the baseline design of the codisposal WP (CRWMS M andO 2000) are also investigated. The calculation determines the effective neutron multiplication factor (k eff ) for selected degraded mode internal configurations of the codisposal waste package. These calculations will support the demonstration of the technical viability of the design solution adopted for disposing of MOX (FFTF) spent nuclear fuel in the potential repository. This calculation is subject to the Quality Assurance Requirements and Description (QARD) (DOE 2002b) per the activity evaluation under work package number P6212310M2 in the technical work plan TWP-MGR-MD-0000101 (BSC 2002)

  1. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    DEFF Research Database (Denmark)

    Hauch, Anne; Marchese, M.; Lanzini, A.

    2018-01-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is theref......The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode...

  2. Integrating Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    Science.gov (United States)

    2016-06-01

    aerobic cometabolism, reductive dechlorination evidence was reported from the toe of the plume, where TCE enters the Lower Lithologic Unit. The CSM of the...modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes . J. Hydrology 454: 7-25. Khan, F. I., et al

  3. Photocatalytic degradation of reactive black-5 dye using TiO2 ...

    Indian Academy of Sciences (India)

    sons, considerable attention has been focused on complete oxidation of organic ... Figure 1. Molecular structure of the RB-5 dye (Reactive black 5 (RB 5) dye: molec- ular weight: 991·8 .... by collision with ground state molecules. The optimum ...

  4. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    Directory of Open Access Journals (Sweden)

    Mallikarjun C. Bheemaraddi

    2014-01-01

    Full Text Available A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v. UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2.

  5. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  6. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    Science.gov (United States)

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    Science.gov (United States)

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  8. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    Science.gov (United States)

    Wu, Wenhui; Xue, Xudong; Jiang, Xudong; Zhang, Yupeng; Wu, Yichu; Pan, Chunxu

    2015-05-01

    In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  9. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    Directory of Open Access Journals (Sweden)

    Wenhui Wu

    2015-05-01

    Full Text Available In this paper, the photocatalytic process of TiO2 (P25 is directly characterized by using a positron annihilation lifetime spectroscopy (PALS, high-resolution transmission electron microscopy (HRTEM, Photoluminescence spectroscopy (PL and UV Raman spectroscopy (Raman. The experimental results reveal that: 1 From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2 assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2 HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  10. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process : Environmental Science and Pollution Research.

    Science.gov (United States)

    Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes

    2017-03-01

    This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.

  11. Efficacy of the Reactive Oxygen Species Generated by Immobilized TiO2 in the Photocatalytic Degradation of Diclofenac

    Directory of Open Access Journals (Sweden)

    B. Di Credico

    2015-01-01

    Full Text Available We report on the photodegradation of diclofenac (DCF by hydrothermal anatase nanocrystals either free or immobilized in porous silica matrix (TS in connection to the type and amount of reactive oxygen species (ROS, in order to have deeper insight into their role in the photocatalysis and to provide an effective tool to implement the DCF mineralization. TiO2 and TS exhibit a remarkable efficiency in the DCF abatement, supporting that the utilization of anatase nanoparticles with the highly reactive {001}, {010}, and {101} exposed surfaces can be an effective way for enhancing the photooxidation even of the persistent pollutants. Furthermore, the hydrothermal TiO2, when immobilized in silica matrix, preserves its functional properties, combining high photoactivity with an easy technical use and recovery of the catalyst. The catalysts performances have been related to the presence of OH•, O21, and O2-• species by electron paramagnetic resonance spin-trap technique. The results demonstrated that the ROS concentration increases with the increase of photoactivity and indicated a significant involvement of O21 in the DCF degradation. The efficacy of TiO2 when immobilized on a silica matrix was associated with the high ROS life time and with the presence of singlet oxygen, which contributes to the complete photomineralization of DCF.

  12. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  14. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  15. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  16. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    Science.gov (United States)

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  17. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  18. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  19. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  20. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  1. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  2. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-07-01

    Decolorization of reactive blue 13 (RB13), a sulphonated azo dye, was investigated using hydrodynamic cavitation (HC). The aim of research article is to check the influence of geometrical parameters (total flow area, the ratio of throat perimeter to its cross-sectional area, throat shape and size, etc.) and configuration of the cavitating devices on decolorization of RB13 in aqueous solution. For this purpose, eight cavitating devices i.e. Circular and slit venturi, and six orifice plates having different flow area and perimeter were used in the present work. Initially, the effects of various operating parameters such as solution pH, initial dye concentration, operating inlet pressure and cavitation number on the decolorization of RB13 have been investigated, and the optimum operating conditions were found. Kinetic analysis revealed that the decolorization and mineralization of RB13 using HC followed first order reaction kinetics. Almost 47% decolorization of RB13 was achieved using only HC with slit venturi as a cavitating device at an optimum inlet pressure of 0.4MPa and pH of the solution as 2.0. It has been found that in case of orifice plates, higher decolorization rate of 4×10 -3 min -1 was achieved using orifice plate 2 (OP2) which is having higher flow area and perimeter (α=2.28). The effect of process intensifying agents (hydrogen peroxide and ferrous sulphate) and different gaseous additives (oxygen and ozone) on the extent of decolorization of RB13 were also examined. Almost 66% decolorization of RB13 was achieved using HC combined with 2Lmin -1 of oxygen and in combination with ferrous sulphate (1:3). Nearly 91% decolorization was achieved using HC combined with H 2 O 2 at an optimum molar ratio (dye:H 2 O 2 ) of 1:20 while almost complete decolorization was observed in 15min using a combination of HC and ozone at 3gh -1 ozone feed rate. Maximum 72% TOC was removed using HC coupled with 3gh -1 ozone feed rate. Copyright © 2017 Elsevier B.V. All

  3. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.

  4. Photocatalytic degradation of C. I. Reactive Red 24 solution with K₆SiW₁₁O₃₉Sn(II.).

    Science.gov (United States)

    Guo, Guixiang; Zhu, Xiuhua; Shi, Fuyou; Wang, Anning; Wang, Wei; Mu, Jun; Wan, Quanli; Zhang, Rong

    2013-12-01

    Environmental friendly materials, K6SiW11O39Sn (SiWSn), was synthesized. SiWSn photocatalytic decomposition of C. I. Reactive Red 24 (RR24) with the UV-lamp (253.7 nm, 20 W), Xenon lamp filtered less than 390 nm light (500 W) and sun light was investigated. The results showed that RR24 solution could be effectively decolorized with the SiWSn photocatalyst. The photocatalytic degradation efficiency of RR24 with SiWSn was affected by the initial concentration of RR2 solution, the amount of SiWSn and the photolysis time. It is demonstrated that the process of photodegradation of RR24 with SiWSn is a pesudo first-order reaction, which can be described by Langmuir-Hinshelwood equation. Hydroxyl radicals and holes are both the main oxidants in the photocatalytic reaction of RR24 with SiWSn. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    International Nuclear Information System (INIS)

    Kaneva, N; Bojinova, A; Papazova, K

    2016-01-01

    Here we report the preparation of ZnO particles with different concentrations of La 3 + doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH 3 COO) 2 .2H 2 O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La 3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters. (paper)

  6. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon

    . Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport...... the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around...... of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion...

  7. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    Science.gov (United States)

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the

  8. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  9. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  10. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    International Nuclear Information System (INIS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Imran, Muhammad; Atiq, Shahid; Al-Johani, Meshal S.

    2014-01-01

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn 0.95−x Fe 0.05 Ag x O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants

  11. Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172).

    Science.gov (United States)

    Khandare, Rahul V; Kabra, Akhil N; Kurade, Mayur B; Govindwar, Sanjay P

    2011-06-01

    Wild and tissue cultured plants of Portulaca grandiflora Hook. have shown to be able to decolorize a sulfonated diazo dye Navy Blue HE2R (NBHE2R) up to 98% in 40 h. A significant induction in the activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in the roots during dye decolorization. The wild plants and tissue cultures could independently decolorize and degrade NBHE2R into metabolites viz. N-benzylacetamide and 6-diazenyl-4-hydroxynaphthalene-2-sulfonic acid. A dye mixture and a textile effluent were also decolorized efficiently by P. grandiflora. The phytotoxicity study revealed reduction in the toxicity due to metabolites formed after dye degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Reactive Minerals and Dechlorinating Communities: Mechanisms Governing the Degradation of Chlorinated Ethenes during Back Diffusion from Low Permeability Zones in Aerobic and Anaerobic Environments

    Science.gov (United States)

    Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.

    2017-12-01

    Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation

  13. Reactivities of polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds

    International Nuclear Information System (INIS)

    Dubois, M.A.; Dozol, J.F.; Massiani, C.; Ambrosio, M.

    1996-01-01

    Supercritical water oxidation (SCWO) could offer a viable treatment alternative to destroy the organic structure of ion-exchange resins (IER) that are radioactive process wastes and which contain radioactivity. The GC/MS technique was used successfully to identify the low-concentration degradation compounds that are present in the cold liquid effluent after SCWO of polystyrenic IER at 380 C (25.5 MPa). The study of the behavior of these IER in supercritical water enhances the role of temperature and the role of supercritical water in the degradation process. With the exception of acetic acid, the identified compounds are aromatic. The functional groups are released during the heating time, and they do not interfere in the degradation process. The oxidation involves a complex set of reaction pathways. A mechanism including parallel and competitive reactions is proposed

  14. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation

    DEFF Research Database (Denmark)

    Safari, Reza; Adel, Milad; Lazado, Carlo Cabacang

    2016-01-01

    The present study evaluated the benefits of dietary administration of host-derived candidate probiotics Enterococcus casseliflavus in juvenile rainbow trout Oncorhynchus mykiss. Experimental diets were prepared by incorporating the microorganisms in the basal feed at 3 inclusion levels (i.e. 107...... CFU g-1 of feed [T1], 108 CFU g-1 of feed [T2], 109 CFU g-1 of feed [T3]). The probiotic feeds were administered for 8 weeks, with a group fed with the basal diet serving as control. The effects on growth performance, gut health, innate immunity and disease resistance were evaluated.Results showed...... that growth performance parameters were significantly improved in T2 and T3 groups. Activities of digestive enzymes such as trypsin and lipase were significantly higher in these two groups as well. Gut micro-ecology was influenced by probiotic feeding as shown by the significant increase in intestinal lactic...

  15. 6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1

    OpenAIRE

    Yuan, Bifeng; Zhang, Jing; Wang, Hongxia; Xiong, Lei; Cai, Qian; Wang, Tina; Jacobsen, Steven; Pradhan, Sriharsa; Wang, Yinsheng

    2011-01-01

    Thiopurines including 6-thioguanine (SG), 6-mercaptopurine and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). SG is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that SG treatment results in reactivation of epigenetically silenced genes in T leukemia cells...

  16. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    Science.gov (United States)

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. On the behavior of reduced graphene oxide based electrodes coated with dispersed platinum by alternate current methods in the electrochemical degradation of reactive dyes.

    Science.gov (United States)

    Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F

    2017-09-01

    The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. ELECTRO-DEGRADATION OF REACTIVE BLUE DYES USING CYLINDER MODIFIED ELECTRODE: Ti/β-PbO2 AS DIMENSIONALLY STABLE ANODE

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2010-12-01

    Full Text Available A cylinder modified electrode of the β-PbO2 was fabricated by anodic electro-deposition method on titanium substrate. The PbO2 layer prepared from high acid solution (pH: 0.3 that contains a mixed of 0.5 M Pb(NO32, 1 M HNO3, and 0,02 M NaF. The physicochemical properties of the PbO2 electrode were analyzed by using Energy Dispersive X-Ray Analysis and X-Ray Diffraction. The analyses have shown that oxide layer has an O/Pb ratio about 1.6 and the PbO impurities are formed in the surface layer besides the β-PbO2. The modified electrode was used as anode paired stainless cathode in the electro-degradation of reactive blue dye. The results of the electro-catalytic oxidation process of the dye solution were expressed in terms of the remaining intensity dye and chemical oxygen demand (COD values. The modified electrode has removal efficiency of the reactive blue dye at voltage of 7 V, pH of 7, concentration NaCl of 2 g/L, initial dye concentration of 100 mg/L with simple and short time operations.

  19. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In{sub 2}S{sub 3} nanoflowers: dye charge-dependent roles of reactive species

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Suxiang [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China); Cai, Lejuan, E-mail: 494169965@qq.com [Central China Normal University, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry (China); Li, Dapeng, E-mail: lidapengabc@126.com; Fa, Wenjun; Zhang, Yange; Zheng, Zhi [Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, and School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In{sub 2}S{sub 3} nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In{sub 2}S{sub 3} nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  20. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis.

    Science.gov (United States)

    Kalikeri, Shankramma; Kamath, Nidhi; Gadgil, Dhanashri Jayant; Shetty Kodialbail, Vidya

    2018-02-01

    Polyaniline-TiO 2 (PANI-TiO 2 ) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO 2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO 2 . The PANI-TiO 2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO 2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO 2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO 2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO 2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.

  2. Photocatalytic Study of New Immobilized TiO2 Technique Towards Degradation of Reactive Red 4 Dye

    Directory of Open Access Journals (Sweden)

    Ain S. K.

    2016-01-01

    Full Text Available The study on TiO2 for wastewater remediation has gained interest among researchers. However, the application of this photocatalyst is limited due to non-recyclability of conventional TiO2. Thus, immobilization technique has been developed to solve this issue. Hence, a comparison study between two types of immobilized photocatalysts namely titanium dioxide (TiO2 and TiO2 mixed with polyvinyl alcohol (PVA has been conducted in this work to observe the significant effect of PVA polymer in photocatalysis reaction of reactive red 4 (RR4 dye. Double sided adhesive tape (DSAT was used as thin layer binder in this immobilization system. The result shows that the photocatalytic performance of TiO2-PVA/DSAT was higher than that of TiO2/DSAT under both normal UV and visible light irradiations due to the conjugated unsaturated polymer from PVA serve as electron donor for TiO2 thus increase the photocatalysis process. Besides, TiO2-PVA/DSAT was also found to possess much better adhesion strength to the support material compared to TiO2/DSAT. Based on the findings, this TiO2 immobilization system is expected to be beneficial in the industrial wastewater treatment. Thus, further study to improve the photocatalytic activity of this immobilized TiO2 will be in our future work.

  3. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection.

    Science.gov (United States)

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng'an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-05-06

    Aerolysins are virulence factors belonging to the bacterial β-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.

  4. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    Directory of Open Access Journals (Sweden)

    Nathan D. McDonald

    2016-04-01

    Full Text Available A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces, Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella, Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus, and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species, mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others.

  5. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  6. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo.

    Science.gov (United States)

    McDonald, Nathan D; Lubin, Jean-Bernard; Chowdhury, Nityananda; Boyd, E Fidelma

    2016-04-12

    A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota.Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. Sialic acids are nine carbon amino sugars that are abundant on all mucous surfaces. The deadly human pathogen Vibrio cholerae contains

  7. Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio Degradation of reactive dyes by the metallic iron/ hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Lima de Souza

    2005-03-01

    Full Text Available In this work the degradation of aqueous solutions of reactive azo-dyes is reported using a combined reductive/advanced oxidative process based in the H2O2/zero-valent iron system. At optimized experimental conditions (pH 7, H2O2 100 mg L-1, iron 7 g L-1 and using a continuous system containing commercial iron wool, the process afforded almost total discolorization of aqueous solutions of three reactive azo-dyes (reactive orange 16, reactive black 5 and brilliant yellow 3G-P at a hydraulic retention time of 2.5 min. At these conditions the hydrogen peroxide is almost totally consumed while the released total soluble iron reaches a concentration compatible with the current Brazilian legislation (15 mg L-1.

  8. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    Science.gov (United States)

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  9. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.

    Science.gov (United States)

    Fotiou, Theodora; Triantis, Theodoros M; Kaloudis, Triantafyllos; O'Shea, Kevin E; Dionysiou, Dionysios D; Hiskia, Anastasia

    2016-03-01

    Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation

  10. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  11. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Vanderbilt Univ., Nashville, TN (United States)

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  12. FD&C Yellow No. 5 (tartrazine) degradation via reactive oxygen species triggered by TiO2 and Au/TiO2 nanoparticles exposed to simulated sunlight.

    Science.gov (United States)

    Li, Meng; He, Weiwei; Liu, Yi; Wu, Haohao; Wamer, Wayne G; Lo, Y Martin; Yin, Jun-Jie

    2014-12-10

    When exposed to light, TiO2 nanoparticles (NPs) become photoactivated and create electron/hole pairs as well as reactive oxygen species (ROS). We examined the ROS production and degradation of a widely used azo dye, FD&C Yellow No. 5 (tartrazine), triggered by photoactivated TiO2 NPs. Degradation was found to follow pseudo-first order reaction kinetics where the rate constant increased with TiO2 NP concentration. Depositing Au on the surface of TiO2 largely enhanced electron transfer and ROS generation, which consequently accelerated dye degradation. Alkaline conditions promoted ROS generation and dye degradation. Results from electron spin resonance spin-trap spectroscopy suggested that at pH 7.4, both hydroxyl radical (•OH) and singlet oxygen ((1)O2) were responsible for dye discoloration, whereas at pH 5, the consumption of (1)O2 became dominant. Implications for dye degradation in foods and other consumer products that contain both TiO2 and FD&C Yellow No. 5 as ingredients are discussed.

  13. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    Science.gov (United States)

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  14. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth.

    Science.gov (United States)

    Lopez-Siles, Mireia; Khan, Tanweer M; Duncan, Sylvia H; Harmsen, Hermie J M; Garcia-Gil, L Jesús; Flint, Harry J

    2012-01-01

    Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution.

  15. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae.

    Directory of Open Access Journals (Sweden)

    Takasuke Fukuhara

    2017-06-01

    Full Text Available Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1 as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB and ApoE double-knockout Huh7 (BE-KO, and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene.

