WorldWideScience

Sample records for degradation pathway electronic

  1. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  2. BACE is degraded via the lysosomal pathway.

    Science.gov (United States)

    Koh, Young Ho; von Arnim, Christine A F; Hyman, Bradley T; Tanzi, Rudolph E; Tesco, Giuseppina

    2005-09-16

    Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.

  3. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway

    Directory of Open Access Journals (Sweden)

    Gili Ben-Nissan

    2014-09-01

    Full Text Available For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.

  4. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  5. Vitamin C degradation products and pathways in the human lens.

    Science.gov (United States)

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  6. Protein degradation pathways in Parkinson's disease: curse or blessing.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2012-08-01

    Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.

  7. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  8. Biominerlization and possible endosulfan degradation pathway adapted by Aspergillus niger.

    Science.gov (United States)

    Bhalerao, Tejomyee S

    2013-11-28

    Endosulfan is a chlorinated pesticide; its persistence in the environment and toxic effects on biota are demanding its removal. This study aims at improving the tolerance of the previously isolated fungus Aspergillus niger (A. niger) ARIFCC 1053 to endosulfan. Released chloride, dehalogenase activity, and released proteins were estimated along with analysis of endosulfan degradation and pathway identification. The culture could tolerate 1,000 mg/ml of technical grade endosulfan. Complete disappearance of endosulfan was seen after 168 h of incubation. The degradation study could easily be correlated with increase in released chlorides, dehalogenase activity and protein released. Comparative infrared spectral analysis suggested that the molecule of endosulfan was degraded efficiently by A. niger ARIFCC 1053. Obtained mass ion values by GC-MS suggested a hypothetical pathway during endosulfan degradation by A. niger ARIFCC 1053. All these results provide a basis for the development of bioremediation strategies to remediate the pollutant under study in the environment.

  9. New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger

    Science.gov (United States)

    Elzainy, T. A.; Hassan, M. M.; Allam, A. M.

    1973-01-01

    A new nonphosphorylative pathway for gluconate degradation was found in extracts of a strain of Aspergillus niger. The findings indicate that gluconate is dehydrated into 2-keto-3-deoxy-gluconate (KDG), which then is cleaved into glyceraldehyde and pyruvate. 6-Phosphogluconate was not degraded under the same conditions. In addition, KDG was formed from glyceraldehyde and pyruvate. Very weak activity was obtained when glyceraldehyde 3-phosphate replaced glyceraldehyde in this reaction. PMID:4698214

  10. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.

    OpenAIRE

    Harker, A R; Kim, Y

    1990-01-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent p...

  11. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    Science.gov (United States)

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Degradation of Nicotine in Chlorinated Water: Pathways and ...

    Science.gov (United States)

    Report The objective of the study is to illustrate how drinking water would affect alkaloid pesticides, and to address the issue by (a) investigating the fate of nicotine in chlorinated drinking water and deionized water, (b) determining the reaction rate and pathway of the reaction between nicotine and aqueous chlorine, (c) identifying nicotine’s degradation products, and (d) providing data that can be used to assess the potential threat from nicotine in drinking water.

  13. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  14. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo

    DEFF Research Database (Denmark)

    Wagenaar-Miller, Rebecca A; Engelholm, Lars H; Gavard, Julie

    2007-01-01

    Collagen degradation is essential for cell migration, proliferation, and differentiation. Two key turnover pathways have been described for collagen: intracellular cathepsin-mediated degradation and pericellular collagenase-mediated degradation. However, the functional relationship between these ...

  15. E1AF degradation by a ubiquitin-proteasome pathway

    International Nuclear Information System (INIS)

    Takahashi, Akiko; Higashino, Fumihiro; Aoyagi, Mariko; Yoshida, Koichi; Itoh, Miyuki; Kobayashi, Masanobu; Totsuka, Yasunori; Kohgo, Takao; Shindoh, Masanobu

    2005-01-01

    E1AF is a member of the ETS family of transcription factors. In mammary tumors, overexpression of E1AF is associated with tumorigenesis, but E1AF protein has hardly been detected and its degradation mechanism is not yet clear. Here we show that E1AF protein is stabilized by treatment with the 26S protease inhibitor MG132. We found that E1AF was modified by ubiquitin through the C-terminal region and ubiquitinated E1AF aggregated in nuclear dots, and that the inhibition of proteasome-activated transcription from E1AF target promoters. These results suggest that E1AF is degraded via the ubiquitin-proteasome pathway, which has some effect on E1AF function

  16. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  17. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    Science.gov (United States)

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety

  18. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  19. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  20. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    Science.gov (United States)

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  2. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    Science.gov (United States)

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  3. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    Science.gov (United States)

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain.

  4. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    International Nuclear Information System (INIS)

    Khan, M. Hammad; Bae, Hyokwan; Jung, Jin-Young

    2010-01-01

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of ∼40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  5. Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways.

    Science.gov (United States)

    Nie, Er; Yang, Mo; Wang, Dong; Yang, Xiaoying; Luo, Xingzhang; Zheng, Zheng

    2014-10-01

    Diclofenac (DCF) is a widely used anti-inflammatory drug found in various water bodies, posing threats to human health. In this research, the effects of ultrasonic irradiation at 585kHz on the degradation of DCF were studied under the air, oxygen, argon, and nitrogen saturated conditions. First, the dechlorination efficiencies under the air, oxygen, argon, and nitrogen saturated conditions were calculated to be 67%, 60%, 53% and 59%. Second, there was full mineralization of nitrogen during DCF degradation under the air, oxygen, and argon saturated conditions, but no mineralization of nitrogen under the nitrogen-saturated condition. Different from nitrogen, only partial mineralization of carbon occurred under the four gas-saturated conditions. Third, OH scavengers were added to derive the rate constants in the three reaction zones: cavitation bubble, supercritical interface, and bulk solution. Comparison of the constants indicated that DCF degradation was not limited to the bulk solution as conventionally assumed. Oxidation in the supercritical interface played a dominant role under the air and oxygen saturated conditions, while OH reactions in the cavitation bubble and/or bulk solution were dominant under the nitrogen and argon saturated conditions. After the addition of H2O2, reactions in the cavitation bubble and bulk solution kept their dominant roles under the nitrogen and argon saturated conditions, while reaction in the supercritical interface decreased under the air and oxygen saturated conditions. Finally, LC-MS analysis was used to derive the by-products and propose the main pathways of DCF degradation by ultrasonic irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon

    2013-01-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 Χ 100 mm, 3.5 μm), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency

  7. Fenton degradation of Cartap hydrochloride: identification of the main intermediates and the degradation pathway.

    Science.gov (United States)

    Tian, Kaixun; Ming, Cuixiang; Dai, Youzhi; Honore Ake, Kouassi Marius

    2015-01-01

    The advanced oxidation of Cartap hydrochloride (Cartap) promoted by the Fenton system in an aqueous medium was investigated. Based on total organic carbon, chemical oxygen demand and high-performance liquid chromatography, the oxidation of Cartap is quite efficient by the Fenton system. Its long chain is easily destroyed, but the reaction does not proceed to complete mineralization. Ion chromatography detection indicated the formation of acetic acid, propionic acid, formic acid, nitrous acid and sulfuric acid in the reaction mixtures. Further evidence of nitrogen monoxide and sulfur dioxide formation was obtained by using a flue gas analyzer. Monitoring by gas chromatograph-mass spectrometer demonstrated the formation of oxalic acid, ethanol, carbon dioxide, and L-alanine ethylamide. Based on these experimental results, plausible degradation pathways for Cartap mineralization in an aqueous medium by the Fenton system are proposed.

  8. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ......Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase......-mediated cartilage degradation....

  9. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.

    Science.gov (United States)

    Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang

    2018-05-17

    Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  11. Electron transfer pathways in microbial oxygen biocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano, E-mail: stefano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Tsujimura, Seiya, E-mail: seiya@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Kano, Kenji, E-mail: kkano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan)

    2010-01-01

    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O{sub 2} reduction by heme compounds. Here we showed that 1 muM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O{sub 2} reduction to H{sub 2}O{sub 2} with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  12. RNAi screening for characterisation of ER-associated degradation pathways in mammalian cells

    DEFF Research Database (Denmark)

    Månsson, Mats David Joakim

    in a process termed ER-associated degradation (ERAD). This mechanism proceeds through four steps involving recognition, dislocation, ubiquitination and proteasomal degradation. This report describes a high-throughput screening method for identification of hitherto unknown pathways for degradation. We present...... fluorescence-based RNAi screens in mammalian cells on TCR-α-GFP and HANSκLC, for identification of ERAD pathways. By validating the obtained screening hits we concluded that UBE2J2 is involved in TCR-α-GFP degradation, possibly by ubiquitination of C-terminal serine residues in TCR-α-GFP. Additionally, we also...

  13. Degradation behaviour of fiber reinforced plastic under electron beam irradiation

    International Nuclear Information System (INIS)

    Sonoda, Katsumi; Yamamoto, Yasushi; Hashimoto, Osamu

    1989-01-01

    Various mechanical properties of four kinds of glass fiber-reinforced plastics irradiated with electron beams were examined at three temperatures; room temperature, 123 K and 77 K. Dynamic viscoelastic properties were measured, and fractography by means of scanning electron microscopy was observed in order to clarify degradation behaviour. A considerable decrease in interlaminar shear strength (ILSS) at room temperature was observed above 60 MGy. On the other hand, the three-point bending strength at 77 K and the ILSS at 123 K decreased with increasing irradiation. Fractography reveals that the degradation of the interface layer between matrix resin and fiber plays an important role in the strength reduction at 123 K and 77 K. These findings suggest that the interface between matrix resin and fiber loses its bondability at 123 K arid 77 K after electron beam irradiation. (author)

  14. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02.

    Science.gov (United States)

    Fu, Gui-Ming; Chen, Yan; Li, Ru-Yi; Yuan, Xiao-Qiang; Liu, Cheng-Mei; Li, Bin; Wan, Yin

    2017-09-14

    Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.

  15. Modeling position-specific isotope fractionation of organic micropollutants degradation via different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    : dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model successfully reproduces the multi-element isotope data, and precisely captures the dual element isotope trends, characterizing the different degradation pathways. Besides illustrating the model capability of mechanistic evaluation...

  16. Degradation of carrageenan by low energy electron accelerator

    International Nuclear Information System (INIS)

    Relleve, L.; Aranilla, C.; Abad, L.; Dela Rosa, A.; Nagasawa, Naotsugu; Yagi, Toshiaki; Kume, Tamikazu; Yoshii, Fumio

    2004-01-01

    Degradation of κ-carrageenan using vessel-type low energy electron accelerator was investigated. Carrageenan with different molecular weights were obtained from irradiation of high molecular weight (HMW) and low molecular weight (LMW) κ-carrageenan. Other results presented were obtained from degradation studies of carrageenan by gamma rays. The decrease in molecular weight was accompanied by partial desulfation. From comparison of radiation degradation yield (Gd), it was found that the susceptibility to radiation of the three types of carrageenans in aqueous/gel forms follows the order of λ->ι->>κ- and could have been influenced by their conformational state. κ-carrageenan with molecular weight of ca. 10,000 showed strong growth promotion effect for potato in tissue culture. (author)

  17. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    Science.gov (United States)

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  18. Reliability and corrosion induced degradation of electronic system

    International Nuclear Information System (INIS)

    Tapas, V.K.; Varde, P.V.

    2014-01-01

    This paper describe the corrosion induced degradation of electronic system failures due to environmental conditions such as humidity, temperature, ionic or organic contaminants, residuals; etc. which can accelerates as electrochemical reaction and causes corrosion of electronic components, Corrosive gases and water vapours from humid condition come into contact with the base metal results in buildup of various chemical reaction products. Ionic contamination responsible for electrochemical reaction, forms soluble complexes with metals, it can degrade the protective oxide film that forms on the positively biased metallization and/or lead to change in the local pH. Deterioration of metal components or electronic circuitry due to electrochemical migration needs to be controlled in order to reduce the corrosion. With explosive increase in demand and miniaturization in electronic system resulted in smaller components, closer spacing and thinner metallic path, it is expected that the corrosion and deterioration of electronic components may become cause or concern. This paper summarises the current understanding of chemistry behind possible causes of corrosion of electronic devices and its failure mechanism. (author)

  19. 3'-5' RNA degradation pathways in human cells

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon

    RNA synthesis and degradation are key steps in the regulation of gene expression in all living organisms. During the course of his PhD studies, Michal Lubas centred his research on the nuclear and cytoplasmic RNA turnover of both noncoding and coding RNAs in human cells. His proteomic studies...... revealed the interaction network of the main 3'-5' RNA degradation machinery – the RNA exosome complex. One of the key findings was the identification and characterisation of the Nuclear Exosome Targeting (NEXT) complex, important for nuclear functions of the exosome. Michal Lubas also studied the role...

  20. Degradation of vitamin C by low-energy electrons

    Science.gov (United States)

    Abdoul-Carime, Hassan; Illenberger, Eugen

    2004-06-01

    We report on the degradation of gas phase vitamin C (ascorbic acid, AA) induced by low-energy electrons. In the energy range of (0-12) eV, different negatively charged fragments, attributed to the dehydro-ascorbic acid anion ((AA-H) -), OH -, O - and H -, are observed. The yield functions indicate that these ions are formed via dissociative electron attachment, DEA. While the formation of (AA-H) - is exclusively observed at sub-excitation energies (<1.5 eV), the other fragments arise from resonance features at higher energies. Possible implications of these observations for radiation damage and food treatment by high energy radiation are considered.

  1. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor

    International Nuclear Information System (INIS)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-01-01

    Highlights: • A novel dual-tank photoelectrochemical catalytic reactor was designed. • Malachite green degraded in bipolar double-effect mode. • Salt bridge replaced by a cation exchange membrane in the reactor. • Degradation pathways of malachite green in the cathode and anode tanks were similar. -- Abstract: A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO 2 /Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions

  2. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng, E-mail: jchen@zjut.edu.cn

    2016-03-05

    Highlights: • A novel efficient DMS-degrading bacterium Alcaligenes sp. SY1 was identified. • A RSM was applied to optimize incubation condition of Alcaligenes sp. SY1. • SIP was applied as C{sup 13} labelled DMS to trace intermediates during DMS degradation. • Kinetics of DMS degradation via batch experiment was revealed. • Carbon and sulfur balance were analyzed during DMS degradation process. - Abstract: Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03 °C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography–mass spectrometry (GC–MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane–Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h{sup −1} and 0.63 gs gx{sup −1} h{sup −1}. A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.

  3. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-05-01

    Full Text Available D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100% D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  4. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  5. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  6. Reaction pathway of the degradation of the p-hydroxybenzoic acid by sulfate radical generated by ionizing radiations

    International Nuclear Information System (INIS)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2015-01-01

    The degradation of p-hydroxybenzoic acid (HBA) in aqueous solutions by ionizing radiation was studied. The phenolic pollutant was easily removed by the electron beam irradiation, as more than 80% of the initial 100 µM introduced was degraded for a dose of 600 Gy. It was shown that the addition of persulfate, producing the sulfate radical as additional reactive species, induced a change in the reaction pathway. LC–MS analyses were performed in order to identify the different by-products formed. In the absence of persulfate, the main by-product formed was 3,4-dihydroxybenzoic acid, while in presence of persulfate, 1,4-benzoquinone was detected and the hydroxylated by-products were not present. A reaction pathway of HBA degradation by hydroxyl and sulfate radicals was proposed from the identification of the chemical structure of the different by-products detected. The influences of pH and dissolved oxygen were also studied. A high decline of HBA degradation was observed at pH 11 compared to pH 4.5, this decrease was minimized in the presence of persulfate. The dissolved oxygen concentration was found to be a limiting parameter of HBA degradation, however an excess of dissolved oxygen in solution did not improve the degradation to a large extent. - Highlights: • p-Hydroxybenzoic acid (HBA) is easily removed by e-beam irradiation. • The sulfate radicals formed from persulfate induce loss of the benzoic acid skeleton. • The dissolved oxygen concentration is a limiting parameter of the HBA degradation. • The effect of pH is minimized in presence of persulfate

  7. Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway.

    Science.gov (United States)

    Zhang, Chao; Zhou, Minghua; Ren, Gengbo; Yu, Xinmin; Ma, Liang; Yang, Jie; Yu, Fangke

    2015-03-01

    Modified iron-carbon with polytetrafluoroethylene (PTFE) was firstly investigated as heterogeneous electro-Fenton (EF) catalyst for 2,4-dichlorophenol (2,4-DCP) degradation in near neutral pH condition. The catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the effects of some important operating parameters such as current intensity and pH on the 2,4-DCP degradation were investigated. After the catalyst modification with 20% PTFE, the degradation performance maintained well with much lower iron leaching, and at current intensity 100 mA, initial pH 6.7, catalyst loading 6 g/L, the degradation efficiency of 2,4-DCP could exceed 95% within 120 min treatment. Two-stage pseudo first-order kinetics of 2,4-DCP degradation was observed, including a slow anodic oxidation stage (first-stage) and much faster heterogeneous EF oxidation (second-stage), in which the automatic drop of pH in the first-stage initiated the Fe(2+) release from micro-electrolysis and thus benefited to the subsequent EF reaction. Aromatic intermediates such as 3,5-dichlorocatechol, 4,6-dichlororesorcinol and 2-chlorohydroquinone were detected by GC-MS. Oxalic acid, acetic acid, formic acid and Cl(-) were quantified by ion chromatograph. Based on these analysis as well as the detection of H₂O₂ and OH, a possible mechanism and degradation pathway for 2,4-DCP were proposed. This work demonstrated that such a heterogeneous EF using cheap modified Fe-C catalyst was promising for organic wastewater treatment in initial neutral pH condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  9. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways.