  17. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    International Nuclear Information System (INIS)

    Garcia-Montano, Julia; Torrades, Francesc; Garcia-Hortal, Jose A.; Domenech, Xavier; Peral, Jose

    2006-01-01

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l -1 ) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD 5 /COD), as well as the toxicity (EC 50 ), DOC, colour (Abs 543.5 ) and H 2 O 2 evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l -1 Fe(II) and 125 mg l -1 H 2 O 2 photo-Fenton pre-treatment and 1 day HRT in SBR

  18. Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Montano, Julia [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Garcia-Hortal, Jose A. [Departament d' Enginyeria Textil i Paperera, ETSEI de Terrassa (UPC), C/Colom, 11, E-08222 Terrassa, Barcelona (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-06-30

    A bench-scale study combining photo-Fenton reaction with an aerobic sequencing batch reactor (SBR) to degrade a commercial homo-bireactive dye (Procion Red H-E7B, 250 mg l{sup -1}) was investigated. The photo-Fenton process was applied as a pre-treatment, avoiding complete mineralisation, just to obtain a bio-compatible water able to be treated by means of the SBR in a second step. In this sense, different Fenton reagent concentrations were assessed by following dye solution biodegradability enhancement (BOD{sub 5}/COD), as well as the toxicity (EC{sub 50}), DOC, colour (Abs{sub 543.5}) and H{sub 2}O{sub 2} evolution with photo-Fenton irradiation time. Obtained pre-treated solutions were biologically oxidized in a SBR containing non-acclimated activated sludge. Different hydraulic retention time (HRT) in the bioreactor were tested to attain the maximum organic load removal efficiency. Best results were obtained with 60 min of 10 mg l{sup -1} Fe(II) and 125 mg l{sup -1} H{sub 2}O{sub 2} photo-Fenton pre-treatment and 1 day HRT in SBR.

  19. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  20. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  1. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  2. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin.

    Science.gov (United States)

    Shimizu, Satoko; Yokoyama, Tomoya; Akiyama, Takuya; Matsumoto, Yuji

    2012-07-04

    The reactivity of lignin during alkaline delignification was quantitatively investigated focusing on the effect of the structural differences between syringyl and guaiacyl aromatic nuclei and between erythro and threo in the side chain of β-O-4 type lignin substructure on the β-O-4 bond cleavage rate. It was known that the ratio of this reaction rate of the erythro to threo isomers of the dimeric β-O-4 type lignin model compound with two guaiacyl aromatic nuclei was ca. 4. However, the presence of a syringyl nucleus strongly influenced the rate, and the ratio of the syringyl type analogue was in the range between 2.7 and 8.0 depending on the reaction temperature. The effect of syringyl nucleus on the enhancement of the reaction rate appeared to be greater when the syringyl nucleus consists of the cleaving ether bond rather than being a member of the carbon framework.

  3. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  5. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  6. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  7. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  8. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  9. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  10. Reactivity on the Web

    OpenAIRE

    Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia

    2005-01-01

    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web,...

  11. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  12. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  13. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  14. Reactivity of solvent alcohol on degradation of CFC113

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2003-01-01

    1,1,2-Trichloro-trifluoroethane (CFC113) was dissolved in alkaline 1-butanol, 2-butanol, iso-butyl alcohol, and phenyl ethyl alcohol and irradiated with 60 Co gamma rays after purged with pure nitrogen gas. In all these solvents, the concentration of CFC113 and hydroxide ion decreased and that of chloride ion increased with a dose observed in 2-propanol solution. The reaction efficiency increases in order of 1-butanol< iso-butyl alcohol< phenyl ethyl alcohol<2-butanol<2-propanol. The solvent effect will depend on the binding energy of the αC-H of the alcohol molecule and electron affinity and dipole moment of the ketones or aldehydes produced from the alcohols

  15. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  16. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  17. Electrospinning of reactive mesogens

    NARCIS (Netherlands)

    Yao, J.; Picot, O.T.; Hughes-Brittain, N.F.; Bastiaansen, C.W.M.; Peijs, T.

    2016-01-01

    The reinforcement potential of reactive liquid crystals or reactive mesogens (RMs) in electrospun fibers was investigated through the blending of two types of RMs (RM257 and RM82) with two types of thermoplastics; polyamide 6 (PA6) and poly(methyl methacrylate) (PMMA). Polymer/RM blends were

  18. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  19. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  20. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  1. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  2. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  3. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  4. Taskable Reactive Agent Communities

    National Research Council Canada - National Science Library

    Myers, Karen

    2002-01-01

    The focus of Taskable Reactive Agent Communities (TRAC) project was to develop mixed-initiative technology to enable humans to supervise and manage teams of agents as they perform tasks in dynamic environments...

  5. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  6. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2018-02-01

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Theoretical investigation of the degradation mechanisms in host and guest molecules used in OLED active layers

    KAUST Repository

    Winget, Paul; Hong, Minki; Bredas, Jean-Luc

    2014-01-01

    systems. We identify degradation pathways and define new strategies to guide the synthesis of stable materials for OLED applications for both phosphorescent emitters and organic host materials. The chemical reactivity of these molecules in the active

  8. Use of an adipocyte model to study the transcriptional adaptation of Mycobacterium tuberculosis to store and degrade host fat

    Directory of Open Access Journals (Sweden)

    Shivangi Rastogi

    2016-01-01

    Full Text Available During its persistence in the infected host, Mycobacterium tuberculosis (Mtb accumulates host-derived fatty acids in intracytoplasmic lipid inclusions as triacylglycerols which serve primarily as carbon and energy reserves. The Mtb genome codes for more than 15 triacylglycerol synthases, 24 lipase/esterases, and seven cutinase-like proteins. Hence, we looked at the expression of the corresponding genes in intracellular bacilli persisting amidst the host triacylglycerols. We used the Mtb infected murine adipocyte model to ensure persistence and transcripts were quantified using real-time reverse transcriptase polymerase chain reaction. Dormancy and glyoxylate metabolism was confirmed by the upregulated expression of dosR and icl, respectively, by intra-adipocyte bacilli compared with in vitro growing bacilli. The study revealed that tgs1, tgs2, Rv3371, and mycolyltransferase Ag85A are the predominant triacylglycerol synthases, while lipF, lipH, lipJ, lipK, lipN, lipV, lipX, lipY, culp5, culp7, and culp6 are the predominant lipases/esterases used by Mtb for the storage and degradation of host-derived fat. Moreover, it was observed that many of these enzymes are used by Mtb during active replication rather than during nonreplicating persistence, indicating their probable function in cell wall synthesis.

  9. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    Science.gov (United States)

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  10. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    Colin, E.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  11. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  12. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  13. Patch test reactivity to feverfew-containing creams in feverfew-allergic patients

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Fretté, Xavier

    2010-01-01

    with feverfew contact allergy were patch tested with two creams containing the feverfew extract. Subsequently, the creams were analysed by liquid chromatography with tandem mass spectrometry to detect parthenolide. Results: Four of the patients tested positive to one of the creams; reactivity was associated......-sensitive patients. The reactivity may be enhanced by simultaneous testing with parthenolide, but the reactivity is lost over time, probably because of degradation of parthenolide....

  14. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  15. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  16. Application of ionizing radiation on industry waste treatment I. radiolysis of standard reactive dye Cibacron violet

    International Nuclear Information System (INIS)

    Winarti Andayani; Agustin Sumartono

    1999-01-01

    The effect of aeration, irradiation dose and pH on radiation degradation of reactive dye cibacron violet 2r in aqueous solution have been studied. Observation was done on the absorption spectrum before and after irradiation at various conditions. The percentage of degraded sample was analyzed by using HPLC with UV detector. The percentage of degradation was higher by aeration during irradiation. It suggest that oxygen is important for degradation of the dye molecule. Irradiation at neutral pH is preferred to obtain maximum degradation, since pH may affect the reactivity of the radicals produced by the radiolysis of water molecules. One of the degradation product that could be detected was oxalic acid. (author)

  17. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  18. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  19. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  20. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  1. Protein degradation during reconsolidation as a mechanism for memory reorganization

    Directory of Open Access Journals (Sweden)

    Bong-Kiun Kaang

    2011-02-01

    Full Text Available Memory is a reference formed from a past experience that is used to respond to present situations. However, the world is dynamic and situations change, so it is important to update the memory with new information each time it is reactivated in order to adjust the response in the future. Recent researches indicate that memory may undergo a dynamic process that could work as an updating mechanism. This process which is called reconsolidation involves destabilization of the memory after it is reactivated, followed by restabilization. Recently, it has been demonstrated that the initial destabilization process of reconsolidation requires protein degradation. Using protein degradation inhibition as a method to block reconsolidation, recent researches suggest that reconsolidation, especially the protein degradation-dependent destabilization process is necessary for memory reorganization.

  2. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  3. Reactivity of nitriles

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of coordination nitriles in transition metal (Ru, Mo, W, Zr, Hf) complexes, namely: transformation of nitriles of the first coordination sphere into N-acyl-substituted amides, amidines, nitrile interaction; with water, alkalines, alcoholes, hydrogen, azide and cyanide ions is considered. Introduction of acetonitrile molecule to uranium (4)-carbon double bond is discussed

  4. Clojure reactive programming

    CERN Document Server

    Borges, Leonardo

    2015-01-01

    If you are a Clojure developer who is interested in using Reactive Programming to build asynchronous and concurrent applications, this book is for you. Knowledge of Clojure and Leiningen is required. Basic understanding of ClojureScript will be helpful for the web chapters, although it is not strictly necessary.

  5. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  6. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  7. Reactive power compensating system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  8. Reactive Power Compensating System.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  9. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  10. Upscaling of reactive flows

    NARCIS (Netherlands)

    Kumar, K.

    2012-01-01

    The thesis deals with the upscaling of reactive flows in complex geometry. The reactions which may include deposition or dissolution take place at a part of the boundary and depending on the size of the reaction domain, the changes in the pore structure that are due to the deposition process may or

  11. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  12. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  13. Host-Derived Cytokines and Chemokines as Vaccine Adjuvants

    NARCIS (Netherlands)

    Degen, W.G.J.; Schijns, Virgil E.J.C.

    2016-01-01

    The increased knowledge about immunological concepts and systems nowadays helps to rationally enhance the performance of, and to overcome some of the problems, that are associated with inactivated vaccines. Because the antigenic component of an inactivated vaccine by itself only gives a limited or

  14. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  15. Immune reactivities against gums.

    Science.gov (United States)

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Different kinds of gums from various sources enjoy an extremely broad range of commercial and industrial use, from food and pharmaceuticals to printing and adhesives. Although generally recognized as safe by the US Food and Drug Administration (FDA), gums have a history of association with sensitive or allergic reactions. In addition, studies have shown that gums have a structural, molecular similarity to a number of common foods. A possibility exists for cross-reactivity. Due to the widespread use of gums in almost every aspect of modern life, the overall goal of the current investigation was to determine the degree of immune reactivity to various gum antigens in the sera of individuals representing the general population. The study was a randomized, controlled trial. 288 sera purchased from a commercial source. The sera was screened for immunoglobulin G (IgG) and immunoglobulin E (IgE) antibodies against extracts of mastic gum, carrageenan, xantham gum, guar gum, gum tragacanth, locust bean gum, and β-glucan, using indirect enzyme-linked immunosorbent assay (ELISA) testing. For each gum antigen, inhibition testing was performed on the 4 sera that showed the highest IgG and IgE immune reactivity against the different gums used in the study. Inhibition testing on these same sera for sesame albumin, lentil, corn, rice, pineapple, peanut, pea protein, shrimp, or kidney bean was used to determine the cross-reactivity of these foods with the gum. Of the 288 samples, 4.2%-27% of the specimens showed a significant elevation in IgG antibodies against various gums. Only 4 of 288, or 1.4%, showed a simultaneous elevation of the IgG antibody against all 7 gum extracts. For the IgE antibody, 15.6%-29.1% of the specimens showed an elevation against the various gums. A significant percentage of the specimens, 12.8%, simultaneously produced IgE antibodies against all 7 tested extracts. Overall, the percentage of elevation in IgE antibodies against different gum extracts, with

  16. What makes ecological systems reactive?

    Science.gov (United States)

    Snyder, Robin E

    2010-06-01

    Although perturbations from a stable equilibrium must ultimately vanish, they can grow initially, and the maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo transient population surges or drops in response to perturbations; however, we lack biological and mathematical intuition about what makes a system reactive. This paper presents upper and lower bounds on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible range of reactivities for which no perturbations grow. Systems with more species have a higher capacity to be reactive, assuming species interactions do not weaken too rapidly as the number of species increases. Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and neither discrete nor continuous time reactivity are sensitive to food web topology. 2010 Elsevier Inc. All rights reserved.

  17. Bearing for the reactivation

    International Nuclear Information System (INIS)

    Santamaria Alexandra

    2003-01-01

    Ecopetrol undertook an aggressive plan to reactivate the activities of seismic that allows fulfilling the goals proposed for this year (2003). Although the production registered a descent of 9%, the financial results throw utilities for $1.1 trillion pesos to the closing of September and contributions in bonuses for $1.2 trillions. The author also refers to the general balance, to the finances, raw production, taxes and transfers

  18. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  19. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  20. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  1. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  2. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  3. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O

    2004-01-01

    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...... in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs....... The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  4. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  5. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  6. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  7. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  8. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  9. Programming Reactive Extensions and LINQ

    CERN Document Server

    Liberty, Jesse

    2011-01-01

    Pro Reactive Extensions and LINQ is a deep dive into the next important technology for .NET developers: Reactive Extensions. This in-depth tutorial goes beyond what is available anywhere else to teach how to write WPF, Silverlight, and Windows Phone applications using the Reactive Extensions (Rx) to handle events and asynchronous method calls. Reactive programming allows you to turn those aspects of your code that are currently imperative into something much more event-driven and flexible. For this reason, it's sometimes referred to as LINQ for Events. Reactive programming hinges on the concep

  10. Reactivity costs in MARIA reactor

    International Nuclear Information System (INIS)

    Marcinkowska, Zuzanna E.; Pytel, Krzysztof M.; Frydrysiak, Andrzej

    2017-01-01

    Highlights: • The methodology for calculating consumed fuel cost of excess reactivity is proposed. • Correlation between time integral of the core excess reactivity and released energy. • Reactivity price gives number of fuel elements required for given excess reactivity. - Abstract: For the reactor operation at high power level and carrying out experiments and irradiations the major cost of reactor operation is the expense of nuclear fuel. In this paper the methodology for calculating consumed fuel cost-relatedness of excess reactivity is proposed. Reactivity costs have been determined on the basis of operating data. A number of examples of calculating the reactivity costs for processes such as: strong absorbing material irradiation, molybdenium-99 production, beryllium matrix poisoning and increased moderator temperature illustrates proposed method.

  11. The role of lubracants in reactive compatibilization of polyolefin blends

    Czech Academy of Sciences Publication Activity Database

    Hlavatá, Drahomíra; Kruliš, Zdeněk; Horák, Zdeněk; Lednický, František; Hromádková, Jiřina

    2001-01-01

    Roč. 176, - (2001), s. 93-106 ISSN 1022-1360. [International Conference on Polymer Modification, Degradation and Stabilization /1./. Palermo , 03.09.2000-07.09.2000] R&D Projects: GA ČR GA106/99/0556; GA AV ČR IBS4050008; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyolefins * recycling * reactive compatibilization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  12. Reactivity insertion accident analysis

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Nakata, H.; Yorihaz, H.

    1990-04-01

    The correct prediction of postulated accidents is the fundamental requirement for the reactor licensing procedures. Accident sequences and severity of their consequences depend upon the analysis which rely on analytical tools which must be validated against known experimental results. Present work presents a systematic approach to analyse and estimate the reactivity insertion accident sequences. The methodology is based on the CINETHICA code which solves the point-kinetics/thermohydraulic coupled equations with weighted temperature feedback. Comparison against SPERT experimental results shows good agreement for the step insertion accidents. (author) [pt

  13. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  14. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    could potentially improve bioremediation of BAM. An important prerequisite for bioaugmentation is the potential to produce the degrader strain at large quantities within reasonable time. The aim of manuscript II, was to optimize the growth medium for Aminobacter MSH1 and to elucidate optimal growth...

  15. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  16. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in degradation...... of methane and TCE. During the first 10–15 days after the addition of methane a significant degradation of methane and a minor degradation of TCE were observed. This experiment revealed that the ability of mixed cultures of methane-oxidizing bacteria to degrade TCE varied significantly even though...

  17. Physico Chemical Characteristic of Kappa Carrageenan Degraded Using Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Rizky Febriansyah Siregar

    2017-02-01

    Full Text Available AbstractKappa carrageenan is polysaccharide that widely used in food, pharmaceutical, cosmetic, textile and printing industries as coagulate agent, stabilizer and gelling agent. Hydrogen peroxide (H2O2 is strong oxidator to degrade polysaccharide. Hydrogen peroxide has some advantades such as cheap, easy to get and savety environment. Degradation method using hydrogen peroxide is a technology based on establishment radical hydoxile reactive that attack the glycosidic of polysaccharides as a result reducing in molecular weight of polysaccharide. The aims of this study were to analyze the effect of hydrogen peroxide concentration, temperature and degradation time to molecular weight of refined kappa carrageenan. Structural changes on kappa carrageenan degradation were characterized by viscometer, SEM and FTIR. Hydrogen peroxide concentration, temperature and degradation time were significantly reducing molecular weight and changes in the structural function of refined kappa carrageenan. The lowest molecular weight of refined kappa carrageenan degraded was obtained from the treatment 3% of hydrogen peroxide at temperature 80°C and degradation time for 4 hours.

  18. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  19. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  20. Reactive documentation system

    Science.gov (United States)

    Boehnlein, Thomas R.; Kramb, Victoria

    2018-04-01

    Proper formal documentation of computer acquired NDE experimental data generated during research is critical to the longevity and usefulness of the data. Without documentation describing how and why the data was acquired, NDE research teams lose capability such as their ability to generate new information from previously collected data or provide adequate information so that their work can be replicated by others seeking to validate their research. Despite the critical nature of this issue, NDE data is still being generated in research labs without appropriate documentation. By generating documentation in series with data, equal priority is given to both activities during the research process. One way to achieve this is to use a reactive documentation system (RDS). RDS prompts an operator to document the data as it is generated rather than relying on the operator to decide when and what to document. This paper discusses how such a system can be implemented in a dynamic environment made up of in-house and third party NDE data acquisition systems without creating additional burden on the operator. The reactive documentation approach presented here is agnostic enough that the principles can be applied to any operator controlled, computer based, data acquisition system.

  1. Radiolysis of Reactive AZO Dyes in Aqueous Solution

    International Nuclear Information System (INIS)

    Bagyo, Agustin NM; Winarti-Andayani; Hendig-Winarno; Ermin-Katrin; Soebianto, Yanti S

    2004-01-01

    The effects of radiation on aerated reactive dye solutions i.e Cibacron Violet, Cibacron Orange and Cibacron Yellow solutions have been studied. Parameters analysis were the change of pH after radiation, the change of absorption, degradation products and effects of pH on the radiolysis. The uv-vis absorption of solutions were observed before and after irradiation. pH variation was done from pHs 3, 5, 7, 9 and 12. Irradiation was done at doses of 0, 2, 4, 6, 8 and 10 kGy with dose rate of 5 kGy/h and was determined by a Fricke dosimeter. HPLC with UV detector was used to analyze the degradation products. Oxalic acid was the main degradation product and small amount of succinic acid was also detected. (author)

  2. Detection of Pesticides and Pesticide Metabolites Using the Cross Reactivity of Enzyme Immunoassays

    Science.gov (United States)

    Thurman, E.M.; Aga, D.S.

    2001-01-01

    Enzyme immunoassay is an important environmental analysis method that may be used to identify many pesticide analytes in water samples. Because of similarities in chemical structure between various members of a pesticide class, there often may be an unwanted response that is characterized by a percentage of cross reactivity. Also, there may be cross reactivity caused by degradation products of the target analyte that may be present in the sample. In this paper, the concept of cross reactivity caused by degradation products or by nontarget analytes is explored as a tool for identification of metabolites or structurally similar compounds not previously known to be present in water samples. Two examples are examined in this paper from various water quality studies. They are alachlor and its metabolite, alachlor ethane sulfonic acid, and atrazine and its class members, prometryn and propazine. A method for using cross reactivity for the detection of these compounds is explained in this paper.

  3. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  4. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  5. Reactive programming in eventsourcing systems

    OpenAIRE

    Kučinskas, Žilvinas

    2017-01-01

    Eventsourcing describes current state as series of events that occurred in a system. Events hold all information that is needed to recreate current state. This method allows to achieve high volume of transactions, and enables efficient replication. Whereas reactive programming lets implement reactive systems in declarative style, decomposing logic into smaller, easier to understand components. Thesis aims to create reactive programming program interface, incorporating both principles. Applyin...

  6. Reactive Programming in Standard ML

    OpenAIRE

    Pucella, Riccardo

    2004-01-01

    Reactive systems are systems that maintain an ongoing interaction with their environment, activated by receiving input events from the environment and producing output events in response. Modern programming languages designed to program such systems use a paradigm based on the notions of instants and activations. We describe a library for Standard ML that provides basic primitives for programming reactive systems. The library is a low-level system upon which more sophisticated reactive behavi...

  7. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  8. Degradation of inkjet ink by greensand and ultrasonic sonification

    OpenAIRE

    Mirela Rožić; Marina Vukoje; Kristinka Vinković; Nives Galić; Mirela Jukić

    2017-01-01

    The study describes the degradation of inkjet ink at low frequency ultrasound (US) and greensand to compare their reactivity. Environmental sonochemistry is a rapidly growing area and an example of the advanced oxidation process (AOP) that deals with the destruction of organic species in aqueous solutions. Greensand is a granular material coated with a thin layer of manganese dioxide (MnO2) which is among the strongest natural oxidants. In our study magenta inkjet water-based printing ink was...

  9. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  10. Massive florid reactive periostitis

    International Nuclear Information System (INIS)

    Nance, K.V.; Renner, J.B.; Brashear, H.R.; Siegal, G.P.; North Carolina Univ., Chapel Hill, NC

    1990-01-01

    Florid reactive periostitis is a rare, benign process usually occurring in the small, tubular bones of the hands and feet. Typically the lesion occurs in an adolescent or young adult and presents as a small area of pain and erythema over the affected bone. Although the histologic features may suggest malignancy, there is usually little radiographic evidence to support such a diagnosis. In the following report an unusual example of this entity is described whose large size and relentless local progression led to initial diagnostic uncertainty and eventual aggressive management. This case suggests that a wide spectrum of radiologic and morphologic changes may be seen in this entity and that a seemingly unrelated genetic disease may alter the typical clinical course. (orig.)

  11. Pembrolizumab reactivates pulmonary granulomatosis

    Directory of Open Access Journals (Sweden)

    Majdi Al-dliw

    2017-01-01

    Full Text Available Sarcoid like reaction is a well-known entity that occurs as a consequence to several malignancies or their therapies. Immunotherapy has gained a lot of interest in the past few years and has recently gained approval as first line therapy in multiple advanced stage malignancies. Pneumonitis has been described as complication of such therapy. Granulomatous inflammation has been only rarely reported subsequent to immunotherapy. We describe a case of granulomatous inflammation reactivation affecting the lungs in a patient previously exposed to Pembrolizumab and have evidence of a distant granulomatous infection. We discuss potential mechanisms of the inflammation and assert the importance of immunosuppression in controlling the dis-inhibited immune system.

  12. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive...... and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells....... oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  13. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    material system (structural polymer and degradation agent ) for producing a high strength, non-corroding, highly inert, environmentally safe, extended...polymer sites in the active enzyme center differs dramatically between alkyl and aromatic polyesters. More specifically, as the degree of backbone...capped and centrifuged at 3,000 g. This procedure was repeated twice. To the remaining biomass pellet 15 mL of 1 mg/mL solution of N-ethyl-N- nitrosourea

  14. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  15. Weigle Reactivation in Acinetobacter Calcoaceticus

    DEFF Research Database (Denmark)

    Berenstein, Dvora

    1982-01-01

    phage and host survivals of about 5 times 10-6 and 1 times 10-1, respectively. Intracellular development of W-reactivated P78 was followed by one-step growth experiments. Conditions which allowed maximal W-reactivation also extended the period of phage production and yielded a somewhat reduced burst......Weigle (W)-reactivation was demonstrated in Acinetobacter calcoaceticus for the UV-irra-diated lysogenic phage P78. The reactivation factor (survival of irradiated phage on irradiated bacteria/ survival on unirradiated bacteria) reached a maximum value of 20. This was obtained at UV-doses giving...

  16. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  17. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  18. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  19. Transients analysis able to lead Pressurised Water Reactors cores to degraded situations, analysis of resulting configurations

    International Nuclear Information System (INIS)

    Shin, Hyeong-Ki

    1999-01-01

    The severe accidents that occurred recently on nuclear reactors such as Chernobyl and T.M.1.2 have led many countries utilizing nuclear energy to examine their severe accident management. This thesis focuses on this problem and aims at analyzing, in terms of reactivity, degraded core behavior resulting from different accidental configurations. Two types of core degradation can be encountered: local degradation (the destruction of isolated assemblies in the core) or spreading degradation (the destruction of neighboring assemblies). The TMI accident is an example of spreading degradation in the core. The simplicity of implementing the control rod ejection accident calculation as compared to other accidental transients have motivated the choice of this accident as a determinant for local degraded core configurations. The control rod ejection accident presents important three dimensional effects and introduces neutronic/thermohydraulic coupling. The implementation and validation of already existing three dimensional coupled calculation scheme, allowed one to analyze the consequences of such an accident and to the conclusion that only unrealistic hypotheses of assembly permutation could lead to a partial core degradation. A reasonable estimate of stored energy in the assemblies with high bum up, in relation to the stored energy in the hot spot, was also obtained for the first time. The recently performed experiments (CABRI experiments) showed that in highly burned up assemblies, the capacity to store energy decreases strongly in relation to new assemblies. This first estimate of the distribution of produced energy between different assemblies, during the rod ejection accident, offers an important piece of knowledge in the study of the consequences of an eventual fuel cycle extension (presently under consideration by development companies). Finally, the analysis of degraded core reactivity itself has been performed for a vast range of the degraded core configurations

  20. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  1. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  2. Reactive agents and perceptual ambiguity

    NARCIS (Netherlands)

    Dartel, M. van; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.; Herik, H.J. van den

    2005-01-01

    Reactive agents are generally believed to be incapable of coping with perceptual ambiguity (i.e., identical sensory states that require different responses). However, a recent finding suggests that reactive agents can cope with perceptual ambiguity in a simple model (Nolfi, 2002). This paper

  3. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  4. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  5. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  6. Evaluation of the influence of fluoroquinolone chemical structure on stability: forced degradation and in silico studies

    Directory of Open Access Journals (Sweden)

    André Valle de Bairros

    2018-05-01

    Full Text Available ABSTRACT Fluoroquinolones are a known antibacterial class commonly used around the world. These compounds present relative stability and they may show some adverse effects according their distinct chemical structures. The chemical hydrolysis of five fluoroquinolones was studied using alkaline and photolytic degradation aiming to observe the differences in molecular reactivity. DFT/B3LYP-6.31G* was used to assist with understanding the chemical structure degradation. Gemifloxacin underwent degradation in alkaline medium. Gemifloxacin and danofloxacin showed more degradation perceptual indices in comparison with ciprofloxacin, enrofloxacin and norfloxacin in photolytic conditions. Some structural features were observed which may influence degradation, such as the presence of five member rings attached to the quinolone ring and the electrostatic positive charges, showed in maps of potential electrostatic charges. These measurements may be used in the design of effective and more stable fluoroquinolones as well as the investigation of degradation products from stress stability assays.

  7. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  8. Chemical degradation of pentachlorophenol

    International Nuclear Information System (INIS)

    Shukla, S.S.; Shukla, A.; Chandrasekharaiah, M.S.

    1992-01-01

    Industry produces a large volume of hazardous wastes containing pentachlorophenol, a U.S. EPA priority hazardous organic material. The environmentally safe disposal of these PCP-contaminated wastes is a serious problem for the waste management authorities as the current treatment processes are unsatisfactory. In this paper, the results of a feasibility study of chemical degradation and/or solidification methods for PCP-containing wastes. The photochemical decomposition of the PCP in a microemulsion or in micellar media obtained with the help of SDS or CTAB show the greatest promise

  9. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  10. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  11. Reactivation with productivity

    International Nuclear Information System (INIS)

    Garcia, Carlos Hernando

    2002-01-01

    A market to five years that it will move near $63.000 millions, starting from the production of 254.000 reserves that Ecopetrol requires for its maintenance and operation, it was projected with base in the offer study and it demands that they carried out the universities Javeriana and Industrial of Santander for the Colombian Company of Petroleum around the metal mechanic sector. In accordance with the figures of the report, Ecopetrol, like one of the state entities selected by the national government to design pilot programs, guided to reactivate the Colombian industry; it is projecting a good perspective for the Colombian economy and the invigoration of the national productive sector. In practical terms, the report points out that Ecopetrol, in its different operative centers, will require in next five years the quantity of had restored before mentioned in the lines of mechanical stamps, centrifugal bombs, inter chambers of heat, compressors and valves of security; pieces that are elaborated by international makers in 99%. To produce them nationally would represent to the company an economy of 52% of the total value of the purchases in next five years and a reduction of time of delivery of 17 weeks to one week

  12. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    International Nuclear Information System (INIS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-01-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60 Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5–3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (·OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced. - Highlights: • PDA in aqueous solution was effectively degraded by gamma irradiation. • Hydroxyl radical mainly contributed to PDA degradation. • Intermediate product produced from PDA degradation was further decomposed. • Gamma irradiation process can be useful for degrading phorbol esters in water

  13. Experimental and modeling study of Portland cement paste degradation in boric acid

    International Nuclear Information System (INIS)

    Benakli, A.; Chomat, L.; Le Bescop, P.; Wall, J.

    2015-01-01

    In the framework of Spent Fuel Pools (SFP) lifetime studies, an investigation of the Portland cement degradation in boric acid has been requested by the Electric Power Research Institute. The main goal of this study is to identify the physico-chemical degradation mechanisms involved in boric acid media. Both experimental and modeling approaches are considered. Concerning degradation experiments, sample of cement paste are immersed during three and nine months in a boric acid solution at 2400 ppm that is periodically renewed. Boric acid concentration has been chosen to be representative of SFP solution. Results will be confronted with reactive transport numerical calculations performed by the reactive transport code HYTEC associated with a dedicated extended database called Thermoddem. The analysis of degradation solution revealed a main ions release mechanism driven by diffusion especially for calcium, nitrate, sodium and sulfate. Leaching behavior of magnesium seems to be more complex. Decalcification is the major degradation process involved, even if a non-negligible contribution of further cations (Mg 2+ , Na + ) and anions (SO 4 2- ) has been noticed. Analysis of degradation soution also revealed that kinetic of Portland cement paste degradation in boric acid is higher than in pure water, regarding the degraded depths measured and calcium leaching rate. This observation has been confirmed by solid characterization. Microstructure analysis of degraded Portland cement paste showed a global porosity increase in the degraded zone that might be mainly attributed to Portlandite dissolution. An Ettringite reprecipitation in the degraded zone has been suspected but could also be Ettringite-like phases containing boron. The analysis techniques used did not allow us to differentiate it, and no others specific mineral phases containing boron has been identified. Profile pattern by XRD analysis allowed us to identify four zones composing the degraded Portland cement paste

  14. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

    OpenAIRE

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K.

    2012-01-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility t...

  15. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  16. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  17. Present art of reactivity determination

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Nakano, Masafumi; Matsuura, Shojiro

    1977-01-01

    Experimental techniques for reactivity determination of a reactor have been one of the long standing subjects in reactor physics. Recently, such a requirement was proposed by the reactor designers and operators that the values of reactivity should be measured more accurately. This is because importance is emphasized for the role of reactivity to the performance of reactor safety, economics and operability. Motivated by the requirement, some remarkable progresses are being made for the improvement of the experimental techniques. Then, the present review summarizes the research activities on this subject, identifies several reactor physics problems to be overcome, and makes mention of the future targets. (auth.)

  18. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  19. Sulphur mustard degradation on zirconium doped Ti-Fe oxides

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno Veslarska 230, 628 00 Brno (Czech Republic)

    2011-09-15

    Highlights: {yields} New stechiometric materials for sulphur mustard degradation. {yields} High degree of degradation, more then 95% h{sup -1}. {yields} One-pot synthesis procedure. - Abstract: Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr{sup 4+} dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr{sup 4+} to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr{sup 4+} doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  20. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  1. Soil degradation in Pakistan

    International Nuclear Information System (INIS)

    Khan, M.R.

    2005-01-01

    This paper diagnoses the issues involved behind the current state, usage, interactions and linkages in the soils in Pakistan. The condition of soils is deteriorating due to developmental and environmental factors such as soil degradation, water pollution, fauna degeneration etc. Issues, problems and constraints faced in the management and usage of soils are diagnosed at different levels in the ecosystems predominant in Pakistan. The research questions propose effective solutions, types of instruments, methods or processes to resolve the issues within the various areas or ecosystems in the most sustainable and effective manner [23]. Biological solutions and methods can be applied at the sub-system level by private individuals or communities at a lower cost, and at a more localized level than engineering methods. Engineering methods may be suited for interventions at a system level rather than at a sub-system level; but even at this level they will be complementary with biological methods. (author)

  2. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  3. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  4. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    Science.gov (United States)

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  5. Mannuronic Acids : Reactivity and Selectivity

    NARCIS (Netherlands)

    Codee, Jeroen D. C.; Walvoort, Marthe T. C.; de Jong, Ana-Rae; Lodder, Gerrit; Overkleeft, Herman S.; van der Marel, Gijsbert A.

    2011-01-01

    This review describes our recent studies toward the reactivity and selectivity of mannopyranosyl uronic acid donors, which have been found to be very powerful donors for the construction of beta-mannosidic linkages.

  6. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    Science.gov (United States)

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  7. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  8. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  9. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  10. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  11. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  12. [Hyper-reactive malarial splenomegaly].

    Science.gov (United States)

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  13. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  14. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  15. Photoactivable caps for reactive metal nanoparticles

    Science.gov (United States)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  16. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Science.gov (United States)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  17. Sonocatalytic Degradation of Antibiotics Tetracycline by Mn-Modified Diatomite

    Directory of Open Access Journals (Sweden)

    Yiping Guo

    2017-01-01

    Full Text Available Mn-modified diatomite was prepared by wet impregnation and subsequent calcinations processes. It was used as catalyst for sonocatalytic degradation of antibiotics tetracycline. Characterizations by scanning electron microscopy and X-ray diffraction pattern showed that the morphology and crystal structure of the modified diatomite were similar to these of raw diatomite. Despite containing very limited amount of Mn oxides, the Mn-modified diatomite showed much higher sonocatalytic activity than the raw diatomite. The increases in both MnSO4 concentration of the wet impregnation solution and the catalyst dosage could enhance the degradation of antibiotics tetracycline significantly. Kapp values for ultrasonication, catalyst adsorption, and both processes combined (0.10 mol/L MnSO4-modified diatomite were 1.22 × 10−4, 0.00193, and 0.00453 min−1, respectively, while the corresponding values of R2 were 0.956, 0.986, and 0.953, respectively. These results demonstrated the significant synergetic effect by combining ultrasonication and catalyst adsorption processes. The presence of isopropanol, KBr, and NaN3 quenched a series of reactive oxygen species sharply, indicating the dominant role of reactive oxygen species in the sonocatalytic process. In contrast, the addition of Fe(II enhanced the degradation due to the generation of more OH∙ radicals in the concurrent Fenton reaction. All the results indicated that Mn-modified diatomite had the great potential for water treatment by sonocatalytic oxidation.

  18. Polycarbonate radiolytic degradation and stabilization

    International Nuclear Information System (INIS)

    Araujo, E.S. de

    1994-01-01

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  19. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  20. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  1. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  2. Designs for degraded Trbovlje

    Directory of Open Access Journals (Sweden)

    Naja Marot

    2005-01-01

    Full Text Available As an introduction, two degraded urban areas are presented. The first, planning unit seven, is situated in the southeastern part of Trbovlje town. The other, called Speke, lies to the south of Liverpool. The basis for the concept and context of urban renewal model are given by comparison between the newest Slovene and British spatial planning legislation, analyses of the Design management plan Nasipi and Supplementary Planning Document Edge Lane West, and review of different approaches to local communities’ involvement. Based on all the thus far collected data, a questionnaire about quality of living, knowledge of planning system and area perception was produced. Initially, it was used in a pilot residential area Žabjek, and afterwards, a shortened version was carried out in units lying in other parts of the town. Other stakeholders also expressed their ideas about how to develop planning unit seven. Speke Garston as another example of successful urban renewal is given. In conclusion guidelines for method and context development of urban renewal are given for planning unit seven, with emphasis on the Žabjek estate.

  3. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  4. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  5. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. MICROCOSM STUDY OF DEGRADATION OF CHLORINATED SOLVENTS ON SYNTHETIC GREEN RUST MINERALS

    Science.gov (United States)

    Green rust minerals contain ferrous ion in their structure that can potentially serve as a chemical reductant for degradation of chlorinated solvents. Green rusts are found in zerovalent iron based permeable reactive barriers and in certain soil and sediments. Some previous labor...

  7. Radiation degradation-adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Dessouki, A.M.; Amer, S.I.

    2002-01-01

    The radiolysis or three toxic dyes, viz. Reactive Yellow 3, Reactive Black 39, and Basic Blue 26, was investigated as a function of the dye concentration, pH, irradiation dose and dose rate. The radiolytic degradation was more pronounced with Reactive yellow 3 and Reactive Black 39 than with Basic Blue 26. The degree of degradation could be increased by combining the irradiation procedure with the conventional treatment, such as addition of oxygen or hydrogen peroxide; addition of nitrogen, on the other hand, resulted in no change. A pH drop was observed and tentatively attributed to the degradation of the dye molecules to lower molecular weight compounds such as organic acids. The primary radiolysis products as well as the secondary products are responsible for the degradation of the dye chromophore. Experiments with the adsorption or exchange of the dyes on GAC, some ion exchange resins and polymeric membranes were carried out to find that the polymeric membranes have the highest adsorption capacity for the pollutants except the basic dye. The combined treatment by irradiation and adsorption resulted in a complete removal of the toxic dyes in question

  8. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.