    Science.gov (United States)

    Kamenz, Julia; Mihaljev, Tamara; Kubis, Armin; Legewie, Stefan; Hauf, Silke

    2015-11-05

    The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Kinetics and Novel Degradation Pathway of Permethrin in Acinetobacter baumannii ZH-14

    Directory of Open Access Journals (Sweden)

    Hui Zhan

    2018-02-01

    Full Text Available Persistent use of permethrin has resulted in its ubiquitous presence as a contaminant in surface streams and soils, yet little is known about the kinetics and metabolic behaviors of this pesticide. In this study, a novel bacterial strain Acinetobacter baumannii ZH-14 utilizing permethrin via partial hydrolysis pathways was isolated from sewage sludge. Response surface methodology based on Box-Behnken design of cultural conditions was used for optimization resulting in 100% degradation of permethrin (50 mg·L−1 within 72 h. Strain ZH-14 degraded permethrin up to a concentration of 800 mg·L−1. Biodegradation kinetics analysis indicated that permethrin degradation by this strain was concentration dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.0454 h−1, 4.7912 mg·L−1, and 367.2165 mg·L−1, respectively. High-performance liquid chromatography and gas chromatography-mass spectrometry identified 3-phenoxybenzenemethanol and 3-phenoxybenzaldehyde as the major intermediate metabolites of the permethrin degradation pathway. Bioaugmentation of permethrin-contaminated soils with strain ZH-14 significantly enhanced degradation, and over 85% of permethrin was degraded within 9 days with the degradation process following the first-order kinetic model. In addition to degradation of permethrin, strain ZH-14 was capable of degrading a large range of synthetic pyrethroids such as deltamethrin, bifenthrin, fenpropathrin, cyhalothrin, and beta-cypermethrin which are also widely used pesticides with environmental contamination problems, suggesting the promising potentials of A. baumannii ZH-14 in bioremediation of pyrethroid-contaminated terrestrial and aquatic environments.

  11. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons

    International Nuclear Information System (INIS)

    Flores de Jesus, I.

    2003-01-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  12. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    Science.gov (United States)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  14. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.......Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces......, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1...

  15. A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves.

    Science.gov (United States)

    Meng, Xiang Jing; Lu, Li Li; Gu, Guo Feng; Xiao, Min

    2010-09-01

    An efficient nicotine-degrading fungus was isolated from tobacco leaves and identified as Aspergillus oryzae 112822 based on morphological characteristics and sequence analysis of 18S rDNA, 5.8S rDNA and the internal transcribed spacer (5.8S-ITS region). When the strain was cultured in a medium with tobacco leaf extract for 40 h, the maximum amount of cell growth was 3.6 g l(-1) and nicotine degradation was 2.19 g l(-1). The intermediates of nicotine degradation by resting cells were isolated by preparative TLC or semi-preparative HPLC, and identified by TLC, MS, NMR, Fourier-transform (FT)-IR and GC-MS analysis. The pathway for nicotine degradation in A. oryzae 112822 was proposed to be from nicotine to 2,3-dihydroxypyridine through the intermediates nornicotine, myosmine, N-methylnicotinamide and 2-hydroxy-N-methylnicotinamide. The ring of 2,3-dihydroxypyridine was opened between the 2- and 3-hydroxy positions to yield succinic acid. N-methylnicotinamide and 2,3-dihydroxypyridine were satisfactorily verified as metabolites of nicotine degradation. This is the first elucidation of a pathway for nicotine degradation in fungi. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  16. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    Science.gov (United States)

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  17. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  18. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  19. Microsphere preparation using highly branched dextran degraded by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Min Ho; Yoo, Sun Kyun [Joongbu Univ., Geumsan (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    Dextrans as noble alternative consist predominantly of linear a-1,6 glucose linkages with some degree of branching via 1,2-, 1,3-, or 1,4- linkage. Dextrans have been investigated as potential macromolecular carriers for delivery of drugs and proteins, primarily to increase the longevity of therapeutic agents in the delivery of drugs and proteins, primarily to increase the longevity of therapeutic agents in the circulation. In most previous researches, linear type of dextrans with molecular weight of new type of drug delivery agent. Since 1950, the clinical dextran has been manufactured by acid hydrolysis, of which processes are multi-steps and time-consumed. Therefore, the objective of this research is evaluate the microsphere synthesised by highly branched dextran degraded by a electron beam radiation. Linear type of dextran was purchased from Sigma company. Branch type of dextran was produced and purified in our lab. The branch degree of dextran was evaluated using dextranase and analyzed by TLC. The air-dry dextran and two solution dextran was irradiated at room temperature using a electrostatic beam. The electron beam energy applied was 1.0 to 2.5 MeV. Dose was 70 kGy. The molecular average weight if 11,215,000 of linear dextran and 7,413,000 was degraded to 213,000 and 112,000, respectively. Branched dextran applied by a beam still retained its branched structure. The size of microsphere was dependant of the amount of PPG added to make water to water emulsion. Swelling of microsphere of branched dextran was higher than of linear dextran.

  20. Microsphere preparation using highly branched dextran degraded by electron beam

    International Nuclear Information System (INIS)

    Oh, Min Ho; Yoo, Sun Kyun; Kang, Hyun Suk; Lee, Byung Cheol

    2011-01-01

    Dextrans as noble alternative consist predominantly of linear a-1,6 glucose linkages with some degree of branching via 1,2-, 1,3-, or 1,4- linkage. Dextrans have been investigated as potential macromolecular carriers for delivery of drugs and proteins, primarily to increase the longevity of therapeutic agents in the delivery of drugs and proteins, primarily to increase the longevity of therapeutic agents in the circulation. In most previous researches, linear type of dextrans with molecular weight of new type of drug delivery agent. Since 1950, the clinical dextran has been manufactured by acid hydrolysis, of which processes are multi-steps and time-consumed. Therefore, the objective of this research is evaluate the microsphere synthesised by highly branched dextran degraded by a electron beam radiation. Linear type of dextran was purchased from Sigma company. Branch type of dextran was produced and purified in our lab. The branch degree of dextran was evaluated using dextranase and analyzed by TLC. The air-dry dextran and two solution dextran was irradiated at room temperature using a electrostatic beam. The electron beam energy applied was 1.0 to 2.5 MeV. Dose was 70 kGy. The molecular average weight if 11,215,000 of linear dextran and 7,413,000 was degraded to 213,000 and 112,000, respectively. Branched dextran applied by a beam still retained its branched structure. The size of microsphere was dependant of the amount of PPG added to make water to water emulsion. Swelling of microsphere of branched dextran was higher than of linear dextran

  1. Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies.

    Science.gov (United States)

    Ji, Xuan-Ru; Cheng, Kuan-Chung; Chen, Yu-Ru; Lin, Tzu-Yu; Cheung, Chun Hei Antonio; Wu, Chia-Lin; Chiang, Hsueh-Cheng

    2018-03-01

    The endosomal-lysosomal system (ELS), autophagy, and ubiquitin-proteasome system (UPS) are cellular degradation pathways that each play a critical role in the removal of misfolded proteins and the prevention of the accumulation of abnormal proteins. Recent studies on Alzheimer's disease (AD) pathogenesis have suggested that accumulation of aggregated β-amyloid (Aβ) peptides in the AD brain results from a dysfunction in these cellular clearance systems. However, the specific roles of these pathways in the removal of Aβ peptides and the pathogenesis underlying AD are unclear. Our in vitro and in vivo genetic approaches revealed that ELS mainly removed monomeric β-amyloid42 (Aβ42), while autophagy and UPS clear oligomeric Aβ42. Although overproduction of phosphatidylinositol 4-phosphate-5 increased Aβ42 clearance, it reduced the life span of Aβ42 transgenic flies. Our behavioral studies further demonstrated impaired autophagy and UPS-enhanced Aβ42-induced learning and memory deficits, but there was no effect on Aβ42-induced reduction in life span. Results from genetic fluorescence imaging showed that these pathways were damaged in the following order: UPS, autophagy, and finally ELS. The results of our study demonstrate that different degradation pathways play distinct roles in the removal of Aβ42 aggregates and in disease progression. These findings also suggest that pharmacologic treatments that are designed to stimulate cellular degradation pathways in patients with AD should be used with caution.-Ji, X.-R., Cheng, K.-C., Chen, Y.-R., Lin, T.-Y., Cheung, C. H. A., Wu, C.-L., Chiang, H.-C. Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies.

  2. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yongjun [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)], E-mail: lclei@zju.edu.cn; Zhang Xingwang; Zhou Minghua; Zhang Yi [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  3. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  4. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed

  5. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    Science.gov (United States)

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  6. Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways

    Science.gov (United States)

    Delgado, M E; Dyck, L; Laussmann, M A; Rehm, M

    2014-01-01

    Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death. PMID:24457955

  7. Use of electron beam on aflatoxins degradation in coconut agar

    International Nuclear Information System (INIS)

    Rogovschi, Vladimir D.; Nunes, Thaise C.F.; Villavicencio, Anna L.C.H.; Aquino, Simone; Goncalez, Edlayne; Correa, Benedito

    2009-01-01

    The fungi Aspergillus flavus are capable of producing toxic metabolites, such as aflatoxin, that is one of the most important human carcinogens, according to the 'International Agency for Research on Cancer'. The aim of this study was to compare the effect of electron beam irradiation on degradation of aflatoxin B1 present in laboratorial residues with a dose of 0 kGy and 5.0 kGy. The fungi were cultivated in potato dextrose agar (PDA) for 7 days and transferred to a coconut agar medium, incubated at a temperature of 25 deg C for 14 days to produce the laboratorial wastes (coconut agar) containing aflatoxins. The samples were conditioned in petri dish for radiation treatment of contaminated material and processed in the Electron Accelerator with 0 kGy and 5.0 kGy. Aflatoxin B 1 was extracted with chloroform and separated on a thin layer chromatography plate (TLC) with chloroform: acetone (9:1). All the control and irradiated samples were analyzed in a Shimadzu Densitometer. The detection limit of this methodology is 0.1μg kg -1 . The results indicate that the irradiated samples had a reduction of 75.49 % in the analyzed dose. (author)

  8. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Mou

    Full Text Available Cyanobacterial harmful blooms (CyanoHABs that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  9. Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters.

    Science.gov (United States)

    Musmarra, Dino; Prisciandaro, Marina; Capocelli, Mauro; Karatza, Despina; Iovino, Pasquale; Canzano, Silvana; Lancia, Amedeo

    2016-03-01

    Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.77 kWh m(-3) at an initial concentration of 200 μg L(-1) and a relative inlet pressure pin=0.35 MPa. Five intermediates generated from different hydroxylation reactions were identified; the potential mechanisms of degradation were sketched and discussed. The reaction pathways recognized are in line with the relevant literature, both experimental and theoretical. By varying the pressure upstream the constriction, different degradation rates were observed. This effect was discussed according to a numerical simulation of the hydroxyl radical production identifying a clear correspondence between the maximum kinetic constant kOH and the maximum calculated OH production. Furthermore, in the investigated experimental conditions, the pH parameter was found not to affect the extent of degradation; this peculiar feature agrees with a recently published kinetic insight and has been explained in the light of the intermediates of the different reaction pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway

    International Nuclear Information System (INIS)

    Agner, Jeppe; Falck, Jacob; Lukas, Jiri; Bartek, Jiri

    2005-01-01

    When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression

  11. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  12. Degradation of clofibric acid in UV/chlorine disinfection process: kinetics, reactive species contribution and pathways.

    Science.gov (United States)

    Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu

    2018-02-01

    As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.

  13. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    Science.gov (United States)

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation

    International Nuclear Information System (INIS)

    Isenman, L.D.; Dice, J.F.

    1989-01-01

    We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes. We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [ 3 H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides

  15. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  16. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    Science.gov (United States)

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  17. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.

    Science.gov (United States)

    Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M

    2018-01-16

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.

  18. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis

    International Nuclear Information System (INIS)

    Lu, Chung-Shin; Chen, Chiing-Chang; Mai, Fu-Der; Li, Hua-Kuang

    2009-01-01

    The present study deals with the photocatalytic degradation of the alkanolamine, 2-dimethylamino-2-methyl-1-propanol (DMAMP), in the presence of TiO 2 particles and UV-A (λ = 365 nm) radiation. The obtained results show complete oxidation of DMAMP after 20 h, and a little over 90% of DMAMP was mineralization after 64-h of treatment. The effects of the solution pH, catalyst loading, and anions on the photocatalytic degradation of DMAMP were investigated, as well as the reaction intermediates that were formed during treatment. To the best of our knowledge, this is the first time that reports the degradation pathways of DMAMP. A number of intermediates were identified by GC/MS techniques during the treatment of DMAMP, following three tentative degradation routes. The first one is based on the oxidation of the primary alcohol group leading to the formation of corresponding aldehyde and carboxylic acid. The second route is based on the rupture of the N-C bond to form 2-methylpropanal and acetone. The last degradation route is based on the cyclization of the β-amino alcohol group to form the oxazolidine derivatives.

  19. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes.

    Science.gov (United States)

    Ismail, Heba M; Yamamoto, Kazuhiro; Vincent, Tonia L; Nagase, Hideaki; Troeberg, Linda; Saklatvala, Jeremy

    2015-07-01

    Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its

  20. Possibility of electron beam irradiation degradation of many pesticides in ginseng oral liquid

    International Nuclear Information System (INIS)

    Chen Qiyong; Liu Yang; Ge Hanguang; Wu Ruoxin

    2013-01-01

    This paper is to explore the technological feasibility in degradation of pesticides in ginseng oral liquid under the irradiation of electron beam. Sixteen residual concentration-restricted pesticides in ginseng oral liquid were experimented under the dose of 0 ∼ 15 kGy. Results showed that, when the dose of the irradiation of electron beam increased, the degradation rates of all the pesticides enhanced, and the electron beam radiation showed the most remarkable effect on the degradation of pesticides such as imidacloprid and fenpropathrinwith degradation rates of more than 90% and 50%, respectively. The degradation rates of fonofos, methidathion, diazinon, phosalone and carbaryl were all higher than 30%. No significant degradation was observed in the other 9 pesticides under the same condition. (authors)

  1. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients

    Directory of Open Access Journals (Sweden)

    Zhaobo Li

    2017-06-01

    Full Text Available Inhibition of the ATPase cycle of the HSP90 chaperone promotes ubiquitylation and proteasomal degradation of its client proteins, which include many oncogenic protein kinases. This provides the rationale for HSP90 inhibitors as cancer therapeutics. However, the mechanism by which HSP90 ATPase inhibition triggers ubiquitylation is not understood, and the E3 ubiquitin ligases involved are largely unknown. Using a siRNA screen, we have identified components of two independent degradation pathways for the HSP90 client kinase CRAF. The first requires CUL5, Elongin B, and Elongin C, while the second requires the E3 ligase HECTD3, which is also involved in the degradation of MASTL and LKB1. HECTD3 associates with HSP90 and CRAF in cells via its N-terminal DOC domain, which is mutationally disrupted in tumor cells with activated MAP kinase signaling. Our data implicate HECTD3 as a tumor suppressor modulating the activity of this important oncogenic signaling pathway.

  2. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  3. Decomposition of clofibric acid in aqueous media by advance oxidation techniques: kinetics study and degradation pathway

    International Nuclear Information System (INIS)

    Syed, M.; Khan, A.M.; Khan, R.A.

    2016-01-01

    This study investigates the decomposition of clofibric acid (CLF) by different advanced oxidation processes (AOPs), such as UV (254 nm), VUV (185 nm), UV / TiO/sub 2/ and VUV / TiO/sub 2/. The removal efficiencies of applied AOPs were compared in the presence and absence of dissolved oxygen. The removal efficiency of the studied AOPs towards degradation of CLF were found in the order of VUV / TiO/sub 2/ + O/sub 2/ > VUV/TiO/sub 2/ + N/sub 2/ > VUV alone > UV / TiO/sub 2/ + O/sub 2/ > UV / TiO/sub 2/ +N/sub 2/ > UV alone. The decomposition kinetics of CLF was found to follow pseudo-first order rate law. VUV / TiO2 process was found to be most cheap and effective one for decomposition of CLF as compared to other applied AOPs in terms of electrical energy per order. Degradation products resulting from the degradation processes were also investigated using UPLC-MS /MS, accordingly degradation pathway was proposed. (author)

  4. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang Wei; Fu Yibei; Bian Zhishang; He Meiying

    2002-01-01

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  5. Finding Solvable Units of Variables in Nonlinear ODEs of ECM Degradation Pathway Network

    Directory of Open Access Journals (Sweden)

    Shuji Kawasaki

    2017-01-01

    Full Text Available We consider ordinary differential equation (ODE model for a pathway network that arises in extracellular matrix (ECM degradation. For solving the ODEs, we propose applying the mass conservation law (MCL, together with a stoichiometry called doubling rule, to them. Then it leads to extracting new units of variables in the ODEs that can be solved explicitly, at least in principle. The simulation results for the ODE solutions show that the numerical solutions are indeed in good accord with theoretical solutions and satisfy the MALs.

  6. Finding Solvable Units of Variables in Nonlinear ODEs of ECM Degradation Pathway Network.

    Science.gov (United States)

    Kawasaki, Shuji; Minerva, Dhisa; Itano, Keiko; Suzuki, Takashi

    2017-01-01

    We consider ordinary differential equation (ODE) model for a pathway network that arises in extracellular matrix (ECM) degradation. For solving the ODEs, we propose applying the mass conservation law (MCL), together with a stoichiometry called doubling rule , to them. Then it leads to extracting new units of variables in the ODEs that can be solved explicitly, at least in principle. The simulation results for the ODE solutions show that the numerical solutions are indeed in good accord with theoretical solutions and satisfy the MALs.