    Science.gov (United States)

    Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K

    2013-11-01

    Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

  9. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  10. Abundance and reactivity of dibenzodioxocins in softwood lignin.

    Science.gov (United States)

    Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest

    2002-02-13

    To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.

  11. Substation Reactive Power Regulation Strategy

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.

  12. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwayne C. Kicker

    2001-09-28

    A statistical description of the probable block sizes formed by fractures around the emplacement drifts has been developed for each of the lithologic units of the repository host horizon. A range of drift orientations with the drift azimuth varied in 15{sup o} increments has been considered in the static analysis. For the quasi-static seismic analysis, and the time-dependent and thermal effects analysis, two drift orientations have been considered: a drift azimuth of 105{sup o} and the current emplacement drift azimuth of 75{sup o}. The change in drift profile resulting from progressive deterioration of the emplacement drifts has been assessed both with and without backfill. Drift profiles have been determined for four different time increments, including static (i.e., upon excavation), 200 years, 2,000 years, and 10,000 years. The effect of seismic events on rock fall has been analyzed. Block size distributions and drift profiles have been determined for three seismic levels, including a 1,000-year event, a 5,000-year event, and a 10,000-year event. Data developed in this modeling and analysis activity have been entered into the TDMS (DTN: MO0109RDDAAMRR.003). The following conclusions have resulted from this drift degradation analysis: (1) The available fracture data are suitable for supporting a detailed key block analysis of the repository host horizon rock mass. The available data from the north-south Main Drift and the east-west Cross Drift provide a sufficient representative fracture sample of the repository emplacement drift horizon. However, the Tptpln fracture data are only available from a relatively small section of the Cross Drift, resulting in a smaller fracture sample size compared to the other lithologic units. This results in a lower degree of confidence that the key block data based on the Tptpln data set is actually representative of the overall Tptpln key block population. (2) The seismic effect on the rock fall size distribution for all events

  13. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  14. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO{sub 2} dispersion

    Energy Technology Data Exchange (ETDEWEB)

    An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); An, Jibin [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Nie, Xiangping [Institute of Hydrobiology, Jinan University, Guangzhou 510632 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Photocatalytic degradation kinetics of antivirus drug lamivudine. Black-Right-Pointing-Pointer The degradation kinetics was optimized by the single-variable-at-a-time. Black-Right-Pointing-Pointer The degradation kinetics was optimized by central composite design. Black-Right-Pointing-Pointer The contribution of reactive species was investigated with addition of scavengers. Black-Right-Pointing-Pointer Six intermediates were identified and a degradation mechanism was proposed. - Abstract: Photocatalytic degradation kinetics of antivirus drug-lamivudine in aqueous TiO{sub 2} dispersions was systematically optimized by both single-variable-at-a-time and central composite design based on the response surface methodology. Three variables, TiO{sub 2} content, initial pH and lamivudine concentration, were selected to determine the dependence of degradation efficiencies of lamivudine on independent variables. Response surface methodology modeling results indicated that degradation efficiencies of lamivudine were highly affected by TiO{sub 2} content and initial lamivudine concentration. The highest degradation efficiency was achieved at suitable amount of TiO{sub 2} and with maintaining initial lamivudine concentration to a minimum. In addition, the contribution experiments of various primary reactive species produced during the photocatalysis were investigated with the addition of different scavengers and found that hydroxyl radicals was the major reactive species involved in lamivudine degradation in aqueous TiO{sub 2}. Six degradation intermediates were identified using HPLC/MS/MS, and photocatalytic degradation mechanism of lamivudine was proposed by utilizing collective information from both experimental results of HPLC/MS/MS, ion chromatography as well as total organic carbon and theoretical data of frontier electron densities and point charges.

  15. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  16. Memory reactivation improves visual perception.

    Science.gov (United States)

    Amar-Halpert, Rotem; Laor-Maayany, Rony; Nemni, Shlomi; Rosenblatt, Jonathan D; Censor, Nitzan

    2017-10-01

    Human perception thresholds can improve through learning. Here we report findings challenging the fundamental 'practice makes perfect' basis of procedural learning theory, showing that brief reactivations of encoded visual memories are sufficient to improve perceptual discrimination thresholds. Learning was comparable to standard practice-induced learning and was not due to short training per se, nor to an epiphenomenon of primed retrieval enhancement. The results demonstrate that basic perceptual functions can be substantially improved by memory reactivation, supporting a new account of perceptual learning dynamics.

  17. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  18. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  19. Operationalizing measurement of forest degradation

    DEFF Research Database (Denmark)

    Dons, Klaus; Smith-Hall, Carsten; Meilby, Henrik

    2015-01-01

    . In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human......Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities...

  20. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    Science.gov (United States)

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  1. Ecosystemic approaches to land degradation

    Energy Technology Data Exchange (ETDEWEB)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-07-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to integrate them in a unique process. One of the objectives of De Survey project is designing and implementing operational procedures for desertification surveillance, including land degradation. A strategic report was compiled and reproduced here for selecting the most appropriate approaches to the project conditions. The report focuses on using attributes of ecosystem maturity as a natural way to integrate the different drivers of land degradation in simple indices. The review surveys different families of attributes concerned with water and energy fluxes through the ecosystem, its capacity to sustain biomass and net primary productivity, and its capacity to structure the space. Finally, some conclusions are presented about the choice criteria of the different approaches in the framne of operational applications. (Author) 20 refs.

  2. Ecosystemic approaches to land degradation

    International Nuclear Information System (INIS)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-01-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to integrate them in a unique process. One of the objectives of De Survey project is designing and implementing operational procedures for desertification surveillance, including land degradation. A strategic report was compiled and reproduced here for selecting the most appropriate approaches to the project conditions. The report focuses on using attributes of ecosystem maturity as a natural way to integrate the different drivers of land degradation in simple indices. The review surveys different families of attributes concerned with water and energy fluxes through the ecosystem, its capacity to sustain biomass and net primary productivity, and its capacity to structure the space. Finally, some conclusions are presented about the choice criteria of the different approaches in the framne of operational applications. (Author) 20 refs.

  3. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  4. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  5. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  6. Backup passive reactivity shutdown systems

    International Nuclear Information System (INIS)

    Ashurko, Yu.M.; Kuznetsov, L.A.

    1996-01-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs

  7. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  8. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  9. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  10. Backup passive reactivity shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M; Kuznetsov, L A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs.

  11. Quantitative reactive modeling and verification.

    Science.gov (United States)

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  12. Separability of local reactivity descriptors

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The size-dependence of different local reactivity descriptors of dimer A2 and AB type of sys- tems is discussed. We derive analytic results of these descriptors calculated using finite difference approximation. In particular, we studied Fukui functions, relative electrophilicity and relative nucleo- philicity, local softness ...

  13. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  14. Working session 1: Tubing degradation

    International Nuclear Information System (INIS)

    Kharshafdjian, G.; Turluer, G.

    1997-01-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to open-quotes develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.close quotes Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym open-quotes MESSclose quotes by some of the group members, were noted. The element of time (i.e., evolution of these variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed

  15. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  16. Chemical Reactivity of Isoproturon, Diuron, Linuron, and Chlorotoluron Herbicides in Aqueous Phase: A Theoretical Quantum Study Employing Global and Local Reactivity Descriptors

    Directory of Open Access Journals (Sweden)

    Luis Humberto Mendoza-Huizar

    2015-01-01

    Full Text Available We have calculated global and local DFT reactivity descriptors for isoproturon, diuron, linuron, and chlorotoluron herbicides at the MP2/6-311++G(2d,2p level of theory. The results suggest that, in aqueous conditions, chlorotoluron, linuron, and diuron herbicides may be degraded by elimination of urea moiety through electrophilic attacks. On the other hand, electrophilic, nucleophilic, and free radical attacks on isoproturon may cause the elimination of isopropyl fragment.

  17. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  18. A REVIEW ON EFFICACIOUS METHODS TO DECOLORIZE REACTIVE AZO DYE

    Directory of Open Access Journals (Sweden)

    Jagadeesan Vijayaraghavan

    2013-01-01

    Full Text Available This paper deals with the intensive review of reactive azo dye, Reactive Black 5. Various physicochemical methods namely photo catalysis, electrochemical, adsorption, hydrolysis and biological methods like microbial degradation, biosorption and bioaccumulation have been analyzed thoroughly along with the merits and demerits of each method. Among these various methods, biological treatment methods are found to be the best for decolorization of Reactive Black 5. With respect to dye biosorption, microbial biomass (bacteria, fungi, microalgae, etc, and outperformed macroscopic materials (seaweeds, crab shell, etc. are used for decolorization process. The use of living organisms may not be an option for the continuous treatment of highly toxic organic/inorganic contaminants. Once the toxicant concentration becomes too high or the process operated for a long time, the amount of toxicant accumulated will reach saturation. Beyond this point, an organism's metabolism may be interrupted, resulting in death of the organism. This scenario is not existed in the case of dead biomass, which is flexible to environmental conditions and toxicant concentrations. Thus, owing to its favorable characteristics, biosorption has received much attention in recent years.

  19. Radiation-induced decomposition and decoloration of reactive dyes in the presence of H2O2

    International Nuclear Information System (INIS)

    Wang Min; Yang Ruiyuan; Wang Wenfeng; Shen Zhongqun; Bian Shaowei; Zhu Zhiyuan

    2006-01-01

    The dyeing wastewaters represent a large input of hazardous compounds to the environment and these compounds are usually non-biodegradable. In this study, electron beam irradiation-induced decoloration and decomposition of reactive dyes in aqueous solution were investigated. Two different reactive dyes (reactive red KE-3B and reactive blue XBR) solutions were irradiated with electron beam at different doses in the absence and presence of H 2 O 2 . The changes of absorption spectra and pH value were described and analyzed as well as the degree of decoloration and COD removal. The influences of absorbed doses, H 2 O 2 additions and initial dye concentrations are discussed. The experimental results show that reactive dyes in aqueous solutions can be effectively degraded by electron beam irradiation, especially in the presence of hydrogen peroxide

  20. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  1. Reactive behavior, learning, and anticipation

    Science.gov (United States)

    Whitehead, Steven D.; Ballard, Dana H.

    1989-01-01

    Reactive systems always act, thinking only long enough to 'look up' the action to execute. Traditional planning systems think a lot, and act only after generating fairly precise plans. Each represents an endpoint on a spectrum. It is argued that primitive forms of reasoning, like anticipation, play an important role in reducing the cost of learning and that the decision to act or think should be based on the uncertainty associated with the utility of executing an action in a particular situation. An architecture for an adaptable reactive system is presented and it is shown how it can be augmented with a simple anticipation mechanism that can substantially reduce the cost and time of learning.

  2. Melioidosis: reactivation during radiation therapy

    International Nuclear Information System (INIS)

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-01-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia

  3. Degradation of shape memory effect

    International Nuclear Information System (INIS)

    Vandermeer, R.A.

    1983-01-01

    An important parameter for deciding whether or not a SME alloy is suitable for practical applications is the magnitude of the strain reversal accompanying martensite reversion. This research is concerned with elucidating metallurgical factors that cause degradation of this heat-activated recovery strain, E/sub R/. After explaining what is meant by degradation, two manifestations of degradation recently identified in near-monotectoid uranium-niobium alloys are described. The first was associated with the onset of plastic deformation of the martensite beyond the reversible strain limit, E/sub L/; a reduction of E/sub R/ from 5.25% at 8% total strain, i.e. E/sub L/, to 2.9% at 12% total strain was observed. A second type of degradation depended strongly on the heating rate during reversion; the E/sub R/ for an imposed strain of 6.95% was reduced from a value of 5.25% to 1.3% when the heating rate was decreased from 40 0 /sec to 0.05 0 /sec. Degradation was attributed to a change in the transformation path and the interjection of time-dependent, low temperature aging reactions

  4. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  5. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En.

    2002-01-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 O) starting from sea sand in an easy and economic way. (Author)

  6. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  7. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  8. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  9. Controlling material reactivity using architecture

    Science.gov (United States)

    Sullivan, Kyle

    2017-06-01

    The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.

  10. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  11. Evaluation of bituminized waste reactivity

    International Nuclear Information System (INIS)

    Camaro, S.; Moulinier, D.

    2000-01-01

    The bituminization process has been used for conditioning low and medium level (LML) radioactive waste, particularly to immobilize coprecipitation slurries and evaporation concentrates generated by effluent treatment. The process consists in mixing bitumen matrix with inactive soluble and slightly soluble salts added to insolubilize the radionuclides or resulting from the neutralization of acid effluents. This operation is performed at a sufficient temperature - depending on waste composition and bitumen grade to ensure the flow of the resulting mixture into metal containers. Exothermicity due to salts/salts or salts/bitumen reactions depending on the type of waste can be induced during or after the mixing step. This could produce an additional heat emission that the drum must be able to release to avoid a potentially incidental pattern with ignition risk, explaining why the CEA has been involved in evaluating the thermal reactivity of bituminized waste and its repercussions on the bituminization process. Given the difficulty of discriminating each exothermal reaction, the characterization of a global reactivity appears as a further precautionary measure, in addition to the definition of a working safety margin. The CEA has accordingly developed studies on this aspect. The article discusses the experimental methodology developed for the determination of the global reactivity. (authors)

  12. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    De Windt, Laurent; Devillers, Philippe

    2010-01-01

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  13. Degradation of 4-Chloro phenol by gamma radiation of 137Cs and X-rays

    International Nuclear Information System (INIS)

    Gonzalez J, J. C.; Jimenez B, J.; Cejudo A, J.

    2010-01-01

    This paper presents results of radiolytic degradation of 4-chloro phenol in the presence of TiO 2 , Al 2 O 3 and SiO 2 , using different radiation sources than 60 Co, which is so common in this type of experiment. The radiation sources used were X-rays with energy of 100 keV and radiation from 137 Cs (662 keV). After irradiation with a dose of 50 c Gy X-ray and TiO 2 obtained a degradation of about 5%, no degradation was obtained with 137 Cs source and other oxides. This may be due to the fact that X-rays have a linear energy transfer greater value, and in the case of TiO 2 present a crystalline structure, whereas the other two oxides are amorphous. Both characteristics result in better formation of a reactive species that allows the degradation of the compound. (Author)

  14. Structure–efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds

    Directory of Open Access Journals (Sweden)

    Sophie Letort

    2017-03-01

    Full Text Available New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative.

  15. Event-Based Modularization of Reactive Systems

    NARCIS (Netherlands)

    Malakuti Khah Olun Abadi, Somayeh; Aksit, Mehmet

    2014-01-01

    There is a large number of complex software systems that have reactive behavior. As for any other software system, reactive systems are subject to evolution demands. This paper defines a set requirements that must be fulfilled so that reuse of reactive software systems can be increased. Detailed

  16. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  17. Radiation degradation of silk protein

    International Nuclear Information System (INIS)

    Pewlong, W.; Sudatis, B.; Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl 2 /C 2 H 5 OH/H 2 O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  18. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Pewlong, W; Sudatis, B [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  19. Structure and Degradation Behaviour of Calcium Phosphate Glasses

    International Nuclear Information System (INIS)

    Silva, A M B; Correia, R N; Fernandes, M H V; Oliveira, J M M

    2011-01-01

    Some studies have shown a relationship between glass structure and in vitro mineralization, generally associated with the rate of glass degradation, nature of released ions and subsequent Ca-P precipitation on glass surfaces when immersed in a Simulated Body Fluid (SBF). The knowledge of the ionic species distribution in glasses and of the involved bond strengths can be used to assess the in vitro behaviour of a glass. The role of ions such as silicon or titanium is of major importance for the development of new compositions and also for the control of glass degradation behaviour. A comparative study with two calcium phosphate glasses series was performed: Both glasses series - one with Si and another with Ti - include P 2 O 5 and alkaline earth ions in their compositions. Surface reactivity of glasses from the SiO 2 -containing system have been studied in SBF showing the precipitation of a Ca-P surface layer that increases with increasing MgO/CaO ratio. In glasses from the TiO 2 -containing series it is shown that the increase of TiO 2 contributes for the stabilization of the glass network thus allowing the control of their degradation rate when immersed in SBF. The relationship between structural features of these calcium-phosphate glasses and their degradation behaviour in SBF is discussed in terms of the structural role of Si and Ti ions. It is concluded that glasses with less interconnected species favour the Ca-P surface precipitation. The understanding of this relationship in synthetic physiological fluids is expected to allow the tailoring of glass degradation rates in complex biological systems.

  20. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  1. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Chengdu, E-mail: qichengdu@mail.tsinghua.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084 (China); Liu, Xitao, E-mail: liuxt@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Li, Yang; Lin, Chunye; Ma, Jun; Li, Xiaowan; Zhang, Huijuan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-04-15

    Highlights: • S(IV)/PDS system showed synergistic degradation of BPA than S(IV) and PDS. • BPA degradation involved hydroxyl and oxysulfur radicals in the S(IV)/PDS system. • Based on the identified intermediates, the BPA degradation pathway was proposed. - Abstract: In this study, the bisulfite-peroxydisulfate system (S(IV)/PDS) widely used in polymerization was innovatively applied for organic contaminants degradation in water. The addition of S(IV) into PDS system remarkably enhanced the degradation efficiency of bisphenol A (BPA, a frequently detected endocrine disrupting chemical in the environments) from 17.0% to 84.7% within 360 min. The degradation efficiency of BPA in the S(IV)/PDS system followed pseudo-first-order kinetics, with rate constant values ranging from 0.00005 min{sup −1} to 0.02717 min{sup −1} depending on the operating parameters, such as the initial S(IV) and PDS dosage, solution pH, reaction temperature, chloride and water type. Furthermore, nitrogen purging experiment, radical scavenging experiment and electron spin resonance (ESR) analysis were used to elucidate the possible mechanism. The results revealed that sulfate radical was the dominant reactive species in the S(IV)/PDS system. Finally, based on the results of liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS), the BPA degradation pathway was proposed to involve β-scission (C−C), hydroxylation, dehydration, oxidative skeletal rearrangement, and ring opening. This study helps to characterize the combination of PDS and inorganic S(IV), a common industrial contaminant, to generate reactive species to enhance organic contaminants degradation in water.