  7. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    Directory of Open Access Journals (Sweden)

    ANANTHA N. SUBBA RAO

    2013-11-01

    Full Text Available The trypan blue (TB dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD, cyclic voltammetry (CV, Fourier transform- infrared spectroscopy (FT-IR, gas chromatography – mass spectrometry (GC-MS analysis were conducted to investigate the kinetics and degradation pathway of TB dye.

  8. ERManI (Endoplasmic Reticulum Class I α-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway.

    Science.gov (United States)

    Zhou, Tao; Frabutt, Dylan A; Moremen, Kelley W; Zheng, Yong-Hui

    2015-09-04

    Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. REDOX AND REDUCTION POTENTIALS AS PARAMETERS TO PREDICT THE DEGRADATION PATHWAY OF CHLORINATED BENZENES IN ANAEROBIC ENVIRONMENTS

    NARCIS (Netherlands)

    DOLFING, J; HARRISON, BK

    1993-01-01

    The anaerobic degradation pathway of hexachlorobenzene starts with a series of reductive dehalogenation steps. In the present paper it was evaluated whether the dehalogenation pathway observed in microbial ecosystems could be predicted by the redox potential and/or the reduction potential (the

  10. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    Science.gov (United States)

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared.

  11. The mechanisms and process of acephate degradation by hydroxyl radical and hydrated electron

    Directory of Open Access Journals (Sweden)

    Yuanyuan Huang

    2018-02-01

    Full Text Available The degradation process of acephate in aqueous solution with ·OH and eaq− produced by 60Co-γ irradiation and electron pulse radiolysis was studied in the present paper. In the aqueous solution, acephate reacted with eaq− and transformed to transient species which can absorb weakly in the wavelength range of 300–400 nm and decay very fast. According to the decay of hydrated electron, the reaction rate constant of eaq− and acephate is (3.51 ± 0.076 × 109 dm3·mol−1·s−1. The transient species produced in the reaction of ·OH and acephate do not distinctly absorb the light in the wavelength range of 300–700 nm, so the decay and kinetics of the transient species cannot determinedirectly. The competing reaction of KSCN oracephate with ·OH were studied to obtain the reaction rate constant of ·OH and acephate, which is (9.1 ± 0.11 × 108 dm3·mol−1·s−1. Although acetylamide and inorganic ions were determined in the products of the reaction of acephate with ·OH or eaq−, the concentration of inorganic ions in the products of the reaction of acephate with ·OH is higher than that in the product of the reaction of acephate with eaq−. Moreover, there were sulfide in the products of the reaction of acephatewith eaq−. The degradation pathways of acephate by ·OH and eaq− were also proposed based on the products from GC-MS.

  12. Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater.

    Directory of Open Access Journals (Sweden)

    Cynthia C Silva

    Full Text Available Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.

  13. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  14. Transfer of the high-GC cyclohexane carboxylate degradation pathway from Rhodopseudomonas palustris to Escherichia coli for production of biotin.

    Science.gov (United States)

    Bernstein, Jeffrey R; Bulter, Thomas; Liao, James C

    2008-01-01

    This work demonstrates the transfer of the five-gene cyclohexane carboxylate (CHC) degradation pathway from the high-GC alphaproteobacterium Rhodopseudomonas palustris to Escherichia coli, a gammaproteobacterium. The degradation product of this pathway is pimeloyl-CoA, a key metabolite in E. coli's biotin biosynthetic pathway. This pathway is useful for biotin overproduction in E. coli; however, the expression of GC-rich genes is troublesome in this host. When the native R. palustris CHC degradation pathway is transferred to a DeltabioH pimeloyl-CoA auxotroph of E. coli, it is unable to complement growth in the presence of CHC. To overcome this expression problem we redesigned the operon with decreased GC content and removed stretches of high-GC intergenic DNA which comprise the 5' untranslated region of each gene, replacing these features with shorter low-GC sequences. We show this synthetic construct enables growth of the DeltabioH strain in the presence of CHC. When the synthetic degradation pathway is overexpressed in conjunction with the downstream genes for biotin biosynthesis, we measured significant accumulation of biotin in the growth medium, showing that the pathway transfer is successfully integrated with the host metabolism.

  15. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  16. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.

  17. Degradation of ampicillin in pig manure slurry and an aqueous ampicillin solution using electron beam irradiation

    Science.gov (United States)

    Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Min Hee; Lee, Kang Soo; Hwang, Seon Ah; Cho, Jae Young

    2009-07-01

    This study was carried out to evaluate the efficiency of degradation of antibiotic ampicillin in pig manure slurry and an aqueous ampicillin solution with the use of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of ampicillin was close to 95% at an absorbed dose of 10 kGy. The degradation of ampicillin followed a "first-order" reaction rate with respect to absorbed dose. The results demonstrate that the electron beam irradiation technology is an effective means to remove antibiotics in manure and bodies of water.

  18. Degradation of ampicillin in pig manure slurry and an aqueous ampicillin solution using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Min Hee; Lee, Kang Soo; Hwang, Seon Ah; Cho, Jae Young

    2009-01-01

    This study was carried out to evaluate the efficiency of degradation of antibiotic ampicillin in pig manure slurry and an aqueous ampicillin solution with the use of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of ampicillin was close to 95% at an absorbed dose of 10 kGy. The degradation of ampicillin followed a 'first-order' reaction rate with respect to absorbed dose. The results demonstrate that the electron beam irradiation technology is an effective means to remove antibiotics in manure and bodies of water.

  19. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  20. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  1. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    Science.gov (United States)

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    International Nuclear Information System (INIS)

    Abramović, Biljana; Kler, Sanja; Šojić, Daniela; Laušević, Mila; Radović, Tanja; Vione, Davide

    2011-01-01

    Highlights: ► Kinetics and efficiency of photocatalytic degradation of the β 1 -blocker metoprolol tartrate (MET). ► Two TiO 2 specimens employed. ► Faster degradation of MET, but slower mineralization, obtained with the TiO 2 specimen having lower surface area. ► Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used β 1 -blocker, in TiO 2 suspensions of Wackherr's “Oxyde de titane standard” and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01–0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO 2 Wackherr induced a significantly faster MET degradation compared to TiO 2 Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (·OH), it was shown that the reaction with ·OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO 2 and H 2 O, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied in detail and a number of them were identified using LC–MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO 2 specimen.

  3. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO{sub 2}-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Abramovic, Biljana, E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Kler, Sanja, E-mail: sanja.kler@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Sojic, Daniela, E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Lausevic, Mila, E-mail: milal@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Radovic, Tanja, E-mail: tradovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Kinetics and efficiency of photocatalytic degradation of the {beta}{sub 1}-blocker metoprolol tartrate (MET). Black-Right-Pointing-Pointer Two TiO{sub 2} specimens employed. Black-Right-Pointing-Pointer Faster degradation of MET, but slower mineralization, obtained with the TiO{sub 2} specimen having lower surface area. Black-Right-Pointing-Pointer Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used {beta}{sub 1}-blocker, in TiO{sub 2} suspensions of Wackherr's 'Oxyde de titane standard' and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO{sub 2} Wackherr induced a significantly faster MET degradation compared to TiO{sub 2} Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals ({center_dot}OH), it was shown that the reaction with {center_dot}OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO{sub 2} and H{sub 2}O, while the nitrogen was predominantly present as NH{sub 4}{sup +}. Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO{sub 2} specimen.

  4. Theory of electron degradation and yields of initial molecular species produced by ionizing radiation

    International Nuclear Information System (INIS)

    Inokuti, M.; Dillon, M.A.; Kimura, M.

    1987-01-01

    Ionizing radiations generate in matter a large number of energetic electrons, which in turn collide with molecules in matter, produce ions and excited states, and thereby degrade in energy. The description of the consequences of many collision processes to the electrons and to matter is the goal of the electron degradation theory. They summarize the current understanding of this topic, which is important as a basis of radiation chemistry and biology. In addition, they present an initial report of their new work, namely, a generalization of the Spencer-Fano theory to time-dependent cases

  5. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    Science.gov (United States)

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  6. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    I Russel Lee

    Full Text Available Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase, URO2 (HIU hydrolase, URO3 (OHCU decarboxylase, DAL1 (allantoinase, DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein, and URE1 (urease. All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

  7. Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324▿

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-01-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

  8. Interspecies electron transfer in methanogenic propionate degrading consortia

    NARCIS (Netherlands)

    Bok, de F.A.M.; Plugge, C.M.; Stams, A.J.M.

    2004-01-01

    Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of this compound requires obligate syntrophic consortia of acetogenic proton- and bicarbonate reducing bacteria and methanogenic archaea. Although H-2 acts as an electron-carrier in

  9. Interspecies Electron Transfer during Propionate and Butyrate Degradation in Mesophilic, Granular Sludge

    OpenAIRE

    Schmidt, J. E.; Ahring, B. K.

    1995-01-01

    Granules from a mesophilic upflow anaerobic sludge blanket reactor were disintegrated, and bacteria utilizing only hydrogen or formate or both hydrogen and formate were added to investigate the role of interspecies electron transfer during degradation of propionate and butyrate. The data indicate that the major electron transfer occurred via interspecies hydrogen transfer, while interspecies formate transfer may not be essential for interspecies electron transfer in this system during degrada...

  10. An empirical model to describe performance degradation for warranty abuse detection in portable electronics

    International Nuclear Information System (INIS)

    Oh, Hyunseok; Choi, Seunghyuk; Kim, Keunsu; Youn, Byeng D.; Pecht, Michael

    2015-01-01

    Portable electronics makers have introduced liquid damage indicators (LDIs) into their products to detect warranty abuse caused by water damage. However, under certain conditions, these indicators can exhibit inconsistencies in detecting liquid damage. This study is motivated by the fact that the reliability of LDIs in portable electronics is suspected. In this paper, first, the scheme of life tests is devised for LDIs in conjunction with a robust color classification rule. Second, a degradation model is proposed by considering the two physical mechanisms—(1) phase change from vapor to water and (2) water transport in the porous paper—for LDIs. Finally, the degradation model is validated with additional tests using actual smartphone sets subjected to the thermal cycling of −15 °C to 25 °C and the relative humidity of 95%. By employing the innovative life testing scheme and the novel performance degradation model, it is expected that the performance of LDIs for a particular application can be assessed quickly and accurately. - Highlights: • Devise an efficient scheme of life testing for a warranty abuse detector in portable electronics. • Develop a performance degradation model for the warranty abuse detector used in portable electronics. • Validate the performance degradation model with life tests of actual smartphone sets. • Help make a decision on warranty service in portable electronics manufacturers

  11. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway.

    Science.gov (United States)

    Dissmeyer, Nico; Rivas, Susana; Graciet, Emmanuelle

    2018-05-01

    Contents Summary 929 I. conservation and diversity of N-end rule pathways 929 II. Defensive functions of the N-end rule pathway in plants 930 III. Proteases and degradation by the N-end rule pathway 930 IV. New proteomics approaches for the identification of N-end rule substrates 932 V. Concluding remarks 932 Acknowledgements 934 References 934 SUMMARY: The N-end rule relates the stability of a protein to the identity of its N-terminal residue and some of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation signals has expanded, leading to a diversity of N-end rule pathways. Although some of these newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries have highlighted roles of N-end rule-mediated protein degradation in plant defense against pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck remains the proteome-wide identification of N-end rule substrates due to the prerequisite for endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for substrate identification. We review these methods, their limitations and future developments. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation

    International Nuclear Information System (INIS)

    Song Weihua; Zheng Zheng; Rami, Abual-Suud; Zhou Tao; Hang Desheng

    2002-01-01

    The goal of this research was to study the degradation of nitrophenol solutions by high-energy electron beam irradiation. The results showed that the degradation processes obey an apparent first-order degradation. At the higher irradiation doses the pH of solutions decreased; however, the dissolved organic carbon of the solutions was essentially unchanged. To investigate the toxicity of the radiolytic products the oxygen uptake rate of activated sludge was determined. The toxicity of irradiated nitrophenol solutions decreased from the initial non-irradiated solutions

  13. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.

    Science.gov (United States)

    Kim, KyeongJin; Ryu, Dongryeol; Dongiovanni, Paola; Ozcan, Lale; Nayak, Shruti; Ueberheide, Beatrix; Valenti, Luca; Auwerx, Johan; Pajvani, Utpal B

    2017-12-01

    and in liver biopsies patients with NAFLD, compared with liver tissues from healthy control mice or patients without steatosis. Knockdown of KCTD17 with small hairpin RNA in primary hepatocytes increased PHLPP2 protein but not Phlpp2 mRNA, indicating that KCTD17 mediates PHLPP2 degradation. KCTD17 knockdown in obese mice prevented PHLPP2 degradation and decreased expression of lipogenic genes. In mouse models of obesity, we found that PHLPP2 degradation induced lipogenesis without affecting gluconeogenesis. KCTD17, which is up-regulated in liver tissues of obese mice and patients with NAFLD, binds to phosphorylated PHLPP2 to target it for ubiquitin-mediated degradation; this increases expression of genes that regulate lipogenesis to promote hepatic steatosis. Inhibitors of this pathway might be developed for treatment of patients with NAFLD. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Science.gov (United States)

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  15. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Directory of Open Access Journals (Sweden)

    Silvia Calo

    2017-03-01

    Full Text Available Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip and a Sad-3-like helicase (rnhA, as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  16. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  17. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  18. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  19. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  20. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    Science.gov (United States)

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  1. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    Science.gov (United States)

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  2. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Yan, Zhi-Ying [Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041 (China); Zhou, Jun; Wu, Xia-Yuan [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Wei, Ping [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Jia, Hong-Hua [College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816 (China); Bioenergy Research Institute, Nanjing TECH University, Nanjing 211816 (China); Zheng, Tao, E-mail: zhengtao@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Nengyuan Road, Guangzhou 510640 (China); Yong, Yang-Chun, E-mail: ycyong@ujs.edu.cn [Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-02-15

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L{sup −1} h{sup −1}) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H{sub 2}O{sub 2} to a maximum of 135.96 μmol L{sup −1} at the Fe@Fe{sub 2}O{sub 3(*)}/graphite felt composite cathode, which further reacted with leached Fe{sup 2+} to produce hydroxyl radicals. While 100 μmol L{sup −1} TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L{sup −1} h{sup −1}. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO{sub 2}. This study provides an energy saving and efficient approach for TPTC degradation.

  3. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation

    International Nuclear Information System (INIS)

    Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong; Yan, Zhi-Ying; Zhou, Jun; Wu, Xia-Yuan; Wei, Ping; Jia, Hong-Hua; Zheng, Tao; Yong, Yang-Chun

    2017-01-01

    Graphical abstract: Schematic diagram of the Bio-Electron-Fenton (BEF) process for TPTC degradation. - Highlights: • A Bio-Electro-Fenton process was performed for TPTC degradation. • TPTC removal efficiency achieved 78.32 ± 2.07% within 100 h. • The TPTC degradation rate (0.775 ± 0.021 μmol L"−"1 h"−"1) was much higher than previous reports. - Abstract: The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H_2O_2 to a maximum of 135.96 μmol L"−"1 at the Fe@Fe_2O_3_(_*_)/graphite felt composite cathode, which further reacted with leached Fe"2"+ to produce hydroxyl radicals. While 100 μmol L"−"1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32 ± 2.07%, with a rate of 0.775 ± 0.021 μmol L"−"1 h"−"1. This Bio-Electron-Fenton driving TPTC degradation might involve in Sn−C bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO_2. This study provides an energy saving and efficient approach for TPTC degradation.

  4. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Jin, Zhe; Han, Ya-Xin; Han, Xiao-Rui

    2013-01-01

    Osteosarcoma (OS) is a high-grade malignant bone tumor. Therefore, using both in vitro and in vivo assays, the effects of degraded iota-Carrageenan (ι-CGN) on a human osteosarcoma cell line, HOS, were examined. Degraded ι-CGN was observed to induce apoptosis and G(1) phase arrest in HOS cells. Moreover, degraded ι-CGN suppressed tumor growth in established xenograft tumor models. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors treated with native ι-CGN or PBS. In addition, the formation of intratumoral microvessels was inhibited following treatment with degraded ι-CGN. In Western blot assays, degraded ι-CGN was found to inhibit the Wnt/β-catenin signaling pathway. Overall, these studies demonstrate the antitumor activity of degraded ι-CGN toward the OS cell line, HOS. Moreover, valuable insight into the mechanisms mediated by degraded ι-CGN was obtained, potentially leading to the identification of novel treatments for OS. However, additional studies are needed to confirm these results in other cell types, particularly in human umbilical vein endothelial cells.

  5. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Kang, Liang; Hu, Jia; Weng, Yuxiong; Jia, Jie; Zhang, Yukun

    2017-01-01

    Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptional activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.

  6. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Liang [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hu, Jia [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Weng, Yuxiong [Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Jia, Jie [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zhang, Yukun, E-mail: zhangyukuncom@126.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2017-03-15

    Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptional activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.

  7. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    Directory of Open Access Journals (Sweden)

    Santanu Pailan

    2015-11-01

    Full Text Available An organophosphate (OP degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC, high performance liquid chromatography (HPLC, gas chromatography (GC and liquid chromatography mass spectrometry (LC-MS/MS provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP while the second proceeds through formation of 4-aminoparathion (4-APar, 4-aminophenol (4-AP and parabenzoquinone (PBQ. This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium.

  8. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    Science.gov (United States)

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  9. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle

    Science.gov (United States)

    Solomon, V.; Lecker, S. H.; Goldberg, A. L.

    1998-01-01

    In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts.

  10. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons

    International Nuclear Information System (INIS)

    Martinez M, I.

    1991-10-01

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO 2 that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  11. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  12. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  13. Porcine arterivirus activates the NF-κB pathway through IκB degradation

    International Nuclear Information System (INIS)

    Lee, Sang-Myeong; Kleiboeker, Steven B.