  2. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  3. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  4. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA) : Field data and reactive transport modeling

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction,

  5. On the Construction of Sorted Reactive Systems

    DEFF Research Database (Denmark)

    Birkedal, Lars; Debois, Søren; Hildebrandt, Thomas

    2008-01-01

    We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand...... bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more...

  6. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nadejde, C., E-mail: claudia.nadejde@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Neamtu, M., E-mail: mariana.neamtu@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Schneider, R.J.; Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Ababei, G. [National Institute of Research and Development for Technical Physics, Dimitrie Mangeron Bd. 47, 700050 Iasi (Romania); Panne, U. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Non-hazardous, facile and inexpensive procedure for efficient wastewater treatment. • Chemical synthesis of ferrous oxalate modified Fe{sub 3}O{sub 4} nanoparticles. • Structural characterization confirmed the senzitized catalysts' nanometric size. • The highly magnetic catalysts can be easily recovered from solution. • 99.7% of azo dye was removed in 4 h using Fenton-like process in alkaline media. - Abstract: The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe{sub 3}O{sub 4}) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H{sub 2}O{sub 2} concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H{sub 2}O{sub 2} after 240 min of oxidation for a catalyst concentration of 10 g L{sup −1} at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  7. Photoassisted Electrochemical Treatment of Azo and Phtalocyanine Reactive Dyes in the Presence of Surfactants

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2016-01-01

    An electrochemical treatment (EC) was applied at different intensities to degrade the chromophoric groups of dyes C.I. Reactive Black 5 (RB5) and C.I. Reactive Blue 7 (Rb7) until uncolored species were obtained. Decolorization rate constants of the azo dye RB5 were higher than the phtalocyanine Rb7 ones. In addition, the EC treatment was more efficient at higher intensities, but these conditions significantly increased the generation of undesirable by-products such as chloroform. The combination of EC with UV irradiation (UVEC) drastically minimized the generation of chloroform. The photo-assisted electrochemical treatment was also able to achieve decolorization values of 99%. Finally, mixtures of dyes and surfactants were treated by EC and UVEC. In the presence of surfactants, the decolorization kinetic of dyes was slowed due to the competitive reactions of surfactants degradation. Both methods achieved total decolorization and in both cases, the generation of haloforms was negligible. PMID:28773335

  8. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration

    Science.gov (United States)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter; Graves, Christopher

    2018-02-01

    The solid oxide cell (SOC) could play a vital role in energy storage when the share of intermittent electricity production is high. However, large-scale commercialization of the technology is still hindered by the limited lifetime. Here, we address this issue by examining the potential for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we fully reactivated the fuel electrode after simulated reactant starvation and after carbon formation. Furthermore, by infiltrating after 900 h of operation, the degradation of the fuel electrode was reduced by a factor of two over the course of 2300 h. Lastly, the scalability of the concept is demonstrated by reactivating an 8-cell stack based on a commercial design.

  9. Integrated Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    Science.gov (United States)

    2016-06-16

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Oklahoma, 100 E. Boyd St., SEC 810 Norman , OK 73019-2115 8...Deep Plume. The green diamonds indicate wells where either VC or ethene The Unit B aquitard is entirely eroded in some areas and leakage from...western section of the Deep Plume ( green symbols) are consistent with the RD model that also successfully simulated the data from the Shallow Plume. On

  10. Integrated Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    Science.gov (United States)

    2016-05-01

    reported from the toe of the plume. The CSM of the Deep Plume proposed that the contaminants reside in mobile (sand) and immobile (clay and silt...transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes ." Journal of Hydrology 454: 7-25. Kuder, T. and P. Philp (2013

  11. Enhancing emerging organic compound degradation: applying chaotic flow to managed aquifer recharge

    Science.gov (United States)

    Rodríguez-Escales, Paula; Fernandez-Garcia, Daniel; Drechsel, Johannes; Folch, Albert; Sanchez-Vila, Xavier

    2017-04-01

    The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection engineering. In this work we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The first two compounds are better degraded under aerobic conditions whereas the third one under nitrate reducing conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time within the area affected by recharge, facilitating the degradation of EOCs.

  12. Degradation of polyethylene induced by plasma in oxidizing atmospheres; Degradacion de polietileno inducido por plasma en atmosferas oxidantes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, E.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, Av. Tollocan y Colon, 50000 Toluca (Mexico)

    2002-07-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  13. Reactivity to sorbitan sesquioleate affects reactivity to fragrance mix I.

    Science.gov (United States)

    Geier, Johannes; Schnuch, Axel; Lessmann, Holger; Uter, Wolfgang

    2015-11-01

    Fragrance mix I (FM I) and its single constituents contain 5% and 1% sorbitan sesquioleate (SSO), respectively. SSO is a rare sensitizer and a potential irritant. To determine whether the outcome of the FM I breakdown test is affected by positive patch test reactivity to SSO. A retrospective analysis of data from the Information Network of Departments of Dermatology, 1998-2013, was performed. The full FM I breakdown test including SSO was tested in 2952 patients. Of these, 154 (5.2%) had a positive patch test reaction to SSO 20% pet. and 2709 (91.8%) had a negative patch test reaction. Positive reactions to one or more of the single fragrances contained in the mix were significantly more common (82.5% versus 57.3%) in SSO-positive patients, who also had more multiple reactions than FM I-positive patients with negative SSO reactions (61.5% versus 21.3% patients with reactions to two or more fragrances). Our results indicate that reactivity to SSO markedly affects the outcome of patch testing with FM I and its single constituents. SSO must be an obligatory part of the full FM I breakdown test, and should ideally be included in the baseline series. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Degradation of materials and passivity

    International Nuclear Information System (INIS)

    Meisel, W.

    1997-01-01

    Demanding for a reduction in materials degradation is a serious problem all over the world. Moessbauer spectroscopy (MS) is, among others, a very valuable tool to follow many degradation processes. Evidently, Fe is the most important Moessbauer element considering the overall presence of iron in everyday life. MS may contribute to our knowledge about nearly all fields of materials degradation, chemical, mechanical, thermal, irradiative, etc. Following some general lines, corrosion is considered in particular. MS is applicable to investigate the bulk of materials as well as their surface layers with an information depth of ca. 250 nm. In general, it has to be applied as a surface sensitive method in combination with other relevant methods in order to get a detailed insight into ongoing processes. Some examples have been selected to elucidate the application of MS in this field. Another class of examples concerns attempts to prevent corrosion, i.e., the application of coatings and transforming chemicals. A very effective and most natural way to reduce corrosion is the passivation of materials. The effect of passive layers and their destruction by environmental influences are discussed using results of MS and related methods. It is outlined that passivity is not restricted to chemically treated metals but can be considered as a general concept for preventing different kinds of materials from degradation. (orig.)

  15. Land degradation and property regimes

    Science.gov (United States)

    Paul M. Beaumont; Robert T. Walker

    1996-01-01

    This paper addresses the relationship between property regimes and land degradation outcomes, in the context of peasant agriculture. We consider explicitly whether private property provides for superior soil resource conservation, as compared to common property and open access. To assess this we implement optimization algorithms on a supercomputer to address resource...

  16. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Large scale commercial introduction of CIGS photovoltaics (PV) requires modules with low costs, high efficiencies and long and predictable lifetimes. Unfortunately,knowledge about the lifetime of CIGS PV is limited, which is reflected in the results of field studies: degradation rates varying from

  17. The Degradation of a Nation.

    Science.gov (United States)

    Morozova, Galina Fedorouna

    1995-01-01

    Maintains that the process of national degradation is a real danger and concern of all Russian society. Discusses environmental concerns, such as water, soil, and air pollution; falling birth rates; aging of the population; crime; and decline in moral values. Concludes that it is imperative for all citizens to stop and reverse these trends. (CFR)

  18. Polymeric Materials - introduction and degradation

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    1999-01-01

    These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...

  19. Abiotic degradation of antibiotic ionophores

    DEFF Research Database (Denmark)

    Bohn, Pernille; Bak, Søren A; Björklund, Erland

    2013-01-01

    Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C f...... because they absorb light of environmentally irrelevant wavelengths....

  20. Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: Kinetics, products, and reactive species identification.

    Science.gov (United States)

    Qin, Wenxiu; Fang, Guodong; Wang, Yujun; Wu, Tongliang; Zhu, Changyin; Zhou, Dongmei

    2016-04-01

    Recently, sulfate radical ( [Formula: see text] ) based-advanced oxidation technologies (AOTs) have been attracted great attention in the remediation of contaminated soil and groundwater. In the present study, Co(2+) ions activated peroxymonosulfate (PMS) system was used to degrade 1, 1, 1-trichloro-2, 2'bis(p-chlorophenyl) ethane (DDT) in aqueous solutions. It was found that DDT was efficiently degraded in the PMS/Co(II) solutions within several hours, and the degradation efficiency of DDT was dependent on the concentrations of PMS and Co(II), and the optimum molar ratio of PMS and Co(II) was 50:1. The degradation kinetics of DDT were well described with pseudo-first-order equations over a range of temperature (10-40 °C), and the activation energy that was calculated with Arrhenius equation was 72.3 ± 2.6 kJ/mol. Electron paramagnetic resonance (EPR) and GC-MS techniques were applied to identify the intermediates and reactive species for DDT degradation. The results indicated that [Formula: see text] and OH were the main reactive species accounting for DDT degradation. Dichlorobenzophenone, 4-chlorobenzoic acid and benzylalcohol were the dominant intermediates for DDT degradation, and the likely degradation pathway of DDT was proposed on the basis of these identified products. Increasing pH inhibited the formation of [Formula: see text] and OH, and thus decreased the catalytic degradation of DDT. Cl(-) ion was found to significantly inhibit, while [Formula: see text] and dissolved oxygen had limited effects on DDT degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  2. Menstrual cycle and skin reactivity

    DEFF Research Database (Denmark)

    Agner, T; Damm, P; Skouby, S O

    1991-01-01

    The hypothesis was tested that a cyclic variation exists in skin reactivity to irritant stimuli. Twenty-nine healthy women with regular menstrual cycles were challenged with sodium lauryl sulfate as an irritant patch test at day 1 and at days 9 through 11 of the menstrual cycle. The skin response...... to the applied irritant stimulus was evaluated by visual scoring and also quantified by measurements of transepidermal water loss, edema formation, and blood flow in the skin. The skin response to challenge with sodium lauryl sulfate was found to be significantly stronger at day 1 than at days 9 through 11...

  3. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  4. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)

  5. Radiation degradation of pharmaceutical residues in water. Chloramphenicol

    International Nuclear Information System (INIS)

    Csay, T.; Racz, G.; Takacs, E.; Wojnarovits, L.

    2011-01-01

    Complete text of publication follows. Traditional wastewater treatment systems primarily rely upon physical, chemical and biological processes. The conventional techniques cannot efficiently remove badly biodegradable pollutants like pesticides, herbicides and drugs from influents. Leaving 'polluted' water flowing freely out to environment may cause unwanted and sometimes unpredictable effects. Degradation or removal of residual organic contaminations from wastewater is an important task both for science and engineering to preserve environment and drinking water. Ionizing radiation treatment of liquid wastes is one of the so called advanced oxidation processes (AOP) leading to decomposition of pharmaceuticals in aqueous solutions. The radiolysis of chloramphenicol (CPL) a broad spectrum antibiotic was investigated under different conditions. Steady-state gamma radiolysis were used to generate various reactive species ( · H, · OH and e aq - ). Reactions were followed by steady state and time resolved UV-Vis spectrometry. Several degradation products were separated and identified by LC-MS/MS. Mineralization was followed by measuring chemical oxygen demand (COD) and total organic carbon content (TOC). The change in toxicity was followed by Microtox, a luminescent bacteria test. Results indicate that ionizing radiation is very effective in degradation of CPL. After irradiating 0.1 mM CPL solutions with 5.0-7.5 kGy doses, no products could be observed indicating that irradiation resulted in complete mineralization.

  6. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules.

    Science.gov (United States)

    Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M

    2017-10-01

    Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  8. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  9. Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water

    Science.gov (United States)

    Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4

  10. Hybrid composites of nano-sized zero valent iron and covalent organic polymers for groundwater contaminant degradation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    Zero valent iron is commonly used in a variety of treatment technologies (e.g. permeable reactive barriers), though recently a heavier focus has been placed on nano-sized zero valent iron (nZVI). Having superior reductive properties and large surface areas, nZVI is ideal for the degradation of ch...

  11. Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-01

    A finite element model of the impact of diverse degradation mechanisms on the impedance spectrum of a solid oxide fuel cell is presented as a tool for degradation mode identification. Among the degradation mechanisms that cause electrode active area loss, the attention is focused on electrode delamination and uniformly distributed surface area loss, which were found to cause distinct and specific changes in the impedance spectrum. Degradation mechanisms resulting in uniformly distributed reactive surface area loss include sintering, sulphur poisoning, and possibly incipient coke formation at the anode, and chromium deposition at the cathode. Parametric studies reveal the extent and limits of applicability of the model and detectability of the different degradation modes, as well as the influence of different cell geometries on the change in impedance behaviour resulting from the loss of active area. It is expected that this technique could form the basis of a useful diagnostic tool for both solid oxide fuel cell developers and users. (author)

  12. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  13. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  14. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  15. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  16. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  17. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  18. Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules

    International Nuclear Information System (INIS)

    Xie Yibing

    2006-01-01

    A highly ordered and crystallized titania (TiO 2 ) nanotube array is fabricated by a low-voltage anodization plus a post-embedding calcination process. Polyoxophosphotungstate-titania (POPTA-TiO 2 ) composite catalyst is synthesized by embedding POPTA in TiO 2 tubule channels to improve the photoelectrochemical properties. The morphological characteristics and crystal behaviour of POPTA-TiO 2 are examined by field-emission scanning electron microscopy and x-ray diffraction. The stability of the chemical structure has been analysed by Fourier transformed infrared spectroscopy measurements. The photoelectrochemical properties are investigated by means of the polarization current response. Photocatalytic and photoelectrocatalytic reactivities for the degradation of an endocrine disrupting chemical have also been investigated to examine the photoelectrochemical reaction efficiency of POPTA-TiO 2 composite catalyst

  19. ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120

    Directory of Open Access Journals (Sweden)

    Montaser Y. Ghaly

    2017-05-01

    Full Text Available ZnO/glass spiral (GS was prepared by immobilization of ZnO on GS with facile method, and was characterized by X-ray diffraction analysis (XRD, scanning electron microscope (SEM and the crystallite size of ZnO on GS surface was calculated. SEM showed rod-like shape of ZnO particles on GS surface. Photocatalytic activity of prepared immobilized photocatalyst was investigated for decolourization and degradation of C.I. Reactive Red 120 (RR-120 dye under sunlight. The kinetics of decolourization and degradation removal has been investigated. The effect of pH on decolourization and degradation of dye was studied. The decolourization and degradation of dye were followed by pseudo-first order reaction. The decolourization and degradation of RR-120 dye were enhanced by H2O2 addition to definite dosage beyond that the effect is diminished. Also, the reusability of immobilized ZnO on GS was tested for photocatalytic degradation of dye and it was worth noting that it has high efficiency with slight decrease (5% after five successive runs.

  20. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    Science.gov (United States)

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  1. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  2. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  3. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [Notre Dame Univ., IN (United States); Kakar, S.N.; Coleman, R.D. [Argonne National Lab., IL (United States)

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  4. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. (Notre Dame Univ., IN (United States)); Kakar, S.N.; Coleman, R.D. (Argonne National Lab., IL (United States))

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  5. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Wachiraporn Pewlong; Boonya Sudatis [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-09-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated in the dose range up to 2500 kGy using an electron beam accelerator to apply the radiation degradation technique as a means to solubilize fibroin. The tensile strength of irradiated fibroin fiber decreased with increasing dose and the presence of oxygen in the irradiation atmosphere enhanced the degradation. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: calcium chloride solution (CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O = 1 : 2 : 8 in mole ratio), hydrochloric acid (0.5N) and distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water-soluble protein was extracted by distilled water. (author)

  6. Synthesis of Nickel Oxide Nanoparticles Using Gelatine as a Green Template for Photocatalytic Degradation of Dye

    OpenAIRE

    JAY YANG LEE

    2018-01-01

    Nickel oxide (NiO) nanoparticles were synthesized through sol-gel method with an environmentally friendly templating agent, which is gelatin. The synthesized NiO were characterized to determine the chemical and physical properties of the nanoparticles. The optimum synthesis parameters were used in photocatalytic degradation of Reactive Black 5 and Acid Yellow 25 dye to determine the catalytic activity of the nanoparticles.

  7. A simple reactivity-meter system

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1992-01-01

    This paper describes a new version of a reactivity meter developed at the Institute of Nuclear Energy Research (IPEN) (Brazil). The reactivity meter computes the reactor reactivity utilizing a programmable electrometer that performs the data aquisition. The software commands the main functions of the electrometer, the data acquisition, data transfer, and reactivity calculation. The necessary hardware for this reactivity meter are a programmable electrometer, a microcomputer, and interfaces for the microcomputer to communicate with the electrometer. If it is necessary, it is possible to connect a graphic register to the microcomputer. With this conventional hardware, available in any nuclear reactor facility, one can build a powerful reactivity meter. Adding to these advantages, one can use the microcomputer on-line to analyze the data, store the data on diskettes, or create graphics

  8. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  9. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  10. Reactive power compensation a practical guide

    CERN Document Server

    Hofmann, Wolfgang; Just, Wolfgang

    2012-01-01

    The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emisson are reduced. This unique guide discusses the

  11. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    Unknown

    DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the ther- mal degradation of cellular DNA and isolated DNA showed that cellular ..... definite level of energy (e.g. depurination active energy,.

  12. Extensions and applications of degradation modeling

    International Nuclear Information System (INIS)

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, the authors discuss some of the extensions and applications of degradation modeling. The extensions and applications of the degradation modeling approaches discussed are: (a) theoretical developments to study reliability effects of different maintenance strategies and policies, (b) relating aging-failure rate to degradation rate, and (c) application to a continuously operating component

  13. Reactive Periostitis from Inhalant Abuse.

    Science.gov (United States)

    Hock, Lauren E; Honkanen, Iiro; Fiordellisi, Wendy; Bettendorf, Brittany

    2018-04-16

    The patient, a 36-year-old woman, presented with a 6-week history of swollen hands and fingers and associated arthralgia. She had a history of polysubstance abuse. The arthralgia and swelling started one month after she began inhaling two cans of "Dust-Off" (1,1-difluoroethane) daily. Physical examination revealed tender proximal and middle phalanges of all fingers bilaterally with bulbous appearance (A). There was no clubbing. Radiography of the hands revealed diffuse reactive periostitis with discrete layering of periosteal bone formation without bony destruction (B). TSH was normal. Serum alkaline phosphatase was 854 U/L. Computed tomography of the chest, abdomen, and pelvis showed no evidence of malignancy or pulmonary disease This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Trends in reactivity of oxides

    DEFF Research Database (Denmark)

    Toftelund, Anja

    The results in this thesis are based on Density Functional Theory calculations. The catalytic activity of oxides and other compound materials are investigated. It is found that the adsorption energy of the molecules NH2, NH, OH and SH on transition metal nitride, oxide and sulfide surfaces scales......, and I) and OH on a wide range of rutile oxide surfaces. Furthermore, Brønsted-Evans-Polanyi (BEP) relations are found for the adsorption of a large number of molecules (including Cl, Br and I) on transition metal oxides. In these relations the activation energies scale linearly with the dissociative...... chemisorption energies. It turns out that the BEP relation for rutile oxides is almost coinciding with the dissociation line, i.e. no barrier exists for the reactive surfaces. The heterogeneous catalytic oxidation of hydrogen halides (HCl, HBr, and HI) is investigated. A micro-kinetic model is solved...

  15. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  16. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  17. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  18. Applications and extensions of degradation modeling

    International Nuclear Information System (INIS)

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs

  19. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  20. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  1. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International Corp., Columbus, OH (United States)

    1991-12-31

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  2. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. (Brookhaven National Lab., Upton, NY (United States)); Vesely, W.E. (Science Applications International Corp., Columbus, OH (United States))

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  3. Modelling land degradation in IMAGE 2

    NARCIS (Netherlands)

    Hootsmans RM; Bouwman AF; Leemans R; Kreileman GJJ; MNV

    2001-01-01

    Food security may be threatened by loss of soil productivity as a result of human-induced land degradation. Water erosion is the most important cause of land degradation, and its effects are irreversible. This report describes the IMAGE land degradation model developed for describing current and

  4. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  5. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  6. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Linyan; Su, Guijin, E-mail: gjsu@rcees.ac.cn; Zhang, Aiqian; Shi, Yali; Xia, Chaobo; Lu, Huijie; Li, Liewu; Liu, Sha; Zheng, Minghui

    2013-10-15

    Highlights: • The NiFe{sub 2}O{sub 4} had the highest activity in degradation of CB-209, followed by Fe{sub 3}O{sub 4}. • Hydroxyl species, organic acids, PCBs and chlorobenzenes were identified as products. • Three degradation reactions and one combination reaction competitively occurred. • Hydrodechlorination of CB-209 was more favored over Fe{sub 3}O{sub 4} than NiFe{sub 2}O{sub 4}. • Oxidation reaction of CB-209 was more favored over NiFe{sub 2}O{sub 4} than Fe{sub 3}O{sub 4}. -- Abstract: A series of mesoporous iron-based spinel materials were synthesized to degrade polychlorinated biphenyls (PCBs), with CB-209 being used as a model compound. The materials were characterized by X-ray powder diffraction (XRD), pore structure analysis, and X-ray photoelectron spectroscopy (XPS). A comparison of the dechlorination efficiencies (DEs) of the materials revealed that NiFe{sub 2}O{sub 4} had the highest DE, followed by Fe{sub 3}O{sub 4}. Newly produced polychlorinated biphenyls, chlorinated benzenes, hydroxyl species and organic acids were detected by gas chromatography–mass spectrometry, high performance liquid chromatography–mass spectrometry and ion chromatograph. Identification of the intermediate products indicates that three degradation pathways, hydrodechlorination, the breakage of C-C bridge bond and oxidative reaction, accompanied by one combination reaction, are competitively occurring over the iron-based spinels. The relative amounts of produced three NoCB isomers were illustrated by the C-Cl BDEs of CB-209 at meta-, para- and ortho-positions, and their energy gap between HOMO and LUMO. The consumption of the reactive oxygen species caused by the transformation of Fe{sub 3}O{sub 4} into Fe{sub 2}O{sub 3} in the Fe{sub 3}O{sub 4} reaction system, and the existence of the highly reactive O{sub 2}{sup −}· species in the NiFe{sub 2}O{sub 4} reaction system, could provide a reason why the oxidation reaction was more favored over NiFe{sub 2}O

  7. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.; Siegrist, B.; Vesper, S.

    1997-01-01

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months

  8. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO(2) aqueous solution.

    Science.gov (United States)

    Cao, Hua; Lin, Xiulian; Zhan, Haiying; Zhang, Hong; Lin, Jingxin

    2013-01-01

    5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO(2) heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that ()OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  10. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  11. In-situ degradation of sulphur mustard using (1R)-(-)-(camphorylsulphonyl) oxaziridine impregnated adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abha, E-mail: abha_052002@yahoo.co.in [Industrial Toxicology Research Centre, Mahatam Gandhi Marg, Lucknow, UP (India); Saxena, Amit; Singh, Beer [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India)

    2009-12-30

    Bis-2-chloroethyl sulphide (sulphur mustard or HD) is an extremely toxic and persistent chemical warfare agent. For in-situ degradation of HD and its analogues (simulants), i.e., dibutyl sulphide (DBS) and ethyl 2-hydroxyethyl sulphide (HEES), different adsorbents systems loaded with (1R)-(-)-(camphorylsulphonyl) oxaziridine were prepared. Solution of sulphur mustard and its simulants was prepared in carbon tetrachloride and taken for uniform adsorption on the impregnated systems using incipient volume. Degradation kinetics monitored by GC/FID were found to be first-order. The half-life of degradation reactions for simulants was obtained in less than 30 and for HD in 120 min. From the studied kinetics it was observed that reaction was very rapid with simulants and decreased rate was found for HD. The order of reactivity of MgO/Oxa system for HD and simulants was found to be DBS > HEES > HD. Reaction products of the oxidation reaction of simulants and HD on adsorbents were extracted in dichloromethane and analysed by GC-MS. The products were found to be non-toxic sulphoxide. The objective of the study is to develop a reactive adsorbent for in-situ degradation of sulphur mustard which could be used in nuclear biological and chemical (NBC) filtration systems.

  12. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies.

    Science.gov (United States)

    Lovato, María E; Fiasconaro, María L; Martín, Carlos A

    2017-02-01

    This research investigated the discoloration and mineralization of Reactive Blue 19 (RB19) anthraquinone dye by single ozonation, single UV radiation and ozonation jointed with UV radiation (O 3 /UV). The problem was approached from two points of view: with the objective of color removal or the mineralization of solution. In each case, the optimum operating conditions were different. Ozonation was the most effective treatment for color removal, while the combined O 3 /UV treatment was for mineralization. Major intermediates of the dye degradation were identified by gas chromatography/mass spectrometry and a degradation pathway was proposed. In addition, a clear decrease of the toxicity of the dye was achieved at the end of the experiments. The effect of initial dye concentration, pH, ozone dose, and UV radiation on the degradation of the dye and decrease of total organic carbon was investigated, in order to establish the optimal operating conditions to achieve discoloration, mineralization or a combination of both.

  13. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  15. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  16. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  17. Second Reactivation of Neurocysticercosis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Young Sup; Hwang, Hee Young; Choi, Hye Young; Kim, Jee Eun; Kim, Hyung Sik [Gil Hospital, Incheon (Korea, Republic of)

    2010-02-15

    This report describes the first case involving a second reactivation of neurocysticercosis. There was peripheral enhancement and surrounding edema at multiple calcified lesions in both cerebral hemispheres on the brain MRI. One must be aware of the possibility of reactivation of neurocysticercosis to make the correct diagnosis

  18. Psychophysiology of proactive and reactive relational aggression.

    Science.gov (United States)

    Murray-Close, Dianna; Holterman, Leigh Ann; Breslend, Nicole L; Sullivan, Alexandra

    2017-12-01

    This study investigated the joint effects of parasympathetic and sympathetic nervous system reactivity to social and non-social stressors on proactive (i.e., goal-directed, unemotional) and reactive (i.e., emotional, impulsive) functions of relational aggression. Two hundred and forty-seven (M age =18.77years) participants completed a series of stressor tasks while their sympathetic arousal (i.e., skin conductance) and parasympathetic arousal (i.e., respiratory sinus arrhythmia) were assessed. Participants also provided self-reports of their aggressive behavior. In the standardized social stressor only, physiological reactivity was related to aggression, such that respiratory sinus arrhythmia augmentation predicted proactive relational aggression whereas heightened skin conductance reactivity predicted reactive relational aggression. Finally, in the context of low skin conductance reactivity, respiratory sinus arrhythmia augmentation was related to heightened proactive and reactive aggression, whereas respiratory sinus arrhythmia withdrawal was protective. Results suggest that the benefits hypothesized to accompany respiratory sinus arrhythmia withdrawal may only occur among individuals with low "fight or flight" stress responses. Findings extend research on the physiological indicators of aggression to relational aggression, and highlight the importance of assessing functions of aggression, as well as physiological reactivity to multiple stressors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reactive arthritis associated with Mycoplasma genitalium urethritis.

    Science.gov (United States)

    Chrisment, D; Machelart, I; Wirth, G; Lazaro, E; Greib, C; Pellegrin, J-L; Bébéar, C; Peuchant, O

    2013-11-01

    Mycoplasma genitalium is an important cause of sexually transmitted infections that is gaining recognition and is an independent cause of acute and chronic nongonococcal urethritis in men. M. genitalium has been implicated as a possible causative factor in reactive arthritis. We report a case of reactive arthritis complicating M. genitalium urethritis in an HLA-B27-positive patient. © 2013.

  20. Reactivity monitoring during reactor-reloading operations

    International Nuclear Information System (INIS)

    Baumann, N.P.; Ahlfeld, C.F.; Ridgely, G.C.

    1983-01-01

    At the Savannah River Plant (SRP) reloading operations during shutdown present special considerations in reactivity monitoring and control. Large reactivity changes may occur during reloading operations because of the heterogeneous nature of some core designs. This paper describes an improved monitoring system

  1. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  2. Immune reactivity of candidate reference materials

    NARCIS (Netherlands)

    Fernandez-Rivas, Montserrat; Aalbers, Marja; Fötisch, Kay; de Heer, Pleuni; Notten, Silla; Vieths, Stefan; van Ree, Ronald

    2006-01-01

    Immune reactivity is a key issue in the evaluation of the quality of recombinant allergens as potential reference materials. Within the frame of the CREATE project, the immune reactivity of the natural and recombinant versions of the major allergens of birch pollen (Bet v 1), grass pollen (Phl p 1

  3. Evolution and Reactivity in the Semantic Web

    Science.gov (United States)

    Alferes, José Júlio; Eckert, Michael; May, Wolfgang

    Evolution and reactivity in the Semantic Web address the vision and concrete need for an active Web, where data sources evolve autonomously and perceive and react to events. In 2004, when the Rewerse project started, regarding work on Evolution and Reactivity in the Semantic Web there wasn’t much more than a vision of such an active Web.

  4. Reactivity transient calculatios in research reactor

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1986-01-01

    A digital program for reactivity transient analysis in research reactor and cylindrical geometry was showed quite efficient when compared with methods and programs of the literature, as much in the solution of the neutron kinetics equation as in the thermohydraulic. An improvement in the representation of the feedback reactivity adopted on the program reduced markedly the computation time, with some accuracy. (Author) [pt

  5. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  6. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  7. Study of PP/montmorillonite composite degradation

    International Nuclear Information System (INIS)

    Baer, Marcia; Granado, Carlos J.F.

    2009-01-01

    The objective of this work was to produce composites of PP/sodium bentonite and PP/ organophilic bentonite through melt intercalation and analyze the degradation produced by ultraviolet irradiation. The XRD results showed that the samples of nature bentonite had better interaction with de polymer and produced intercalated nanocomposite. The effect of UV irradiation on degradation was observed after 24 hours of exposition. The samples showed the same photoproducts and at the same proportion until 240 hours of UV exposition; with 480 hours the organophilize bentonite composite showed higher degradation than other ones. The superficial cracks increased with degradation time. The degradation occurs due chromophores impurities presented in the samples, thus samples with sodium clay show higher degradation, and organophilic clay contains ammonium salt that contribute to increase the degradation. (author)

  8. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  9. Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water.

    Science.gov (United States)

    Guo, Kaiheng; Wu, Zihao; Shang, Chii; Yao, Bo; Hou, Shaodong; Yang, Xin; Song, Weihua; Fang, Jingyun

    2017-09-19

    The UV/chlorine process is an emerging advanced oxidation process (AOP) used for the degradation of micropollutants. However, the radical chemistry of this AOP is largely unknown for the degradation of numerous structurally diverse micropollutants in water matrices of varying quality. These issues were addressed by grouping 34 pharmaceuticals and personal care products (PPCPs) according to the radical chemistry of their degradation in the UV/chlorine process at practical PPCP concentrations (1 μg L -1 ) and in different water matrices. The contributions of HO • and reactive chlorine species (RCS), including Cl • , Cl 2 •- , and ClO • , to the degradation of different PPCPs were compound specific. RCS showed considerable reactivity with olefins and benzene derivatives, such as phenols, anilines, and alkyl-/alkoxybenzenes. A good linear relationship was found between the RCS reactivity and negative values of the Hammett ∑σ p + constant for aromatic PPCPs, indicating that electron-donating groups promote the attack of benzene derivatives by RCS. The contribution of HO • , but not necessarily RCS, to PPCP removal decreased with increasing pH. ClO • showed high reactivity with some PPCPs, such as carbamazepine, caffeine, and gemfibrozil, with second-order rate constants of 9.2 × 10 7 , 1.03 × 10 8 , and 4.16 × 10 8 M -1 s -1 , respectively, which contributed to their degradation. Natural organic matter (NOM) induced significant scavenging of ClO • and greatly decreased the degradation of PPCPs that was attributable to ClO • , with a second-order rate constant of 4.5 × 10 4 (mg L -1 ) -1 s -1 . Alkalinity inhibited the degradation of PPCPs that was primarily attacked by HO • and Cl • but had negligible effects on the degradation of PPCPs by ClO • . This is the first study on the reactivity of RCS, particularly ClO • , with structurally diverse PPCPs under simulated drinking water condition.

  10. Entanglement reactivation in separable environments

    International Nuclear Information System (INIS)

    Pirandola, Stefano

    2013-01-01

    Combining two entanglement-breaking channels into a correlated-noise environment restores the distribution of entanglement. Surprisingly, this reactivation can be induced by the injection of separable correlations from the composite environment. In any dimension (finite or infinite), we can construct classically correlated ‘twirling’ environments which are entanglement-breaking in the transmission of single systems but entanglement-preserving when two systems are transmitted. Here entanglement is simply preserved by the existence of decoherence-free subspaces. Remarkably, even when such subspaces do not exist, a fraction of the input entanglement can still be distributed. This is found in separable Gaussian environments, where distillable entanglement is able to survive the two-mode transmission, despite being broken in any single-mode transmission by the strong thermal noise. In the Gaussian setting, entanglement restoration is a threshold process, occurring only after a critical amount of correlations has been injected. Such findings suggest new perspectives for distributing entanglement in realistic environments with extreme decoherence, identifying separable correlations and classical memory effects as physical resources for ‘breaking entanglement-breaking’. (paper)

  11. [Reiter disease or reactive arthritis?].

    Science.gov (United States)

    Eppinger, S; Schmitt, J; Meurer, M

    2006-04-01

    There is an ongoing international discussion on whether the condition reactive arthritis should be named after a former Nazi functionary. The German dermatological community should participate in this debate. In 1916, Hans Reiter described a disease with the symptoms urethritis, conjunctivitis, and arthritis, which was later named after him. After becoming titular professor in May 1918, Reiter was appointed director of the regional public health department Mecklenburg-Schwerin in 1926. At the same time he taught social hygiene at the University of Rostock, where he was appointed full professor in 1928. In 1931, Hans Reiter became a member of the National Socialist German Workers Party (NSDAP). In July 1932 he was elected representative of the NSDAP to the seventh assembly of Mecklenburg-Schwerin. After becoming its acting director in July 1933, Reiter was appointed president of the Reich public health department in Berlin on October 1, 1933. Both his excellent professional qualifications, as well as his National Socialist attitudes, were considered key criteria for taking over this important position. As the president of the Reich public health department, Reiter was said to have known about the conduct of experiments with typhus-fever at the concentration camp Buchenwald in which 250 humans died. From the end of the Second World War until 1947, Reiter was imprisoned in the Nuremberg Prison for War Criminals, but never convicted of a crime.

  12. RETRANS, Reactivity Transients in LWR

    International Nuclear Information System (INIS)

    Kamelander, G.

    1989-01-01

    1 - Description of program or function: RETRANS is appropriate to calculate power excursions in light water reactors initiated by reactivity insertions due to withdrawal of control elements. As in the code TWIGL, the neutron physics model is based on the time-dependent two-group neutron diffusion equations. The equation of state of the coolant is approximated by a table built into the code. RETRANS solves the heat conduction equation and calculates the heat transfer coefficient for representative fuel rods at each time-step. 2 - Method of solution: The time-dependent neutron diffusion equations are modified by an exponential transformation and solved by means of a finite difference method. There is an option accelerating the inner iterations of the difference scheme by a coarse-mesh re-balancing method. The heat balance equations of the thermo- hydraulic model are discretized and converted into a tri-diagonal system of linear equations which is solved recursively. 3 - Restrictions on the complexity of the problem: r-z-geometry, one- phase-flow

  13. Early detection of materials degradation

    Science.gov (United States)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  14. Environmental Degradation: Causes and Consequences

    Directory of Open Access Journals (Sweden)

    Swati Tyagi

    2014-08-01

    Full Text Available The subject of environmental economics is at the forefront of the green debate: the environment can no longer be viewed as an entity separate from the economy. Environmental degradation is of many types and have many consequences. To address this challenge a number of studies have been conducted in both developing and developed countries applying different methods to capture health benefits from improved environmental quality. Minimizing exposure to environmental risk factors by enhancing air quality and access to improved sources of drinking and bathing water, sanitation and clean energy is found to be associated with significant health benefits and can contribute significantly to the achievement of the Millennium Development Goals of environmental sustainability, health and development. In this paper, I describe the national and global causes and consequences of environmental degradation and social injustice. This paper provides a review of the literature on studies associated with reduced environmental risk and in particular focusing on reduced air pollution, enhanced water quality and climate change mitigation.