    2005-01-01

    Nuclear factor-kappaB (NF-κB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-κB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-κB activation was characterized by translocation of NF-κB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-κB-regulated gene expression. NF-κB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-κB activation. Degradation of IκB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα (IκBαDN) significantly suppressed NF-κB activation induced by PRRSV. However, IκBαDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-κB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-κB was activated by PRRSV infection. Moreover, NF-κB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-κB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV

  14. Enrichment of Bacteria From Eastern Mediterranean Sea Involved in Lignin Degradation via the Phenylacetyl-CoA Pathway

    Directory of Open Access Journals (Sweden)

    Hannah L. Woo

    2018-05-01

    Full Text Available The degradation of allochthonous terrestrial organic matter, such as recalcitrant lignin and hemicellulose from plants, occurs in the ocean. We hypothesize that bacteria instead of white-rot fungi, the model organisms of aerobic lignin degradation within terrestrial environments, are responsible for lignin degradation in the ocean due to the ocean’s oligotrophy and hypersalinity. Warm oxic seawater from the Eastern Mediterranean Sea was enriched on lignin in laboratory microcosms. Lignin mineralization rates by the lignin-adapted consortia improved after two sequential incubations. Shotgun metagenomic sequencing detected a higher abundance of aromatic compound degradation genes in response to lignin, particularly phenylacetyl-CoA, which may be an effective strategy for marine microbes in fluctuating oxygen concentrations. 16S rRNA gene amplicon sequencing detected a higher abundance of Gammaproteobacteria and Alphaproteobacteria bacteria such as taxonomic families Idiomarinaceae, Alcanivoraceae, and Alteromonadaceae in response to lignin. Meanwhile, fungal Ascomycetes and Basidiomycetes remained at very low abundance. Our findings demonstrate the significant potential of bacteria and microbes utilizing the phenylacetyl-CoA pathway to contribute to lignin degradation in the Eastern Mediterranean where environmental conditions are unfavorable for fungi. Exploring the diversity of bacterial lignin degraders may provide important enzymes for lignin conversion in industry. Enzymes may be key in breaking down high molecular weight lignin and enabling industry to use it as a low-cost and sustainable feedstock for biofuels or other higher-value products.

  15. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    International Nuclear Information System (INIS)

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya; Nishikawa, Shuh-ichi

    2010-01-01

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  16. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishikawa, Shuh-ichi, E-mail: shuh@biochem.chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2010-03-12

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  17. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV

    International Nuclear Information System (INIS)

    Kim, Tae-Hun; Kim, Sang Don; Kim, Hyun Young; Lim, Seung Joo; Lee, Myunjoo; Yu, Seungho

    2012-01-01

    Highlights: ► The degradation efficiency and trends for antibiotics were different between AOPs. ► The toxicities of target antibiotics were mainly affected by parent compounds. ► E-beam was electrically more energy efficient than ozone and UV-C. ► Application of AOPs should be considered according to the types of pharmaceuticals. - Abstract: Recently, the occurrence of antibiotics in sewage treatment plant effluent, as well as drinking water, has raised concern about their potential impacts on the environment and public health. Antibiotics are found in surface and ground waters, which indicate their ineffective removal by conventional wastewater treatment processes. Therefore, advanced oxidation processes (AOPs) have received considerable attention for the removal of antibiotics. This study was conducted to evaluate the degradation and mineralization of antibiotics (sulfamethoxazole and chlortetracycline) using an electron beam, ozone and UV, and the change of toxicity. Also, the electrical energy consumption based on the EE/O parameter (the electrical energy required per order of pollutants removal in 1 m 3 wastewater) was used to quantify the energy cost associated with the different AOPs (electron beam, ozone and UV) for the degradation of antibiotics. The results showed that an electron beam effective for the removals of both sulfamethoxazole and chlortetracycline in aqueous solutions. However, degradation of the target compounds by ozone and UV showed different trends. The oxidation efficiency of each organic compound was very dependent upon the AOP used. Algal toxicity was significantly reduced after each treatment. However, based on the electrical energy, the electron beam was more efficient than ozone and UV. Electron beam treatment could be an effective and safe method for the removal of antibiotic compounds.

  18. Luminescence and electron degradation properties of Bi doped CaO phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Kroon, R.E.; Coetsee, E.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2015-11-30

    Graphical abstract: - Highlights: • Blue emitting Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully prepared. • Strong blue near-UV emission was obtained. • Electron beam induced cathodoluminescence intensity degradation occurred. • XPS was successfully used to explain the degradation process. - Abstract: Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully synthesized by the sol-gel combustion method. The structure, morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and cathodoluminescence (CL) spectroscopy. The results showed that the Ca{sub 1−x}O:Bi{sub x=0.5%} consisted of single face-centred cubic crystals and that the phosphor particles were uniformly distributed. When the phosphor was excited by a xenon lamp at 355 nm, or a 325 nm He–Cd laser, or electron beam, it emitted strongly in the blue near-UV range with a wavelength of 395 nm ({sup 3}P{sub 1} → {sup 1}S{sub 0} transition of Bi{sup 3+}). The CL intensity was monitored as a function of the accelerating voltage and also as a function of the beam current. The powder was also subjected to a prolonged electron beam irradiation to study the electron beam induced CL intensity degradation. X-ray photoelectron spectroscopy was used to analyze the Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor sample surface before and after degradation.

  19. Diclofenac degradation in water by FeCeOx catalyzed H2O2: Influencing factors, mechanism and pathways.

    Science.gov (United States)

    Chong, Shan; Zhang, Guangming; Zhang, Nan; Liu, Yucan; Huang, Ting; Chang, Huazhen

    2017-07-15

    The degradation of diclofenac in a like Fenton system, FeCeO x -H 2 O 2 , was studied in details. The influencing factors, reaction kinetics, reaction mechanism and degradation pathways of diclofenac were investigated. The optimum conditions were at a solution pH of 5.0, H 2 O 2 concentration of 3.0mmol/L, diclofenac initial concentration of 0.07mmol/L, FeCeO x dosage of 0.5g/L, and 84% degradation of diclofenac was achieved within 40min. The kinetics of FeCeO x catalyzed H 2 O 2 process involved adsorption-dominating and degradation-dominating stages and fitted pseudo-second order model and pseudo-first order model, respectively. Singlet oxygen 1 O 2 was the primary intermediate oxidative species in the degradation process; superoxide radical anion O 2 - also participated in the reaction. The surface cerium and iron sites and the oxygen vacancies in the FeCeO x catalyst were proposed to play an important role in H 2 O 2 decomposition and active species generation. The detected intermediates were identified as hydroxylated derivatives (m/z of 310, 326 and 298), quinone imine compounds (m/z of 308, 278 and 264) and hydroxyl phenylamine (m/z of 178). The majority intermediates were hydroxylated derivatives and the minority was hydroxyl phenylamine. The degradation pathways were proposed to involve hydroxylation, decarboxylation, dehydrogenation and CN bond cleavage. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    Science.gov (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  1. Adsorption and Photocatalytic Decomposition of the β-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Directory of Open Access Journals (Sweden)

    Violette Romero

    2013-01-01

    Full Text Available This study reports the photocatalytic degradation of the β-blocker metoprolol (MET using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different initial pH were studied to evaluate noncatalytic degradation for this pharmaceutical. MET adsorption onto titania was fitted to two-parameter Langmuir isotherm. From adsorption results it appears that the photocatalytic degradation can occur mainly on the surface of TiO2. MET removed by photocatalysis was 100% conditions within 300 min, while only 26% was achieved by photolysis at the same time. TiO2 photocatalysis degradation of MET in the first stage of the reaction followed approximately a pseudo-first-order model. The major reaction intermediates were identified by LC/MS analysis such as 3-(propan-2-ylaminopropane-1,2-diol or 3-aminoprop-1-en-2-ol. Based on the identified intermediates, a photocatalytic degradation pathway was proposed, including the cleavage of side chain and the hydroxylation addition to the parent compounds.

  2. Time-dependent aspects of electron degradation: 4, Subexcitation electrons in nitrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Kimura, Mineo; Inokuti, Mitio; Kowari, Ken-ichi; Dillon, M.A.; Pagnamenta, A.

    1988-01-01

    We discuss here the temporal behavior of subexcitation electrons and the yields of products due to these subexcitation electrons. Our examples concern cases in which resonance scattering of electrons occurs, such as vibrational and rotational excitation in N 2 and negative-ion formation in CO 2 . One focus of the present work is a test of the continuous-slowing-down-approximation (CSDA) which we compare to the full solution of the time-dependent Spencer-Fano theory, which has been developed recently. 11 refs., 6 figs., 1 tab

  3. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  4. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil.

    Science.gov (United States)

    Zhong, Jianan; Luo, Lijuan; Chen, Baowei; Sha, Sha; Qing, Qing; Tam, Nora F Y; Zhang, Yong; Luan, Tiangang

    2017-01-30

    Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in petroleum, and alkylated phenanthrenes are considered as the primary PAHs during some oil spill events. Bacterial strain of Sphingobium sp. MP9-4, isolated from petroleum-contaminated soil, was efficient to degrade 1-methylphenanthrene (1-MP). A detailed metabolism map of 1-MP in this strain was delineated based on analysis of metabolites with gas chromatograph-mass spectrometer (GC-MS). 1-MP was initially oxidized via two different biochemical strategies, including benzene ring and methyl-group attacks. Benzene ring attack was initiated with dioxygenation of the non-methylated aromatic ring via similar degradation pathways of phenanthrene (PHE) by bacteria. For methyl-group attack, mono oxygenase system was involved and more diverse enzymes were needed than that of PHE degradation. This study enhances the understanding of the metabolic pathways of alkylated PAHs and shows the significant potential of Sphingobium sp. MP9-4 for the bioremediation of alkylated PAHs contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E.; Hatzinger, Paul B.; Condee, Charles W.; Chu, Kung-Hui

    2015-01-01

    Highlights: • SIP characterized RDX-degrading communities under different e-accepting conditions. • Dominant RDX degradation pathways differed under different e-accepting conditions. • More complete detoxification of RDX occurred under methanogenic and sulfate-reducing conditions than under manganese(IV) and iron(III)-reducing conditions. - Abstract: This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using 13 C and 15 N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with 13 C 3 - or ring- 15 N 3 -, nitro- 15 N 3 -, or fully-labeled 15 N 6 -RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the 13 C-DNA fractions. A total of twenty seven sequences were derived from different 15 N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled 13 C or 15 N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that 13 C- and 15 N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions

  6. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    Science.gov (United States)

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Surface roughness induced electron mobility degradation in InAs nanowires

    International Nuclear Information System (INIS)

    Wang Fengyun; Yip, Sen Po; Han, Ning; Fok, KitWa; Lin, Hao; Hou, Jared J; Dong, Guofa; Hung, Tak Fu; Chan, K S; Ho, Johnny C

    2013-01-01

    In this work, we present a study of the surface roughness dependent electron mobility in InAs nanowires grown by the nickel-catalyzed chemical vapor deposition method. These nanowires have good crystallinity, well-controlled surface morphology without any surface coating or tapering and an excellent peak field-effect mobility up to 15 000 cm 2 V −1 s −1 when configured into back-gated field-effect nanowire transistors. Detailed electrical characterizations reveal that the electron mobility degrades monotonically with increasing surface roughness and diameter scaling, while low-temperature measurements further decouple the effects of surface/interface traps and phonon scattering, highlighting the dominant impact of surface roughness scattering on the electron mobility for miniaturized and surface disordered nanowires. All these factors suggest that careful consideration of nanowire geometries and surface condition is required for designing devices with optimal performance. (paper)

  8. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway.

    Science.gov (United States)

    Ma, Wanchao; Paik, David C; Barile, Gaetano R

    2014-09-09

    We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement

  9. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    NARCIS (Netherlands)

    Sousa, Diana Z.; Visser, Michael; Gelder, Van Antonie H.; Boeren, Sjef; Pieterse, Mervin M.; Pinkse, Martijn W.H.; Verhaert, Peter D.E.M.; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J.M.

    2018-01-01

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in

  10. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, F.; De Winde, J.H. [Bio-Based Sustainable Industrial Chemistry (B-Basic), Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC, Delft (Netherlands); Wierckx, N. [Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GB, Delft (Netherlands); Ruijssenaars, H.J. [Netherlands Organization for Applied Scientific Research, Quality of Life, Department of Bioconversion, Julianalaan 67, 2628 BC, Delft (Netherlands); O' Neal Ingram, L. (ed.) [University of Florida, Gainesville, Gainesville, FL (United States)

    2010-03-16

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl) furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF and furfural-metabolizing Pseudomonas putida. The genetic information obtained furthermore enabled us to predict the HMF and furfural degrading capabilities of sequenced bacterial species that had not previously been connected to furanic aldehyde metabolism. These results pave the way for in situ detoxification of lignocellulosic hydrolysates, which is a major step toward improved efficiency of utilization of lignocellulosic feedstock.

  11. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    Science.gov (United States)

    Koopman, Frank; Wierckx, Nick; de Winde, Johannes H.; Ruijssenaars, Harald J.

    2010-01-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF and furfural-metabolizing Pseudomonas putida. The genetic information obtained furthermore enabled us to predict the HMF and furfural degrading capabilities of sequenced bacterial species that had not previously been connected to furanic aldehyde metabolism. These results pave the way for in situ detoxification of lignocellulosic hydrolysates, which is a major step toward improved efficiency of utilization of lignocellulosic feedstock. PMID:20194784

  12. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    Energy Technology Data Exchange (ETDEWEB)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Limão-Vieira, P., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal)

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤ n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  13. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    International Nuclear Information System (INIS)

    Holtze, Maria S.; Hansen, Hans Christian B.; Juhler, Rene K.; Sorensen, Jan; Aamand, Jens

    2007-01-01

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid

  14. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    Energy Technology Data Exchange (ETDEWEB)

    Holtze, Maria S. [Department of Natural Sciences, Soil and Environmental Chemistry, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark) and Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark) and Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)]. E-mail: msh@geus.dk; Hansen, Hans Christian B. [Department of Natural Sciences, Soil and Environmental Chemistry, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Juhler, Rene K. [Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Sorensen, Jan [Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2007-07-15

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid.

  15. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  16. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  17. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  18. p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design.

    Science.gov (United States)

    Meijide, J; Rosales, E; Pazos, M; Sanromán, M A

    2017-10-01

    The chemical process scale-up, from lab studies to industrial production, is challenging and requires deep knowledge of the kinetic model and the reactions that take place in the system. This knowledge is also useful in order to be employed for the reactor design and the determination of the optimal operational conditions. In this study, a model substituted phenol such as p-nitrophenol was degraded by electro-Fenton process and the reaction products yielded along the treatment were recorded. The kinetic model was developed using Matlab software and was based on main reactions that occurred until total mineralization which allowed predicting the degradation pathway under this advanced oxidation process. The predicted concentration profiles of p-nitrophenol, their intermediates and by-products in electro-Fenton process were validated with experimental assays and the results were consistent. Finally, based on the developed kinetic model the degradation process was optimized using central composite design taking as key parameters the ferrous ion concentration and current density. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  20. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    International Nuclear Information System (INIS)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr; Stolte, Stefan; Siedlecka, Ewa Maria

    2014-01-01

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na 2 SO 4 . The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test

  1. New Biochemical Pathway for Biphenyl Degradation in Plants: Structural, Mechanistic and Biotechnological Aspects

    International Nuclear Information System (INIS)

    Pacios, L. F.; Campos, V. M.; Merino, I.; Gomez, L.

    2009-01-01

    Polychlorinated biphenyls (PVBs) and other structurally-related xenobiotics are amongst the most relevant organic pollutants known today. while some bacterial species can metabolize PCBs, with varying efficiency, no catabolic pathways have yet been described in plants. This is so despite the great potential of (at least some) plant species for soil and groundwater decontamination, a technology known as phyto remediation. (Author)

  2. Bifurcated Degradative Pathway of 3-Sulfolactate in Roseovarius nubinhibens ISM via Sulfoacetaldehyde Acetyltransferase and (S)-Cysteate Sulfolyase ▿ †

    Science.gov (United States)

    Denger, Karin; Mayer, Jutta; Buhmann, Matthias; Weinitschke, Sonja; Smits, Theo H. M.; Cook, Alasdair M.

    2009-01-01

    Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments. PMID:19581363

  3. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    International Nuclear Information System (INIS)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X_m_a_x), biodegradation constant of DEHP (k), half-life (t_1_/_2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X_m_a_x occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t_1_/_2 were 0.024 h"−"1 and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  4. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  5. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    Science.gov (United States)

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  6. Modulating Pathways for Electron and Energy Transfer Through Molecules

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro

    Energy transport efficiency and electric conductance are molecular properties that motivates the development of optoelectronic materials, energy storage, and electronic devices. Several experimental techniques allow measurement of these properties and regularly, modeling is employed to find...... correlations between chemical structure and molecular properties. This dissertation discusses the interplay between modeling and experiments toward the assessment of new relations between the molecular structure and properties. In particular, it has been shown how simulations can push the development of new...... experimental techniques, demonstrate the potential of already established techniques, and work in synergy with experiments. It is demonstrated how the use of modeling can expand our understanding of how chemical structure affects molecular properties, which will enable us to design molecules with specific...

  7. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  8. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    Science.gov (United States)

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  9. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  10. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  11. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms?