  15. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  16. Photochemical degradation of atenolol, carbamazepine, meprobamate, phenytoin and primidone in wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mei Mei [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States); Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Trenholm, Rebecca [Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954 (United States); Rosario-Ortiz, Fernando L., E-mail: Fernando.rosario@colorado.edu [Civil, Environmental and Architectural Engineering, 428 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2015-01-23

    Highlights: • The photochemical degradation of 5 compounds was evaluated in wastewater effluents. • Attenuation by sensitized photolysis was the most important degradation pathway. • Hydroxyl radical accounted for most of the degradation for aliphatic compounds. • Other transient oxidants could also significantly impact the degradation of the compounds. - Abstract: The photochemical degradation of five pharmaceuticals was examined in two secondary wastewater effluents. The compounds, which included atenolol, carbamazepine, meprobamate, phenytoin and primidone, were evaluated for both direct and sensitized photolysis. In the two wastewaters, direct photolysis did not lead to significant compound degradation; however, sensitized photolysis was an important removal pathway for the five pharmaceuticals. Upon solar irradiation, hydroxyl radical (HO·) was quantified using the hydroxylation of benzene and singlet oxygen ({sup 1}O{sub 2}) formation was monitored following the degradation of furfuryl alcohol. Degradation via sensitized photolysis was observed following five-day exposures for atenolol (69–91%), carbamazepine (67–98%), meprobamate (16–52%), phenytoin (44–85%), and primidone (34–88%). Varying removal is likely a result of the differences in reactivity with transient oxidants. Averaged steady state HO· concentrations ranged from 1.2 to 4.0 × 10{sup −16} M, whereas the concentrations of {sup 1}O{sub 2} were 6.0–7.6 × 10{sup −14} M. Partial removal due to presence of HO· indicates it was not the major sink for most compounds examined. Other transient oxidants, such as {sup 1}O{sub 2} and triplet state effluent organic matter, are likely to play important roles in fates of these compounds.

  17. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  18. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  20. Radiation chemistry and the environment: the radiation degradation of pesticides

    International Nuclear Information System (INIS)

    Cornelius, K.; Laurence, G.

    1996-01-01

    Full text: The chemistry of the degradation of organic pesticides, herbicides and fungicides in natural systems determines operationally important parameters such as withholding times before planting or consumption. Free radicals are being increasingly recognised as important in environmental chemistry and in aqueous systems the OH, H, and O 2 - radicals are believed to be relevant to the degradation of organic molecules. Sources of these radicals in natural aqueous systems have been suggested as photochemical or transition metal reactions involving dissolved organic species such as humic acids. We are undertaking a systematic study of the reactions of OH, H, and O 2 - radicals and halogen radical ions such as Cl 2 - , with important herbicides and fungicides in order to obtain rate constant data for modelling the possible reactions in field conditions and to establish whether the postulated reactions are capable of accounting for the disappearance of the materials in the environment. In addition to using gamma and pulse radiolysis to determine product yields, rate constants and the presence of reactive intermediates, we have begun to explore the stability and geometry of possible radial intermediates using Gaussian computations. At present six pesticides in current use in Australia are being studied. Our results for one of these, Inoxyl will be discussed. While electron transfer to or from the molecule is the initial reaction path for OH and H radicals, superoxide radical species are unreactive. (authors)

  1. Definition of reactivity and its measurability

    International Nuclear Information System (INIS)

    Hu Dapu

    1986-01-01

    Reactivity is the fundamental and important physical quantity in the reactor physics. The different kinds of method for defining reactivity are represented, the difference between different definitions of reactivity is indicalted and the conditions under which they have nearly the same measurable value are discussed. It is demonstrated that when the static adjointed neutron density or the neutron importance is selected to be a weight function for generating kinetic parameters used in the neutron kinetic equations, the kinetic reactivity is approximately equal to the static reactivity. Due to the constraint of the normalization condition, the shape function must be so selected that the corresponding amplitude function is proportional to the fundamental mode of neutron density variating with time. Measured reactivity by the kinetic method may vary with the position of detector, owing to the different space distribution of the prompt neutrons density and the delayed neutrons density and the effect of the higher harmonics of the neutron density. Some corresponding correction must be made in order to obtain the real static reactivity

  2. Adaptive Reactive Rich Internet Applications

    Science.gov (United States)

    Schmidt, Kay-Uwe; Stühmer, Roland; Dörflinger, Jörg; Rahmani, Tirdad; Thomas, Susan; Stojanovic, Ljiljana

    Rich Internet Applications significantly raise the user experience compared with legacy page-based Web applications because of their highly responsive user interfaces. Although this is a tremendous advance, it does not solve the problem of the one-size-fits-all approach1 of current Web applications. So although Rich Internet Applications put the user in a position to interact seamlessly with the Web application, they do not adapt to the context in which the user is currently working. In this paper we address the on-the-fly personalization of Rich Internet Applications. We introduce the concept of ARRIAs: Adaptive Reactive Rich Internet Applications and elaborate on how they are able to adapt to the current working context the user is engaged in. An architecture for the ad hoc adaptation of Rich Internet Applications is presented as well as a holistic framework and tools for the realization of our on-the-fly personalization approach. We divided both the architecture and the framework into two levels: offline/design-time and online/run-time. For design-time we explain how to use ontologies in order to annotate Rich Internet Applications and how to use these annotations for conceptual Web usage mining. Furthermore, we describe how to create client-side executable rules from the semantic data mining results. We present our declarative lightweight rule language tailored to the needs of being executed directly on the client. Because of the event-driven nature of the user interfaces of Rich Internet Applications, we designed a lightweight rule language based on the event-condition-action paradigm.2 At run-time the interactions of a user are tracked directly on the client and in real-time a user model is built up. The user model then acts as input to and is evaluated by our client-side complex event processing and rule engine.

  3. Distribution of apparent activation energy counterparts during thermo - And thermo-oxidative degradation of Aronia melanocarpa (black chokeberry).

    Science.gov (United States)

    Janković, Bojan; Marinović-Cincović, Milena; Janković, Marija

    2017-09-01

    Kinetics of degradation for Aronia melanocarpa fresh fruits in argon and air atmospheres were investigated. The investigation was based on probability distributions of apparent activation energy of counterparts (ε a ). Isoconversional analysis results indicated that the degradation process in an inert atmosphere was governed by decomposition reactions of esterified compounds. Also, based on same kinetics approach, it was assumed that in an air atmosphere, the primary compound in degradation pathways could be anthocyanins, which undergo rapid chemical reactions. A new model of reactivity demonstrated that, under inert atmospheres, expectation values for ε a occured at levels of statistical probability. These values corresponded to decomposition processes in which polyphenolic compounds might be involved. ε a values obeyed laws of binomial distribution. It was established that, for thermo-oxidative degradation, Poisson distribution represented a very successful approximation for ε a values where there was additional mechanistic complexity and the binomial distribution was no longer valid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  5. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  6. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  7. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  8. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  9. Permafrost degradation in West Greenland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Ingeman-Nielsen, Thomas

    2012-01-01

    Important aspects of civil engineering in West Greenland relate to the presence of permafrost and mapping of the annual and future changes in the active layer due to the ongoing climatically changes in the Arctic. The Arctic Technology Centre (ARTEK) has worked more than 10 years on this topic...... and the first author has been involved since 1970 in engineering geology, geotechnical engineering and permafrost related studies for foundation construction and infrastructures in towns and communities mainly in West Greenland. We have since 2006 together with the Danish Meteorological Institute, Greenland...... Survey (ASIAQ) and the University of Alaska Fairbanks carried out the US NSF funded project ARC-0612533: Recent and future permafrost variability, retreat and degradation in Greenland and Alaska: An integrated approach. This contribution will present data and observations from the towns Ilulissat...

  10. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  11. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  12. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  13. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  14. The degradation of Brazilian socioeconomics

    Directory of Open Access Journals (Sweden)

    MARCUS ALBAN

    2018-03-01

    Full Text Available ABSTRACT In recent years, a number of illegal activities operated under the radar of conventional analysis have taken place in Brazil. This study proposes an Extended Keynesian Model in order to understand this phenomenon, a model that explains that crises happen because of the replacement of productive activities with unproductive and destructive activities. The model is used here to examine Brazil’s socioeconomic history since the institution of the economic plan that established the actual currency “Real” (R$, concluding that as the plan’s concern was predominantly with stabilization and not growth, productive activities have never been promoted on an appropriate scale. This has paved the way for the advancement of unproductive and destructive activities which have ultimately led to the country’s increasing degradation.

  15. Recovering of images degraded by atmosphere

    Science.gov (United States)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  16. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  17. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  18. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  19. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  20. ENHANCEMENT OF RESISTANCE TO OXIDATIVE DEGRADATION OF NATURAL RUBBER THROUGH LATEX DEGRADATION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A fully characterised natural rubber latex was subjected to mechanical degradation by stirring at intervals. The resistance to oxidative degradation of the different samples were studied by measuring the Plasticity retention indices (PRI).The results show that there is an enhancement of the PRI from 57% for the undegraded rubber to 79% for the one-hour degraded sample. Further degradation resulted in decrease of PRI as time of degradation increased. Therefore, the one-hour degraded sample is a special rubber with high oxidation resistance which is of great importance in engineering.

  1. Case study of the sonochemical decolouration of textile azo dye Reactive Black 5

    International Nuclear Information System (INIS)

    Vajnhandl, Simona; Le Marechal, Alenka Majcen

    2007-01-01

    The decolouration and mineralization of reactive dye C.I. Reactive Black 5, a well-known representative of non-biodegradable azo dyes, by means of ultrasonic irradiation at 20, 279 and 817 kHz has been investigated with emphasis on the effect of various parameters on decolouration and degradation efficiency. Characterization of the used ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using Fricke and iodine dosimeter. Experiments were carried out with low frequency probe type, and a high-frequency plate type transducer at 50, 100 and 150 W of acoustic power and within the 5-300 mg/L initial dye concentration range. Decolouration, as well as radical production, increased with increasing frequency, acoustic power, and irradiation time. Any increase in initial dye concentration results in decreased decolouration rates. Sonochemical decolouration was substantially depressed by the addition of 2-methyl-2-propanol as a radical scavenger, which suggests radical-induced reactions in the solution. Acute toxicity to marine bacteria Vibrio fischeri was tested before and after ultrasound irradiation. Under the conditions employed in this study, no toxic compounds were detected after 6 h of irradiation. Mineralization of the dye was followed by TOC measurements. Relatively low degradation efficiency (50% after 6 h of treatment) indicates that ultrasound is rather inefficient in overall degradation, when used alone

  2. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  3. Diazotrophic Bacterial Community of Degraded Pastures

    OpenAIRE

    João Tiago Correia Oliveira; Everthon Fernandes Figueredo; Williane Patrícia da Silva Diniz; Lucianne Ferreira Paes de Oliveira; Pedro Avelino Maia de Andrade; Fernando Dini Andreote; Júlia Kuklinsky-Sobral; Danúbia Ramos de Lima; Fernando José Freire

    2017-01-01

    Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN) of bacteria per gram ...

  4. Thermal degradation of organo-soluble polyimides

    Institute of Scientific and Technical Information of China (English)

    黄俐研; 史燚; 金熹高

    1999-01-01

    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  5. Simulating Degradation Data for Prognostic Algorithm Development

    Data.gov (United States)

    National Aeronautics and Space Administration — PHM08 Challenge Dataset is now publicly available at the NASA Prognostics Respository + Download INTRODUCTION - WHY SIMULATE DEGRADATION DATA? Of various challenges...

  6. Photovoltaic Degradation Rates -- An Analytical Review

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  7. Degradation Mechanisms of Military Coating Systems

    National Research Council Canada - National Science Library

    Keene, L. T; Halada, G. P; Clayton, C. R; Kosik, W. E; McKnight, S. H

    2004-01-01

    This work describes the development and application of specialized characterization techniques used to study the environmental degradation mechanisms of organic coating systems employed by the United...

  8. Geoelectrical signatures of reactive mixing

    Science.gov (United States)

    Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.

    2017-12-01

    Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert

  9. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.

    Science.gov (United States)

    Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang

    2018-05-17

    Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Alkali-aggregate reactivity (AAR) facts book.

    Science.gov (United States)

    2013-03-01

    This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...

  11. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2002-01-01

    .... Specifically, the present study is designed to conduct an investigation of the cross-sectional associations between indices of stress reactivity and psychological coping styles in women with breast...

  12. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2003-01-01

    .... Specifically, the present study is designed to conduct an investigation of the cross-sectional associations between indices of stress reactivity and psychological coping styles in women with breast...

  13. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2000-01-01

    .... Specifically, the present study is designed to conduct an investigation of the cross-sectional associations between indices of stress reactivity and psychological coping styles in women with breast...

  14. Nondestructive Reactivation of Chemical Protective Garments

    National Research Council Canada - National Science Library

    Chang, Kuo

    1995-01-01

    .... Complete reactivation was achieved when the aqueous/ i-propanol/ iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam...

  15. Needs for reactivity anomaly monitoring in CRBRP

    International Nuclear Information System (INIS)

    Bullock, J.B.

    1975-01-01

    Two general classifications of reactivity anomalies are defined and explicit design criteria and operational philosophy for an anomaly monitoring system for the Clinch River Breeder Reactor are presented. (JWR)

  16. C-reactive protein and later preeclampsia

    DEFF Research Database (Denmark)

    Rebelo, Fernanda; Schlüssel, Michael M; Vaz, Juliana S

    2013-01-01

    This study aims to determine whether high C-reactive protein (CRP) concentration during pregnancy is associated with later preeclampsia and whether weight status (BMI) is a potential modifier of the relation between CRP and preeclampsia....

  17. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  18. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2003-01-01

    ... cancer and matched healthy controls. The aims of the project are: (1) to quantify parameters of biological reactivity to a behavioral stress paradigm in women with and without breast cancer; (2) To examine...

  19. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2001-01-01

    ... cancer and matched healthy controls. The aims of the project are: (1) To quantify parameters of biological reactivity to a behavioral stress paradigm in women with and without breast cancer; (2...

  20. Physiological Stress Reactivity and Breast Cancer

    National Research Council Canada - National Science Library

    Wadhwa, Pathik

    2005-01-01

    ... cancer and matched healthy controls. The aims of the project are: (1) To quantify parameters of biological reactivity to a behavioral stress paradigm in women with and without breast cancer; (2...

  1. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    Science.gov (United States)

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  2. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    International Nuclear Information System (INIS)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming; Liu, Yang; Wang, Fang; Gong, Jingjing; Kang, Zhenhui

    2012-01-01

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: ► The composites that Au nanoparticles supported on ZnO nanowires were synthesized. ► Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. ► Two operating mechanisms were proposed depending on excitation wavelength.

  3. Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity.

    Science.gov (United States)

    Giannangelo, Carlo; Stingelin, Lukas; Yang, Tuo; Tilley, Leann; Charman, Susan A; Creek, Darren J

    2018-03-01

    The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia. Copyright © 2018 American Society for Microbiology.

  4. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  5. Reward disrupts reactivated human skill memory

    OpenAIRE

    Dayan, Eran; Laor-Maayany, Rony; Censor, Nitzan

    2016-01-01

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing re...

  6. Awake reactivation predicts memory in humans

    OpenAIRE

    Staresina, Bernhard P.; Alink, Arjen; Kriegeskorte, Nikolaus; Henson, Richard N.

    2013-01-01

    How is new information converted into a memory trace? Here, we used functional neuroimaging to assess what happens to representations of new events after we first experience them. We found that a particular part of the medial temporal lobe, a brain region known to be critical for intact memory, spontaneously reactivates these events even when we are engaged in unrelated activities. Indeed, the extent to which such automatic reactivation occurs seems directly related to later memory performanc...

  7. The Large Customer Reactive Power Control Possibilities

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2014-03-01

    Full Text Available In this paper the authors wish to draw attention to the rationale for, and the possibility of, the use of local reactive power sources by the Transmission Node Master Controller (TNMC. Large Customers (LC are one of the possible reactive power sources. The paper presents the issues related to the need for coordination between the control systems installed in the LC network, and coordination between control systems of the LC as well as master control systems in the network.

  8. Refinement of Parallel and Reactive Programs

    OpenAIRE

    Back, R. J. R.

    1992-01-01

    We show how to apply the refinement calculus to stepwise refinement of parallel and reactive programs. We use action systems as our basic program model. Action systems are sequential programs which can be implemented in a parallel fashion. Hence refinement calculus methods, originally developed for sequential programs, carry over to the derivation of parallel programs. Refinement of reactive programs is handled by data refinement techniques originally developed for the sequential refinement c...

  9. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  10. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  11. Neighborhood disadvantage and adolescent stress reactivity

    Directory of Open Access Journals (Sweden)

    Daniel A. Hackman

    2012-10-01

    Full Text Available Lower socioeconomic status (SES is associated with higher levels of life stress, which in turn affect stress physiology. SES is related to basal cortisol and diurnal change, but it is not clear if SES is associated with cortisol reactivity to stress. To address this question, we examined the relationship between two indices of SES, parental education and concentrated neighborhood disadvantage, and the cortisol reactivity of African-American adolescents to a modified version of the Trier Social Stress Test. We found that concentrated disadvantage was associated with cortisol reactivity and this relationship was moderated by gender, such that higher concentrated disadvantage predicted higher cortisol reactivity and steeper recovery in boys but not in girls. Parental education, alone or as moderated by gender, did not predict reactivity or recovery, while neither education nor concentrated disadvantage predicted estimates of baseline cortisol. This finding is consistent with animal literature showing differential vulnerability, by gender, to the effects of adverse early experience on stress regulation and the differential effects of neighborhood disadvantage in adolescent males and females. This suggests that the mechanisms underlying SES differences in brain development and particularly reactivity to environmental stressors may vary across genders.

  12. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.

    Science.gov (United States)

    Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions (S2O8(2-)) for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5 h by using 5 g L(-1) magnetite and 63 mM S2O8(2-), indicating the effectiveness of the process for TCE removal. Various factors of the process, including. (S2O8(2-) and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing S2O8(2-) and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with α-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that •SO4- and •OH were the major radicals responsible for TCE degradation, whereas •O2- contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation.

  13. Degradation of Alkali-Based Photocathodes from Exposure to Residual Gases: A First-Principles Study

    International Nuclear Information System (INIS)

    Wang, Gaoxue; Batista, Enrique R.

    2017-01-01

    Photocathodes are a key component in the production of electron beams in systems such as X-ray free-electron lasers and X-ray energy-recovery linacs. Alkali-based materials display high quantum efficiency (QE), however, their QE undergoes degradation faster than metal photocathodes even in the high vacuum conditions where they operate. The high reactivity of alkali-based surfaces points to surface reactions with residual gases as one of the most important factors for the degradation of QE. In order to advance the understanding on the degradation of the QE, we investigated the surface reactivity of common residual gas molecules (e.g., O 2 , CO 2 , CO, H 2 O, N 2 , and H 2 ) on one of the best-known alkali-based photocathode materials, cesium antimonide (Cs 3 Sb), using first-principles calculations based on density functional theory. Furthermore, the reaction sites, adsorption energy, and effect in the local electronic structure upon reaction of these molecules on (001), (110), and (111) surfaces of Cs 3 Sb were computed and analyzed. The adsorption energy of these molecules on Cs3Sb follows the trend of O 2 (-4.5 eV) > CO 2 (-1.9 eV) > H 2 O (-1.0 eV) > CO (-0.8 eV) > N 2 (-0.3 eV) ≈ H 2 (-0.2 eV), which agrees with experimental data on the effect of these gases on the degradation of QE. The interaction strength is determined by the charge transfer from the surfaces to the molecules. The adsorption and dissociation of O containing molecules modify the surface chemistry such as the composition, structure, charge distribution, surface dipole, and work function of Cs 3 Sb, resulting in the degradation of QE with exposure to O 2 , CO 2 , H 2 O, and CO.