    Science.gov (United States)

    Quak, Jacqueline; Doornbos, Bennard; Roest, Annelieke M; Duivis, Hester E; Vogelzangs, Nicole; Nolen, Willem A; Penninx, Brenda W J H; Kema, Ido P; de Jonge, Peter

    2014-07-01

    Several studies have suggested that induced tryptophan (TRP) degradation through the kynurenine (KYN) pathway by the enzyme indoleamine 2,3-dioxygenase (IDO) is implicated in the relation between depression and inflammation. We investigated the role of tryptophan degradation in the relationship between inflammatory markers and depressive symptoms in the Netherlands Study of Depression and Anxiety (NESDA) and hypothesized that tryptophan degradation would mediate (part of) this association. 2812 Participants of NESDA were included in this study including 1042 persons with current major depressive disorder (MDD). Assessments of C-reactive protein (CRP), interleukin (IL)-6, tumor-necrosis factor (TNF)-α, KYN and TRP were obtained from fasting blood samples at the baseline assessment. Tryptophan degradation was estimated by calculating the ratio [KYN/TRP]. Depressive symptoms were measured with the Inventory of Depressive Symptomatology. Significant associations between inflammation and depressive symptoms were found for CRP and IL-6, for the total group and the subgroup of patients with current MDD. Adjustment for KYN/TRP did not attenuate these associations. There were no significant indirect effects for CRP on depressive symptoms mediated by KYN/TRP for the whole group (B=-0.032; 95% CI: -0.103 to 0.028) and for the subgroup of patients with current MDD (B=0.059; 95% CI: -0.037 to 0.165). Also IL-6 did not indirectly affect depressive symptoms through KYN/TRP in the total group (B=-0.023; 95% CI: -0.093 to 0.045) and in the MDD subgroup B=0.052; 95% CI: -0.019 to 0.144). Finally, no significant relation between depressive symptoms and KYN/TRP was found in the whole group (β=-0.019, p=0.311) nor in the subgroup with MDD (β=0.025, p=0.424). We did not find indications for tryptophan degradation, measured by KYN/TRP, to mediate the relationship between inflammation and depressive symptoms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Katherine A.; Ealick, Steven E.

    2016-05-25

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.

  15. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guyu; Sun, Yabing, E-mail: sybnju@163.com; Zhang, Chunxiao; Yu, Zhongqing

    2017-02-05

    Highlights: • Graphene Oxide-based catalyst was first applied with dielectric barrier discharge plasma. • The TiO{sub 2}-rGO showed efficient synergistic effect with gas phase dielectric barrier discharge plasma. • The property changes of TiO{sub 2}-rGO nanocomposite after plasma treatment were characterized. • The mechanism and possible pathways of APAP degradation in plasma/TiO{sub 2}-rGO system were proposed. - Abstract: Acetaminophen (APAP) served as the model pollutant to evaluate the feasibility of pollutant removal by gas phase dielectric barrier discharge plasma combined with the titanium dioxide-reduced Graphene Oxide (TiO{sub 2}-rGO) nanocomposite. TiO{sub 2}-rGO nanocomposite was prepared using the modified hydrothermal method and characterized by TEM and XPS before and after plasma process. The results indicated that the APAP degradation efficiency was significantly improved to 92% after 18 min of discharge plasma treatment coupling 0.25 g L{sup −1} TiO{sub 2}-rGO 5% wt at 18 kV, compared with the plasma alone and plasma combined with P25 TiO{sub 2}. The degradation mechanism for APAP in this system was studied by investigating the effects of the operational variables (e.g. discharge voltage and pH value) and the amount of the generated active species; and the results showed that O{sub 3} and H{sub 2}O{sub 2} yields were influenced notably by adding TiO{sub 2}-rGO. Also, it was observed that, compared with unused TiO{sub 2}-rGO, the photocatalytic performance of used TiO{sub 2}-rGO declined after several recirculation times due to the further reduction of Graphene Oxide in plasma system. Finally, intermediate products were analyzed by UV–vis spectrometry and HPLC/MS, and possible transformation pathways were identified with the support of theoretically calculating the frontier electron density of APAP.

  16. Study on the radiation degradation of polyether-polyurethane induced by electron beam

    International Nuclear Information System (INIS)

    Huang Wei; Xiong Jie; Chen Xiaojun; Gao Xiaoling; Xu Yunshu; Fu Yibei

    2007-01-01

    Polyether-urethane samples were irradiated at the dose range from 10 to 2000 kGy by 2 MeV electron beams. Volatile species from the polymer degradation were analyzed quantitatively and qualitatively with GC/MS. Thermal properties and micro-phase separation of the samples were examined by TG and the morphology was studied by TEM and SEM. The results show that the irradiated polyether-polyurethane evolves CO 2 , H 2 , CH 4 and C 2 H 6 , etc. The thermal stabilities between the hard and soft segments in the irradiated samples are different. At high doses, the phase separation in the sample is predominant and the hard segment of sample is more stable. The dose rate affects the soft segment of the irradiated sample much more. (author)

  17. Crystallization and preliminary X-ray analysis of AAMS amidohydrolase, the final enzyme in degradation pathway I of pyridoxine

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Yoshida, Hiromi; Chu, Huy Nhat; Yoshikane, Yu; Kamitori, Shigehiro; Yagi, Toshiharu

    2009-01-01

    Recombinant α-(N-acetylaminomethylene)succinic acid amidohydrolase from M. loti MAFF303099 was crystallized and diffraction data were collected at 2.7 Å resolution. α-(N-Acetylaminomethylene)succinic acid (AAMS) amidohydrolase from Mesorhizobium loti MAFF303099, which is involved in a degradation pathway of vitamin B 6 and catalyzes the degradation of AAMS to acetic acid, ammonia, carbon dioxide and succinic semialdehyde, has been overexpressed in Escherichia coli. To elucidate the reaction mechanism based on the tertiary structure, the recombinant enzyme was purified and crystallized by the sitting-drop vapour-diffusion method using PEG 8000 as precipitant. A crystal of the enzyme belonged to the monoclinic space group C2, with unit-cell parameters a = 393.2, b = 58.3, c = 98.9 Å, β = 103.4°, and diffraction data were collected to 2.7 Å resolution. The V M value and calculation of the self-rotation function suggested that three dimers with a threefold symmetry were possibly present in the asymmetric unit

  18. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  19. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-01-01

    In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: Mechanism and reaction pathway.

    Science.gov (United States)

    Liang, Shangtao; Luo, Qi; Huang, Qingguo

    2017-08-01

    Natural laccase-mediator systems have been well recognized as an eco-friendly and energy-saving approach in environmental remediation, whose further application is however limited by the high cost of natural mediators and relatively long treatment time span. This study evaluated the water extract of soybean meal, a low-cost compound system, in mediating the laccase catalyzed degradation of a model contaminant of emerging concern, sulfadimethoxine (SDM), and demonstrated it as a promising alternative mediator for soil and water remediation. Removal of 73.3% and 65.6% was achieved in 9 h using soybean meal extract (SBE) as the mediating system for laccase-catalyzed degradation of sulfadimethoxine at the concentration of 1 ppm and 10 ppm, respectively. Further degradation of sulfadimethoxine was observed with multiple SBE additions. Using SBE as mediator increased the 9-h removal of SDM at 1 ppm initial concentration by 52.9%, 49.4%, and 36.3% in comparison to the system mediated by 1-Hydroxybenzotriazole (HBT), p-Coumaric acid (COU) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), respectively. With the detection of stable coupling products formed with radical scavenger (5,5-Dimethyl-1-pyrroline N-oxide, DMPO), three phenolic compounds (vanillin, apocynin, and daidzein) in SBE were confirmed to serve as mediators for Trametes versicolor laccase. Reaction pathways were proposed based on the results of High Resolution Mass Spectrometry. SO 2 excursion happened during SDM transformation, leading to elimination of antimicrobial activity. Therefore, as a natural, phenol rich, and affordable compound system, the future application of SBE in wastewater and soil remediation is worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways.

    Science.gov (United States)

    Rapino, F; Abhari, B A; Jung, M; Fulda, S

    2015-03-12

    Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.

  2. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    Science.gov (United States)

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  3. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  4. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  5. Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment.

    Science.gov (United States)

    Huang, Junlei; Wang, Yahui; Liu, Guoguang; Chen, Ping; Wang, Fengliang; Ma, Jingshuai; Li, Fuhua; Liu, Haijin; Lv, Wenying

    2017-04-01

    The oxidation of indometacin (IDM) by ferrate(VI) (Fe(VI)) was investigated to determine the reaction kinetics, transformation products, and changes in toxicity. The reaction between IDM and Fe(VI) followed first-order kinetics with respect to each reactant. The apparent second-order rate constants (k app ) decreased from 9.35 to 6.52 M -1  s -1 , as the pH of the solution increased from 7.0 to 10.0. The pH dependence of k app might be well explained by considering the species-specific rate constants of the reactions of IDM with Fe(VI). Detailed product studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that the oxidation products were primarily derived from the hydrolysis of amide linkages, the addition of hydroxyl groups, and electrophilic oxidation. The toxicity of the oxidation products was evaluated using the Microtox test, which indicated that transformation products exhibited less toxicity to the Vibrio fischeri bacteria. Quantitative structure-activity relationship (QSAR) analysis calculated by the ecological structure activity relationship (ECOSAR) revealed that all of the identified products exhibited lower acute and chronic toxicity than the parent pharmaceutical for fish, daphnid, and green algae. Furthermore, Fe(VI) was effective in the degradation IDM in water containing carbonate ions or fulvic acid (FA), and in lake water samples; however, higher Fe(VI) dosages would be required to completely remove IDM in lake water in contrast to deionized water.

  6. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  7. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  8. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, Patrick M., E-mail: pmdon@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 N., University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N., University Ave., Ann Arbor, MI 48109 (United States); Singer, Michael Bliss [University of St Andrews, Department of Earth and Environmental Sciences, North St., St. Andrews, KY16 9AL (United Kingdom); Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 91306 (United States); Marvin-DiPasquale, Mark [U.S. Geological Survey, Menlo Park, CA (United States); Tsui, Martin T.K. [Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States)

    2016-10-15

    Monomethyl mercury (MMHg) and total mercury (THg) concentrations and Hg stable isotope ratios (δ{sup 202}Hg and Δ{sup 199}Hg) were measured in sediment and aquatic organisms from Cache Creek (California Coast Range) and Yolo Bypass (Sacramento Valley). Cache Creek sediment had a large range in THg (87 to 3870 ng/g) and δ{sup 202}Hg (− 1.69 to − 0.20‰) reflecting the heterogeneity of Hg mining sources in sediment. The δ{sup 202}Hg of Yolo Bypass wetland sediment suggests a mixture of high and low THg sediment sources. Relationships between %MMHg (the percent ratio of MMHg to THg) and Hg isotope values (δ{sup 202}Hg and Δ{sup 199}Hg) in fish and macroinvertebrates were used to identify and estimate the isotopic composition of MMHg. Deviation from linear relationships was found between %MMHg and Hg isotope values, which is indicative of the bioaccumulation of isotopically distinct pools of MMHg. The isotopic composition of pre-photodegraded MMHg (i.e., subtracting fractionation from photochemical reactions) was estimated and contrasting relationships were observed between the estimated δ{sup 202}Hg of pre-photodegraded MMHg and sediment IHg. Cache Creek had mass dependent fractionation (MDF; δ{sup 202}Hg) of at least − 0.4‰ whereas Yolo Bypass had MDF of + 0.2 to + 0.5‰. This result supports the hypothesis that Hg isotope fractionation between IHg and MMHg observed in rivers (− MDF) is unique compared to + MDF observed in non-flowing water environments such as wetlands, lakes, and the coastal ocean. - Highlights: • Mercury isotope ratios were measured in sediment and biota from Central California. • The isotopic composition of MMHg was estimated in streams and wetlands. • Mercury isotopes suggest multiple exposure pathways in these habitats. • Mass dependent fractionation between IHg and MMHg is different in streams.

  9. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining

    International Nuclear Information System (INIS)

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T.K.

    2016-01-01

    Monomethyl mercury (MMHg) and total mercury (THg) concentrations and Hg stable isotope ratios (δ"2"0"2Hg and Δ"1"9"9Hg) were measured in sediment and aquatic organisms from Cache Creek (California Coast Range) and Yolo Bypass (Sacramento Valley). Cache Creek sediment had a large range in THg (87 to 3870 ng/g) and δ"2"0"2Hg (− 1.69 to − 0.20‰) reflecting the heterogeneity of Hg mining sources in sediment. The δ"2"0"2Hg of Yolo Bypass wetland sediment suggests a mixture of high and low THg sediment sources. Relationships between %MMHg (the percent ratio of MMHg to THg) and Hg isotope values (δ"2"0"2Hg and Δ"1"9"9Hg) in fish and macroinvertebrates were used to identify and estimate the isotopic composition of MMHg. Deviation from linear relationships was found between %MMHg and Hg isotope values, which is indicative of the bioaccumulation of isotopically distinct pools of MMHg. The isotopic composition of pre-photodegraded MMHg (i.e., subtracting fractionation from photochemical reactions) was estimated and contrasting relationships were observed between the estimated δ"2"0"2Hg of pre-photodegraded MMHg and sediment IHg. Cache Creek had mass dependent fractionation (MDF; δ"2"0"2Hg) of at least − 0.4‰ whereas Yolo Bypass had MDF of + 0.2 to + 0.5‰. This result supports the hypothesis that Hg isotope fractionation between IHg and MMHg observed in rivers (− MDF) is unique compared to + MDF observed in non-flowing water environments such as wetlands, lakes, and the coastal ocean. - Highlights: • Mercury isotope ratios were measured in sediment and biota from Central California. • The isotopic composition of MMHg was estimated in streams and wetlands. • Mercury isotopes suggest multiple exposure pathways in these habitats. • Mass dependent fractionation between IHg and MMHg is different in streams.

  10. Project and construction of energy degrading and scattering plates for electron beam radiotherapy for skin diseases

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva

    2010-01-01

    There are many radiosensitive epidermotropics diseases such as mycosis fungo-ids and the syndrome of Sezary, coetaneous neoplasics originated from type T lymphocytes. Several studies indicate the eradication of the disease when treated with linear accelerators emitting electron beams with energies between 4 to 10 MeV. However, this treatment technique presents innumerable technical challenges since the disease in general reaches all patient's body, becoming necessary not only a very large field size radiation beam, but also deliver superficial doses limited to the skin depth. To reach the uniformity in the dose distribution, many techniques had already been developed. Based on these previous studies and guided by the report no. 23 of the American Association of Physicists in Medi-cine (AAPM), the present study developed an energy scattering and degrading plates and made dosimetry (computational and experimental), supplying subsidies for a future installation of Total Skin Electron Therapy (TSET) at the Servico de Radioterapia do Hospital das Clinicas de Sao Paulo. As part of the plates design, first of all, the energy spectrum of the 6 MeV electron beam of the VARIAN 2100C accelerator was reconstructed through Monte Carlo simulations using the MCNP4C code and based on experimental data. Once the spectrum is built, several materials were analyzed for the plates design based on radial and axial dose distribution, production of rays-x and dose attenuation. The simulation results were validated by experimental measurements in order to obtain a large field of radiation with 200 cm x 80 cm that meets the specifications of the AAPM protocol. (author)

  11. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  12. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    PAHs. • Hydroxylated PAHs intrinsically photodegrade fast in sunlit surface waters. • Reaction types and transformation pathways of 9-Hydroxyfluorene were clarified. • Photolysis kinetics was affected by multivariate effects of main water constituents. • The photomodified toxicity of 9-Hydroxyfluorene was examined using Vibrio fischeri.

  13. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  14. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    International Nuclear Information System (INIS)

    Singh, Ritu; Misra, Virendra; Mudiam, Mohana Krishna Reddy; Chauhan, Lalit Kumar Singh; Singh, Rana Pratap

    2012-01-01

    Highlights: ► This study explores the potential of CMC-Pd/nFe 0 to degrade γ-HCH in spiked soil. ► Sorption–desorption characteristics and partitioning of γ-HCH is investigated. ► Three degradation pathways has been proposed and discussed. ► γ-HCH degradation mechanism and kinetics is elucidated. ► Activation energy reveals that γ-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe 0 bimetallic nanoparticles (CMC-Pd/nFe 0 ). GC–MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe 0 within 6 h of incubation. The surface area normalized rate constant (k SA ) was found to be 7.6 × 10 −2 L min −1 m −2 . CMC-Pd/nFe 0 displayed ∼7-fold greater efficiency for γ-HCH degradation in comparison to Fe 0 nanoparticles (nFe 0 ), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe 0 loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe 0 has been discussed.

  15. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mishra, Varun [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc.sci@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-01-01

    Green luminescence and degradation of Ce{sup 3+} doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 {mu}A electron beam in an O{sub 2} environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 {+-} 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce{sup 3+} nanocrystalline phosphors during electron bombardment in an O{sub 2} environment. The effect of different oxygen pressures ranging from 1 x 10{sup -8} to 1 x 10{sup -6} Torr on the CL intensity was also investigated. A CaSO{sub 4} layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10{sup -6} Torr oxygen pressure after an electron dose of 50 C/cm{sup 2}. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  16. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    International Nuclear Information System (INIS)

    Kumar, Vinay; Mishra, Varun; Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J.; Swart, H.C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 x 10 -8 to 1 x 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2 . The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  17. Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway.

    Science.gov (United States)

    Simon, D I; Ezratty, A M; Francis, S A; Rennke, H; Loscalzo, J

    1993-10-15

    Fibrin(ogen) (FGN) is important for hemostasis and wound healing and is cleared from sites of injury primarily by the plasminogen activator system. However, there is emerging evidence in plasminogen activator-deficient transgenic mice that nonplasmin pathways may be important in fibrin(ogen)olysis, as well. Given the proximity of FGN and monocytes within the occlusive thrombus at sites of vascular injury, we considered the possibility that monocytes may play an ancillary role in the degradation and clearance of fibrin. We found that monocytes possess an alternative fibrinolytic pathway that uses the integrin Mac-1, which directly binds and internalizes FGN, resulting in its lysosomal degradation. At 4 degrees C, FGN binds to U937 monocytoid cells in a specific and saturable manner with a kd of 1.8 mumol/L. Binding requires adenosine diphosphate stimulation and is calcium-dependent. At 37 degrees C, FGN and fibrin monomer (FM) are internalized and degraded at rates of 0.37 +/- 0.13 and 0.55 +/- 0.03 microgram/10(6) cells/h by U937 cells, 1.38 +/- 0.02 and 1.20 +/- 0.30 microgram/10(6) cells/h by THP-1 cells, and 2.10 +/- 0.20 and 2.52 +/- 0.18 micrograms/10(6) cells/h by human peripheral blood mononuclear cells, respectively. The serine protease inhibitors, PPACK and aprotinin, and the specific elastase inhibitor, AAPVCK, do not significantly inhibit degradation. However, degradation is inhibited by chloroquine, suggesting that a lysosomal pathway is involved. Factor X, a competitive ligand with FGN for the Mac-1 receptor, also blocks degradation, as does a monoclonal antibody to the alpha-subunit of Mac-1. Autoradiography of radioiodinated, internalized FGN shows that FGN proteolysis by the pathway produces a unique degradation pattern distinct from that observed with plasmin. In a fibrin clot lysis assay, Mac-1-mediated fibrinolysis contributed significantly to total fibrinolysis. In summary, FGN is internalized and degraded by activated human monocytoid cells via

  18. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    Science.gov (United States)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  19. Spatial profiling of degradation processes in hindered-amine-stabilized polymers by electron spin resonance imaging of nitroxides

    Czech Academy of Sciences Publication Activity Database

    Marek, Antonín; Kaprálková, Ludmila; Pfleger, Jiří; Pospíšil, Jan; Pilař, Jan

    2005-01-01

    Roč. 99, S (2005), s. 195-198 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.9.2005-22.9.2005] Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer degradation * nitroxides * electron spin resonance imaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.445, year: 2005

  20. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pruminal degradation and reducing antinutritional factors of irradiated canola meal.

  1. Effects of Electron Acceptors, Reducing Agents, and Toxic Metabolites on Anaerobic Degradation of Heterocyclic Compounds

    DEFF Research Database (Denmark)

    Licht, Dorthe; Ahring, Birgitte Kiær; Arvin, Erik

    1996-01-01

    Degradation of four heterocyclic compounds was examined under nitrate-reducing, sulphate-reducing and methanogenic conditions. Soil samples from a creosote-polluted site in Denmark were used as inoculum. Indole and quinoline were degraded under all redox conditions with the highest degradation...... of quinoline under sulphate-reducing conditions which was inhibited by sulphide at concentrations above 0.8 mM. Degradation of quinoline under methanogenic conditions was also inhibited by 3.2 mM sulphide used as a reducing agent, but sulphide had no inhibitory effect on the degradation of indole...... in methanogenic and sulphate-reducing soil slurries...

  2. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  3. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    International Nuclear Information System (INIS)

    Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa; Schmidt, Stephen P.; Adkins, Karissa; Harrill, Alison H.

    2014-01-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  4. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Energy Technology Data Exchange (ETDEWEB)

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  5. Managing care pathways combining SNOMED CT, archetypes and an electronic guideline system.

    Science.gov (United States)

    Bernstein, Knut; Andersen, Ulrich

    2008-01-01

    Today electronic clinical guideline systems exist, but they are not well integrated with electronic health records. This paper thus proposes that the patient's "position" in the pathway during the patient journey should be made visible to all involved healthcare parties and the patient. This requires that the generic knowledge, which is represented in the guidelines, is combined with the patient specific information - and then made accessible for all relevant parties. In addition to the decision support provided by the guideline system documentation support can be provided by templates based on archetypes. This paper provides a proposal for how the guideline system and the EHR can be integrated by the use of archetypes and SNOMED CT. SNOMED CT provides the common reference terminology and the semantic links between the systems. The proposal also includes the use of a National Patient Index for storing data about the patient's position in the pathway and for sharing this information by all involved parties.

  6. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A-nan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Teng, Ying [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Xue-feng [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wu, Long-hua; Huang, Yu-juan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yong-ming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO{sub 2}) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L{sub 9}(3){sup 4}, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO{sub 2} dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg{sup −1} were found to be a 1:10 soil: water ratio, 40 mW cm{sup −2} light intensity, 5% TiO{sub 2} in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO{sub 2} in soil slurry. This study suggests that TiO{sub 2} photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO{sub 2} (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO{sub 2} (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by Ti

  7. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    International Nuclear Information System (INIS)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-01

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO_2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L_9(3)"4, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO_2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg"−"1 were found to be a 1:10 soil: water ratio, 40 mW cm"−"2 light intensity, 5% TiO_2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO_2 in soil slurry. This study suggests that TiO_2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO_2 (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO_2 (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by TiO_2.

  8. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  9. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    OpenAIRE

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degrad...

  10. Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy.

    Science.gov (United States)

    Baker, Karl; Dunwoodie, Elaine; Jones, Richard G; Newsham, Alex; Johnson, Owen; Price, Christopher P; Wolstenholme, Jane; Leal, Jose; McGinley, Patrick; Twelves, Chris; Hall, Geoff

    2017-07-01

    There is growing interest in the use of routinely collected electronic health records to enhance service delivery and facilitate clinical research. It should be possible to detect and measure patterns of care and use the data to monitor improvements but there are methodological and data quality challenges. Driven by the desire to model the impact of a patient self-test blood count monitoring service in patients on chemotherapy, we aimed to (i) establish reproducible methods of process-mining electronic health records, (ii) use the outputs derived to define and quantify patient pathways during chemotherapy, and (iii) to gather robust data which is structured to be able to inform a cost-effectiveness decision model of home monitoring of neutropenic status during chemotherapy. Electronic Health Records at a UK oncology centre were included if they had (i) a diagnosis of metastatic breast cancer and received adjuvant epirubicin and cyclosphosphamide chemotherapy or (ii) colorectal cancer and received palliative oxaliplatin and infusional 5-fluorouracil chemotherapy, and (iii) were first diagnosed with cancer between January 2004 and February 2013. Software and a Markov model were developed, producing a schematic of patient pathways during chemotherapy. Significant variance from the assumed care pathway was evident from the data. Of the 535 patients with breast cancer and 420 with colorectal cancer there were 474 and 329 pathway variants respectively. Only 27 (5%) and 26 (6%) completed the planned six cycles of chemotherapy without having unplanned hospital contact. Over the six cycles, 169 (31.6%) patients with breast cancer and 190 (45.2%) patients with colorectal cancer were admitted to hospital. The pathways of patients on chemotherapy are complex. An iterative approach to addressing semantic and data quality issues enabled the effective use of routinely collected patient records to produce accurate models of the real-life experiences of chemotherapy patients and

  11. Degradation of Dextran Produced by Leuconostoc mesenteroides ATCC 13146 using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Hong, Jun Tack; Yoo, Sun Kyun; Kang, Hyun Suk; Lee, Byung Cheol

    2010-01-01

    Dextrans make up a family of glucans that have contiguous alpha-1.6 glucose linkages. Differences in the different dextrans in volve the types, amount, length, and arrangements of the arrangements of the branch chains. The principle type of branch linkages found are alpha-1.3, but alpha-1.2 and-1.4 branch linkages have been also observed. In recent days. dextrans have been investigated as potential macromolecular carriers for delivery of drugs and proteins, primarily to increase the longeveity of therapeutic agents in the circulation. In most previous researches, linear type of dextrans with molecular weigh of Μ w 10,000 to 100,000 have been applied for development of new type of drug delivery agent. Such a size of dextrans have been manufactured by acid hydrolysis, of which processes are multi-steps and time-consumed. Therefore, this objective of this research is to evaluate the characterization of branched degraded by a electron beam radiation. L. mesenteroides ATCC 13146 was cultured on te agar slant medium with the composition of 3.0 g K 2 HPO 4 , 0.01 g FeSO 4 . H 2 O, 0.01 g MnSO 4 . 7H 2 O, 0.01 g NaCl, 0.05 g CaCl 2 , 0.5g yeast extract, 15 g agar and 30 g sucrose per liter deionized water. Medium pH was adjusted to 6.0 prior to sterilization. Dextran production was conducted in a fermentor a working volume of 5 1 by using 18% sucrose under optimum pH condition. The inoculum was 2% of the working volume. Fermentation conditions are 28 C, 100 rpm agitation, and 1 vvm of aeration. The fermentation process continued until sucrose was consumed completely. The branch degree of dextran was evaluated using dextranase and analyzed by TLC. The air-dry dextran and solution dextran was irradiated at room temperature using a electrostatic accelerator. The irradiation doses ranged between 30 kGy to 80 kGy. After irradiation, processed dextran showed still a large of branched form. The degradation degree was increased as radiation intensity. The average molecular weight

  12. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  13. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance

    Science.gov (United States)

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-08-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys.

  14. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Science.gov (United States)

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater.

  16. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available of Photochemistry and Photobiology A: Chemistry 293 (2014) 72–80 An instant photo-excited electrons relaxation on the photo- degradation properties of TiO2−x films S.S. Nkosi a,b,∗, I. Kortidis d, D.E. Motaungc,∗, P.R. Makgwanec, O.M. Ndwandwe b, S.S. Rayc, G...

  17. Degradative pathways for p-toluenecarboxylate and p-toluenesulfonate and their multicomponent oxygenases in Comamonas testosteroni strains PSB-4 and T-2.

    Science.gov (United States)

    Junker, F; Saller, E; Schläfli Oppenberg, H R; Kroneck, P M; Leisinger, T; Cook, A M

    1996-09-01

    Three multicomponent oxygenases involved in the degradation of p-toluenesulfonate and p-toluenecarboxylate and the regulation of their synthesis have been examined in three strains (T-2, PSB-4 and TER-1) of Comamonas testosteroni. Strain T-2 utilizes p-toluenesulfonate as a source of carbon and energy for growth via p-sulfobenzoate and protocatechuate, and p-toluenecarboxylate via terephthalate and protocatechuate, and has the unusual property of requiring the reductase (TsaB) of the toluenesulfonate methyl monooxygenase system (TsaMB) in an incompletely expressed sulfobenzoate dioxygenase system (PsbAC) [Schläfli Oppenberg, H.R., Chen, G., Leisinger, T. & Cook, A. M. (1995). Microbiology 141, 1891-1899]. The independently isolated C. testosteroni PSB-4 utilized only sulfobenzoate and terephthalate via protocatechuate. Mutant TER-1, derived from strain T-2, utilized only terephthalate via protocatechuate. We detected no enzymes of the pathway from toluenesulfonate to sulfobenzoate in strains PSB-4 and TER-1, and confirmed by PCR and Southern blot analysis that the genes (tsaMB) encoding toluenesulfonate monooxygenase were absent. We concluded that, in strain PSB-4, the regulatory unit encoding the genes for the conversion of toluenesulfonate to sulfobenzoate was missing, and that generation of mutant TER-1 involved deletion of this regulatory unit and of the regulatory unit encoding desulfonation of sulfobenzoate. The degradation of sulfobenzoate in strain PSB-4 was catalysed by a fully inducible sulfobenzoate dioxygenase system (PsbACPSB-4), which, after purification of the oxygenase component (PsbAPSB-4), turned out to be indistinguishable from the corresponding component from strain T-2 (PsbAT-2). Reductase PsbCPSB-4, which we could separate but not purify, was active with oxygenase PsbAPSB-4 and PsbAT-2. Oxygenase PsbAPSB-4 was shown by electron paramagnetic resonance spectroscopy to contain a Rieske [2Fe-2S] centre. The enzyme system oxygenating terephthalate

  18. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  19. Bar-coded pyrosequencing reveals the responses of PBDE-degrading microbial communities to electron donor amendments.

    Directory of Open Access Journals (Sweden)

    Meiying Xu

    Full Text Available Polybrominated diphenyl ethers (PBDEs can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32 and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters.

  20. Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture

    International Nuclear Information System (INIS)

    Chu, C.C.; Campbell, N.D.

    1982-01-01

    This article reports the morphological observations on the surface changes of poly-(glycolic acid) sutures which have been exposed to various dosages of gamma irradiation (0, 2.5, 5.0, 10, 20 and 40 Mrad) and duration of immersion (0, 7, 14, 28, 48, 60, and 90 days) in a physiological saline buffer. The most important gross morphological characteristics of PGA suture hydrolytic degradation is the formation of surface cracks on the filaments. The regularity of the surface cracks increased with an increase in the gamma irradiation and the duration of hydrolysis. Surface cracks were not observed in irradiated sutures that had not been subjected to hydrolytic degradation. The arrangement of the surface cracks, their orientation on the filaments, and the direction of crack propagation provide very useful information for depicting the mechanism of hydrolytic degradation in this class of fibrous material. The microfibrillar model of fiber structure has been used as the basis for the proposed degradation mechanism of PGA in vitro. It is believed that hydrolysis occurs initially in the amorphous regions sandwiched between two crystalline zones, as tie-chain segments, free chain ends, and chain folds in these regions degrade into fragments. As degradation proceeds, the size of the fragments reaches the stage at which they can be dissolved into the buffer medium. This dissolution removes the fragments from the amorphous regions, and surface cracks appeared

  1. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy

    DEFF Research Database (Denmark)

    Curino, Alejandro C; Engelholm, Lars H; Yamada, Susan S

    2005-01-01

    We recently reported that uPARAP/Endo180 can mediate the cellular uptake and lysosomal degradation of collagen by cultured fibroblasts. Here, we show that uPARAP/Endo180 has a key role in the degradation of collagen during mammary carcinoma progression. In the normal murine mammary gland, uPARAP/...

  2. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  3. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    International Nuclear Information System (INIS)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S.R.; Azizi, S.; Shawrang, P.

    2010-01-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  4. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  5. Lysine-Less Variants of Spinal Muscular Atrophy SMN and SMNΔ7 Proteins Are Degraded by the Proteasome Pathway

    Directory of Open Access Journals (Sweden)

    Raúl Sánchez-Lanzas

    2017-12-01

    Full Text Available Spinal muscular atrophy is due to mutations affecting the SMN1 gene coding for the full-length protein (survival motor neuron; SMN and the SMN2 gene that preferentially generates an exon 7-deleted protein (SMNΔ7 by alternative splicing. To study SMN and SMNΔ7 degradation in the cell, we have used tagged versions at the N- (Flag or C-terminus (V5 of both proteins. Transfection of those constructs into HeLa cells and treatment with cycloheximide showed that those protein constructs were degraded. Proteasomal degradation usually requires prior lysine ubiquitylation. Surprisingly, lysine-less variants of both proteins tagged either at N- (Flag or C-terminus (V5 were also degraded. The degradation of the endogenous SMN protein, and the protein constructs mentioned above, was mediated by the proteasome, as it was blocked by lactacystin, a specific and irreversible proteasomal inhibitor. The results obtained allowed us to conclude that SMN and SMNΔ7 proteasomal degradation did not absolutely require internal ubiquitylation nor N-terminal ubiquitylation (prevented by N-terminal tagging. While the above conclusions are firmly supported by the experimental data presented, we discuss and justify the need of deep proteomic techniques for the study of SMN complex components (orphan and bound turn-over to understand the physiological relevant mechanisms of degradation of SMN and SMNΔ7 in the cell.

  6. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  7. An extended collection length model for the description of keV-electron induced degradation and thermal recovery of p-i-n solar cells

    International Nuclear Information System (INIS)

    Schneider, U.; Schroder, B.

    1990-01-01

    The results of keV-electron degradation and annealing experiments obtained on a-Si:H based p-i-n solar cells are interpretated under inclusion of models developed earlier for the degradation of a-Si:H films and are placed in the framework of an extended collection length model. The strong degradation of the cell parameters j sc and FF due to considerable keV-electron irradiation can be explained quantitatively. This enables a crucial test of the validity of the mathematical models for the keV-electron induced effects developed so far. Furthermore the results of a detailed investigation of the thermal recovery of electron-degraded solar cells can be cleared up consistently. Some unresolved issues are discussed, and experiments to resolve these questions are proposed

  8. Post-irradiation degradation of DNA in electron and neutron-irradiated E. coli B/r; the effect of the radiation sensitizer metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Cramp, W A; George, A M; Howlett, J [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1976-04-01

    Suspensions of E.coli B/r were irradiated under aerobic and anoxic conditions with electrons (7 to 8 MeV, 2 and 20 krad/min, MRC linear accelerator), or with neutrons (average energy 7.5 MeV, 2 krad/min, MRC cyclotron) in an investigation of the effects of the radiosensitizer, metronidazole (Flagyl, 5 or 10 mM) on survival and DNA degradation. These results are compared with those for another electron affinic radiosensitizer, indane trione. Survival studies yielded enhancement ratios, for anoxic irradiation only, of 1.7 (5mM) and 1.9 (10mM) for electrons, and 1.2 (5mM and 10mM) for neutrons. Unlike indane trione, metronidazole had no pronounced inhibitory effect on post-irradiation DNA degradation, either when incubated with the bacteria before irradiation or when present during irradiation. When present under anoxic conditions of irradiation with electrons, some enhancement of degradation was observed. DNA degradation was reduced at higher doses, with a pronounced maxiumum effect, for neutrons as well as for electrons. Metronidazole allowed this degradation to continue and showed some sensitizing action, but did not prevent the decrease in total degradation at high doses. It is therefore difficult to correlate DNA degradation with cell-depth.

  9. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jeong, Woo-Jeong; Ro, Eun Ji; Choi, Kang-Yell

    2018-01-01

    Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli ( APC ) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.

  10. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  11. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.