  14. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie [Key Laboratory of Mesoscopic Chemistry, Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2007-05-16

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported.

  15. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    International Nuclear Information System (INIS)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie

    2007-01-01

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported

  16. Chemical analysis of reactive species and antimicrobial activity of/nwater treated by nanosecond pulsed DBD air plasma

    Czech Academy of Sciences Publication Activity Database

    Laurita, R.; Barbieri, D.; Gherardi, M.; Colombo, V.; Lukeš, Petr

    2015-01-01

    Roč. 3, č. 2 (2015), s. 53-61 ISSN 2212-8166 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : Dielectric barrier discharge * Plasma activated water * Reactive species * Peroxynitrite * Phenol degradation * Candida albicans * Staphylococcus aureus * Antimicrobial activity * Nosocomial infections Subject RIV: BL - Plasma and Gas Discharge Physics http://www.sciencedirect.com/science/article/pii/S2212816615300081

  17. Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation.

    Science.gov (United States)

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang

    2017-09-01

    Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Gang [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Sheng-Jun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Beijing General Municipal Engineering Design and Research Institute, Beijing 100082 (China); Ma, Jun, E-mail: majun@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Huang, Ting-Lin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); Liu, Zheng-Qian, E-mail: liuzhengqian@gmail.com [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao, Lei [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Su, Jun-Feng [State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Highlights: • ZVZ showed an obvious enhanced effect on DBP degradation in ozonation. • The recycling use of ZVZ resulted in the enhancement of DBP degradation. • The formed ZnO and reactive intermediates were responsible for the enhanced effect. • The enhanced effect on DBP degradation by ZVZ was also effective in actual waters. -- Abstract: Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O{sub 3}) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O{sub 3}/ZVZ process after 10 min reaction compared to the cumulative effect of O{sub 3} alone and O{sub 2}/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0 mg L{sup −1}. Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O{sub 3}, enhance the formation of superoxide radical by reducing O{sub 2} via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O{sub 3}/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  19. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  20. Role of litter turnover in soil quality in tropical degraded lands of Colombia.

    Science.gov (United States)

    León, Juan D; Osorio, Nelson W

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.

  1. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  2. Thermal degradation of glucosinolates in red cabbage

    NARCIS (Netherlands)

    Oerlemans, K.; Barrett, D.M.; Bosch Suades, C.; Verkerk, R.; Dekker, M.

    2006-01-01

    Thermal degradation of individual glucosinolates within the plant matrix was studied. Red cabbage samples were heated at different temperatures for various times. To rule out the influence of enzymatic breakdown and to focus entirely on the thermal degradation of glucosinolates, myrosinase was

  3. Degradation mechanisms in organic photovoltaic devices

    NARCIS (Netherlands)

    Grossiord, Nadia; Kroon, Jan M.; Andriessen, Ronn; Blom, Paul W. M.

    In the present review, the main degradation mechanisms occurring in the different layer stacking (i.e. photoactive layer, electrode, encapsulation film, interconnection) of polymeric organic solar cells and modules are discussed. Bulk and interfacial, as well as chemical and physical degradation

  4. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  5. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence ...

  6. Geodiversity and land degradation in Hungary

    Science.gov (United States)

    Őrsi, Anna

    2014-05-01

    Geodiversity represents a variety of natural values, but they are threatened by a series of anthropogenic activities and land degradation processes. Their effect depends on the intensity of the processes and the sensitivity of the area in question. As a consequence of land degradation processes not only biodiversity but also geodiversity can be damaged and deteriorated. The appearance of the natural landscape changes and natural processes may not have a decisive role in landscape development any more. Some of the damages are irreversible because fundamental changes happen in the landscape, or the processes having created the original forms are no longer in operation. Small scale land degradation processes may be reversible if nature is still capable of reproducing the original state. The most important land degradation processes are desertification and soil erosion. Mining, waste disposal, urbanisation and construction activities, agriculture, inaccurate forest and water management, tourism, unsuitable land use can also lead to severe land degradation problems. The objective of the paper is to show Hungarian examples to all land degradation processes that threaten geodiversity. The results will be shown on a series of maps showing land degradation processes endangering geodiversity in Hungary. A detailed analysis of smaller study sites will be provided to show the effects of certain land degradation processes on landform development and on the changes of geodiversity. This research is supported by the Hungarian Scientific Research Fund (OTKA), project Nr. 10875.

  7. A systems approach to restoring degraded drylands

    Science.gov (United States)

    Jeremy J. James; Roger L. Sheley; Todd Erickson; Kimberly S. Rollins; Michael H. Taylor; Kingsley W. Dixon

    2013-01-01

    Drylands support over 2 billion people and are major providers of critical ecosystem goods and services across the globe. Drylands, however, are one of the most susceptible biomes to degradation. International programmes widely recognize dryland restoration as key to combating global dryland degradation and ensuring future global sustainability. While the need to...

  8. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  9. Synaptic Synthesis, Dephosphorylation, and Degradation

    Science.gov (United States)

    La Montanara, Paolo; Rusconi, Laura; Locarno, Albina; Forti, Lia; Barbiero, Isabella; Tramarin, Marco; Chandola, Chetan; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2015-01-01

    Mutations in the X-linked CDKL5 (cyclin-dependent kinase-like 5) gene have been associated with several forms of neurodevelopmental disorders, including atypical Rett syndrome, autism spectrum disorders, and early infantile epileptic encephalopathy. Accordingly, loss of CDKL5 in mice results in autistic-like features and impaired neuronal communication. Although the biological functions of CDKL5 remain largely unknown, recent pieces of evidence suggest that CDKL5 is involved in neuronal plasticity. Herein, we show that, at all stages of development, neuronal depolarization induces a rapid increase in CDKL5 levels, mostly mediated by extrasomatic synthesis. In young neurons, this induction is prolonged, whereas in more mature neurons, NMDA receptor stimulation induces a protein phosphatase 1-dependent dephosphorylation of CDKL5 that is mandatory for its proteasome-dependent degradation. As a corollary, neuronal activity leads to a prolonged induction of CDKL5 levels in immature neurons but to a short lasting increase of the kinase in mature neurons. Recent results demonstrate that many genes associated with autism spectrum disorders are crucial components of the activity-dependent signaling networks regulating the composition, shape, and strength of the synapse. Thus, we speculate that CDKL5 deficiency disrupts activity-dependent signaling and the consequent synapse development, maturation, and refinement. PMID:25555910

  10. Degraded character recognition based on gradient pattern

    Science.gov (United States)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  11. Quantitative accelerated degradation testing: Practical approaches

    International Nuclear Information System (INIS)

    Mohammadian, S. Hossein; Ait-Kadi, Daoud; Routhier, Francois

    2010-01-01

    The concept of accelerated testing by tracking degradation of samples over test time needs to be developed for reliability estimation. This paper aims at proposing practical approaches to conduct accelerated degradation testing on new and available used samples. For this purpose, product failure is related to a suitable physical property. Then, its failure time is defined as the expected time in which its property reaches the critical level. Degradation model of field samples returned from service due to a degrading failure mode has been estimated based on the least square method, and available gap between manufacturer criterion and user's claim (to report a failure) has also been discussed. For a product under some stresses, a general formula has been proposed by the superposition principle in order to estimate its degradation for independent and dependent failure modes. If used samples are available, and acceleration factor of the related test is unknown, partial aging method has been presented to considerably shorten the test time.

  12. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Zhang, Liwen; Petersen, Elijah J.; Habteselassie, Mussie Y.; Mao, Liang; Huang, Qingguo

    2013-01-01

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14 C-labeled MWCNTs into 14 CO 2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14 C-labeled multiwall carbon nanotubes can be degraded to 14 CO 2 and other byproducts by a bacteria community under natural conditions

  13. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1

    International Nuclear Information System (INIS)

    Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P.

    2009-01-01

    The aim of this work is to evaluate textile dyes degradation by novel bacterial strain isolated from the waste disposal sites of local textile industries. Detailed taxonomic studies identified the organisms as Pseudomonas species and designated as strain Pseudomonas sp. SUK1. The isolate was able to decolorize sulfonated azo dye (Reactive Red 2) in a wide range (up to 5 g l -1 ), at temperature 30 deg. C, and pH range 6.2-7.5 in static condition. This isolate also showed decolorization of the media containing a mixture of dyes. Measurements of COD were done at regular intervals to have an idea of mineralization, showing 52% reduction in the COD within 24 h. Induction in the activity of lignin peroxidase and azoreductase was observed during decolorization of Reactive Red 2 in the batch culture, which represented their role in degradation. The biodegradation was monitored by UV-vis, IR spectroscopy, HPLC. The final product, 2-naphthol was characterized by GC-mass spectroscopy. The phytotoxicity study revealed the degradation of Reactive Red 2 into non-toxic product by Pseudomonas sp. SUK1

  14. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  15. Are mitochondrial reactive oxygen species required for autophagy?

    International Nuclear Information System (INIS)

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-01-01

    Highlights: → Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. → Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. → Autophagy was detectable in mitochondrial DNA deficient ρ 0 cells. → Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H 2 O 2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρ o HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  16. KSHV Rta promoter specification and viral reactivation

    Directory of Open Access Journals (Sweden)

    Jonathan eGuito

    2012-02-01

    Full Text Available Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent KSHV into the lytic infection cycle is called K-Rta. Rta is a transcriptional activator that specifies promoters by binding direct DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation.. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic CANT DNA repeats in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.

  17. Anaplasma phagocytophilum Dihydrolipoamide Dehydrogenase 1 Affects Host-Derived Immunopathology during Microbial Colonization

    Czech Academy of Sciences Publication Activity Database

    Chen, G.; Severo, M. S.; Sakhon, O. S.; Choy, A.; Herron, M. J.; Felsheim, R. F.; Wiryawan, H.; Liao, J.; Johns, J. L.; Munderloh, U. G.; Sutterwala, F. S.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2012-01-01

    Roč. 80, č. 9 (2012), s. 3194-3205 ISSN 0019-9567 Institutional support: RVO:60077344 Keywords : ricketsia * microbial colonization * immunopathology * inflammation * signaling pathways Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.074, year: 2012 http://iai. asm .org/content/80/9/3194

  18. Aposematism in Archips cerasivoranus not linked to the sequestration of host-derived cyanide.

    Science.gov (United States)

    Fitzgerald, T D; Stevens, M A; Miller, S; Jeffers, P

    2008-10-01

    This study addressed the question of how caterpillars of Archips cerasivoranus feeding upon Prunus virginiana cope with the cyanogenic compounds of their food. Analysis by ion chromatography showed that young and aged leaves of P. virginiana consumed by the caterpillars during spring have hydrogen cyanide potentials (HCN-ps) of 2,473 +/- 130 ppm and 1,058 +/- 98 ppm, respectively. Although less than 3% of the cyanide released as the caterpillars feed escapes into the atmosphere, the larva's bright-yellow aposematic coloration and conspicuous activity can not be attributed to the sequestration of cyanide. Only six of 25 samples of the caterpillars' defensive regurgitants collected from 12 field colonies contained cyanide (17.6 +/- 6.54 ppm), less than 5% of the quantity previously reported to occur in the regurgitant of the tent caterpillar M. americanum. Only seven of 13 caterpillars assayed had detectable quantities of cyanide in their bodies (3.9 +/- 0.9 ppm). The fecal pellets that encase the cocoon contained no cyanide, nor did the frass that litters the leaf shelters. The small quantities of cyanide that occur in the caterpillar compared to the HCN-p of ingested plant material appear attributable to paced bouts of feeding and the maintenance of a highly alkaline foregut that inhibits cyanogenesis.

  19. Development of polylactic acid-based materials through reactive modification

    Science.gov (United States)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  20. Reward disrupts reactivated human skill memory.

    Science.gov (United States)

    Dayan, Eran; Laor-Maayany, Rony; Censor, Nitzan

    2016-06-16

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing reactivated memories did not strengthen the memory, but rather led to disruption of the memory trace, breaking down the link between memory reactivation and subsequent memory strength. Statistical modeling further revealed a strong mediating role for memory reactivation in linking between memory encoding and subsequent memory strength only when the memory was replayed without reinforcement. We suggest that, rather than reinforcing the existing memory trace, reward creates a competing memory trace, impairing expression of the original reward-free memory. This mechanism sheds light on the processes underlying skill acquisition, having wide translational implications.

  1. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  2. Orifice microreactor for the production of an organic peroxide – non-reactive and reactive characterization

    NARCIS (Netherlands)

    Illg, T.; Hessel, V.; Löb, P.; Schouten, J.C.

    2012-01-01

    In this article, the transfer of a two-step, biphasic, and exothermic peroxide synthesis into a microreactor assisted process is discussed as well as the non-reactive and reactive characterization of the developed orifice microreactor. Residence time distribution measurements showed nearly ideal

  3. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium

    NARCIS (Netherlands)

    Pistoor, F. H.; Kapsenberg, M. L.; Bos, J. D.; Meinardi, M. M.; von Blomberg, M. E.; Scheper, R. J.

    1995-01-01

    Twenty Ni-reactive T-lymphocyte clones were obtained from eight different donors and analyzed for their ability to cross-react with other metals. All Ni-reactive T-lymphocyte clones were CD4+CD8- and recognized Ni in association with either HLA-DR or -DQ molecules. Based on the periodic table of the

  4. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Elijah J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pinto, Roger A. [Department of Chemical Engineering, University of Michigan, Ann Arbor (United States); Shi, Xiangyang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Qingguo, E-mail: qhuang@uga.edu [Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer nZVIs were synthesized using a layer-by-layer or poly(acrylic acid) stabilization approach. Black-Right-Pointing-Pointer These nZVIs were used to degrade TCE and PCB. Black-Right-Pointing-Pointer nZVI coatings impacted reactivity by altering pollutants/particle interactions. Black-Right-Pointing-Pointer Smaller nZVI particle size led to greater reactivity. - Abstract: Nano-scale zerovalent iron (nZVI) has been studied in recent years for environmental remediation applications such as the degradation of chlorinated organic contaminants. To overcome limitations related to the transport of nZVI, it is becoming common to add a polymer stabilizer to limit aggregation and enhance the particle reactivity. Another method investigated to enhance particle reactivity has been to limit particle size through novel synthesis techniques. However, the relative impacts of particle size and interactions of the chemicals with the coatings are not yet well understood. The purpose of this study was to investigate the mechanisms of particle size and polymer coating or polyelectrolyte multilayer (PEM) synthesis conditions on degradation of two common chlorinated contaminants: trichloroethylene (TCE) and polychlorinated biphenyls (PCBs). This was accomplished using two different synthesis techniques, a layer-by-layer approach at different pH values or iron reduction in the presence of varying concentrations of poly(acrylic acid). nZVI produced by both techniques yielded higher degradation rates than a traditional approach. The mechanistic investigation indicated that hydrophobicity and sorption to the multilayer impacts the availability of the hydrophobic compound to the nZVI and that particle size also had a large role with smaller particles having stronger dechlorination rates.

  5. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    Science.gov (United States)

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  6. Radiation enhaced reactivation of herpes simplex virus: effect of caffeine

    International Nuclear Information System (INIS)

    Hellman, K.B.; Lytle, C.D.; Bockstahler, L.E.

    1976-01-01

    Ultraviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since caffeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation

  7. Radiation degradation of alginate and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Mitomo, Hiroshi [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Alginate and chitosan were irradiated in solid or aqueous solution condition with Co{sup 60} gamma rays in the dose range of 20 to 500 kGy. Degradation was observed both in solid and solution conditions. The degradation in solution was remarkably greater than that in solid. For example, the molecular weight of alginate in 4%(w/v) solution decreased from 2 x 10{sup 5} for 0 kGy to 6 x 10{sup 3} for 50 kGy irradiation while the equivalent degradation by solid irradiation required 500 kGy. The activated species from irradiated water must be responsible for the degradation in solution. The degradation was also accompanied with the color change of alginate: the color became deep brown for highly degraded alginate. UV spectra showed a distinct absorption peak at 265 nm for colored alginates, increasing with dose. The fact that discoloration of colored alginate was caused on exposure to ozone suggests a formation of double bond in pyranose-ring by scission of glycosidic bond. Degradation behavior of chitosan in irradiation was almost the same as that of alginate. (author)

  8. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  10. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1991-01-01

    Fenton's reagent (H 2 O 2 and Fe ++ ) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO 2 . This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent

  11. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  12. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  13. ANTI-BIOFOULING BY DEGRADATION OF POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Chun-feng Ma; Hong-jun Yang; Guang-zhao Zhang

    2012-01-01

    Copolymers of methyl methacrylate (MMA) and acrylate terminated poly(ethylene oxide-co-ethylene carbonate)(PEOC) macromonomer (PEOCA) were synthesized,and the degradation of the polymers was investigated by use of quartz crystal microbalance with dissipation (QCM-D).It is shown that the polymeric surface exhibits degradation in seawater depending on the content of the side chains.Field tests in seawater show that the surface constructed by the copolymer can effectively inhibit marine biofouling because it can be self-renewed due to degradation of the copolymer.

  14. Radiation damage calculations for the LANSCE degrader

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Sommer, W.F.; Dudziak, D.J.; Wechsler, M.S.; Barnett, M.H.; Corzine, R.K.

    1998-01-01

    The A-6 water degrader at the Los Alamos Neutron Science Center (LANSCE) linear proton accelerator has an outer shell of Inconel 718. The degrader was irradiated by 800-MeV protons during 1988--1993 to an exposure of 5.3 ampere-hours (A h). As described in Ref. 1, material from the Inconel is currently being cut into specimens for microhardness, three-point bending, ball punch, microscopy, and corrosion tests. This paper is devoted to calculations of radiation damage, particularly displacement and He production, sustained by the degrader Inconel

  15. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  16. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland.

    Science.gov (United States)

    Chen, Meilian; Jaffé, Rudolf

    2014-09-15

    Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation

  17. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  18. Latent Virus Reactivation: From Space to Earth

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In

  19. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  20. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)