    Science.gov (United States)

    Yoon, Jinsu; Han, Jungmin; Choi, Bongsik; Lee, Yongwoo; Kim, Yeamin; Park, Jinhee; Lim, Meehyun; Kang, Min-Ho; Kim, Dae Hwan; Kim, Dong Myong; Kim, Sungho; Choi, Sung-Jin

    2018-05-25

    Electronics that degrade after stable operation for a desired operating time, called transient electronics, are of great interest in many fields, including biomedical implants, secure memory devices, and environmental sensors. Thus, the development of transient materials is critical for the advancement of transient electronics and their applications. However, previous reports have mostly relied on achieving transience in aqueous solutions, where the transience time is largely predetermined based on the materials initially selected at the beginning of the fabrication. Therefore, accurate control of the transience time is difficult, thereby limiting their application. In this work, we demonstrate transient electronics based on a water-soluble poly(vinyl alcohol) (PVA) substrate on which carbon nanotube (CNT)-based field-effect transistors were fabricated. We regulated the structural parameters of the PVA substrate using a three-dimensional (3D) printer to accurately control and program the transience time of the PVA substrate in water. The 3D printing technology can produce complex objects directly, thus enabling the efficient fabrication of a transient substrate with a prescribed and controlled transience time. In addition, the 3D printer was used to develop a facile method for the selective and partial destruction of electronics.

  12. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  13. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  14. Diuron treatment reveals the different roles of two cyclic electron transfer pathways in photosystem II in Arabidopsis thaliana.

    Science.gov (United States)

    Jin, Yujian; Chen, Si; Fan, Xiaoji; Song, Hao; Li, Xingxing; Xu, Jiahui; Qian, Haifeng

    2017-04-01

    Three ecotypes of Arabidopsis thaliana, ecotype Columbia (Wild type, Wt) and two mutants (pgr5 and ndf4), were used to evaluate the effects of diuron on photosynthetic activity of A. thaliana. It was found that diuron adversely affected the fresh weight and chlorophyll content of the plants. Chlorophyll fluorescence studies determined that the pgr5 mutant was more sensitive to diuron than Wt and the ndf4 mutant. Gene expression analysis revealed different roles for the two cyclic electron transfer (CET) pathways, NAD(P)H dehydrogenase (NDH) and proton gradient regulation (PGR5) pathways, in the plant after diuron treatment. For example, a gene in the NDH pathway, lhca5, was activated in the low dose (LD) group in the pgr5 mutant, but was down-regulated in the moderate dose (MD) group, along with two other NDH-related genes (ppl2 and ndhH). In the PGR5 pathway, the pgr5 gene was functional under conditions of increased stress (MD group), and was up-regulated to a greater extent in the ndf4 mutant than that in the Wt and pgr5 mutant. Our results suggest that the PGR5 pathway in plants is more important than the NDH pathway during resistance to environmental stress. Deficiencies in the PGR5 pathway could not be counteracted by the NDH pathway, but deficiencies in the NDH pathway could be overcome by stimulating PGR5. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    . Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure

  16. Distribution of the Coenzyme M Pathway of Epoxide Metabolism Among Ethene- and Vinyl Chloride-Degrading Mycobacterium Strains

    National Research Council Canada - National Science Library

    Coleman, Nicholas

    2003-01-01

    ...) and ethene assimilation pathways of Mycobacterium strain JS6O. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples...

  17. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  18. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    OpenAIRE

    Koopman, F.; Wierckx, N.; Winde, de, J.H.; Ruijssenaars, H.J.

    2010-01-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF an...

  19. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  20. Synthesized TiO{sub 2}/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kefu; Hu, Xin-Yan [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann; Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, Taiwan (China); Zhang, Qian [Department of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wang, Jiajie; Lin, Yu-Jung [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, I-Lan, Taiwan (China)

    2016-10-15

    Highlights: • The major photo-catalytic degradation pathway of azo-dye was elaborated according to the identification of by-products from GC–MS and IC analysis. • Comparative assessment on characteristics of abiotic and biotic dye decolorization was analyzed. • EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to determine the main active oxidative species in the system. • The toxicity effects of degradation intermediates of Reactive Black 5 (RB5) on the cellular respiratory activity were assessed. - Abstract: In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO{sub 2})/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO{sub 2}/ZSM-5 composites with TiO{sub 2} contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography–mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO{sub 2} production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system

  1. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  2. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial

  3. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Directory of Open Access Journals (Sweden)

    Feil Helene

    2009-08-01

    Full Text Available Abstract Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC genes (responsible for fumarate addition to toluene and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively. Conclusion Analysis of the D. aromatica genome indicates there is much to be

  4. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.

    Science.gov (United States)

    Arias-Barrau, Elsa; Olivera, Elías R; Luengo, José M; Fernández, Cristina; Galán, Beatriz; García, José L; Díaz, Eduardo; Miñambres, Baltasar

    2004-08-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.

  5. Paracetamol - toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway.

    Science.gov (United States)

    Żur, Joanna; Wojcieszyńska, Danuta; Hupert-Kocurek, Katarzyna; Marchlewicz, Ariel; Guzik, Urszula

    2018-09-01

    Paracetamol, a widely used analgesic and antipyretic drug, is currently one of the most emerging pollutants worldwide. Besides its wide prevalence in the literature only several bacterial strains able to degrade this compound have been described. In this study, we isolated six new bacterial strains able to remove paracetamol. The isolated strains were identified as the members of Pseudomonas, Bacillus, Acinetobacter and Sphingomonas genera and characterized phenotypically and biochemically using standard methods. From the isolated strains, Pseudomonas moorei KB4 was able to utilize 50 mg L -1 of paracetamol. As the main degradation products, p-aminophenol and hydroquinone were identified. Based on the measurements of specific activity of acyl amidohydrolase, deaminase and hydroquinone 1,2-dioxygenase and the results of liquid chromatography analyses, we proposed a mechanism of paracetamol degradation by KB4 strain under co-metabolic conditions with glucose. Additionally, toxicity bioassays and the influence of various environmental factors, including pH, temperature, heavy metals at no-observed-effective-concentrations, and the presence of aromatic compounds on the efficiency and mechanism of paracetamol degradation by KB4 strain were determined. This comprehensive study about paracetamol biodegradation will be helpful in designing a treatment systems of wastewaters contaminated with paracetamol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    Science.gov (United States)

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a

  7. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    Science.gov (United States)

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  8. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals.

    Science.gov (United States)

    Gao, Yuan; Gao, Jing; Liu, Ziling; Kan, Hongliang; Zu, Hui; Sun, Wanjin; Zhang, Jianjun; Qian, Shuai

    2012-11-15

    Adefovir dipivoxil (AD) is a bis(pivaloyloxymethyl) prodrug of adefovir with chemical stability problem. It undergoes two degradation pathways including hydrolysis and dimerization during storage. Pharmaceutical cocrystallization exhibits a promising approach to enhance aqueous solubility as well as physicochemical stability. In this study we attempted to prepare and investigate the physiochemical properties of AD cocrystals, which were formed with two coformers having different acidity and alkalinity (weakly acidic saccharin (SAC) and weakly basic nicotinamide (NCT)). The presence of different coformer molecules along with AD resulted in altered physicochemical properties. AD-SAC cocrystal showed great improvement in solubility and chemical stability, while AD-NCT did not. Several potential factors giving rise to different solid-state properties were summarized. Different coformers resulted in different cocrystal formation, packing style and hydrogen bond formation. This study could provide the coformer selection strategy based on degradation pathways for some unstable drugs in pharmaceutical cocrystal design. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole.

    Science.gov (United States)

    Li, Yingjie; Zhang, Biaojun; Liu, Xiangliang; Zhao, Qun; Zhang, Heming; Zhang, Yuechao; Ning, Ping; Tian, Senlin

    2018-07-05

    Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H 2 O 2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics. Copyright © 2018. Published by Elsevier B.V.

  10. Formation and degradation pathways of intermediate products formed during the hydropyrolysis of glucose as a model substance for wet biomass in a tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler-Ankara (Turkey); Kruse, A.; Schwarzkopf, V. [Institut fuer Technische Chemie - CPV, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2003-12-10

    In this study, glucose as a model substance for cellulose is pyrolyzed in supercritical water. The experiments are conducted in a continuously operated tubular reactor. From the usage of model substances, key information on the degradation pathway of biomass in supercritical water can be obtained. With this knowledge, it is tried to optimize a new method for gasification of wet biomass considering high yields of hydrogen and methane and also the suppressing of tar and char formation. The gaseous products mainly contain hydrogen, carbon dioxide, methane and a small amount of carbon monoxide. The effect of experimental conditions, such as pressure, temperature and reaction time, on the degradation of glucose is investigated in the experiments. The qualitative and quantitative composition of the gas and liquid phases formed are determined. The results show that only the amount of phenols increases with increasing temperature in the liquid phase. No complete gasification of glucose is achieved in the studied temperature range between 400 C and 500 C. The addition of alkali salts leads to a higher gas generation and to a decrease in carbon monoxide concentration via water-gas-shift reaction. A lower furfural concentration is obtained in the presence of KHCO{sub 3}. Furthermore, this study shows that there is a wide conformity between the results of real and model biomass. A simplified scheme for glucose degradation is also presented with the help of the results found. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction.

    Science.gov (United States)

    Gargan, Siobhan; Ahmed, Suaad; Mahony, Rebecca; Bannan, Ciaran; Napoletano, Silvia; O'Farrelly, Cliona; Borrow, Persephone; Bergin, Colm; Stevenson, Nigel J

    2018-04-01

    Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be

  12. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Time dependent degradation of energetic electrons in gaseous and condensed media

    International Nuclear Information System (INIS)

    Dillon, M.; Kimura, M.

    1987-01-01

    A transport equation formulated by Spencer and Fano has been used to calculate initial yields of products formed by electron interactions under conditions of steady state irradiation. Since experimental observation of initial yields may now be possible it is desirable to generalize the treatment of Spencer and Fano to include transient effects explicitly. 6 refs., 2 figs

  14. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  15. Degradation of thin poly(lactic acid) films: Characterization by capacitance–voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements

    International Nuclear Information System (INIS)

    Schusser, S.; Menzel, S.; Bäcker, M.; Leinhos, M.; Poghossian, A.; Wagner, P.; Schöning, M.J.

    2013-01-01

    For the development of new biopolymers and implantable biomedical devices with predicted biodegradability, simple, non-destructive, fast and inexpensive techniques capable for real-time in situ testing of the degradation kinetics of polymers are highly appreciated. In this work, a capacitive field-effect electrolyte–insulator–semiconductor (EIS) sensor has been applied for real-time in situ monitoring of degradation of thin poly(D,L-lactic acid) (PDLLA) films over a long-time period of one month. Generally, the polymer-modified EIS (PMEIS) sensor is capable of detecting any changes in the bulk, surface and interface properties of the polymer (e.g., thickness, coverage, dielectric constant, surface potential) induced by degradation processes. The time-dependent capacitance–voltage (C–V) characteristics of PMEIS structures were used as an indicator of the polymer degradation. To accelerate the PDLLA degradation, experiments were performed in alkaline buffer solution of pH 10.6. The results of these degradation measurements with the EIS sensor were verified by the detection of lactic acid (product of the PDLLA degradation) in the degradation medium. In addition, the micro-structural and morphological changes of the polymer surface induced by the polymer degradation have been systematically studied by means of scanning-electron microscopy, atomic-force microscopy, optical microscopy, and contact-angle measurements

  16. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-01-01

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  17. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field

    International Nuclear Information System (INIS)

    Ling, Yang; Yue, Hao; Xiao-Hua, Ma; Jing-Jing, Ma; Cheng, Zhu

    2010-01-01

    The degradation of AlGaN/GaN high electron mobility transistors (HEMTs) has a close relationship with a model of traps in AlGaN barriers as a result of high electric field. We mainly discuss the impacts of strong electrical field on the AlGaN barrier thickness of AlGaN/GaN HEMTs. It is found that the device with a thin AlGaN barrier layer is more easily degraded. We study the degradation of four parameters, i.e. the gate series resistance R Gate , channel resistance R channel , gate current I G,off at V GS = −5 and V DS = 0.1 V, and drain current I D,max at V GS = 2 and V DS = 5 V. In addition, the degradation mechanisms of the device electrical parameters are also investigated in detail. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Degradation study of trichloroethylene and perchloric ethylene using high energy electron beam generated in industrial accelerator

    International Nuclear Information System (INIS)

    Silva, B.L.R.; Sampa, M.H.O.; Avolio, R.M.; Somessari, E.S.R.; Vieira, J.M.; Rela, P.R.

    1995-01-01

    The pollution of potable water with chlorinated hydrocarbons, mainly trichloroethylene (TCE) and perchloric ethylene (PCE), is seriously increasing the problem of contamination of water, specially in highly industrialized areas. Recent studies show that depuration by ionizing radiation has been considered a possible alternative to the control of water pollution, wherein the process by ionizing radiation converts TCE and PCE into approximately 100% carbon dioxide ions. Water samples containing TCE e PCE were submitted to radiation in the pilot plant installed in the industrial electron accelerator at IPEN from Radiation Dynamics, Dynamitron II, of 1,5 MeV - 25 m A, with doses varying from 2 kGy to 8 kGy, being its parameters analyzed before and after irradiation TCE and PCE concentrations were determined by the gas chromatography method by liquid-liquid extraction using a gas chromatograph, model CG 90, with an electron capture detector. (author). 5 refs, 4 figs

  19. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Karahadian, C.; Brannan, R.G.; Heath, J.L.

    1997-01-01

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  20. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  1. Post-ion beam induced degradation of copper layers in transmission electron microscopy specimens

    Science.gov (United States)

    Seidel, F.; Richard, O.; Bender, H.; Vandervorst, W.

    2015-11-01

    Copper containing transmission electron microscopy (TEM) specimens frequently show corrosion after focused ion beam (FIB) preparation. This paper reveals that the corrosion product is a Cu-S phase growing over the specimen surface. The layer is identified by energy-dispersive x-ray spectroscopy, and lattice spacing indexing of power spectra patterns. The corrosion process is further studied by TEM on cone-shaped specimens, which are intentionally stored after FIB preparation with S flakes for short time. Furthermore, a protective method against corrosion is developed by varying the time in the FIB vacuum and the duration of a subsequent plasma cleaning.

  2. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    Science.gov (United States)

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-08

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.

  3. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    Science.gov (United States)

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  4. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  5. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway.

    Science.gov (United States)

    Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin

    2017-06-01

    Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4

  6. Degradation Of Aggregate Pollutant In Textiles Wastewater By Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Zulkafli Ghazali; Siti Aiasah Hashim; Selambakkannu, S.; Ming, T.T.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2016-01-01

    Aggregate pollutant were refer to the mixture of the excess material that is used in the manufacturing proses of textiles, present in wastewater. This paper studies the effect of the beam energy, beam current and absorbed dose on degradation of aggregate pollutant in textiles effluent which was indicate by COD, pH and UV-Vis spectrum. The impact of beam energy was conducted when sample were exposed to the irradiation at various beam energy (1 to 3 MeV) at 20 mA and 17 kGy. The COD reduced from 495 mg/l to the range 398.00 -358 mg/l at beam energy 1 MeV to 3 MeV. The irradiated sample also slightly become more acidic at higher beam energy. While 1 MeV beam energy was sufficient to eliminate the exposed peak at wavelength of 425 nm, 550 nm and 650 nm in the UV spectrum. In the case effect of current, the COD effluent tested at constant beam energy of 1 MeV and 3 MeV at various beam current (3 mA, 5 mA, 10 mA, 15 mA and 20 mA) decreased with higher beam current. While interested peak in UV spectrum of irradiated samples was varnish at 3 mA beam current and 1 MeV energy applied. Considering to the 19.66 % COD removal and electric power used, 1 MeV beam energy and 20 mA beam current was the optimum irradiation parameter selected for this study. At 1 MeV:20 mA textiles wastewater irradiated at various dose of 17, 20, 25, 30, 35, 100 and 200 kGy shows removal of COD, were in the range 4.42 % - 30.09 %. (author)

  7. Degradation in tensile properties of aromatic polymers by electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hayakawa, N.; Yoshida, K.; Hagiwara, M.

    1985-01-01

    Electron beam irradiation effects of ten kinds of polymers containing various aromatic rings linked by functional groups in the main chain (aromatic polymer) were studied with reference to change in tensile properties. The polymers studied were polyimides 'Kapton H', and 'UPILEX', polyetherimide 'ULTEM', polyamides 'A-Film' and 'APH-50 (nomex type paper)', poly-ether-ether-ketone 'PEEK', polyarylate 'U-Polymer', polysulphones 'Udel-Polysulphone' and 'PES', and modified poly(phenylene oxide) 'NORYL'. Irradiation was carried out by use of electron beam at a dose rate of 5 x 10 3 Gy s -1 at room temperature. The elongation at break was the most severely influenced by the irradiation and it decreased with increasing dose. The order of radiation resistivity which was evaluated from the dose required for the elongation to become 50% and 20% of the initial value was as follows: Polyimide > PEEK > polyamide > polyetherimide > polyarylate > polysulphone, poly(phenylene oxide). Based on the above experimental results, an order is proposed for the radiation stability of the aromatic repeating units composing the main chain. (author)

  8. Bottom-up and middle-out approaches to electronic patient information systems: a focus on healthcare pathways

    Directory of Open Access Journals (Sweden)

    Ken Eason

    2013-12-01

    Full Text Available Background A study is reported that examines the use of electronic health record (EHR systems in two UK local health communities.Objective These systems were developed locally and the aim of the study was to explore how well they were supporting the coordination of care along healthcare pathways that cross the organisational boundaries between the agencies delivering health care.Results The paper presents the findings for two healthcare pathways; the Stroke Pathway and a pathway for the care of the frail elderly in their own homes. All the pathways examined involved multiple agencies and many locally tailored EHR systems are in use to aid the coordination of care. However, the ability to share electronic patient information along the pathways was patchy. The development of systems that enabled effective sharing of information was characterised by sociotechnical system development, i.e. associating the technical development with process changes and organisational changes, with local development teams that drew on all the relevant agencies in the local health community and on evolutionary development, as experience grew of the benefits that EHR systems could deliver.Conclusions The study concludes that whilst there may be a role for a national IT strategy, for example, to set standards for systems procurement that facilitate data interchange, most systems development work needs to be done at a ‘middle-out’ level in the local health community, where joint planning between healthcare agencies can occur, and at the local healthcare pathway level where systems can be matched to specific needs for information sharing.

  9. Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer.

    Science.gov (United States)

    Li, Bo; Lu, Wenfu; Yang, Qing; Yu, Xiuping; Matusik, Robert J; Chen, Zhenbang

    2014-04-01

    The intervention of advanced prostate cancer (PCa) in patients has been commonly depending on androgen deprivation therapy. Despite of tremendous research efforts, however, molecular mechanisms on AR regulation remain poorly understood, particularly for castration resistant prostate cancer (CRPC). Targeting AR and associated factors is considered an effective strategy in PCa treatment. Human prostate cancer cells were used in this study. Manipulations of Skp2 expression were achieved by Skp2 shRNA/siRNA or overexpression of plasmids. Dual luciferase reporter assay was applied for AR activity assessment. Western blot, ubiquitination assay, immunoprecipitation, and immunofluorescence were applied to detect the proteins. Our results demonstrated that Skp2 directly involves the regulation of AR expression through ubiquitination-mediated degradation. Skp2 interacted with AR protein in PCa cells, and enforced expression of Skp2 resulted in a decreased level and activity of AR. By contrast, Skp2 knockdown increased the protein accumulation and activity of AR. Importantly, changes of AR contributed by Skp2 led to subsequent alterations of PSA level in PCa cells. AR ubiquitination was significantly increased upon Skp2 overexpression but greatly reduced upon Skp2 knockdown. AR mutant at K847R abrogated Skp2-mediated ubiquitination of AR. NVP-BEZ235, a dual PI3K/mTOR inhibitor, remarkably inhibited Skp2 level with a striking elevation of AR. The results indicate that Skp2 is an E3 ligase for proteasome-dependent AR degradation, and K847 on AR is the recognition site for Skp2-mediated ubiquitination. Our findings reveal an essential role of Skp2 in AR signaling. © 2013 Wiley Periodicals, Inc.

  10. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  11. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R

    2015-04-01

    Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD.

    Science.gov (United States)

    Needham, Patrick G; Brodsky, Jeffrey L

    2013-11-01

    All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Electroacupuncture inhibits apoptosis in annulus fibrosis cells through suppression of the mitochondria-dependent pathway in a rat model of cervical intervertebral disc degradation

    Directory of Open Access Journals (Sweden)

    Jun Liao

    2012-01-01

    Full Text Available The purpose of this study was to investigate whether treatment with electroacupuncture (EA inhibited mitochondria-dependent apoptosis in annulus fibrosis (AF cells in a rat model of cervical intervertebral disc degradation induced by unbalanced dynamic and static forces. Forty Sprague-Dawley rats were used in this study, of which 30 underwent surgery to induce cervical intervertebral disc degradation, 10 rats received EA at acupoints Dazhui (DU 14 and Shousanli (LI 10. TUNEL staining was measured to assess apoptosis in AF cells, immunohistochemistry was used to examine Bcl-2 and Bax expression, colorimetric assays were used to determine caspase 9 and caspase 3 activities and RT-PCR and western blotting were used to assess the mRNA and protein expression of Crk and ERK2. Treatment with EA reduced the number of AF-positive cells in TUNEL staining, increased Bcl-2-positive cells and decreased Bax-positive cells in immunohistochemical staining, significantly inhibited the activation of caspases-9 and -3, and enhanced the mRNA and protein expression of Crk and ERK2. Our data show that EA inhibits AF cell apoptosis via the mitochondria-dependent pathway and up-regulates Crk and ERK2 expression. These results suggest that treatment with may be a good alternative therapy for preventing cervical spondylosis.

  14. Degradation of Cu(In, Ga)Se{sub 2} thin-film solar cells due to the ionization effect of low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Shirou, E-mail: kawakita.shirou@jaxa.jp [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Imaizumi, Mitsuru [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Okuda, Shuichi [Osaka Prefecture University (OPU), Sakai, Osaka 599-8570 (Japan); Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan)

    2015-05-01

    Cu (In, Ga)Se{sub 2} (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in III{sub Cu} defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of III{sub Cu} defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2.

  15. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    Science.gov (United States)

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of

  16. Transport and degradation of dissolved organic matter and associated freshwater pathways in the Laptev Sea (Siberian Arctic)

    Science.gov (United States)

    Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid

    2016-04-01

    The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.

  17. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  18. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wen-Ping, Gu; Huan-Tao, Duan; Jin-Yu, Ni; Yue, Hao; Jin-Cheng, Zhang; Qian, Feng; Xiao-Hua, Ma

    2009-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current I Dsat , maximal transconductance g m , and the positive shift of threshold voltage V TH at high drain-source voltage V DS . The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with V DS = 20 V and V GS = 0 V applied to the device for 10 4 sec, the SiN passivation decreases the stress-induced degradation of I Dsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of I Dsat , which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.

    Science.gov (United States)

    Bahar, M; de Majnik, J; Wexler, M; Fry, J; Poole, P S; Murphy, P J

    1998-11-01

    Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD and MocE contain motifs corresponding to a TOL-like oxygenase and a [2Fe-2S] Rieske-like ferredoxin, respectively. The mocF gene encodes a ferredoxin reductase that would complete the oxygenase system, but is not essential for rhizopine catabolism. We propose a rhizopine catabolic model whereby MocB transports rhizopine into the cell and MocDE and MocF (or a similar protein elsewhere in the genome), under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine (SI). MocA, an NAD(H)-dependent dehydrogenase, and MocC continue the catabolic process. Compounds formed then enter the inositol catabolic pathway.

  20. Characterization of 3-ketosteroid 9{alpha}-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis.

    Science.gov (United States)

    Capyk, Jenna K; D'Angelo, Igor; Strynadka, Natalie C; Eltis, Lindsay D

    2009-04-10

    KshAB (3-Ketosteroid 9alpha-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O(2). Nevertheless, the reactivity of KshAB with O(2) was low in the presence of 1,4-androstadiene-3,17-dione, with a k(cat)/K(m)(O(2)) of 2450 +/- 80 m(-1) s(-1). The crystallographic structure of KshA, determined to 2.3A(,) revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance.

  1. Electronic patient information systems and care pathways: the organisational challenges of implementation and integration.

    Science.gov (United States)

    Dent, Mike; Tutt, Dylan

    2014-09-01

    Our interest here is with the 'marriage' of e-patient information systems with care pathways in order to deliver integrated care. We report on the development and implementation of four such pathways within two National Health Service primary care trusts in England: (a) frail elderly care, (b) stroke care, (c) diabetic retinopathy screening and (d) intermediate care. The pathways were selected because each represents a different type of information and data 'couplings', in terms of task interdependency with some pathways/systems reflecting more complex coordinating patterns than others. Our aim here is identify and explain how health professionals and information specialists in two organisational National Health Service primary care trusts organisationally construct and use such systems and, in particular, the implications this has for issues of professional and managerial control and autonomy. The article is informed by an institutionalist analysis. © The Author(s) 2013.

  2. Analysis of material characteristics for the construction of energy degrading and scattering plates for electron beam skin radiotherapy

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Siqueira, Paulo T.D.; Antunes, Paula C.G.; Furnari, Laura; Santos, Gabriela R.

    2009-01-01

    There are many radiosensitive diseases associated to the skin such as mycosis fungoids and the syndrome of Sezary that are part of a sub-group of cutaneous diseases type T-cell lymphoma. Several studies indicate the eradication of the disease when treated with linear accelerators emitting electron beams with energies between 4 to 10 MeV. However, this treatment technique presents innumerable technical challenges since the disease in general reaches all patient's body, becoming necessary a very large field size radiation beam, and also, it should deliver superficial doses limited to the skin depth. To reach the uniformity in the dose distribution, many techniques had already been developed. Based on these previous studies and guided by the report nr. 23 of the AAPM (American Association of Physicists in Medicine), the present study will develop an energy scattering and degrading plates, supplying subsidies for a future installation for skin treatment at the - Servico de Radioterapia do Hospital das Clinicas de Sao Paulo. As part of the plates design, first of all, the energy spectrum of the 6 MeV electron beam of the VARIAN 2100C accelerator was reconstructed through Monte Carlo simulations using the MCNP4C code and based on experimental data. Once the spectrum is built the design of the plates has been performed analyzing several materials, shapes and dimensions most adequate on the basis of radial and axial dose distribution, production of rays-x and dose attenuation. The simulations will be validated with experimental measurements using copper and aluminum. (author)

  3. Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S. D. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box; Becker, U. [The University of Michigan, Department of Earth; Rosso, K. M. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box

    2017-09-06

    This study continues mechanistic development of heterogeneous electron transfer (ET) pathways at mineral surfaces in aquatic environments that enable the reduction U(VI) by surface-associated Fe(II). Using computational molecular simulation within the framework of Marcus Theory, our findings highlight the importance of the configurations and interaction of the electron donor and acceptor species with the substrate, with respect to influencing its electronic structure and thereby the ability of semiconducting minerals to facilitate ET. U(VI) reduction by surface-associated Fe(II) (adsorbed or structurally incorporated into the lattice) on an insulating, corundum (001) surface (α-Al2O3) occurs when proximal inner-sphere (IS) surface complexes are formed, such that ET occurs through a combination of direct exchange (i.e., Fe d- and U f-orbitals overlap through space) and superexchange via intervening surface oxygen atoms. U(VI) reduction by coadsorbed Fe(II) on the isostructural semiconducting hematite (α-Fe2O3) basal surface requires either their direct electronic interaction (e.g., IS complexation) or mediation of this interaction indirectly through the surface via an intrasurface pathway. Conceptually possible longer-range ET by charge-hopping through surface Fe atoms was investigated to determine whether this indirect pathway is competitive with direct ET. The calculations show that energy barriers are large for this conduction-based pathway; interfacial ET into the hematite surface is endothermic (+80.1 kJ/mol) and comprises the rate-limiting step (10–6 s–1). The presence of the IS adsorbates appears to weaken the electronic coupling between underlying Fe ions within the surface, resulting in slower intra-surface ET (10–5 s–1) than expected in the bulk basal plane. Our findings lay out first insights into donor-acceptor communication via a charge-hopping pathway through the surface for heterogeneous reduction of U(VI) by Fe(II) and help provide a basis

  4. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  5. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal

    International Nuclear Information System (INIS)

    Ghanbari, F.; Ghoorchi, T.; Shawrang, P.; Mansouri, H.; Torbati-Nejad, N.M.

    2012-01-01

    This study was conducted to compare effects of electron beam (EB) and gamma ray (GR) treatments at doses of 25, 50 and 75 kGy on ruminal degradation kinetics of crude protein (CP), amino acid (AA), and in vitro digestibility of cottonseed meal (CSM). Ionizing radiations of EB and GR had significant effects (P 0.05). Irradiation processing caused decrement in AA degradation after 16 h of ruminal incubation (P<0.05). EB irradiation was more effective than GR irradiation in lessening the ruminal degradability of AA (P<0.05). EB and GR treatments at a dose of 75 kGy increased in vitro digestibility of CSM numerically. This study showed that EB could cause CP and AA bypass rumen as well as GR. Therefore, ionizing irradiation processing can be used as an efficient method in improving nutritional value of CSM. - Highlights: ► Irradiation was effective on reducing ruminal degradability of cottonseed meal. ► Ionizing radiations, especially electron beam, lessened ruminal degradability of amino acid substantially. ► Irradiation processing could be used as a safe and efficient method in improving nutritional value of cottonseed meal.

  6. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145

    Directory of Open Access Journals (Sweden)

    Agnieszka Bera

    2017-04-01

    Full Text Available Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962, was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.

  7. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Qu, Ruijuan; Wang, Zunyao

    2017-10-01

    The feasibility of UV-activated peroxymonosulfate (PMS) technology for the degradation of Tris (2-chloroethyl) phosphate (TCEP) in an aqueous solution was investigated in this study. The conditions of [PMS] 0 : [TCEP] 0  = 20:1, T = 25 ± 2 °C and pH = 5.5 ± 0.5 cause a 94.6% removal of TCEP (1 mg L -1 ) after 30 min of Hg lamp irradiation. The effects of operating parameters (the oxidant doses, pH and presence of typical cations (Fe 3+ , Cu 2+ , Ni 2+ , NH 4 + ), anions (Cl - , HCO 3 - , NO 3 - , HPO 4 2- ) and humic acid (HA)) were evaluated. It was found that an increase of the PMS dose and the presence of Fe 3+ could accelerate the reaction, while the anions and HA inhibited the reaction. Meanwhile, TCEP removal in various water matrices was compared, and the order for TCEP removal was as follows: ultrapure water > tap water > synthetic water > secondary clarifier effluent > Jiuxiang river water. Twenty-two oxidation products were identified using an electrospray time-of-flight mass spectrometer, and the degradation pathways mainly involved radicals' addition and CO bond cleavage. Furthermore, ECOSAR analysis revealed that the intermediate products during the TCEP oxidation process were generally not harmful to three typical aquatic species. Hence, UV/PMS can be used as an efficient technology to treat TCEP-containing water and wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory.

    Science.gov (United States)

    Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G

    2010-11-25

    Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.

  9. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  10. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  11. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    Science.gov (United States)

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  12. Exploring the electron transfer pathway in the oxidation of avermectin by CYP107Z13 in Streptomyces ahygroscopicus ZB01.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3, with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01.

  13. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  14. Salubrinal Suppresses IL-17-Induced Upregulation of MMP-13 and Extracellular Matrix Degradation Through the NF-kB Pathway in Human Nucleus Pulposus Cells.

    Science.gov (United States)

    Yao, Zhixiao; Nie, Lin; Zhao, Yunpeng; Zhang, Yuanqiang; Liu, Yi; Li, Jingkun; Cheng, Lei

    2016-12-01

    Matrix metalloproteinase 13 (MMP-13) plays an important role in the process of pro-inflammatory cytokine-induced intervertebral disc degeneration (IDD). This study examined the effect of IL-17 on the regulation of MMP-13 and the extracellular matrix (ECM) in the intervertebral disc (IVD). We then examined whether salubrinal, a known inhibitor of eIF2α dephosphorylation, inhibited the IL-17-induced changes mentioned above. Furthermore, we demonstrated a potential therapeutic role for salubrinal in alleviating the chronic inflammatory-dependent degenerative state commonly observed in IDD. After inflammatory distress with IL-17, RT-PCR and western blot were employed to investigate the expression of MMP-13, collagen type II (COL2A1), collagen type I (COL1A1), and aggrecan (ACAN) in nucleus pulpous (NP) tissue. Activation of the NF-kB pathway was measured by western blot and immunocytochemistry following IL-17 treatment. We also examine the level of eIF2α phosphorylation after IL-17 treatment with or without salubrinal. Then, we investigated interactions of the NF-kB pathway to eIF2α phosphorylation. Moreover, we employed salubrinal and a specific inhibitor of NF-kB (BAY11-7082) to evaluate their effects on IL-17-driven regulation of MMP-13 and the ECM, as well as on the activation of NF-kB. The results showed that IL-17 increased the production of MMP-13 and decreased expression of COL2A1 and ACAN via the NF-kB pathway. Either IL-17 or salubrinal increased the level of eIF2α phosphorylation, but the effects of BAY11-7082 on the level of p-eIF2α were not detectable. BAY11-7082 and salubrinal significantly suppressed IL-17-driven intervertebral disc degeneration. Furthermore, salubrinal produced stronger effects than BAY11-7082. These results imply the potential involvement of IL-17 in IDD through activation of NF-kB signaling, which successively upregulated the expression of MMP-13 and led to the degradation of the ECM. Furthermore, salubrinal can inhibit this

  15. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan

    2016-10-04

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  16. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    Science.gov (United States)

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y X

    2016-01-01

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  18. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  19. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons; Degradacion de contaminantes y eliminacion de patogenos de aguas residuales por adsorcion de electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I

    1991-10-15

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO{sub 2} that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  20. Bridge mediated two-electron transfer reactions: Analysis of stepwise and concerted pathways

    International Nuclear Information System (INIS)

    Petrov, E.G.; May, V.

    2004-01-01

    A theory of nonadiabatic donor (D)-acceptor (A) two-electron transfer (TET) mediated by a single regular bridge (B) is developed. The presence of different intermediate two-electron states connecting the reactant state D -- BA with the product state DBA -- results in complex multiexponential kinetics. The conditions are discussed at which a reduction to two-exponential as well as single-exponential kinetics becomes possible. For the latter case the rate K TET is calculated, which describes the bridge-mediated reaction as an effective two-electron D-A transfer. In the limit of small populations of the intermediate TET states D - B - A, DB -- A, D - BA - , and DB - A - , K TET is obtained as a sum of the rates K TET (step) and K TET (sup) . The first rate describes stepwise TET originated by transitions of a single electron. It starts at D -- BA and reaches DBA -- via the intermediate state D - BA - . These transitions cover contributions from sequential as well as superexchange reactions all including reduced bridge states. In contrast, a specific two-electron superexchange mechanism from D -- BA to DBA -- defines K TET (sup) . An analytic dependence of K TET (step) and K TET (sup) on the number of bridging units is presented and different regimes of D-A TET are studied

  1. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance

    OpenAIRE

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-01-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showe...

  2. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    Science.gov (United States)

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  3. Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-Amino-3-Carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas fluorescens Strain KU-7†

    OpenAIRE

    Muraki, Takamichi; Taki, Masami; Hasegawa, Yoshie; Iwaki, Hiroaki; Lau, Peter C. K.

    2003-01-01

    The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase a...

  4. Effect of Electron Beam Irradiation on Degradability Coefficients and Ruminalpostruminal Digestibility of Dry Matter and Crude Protein of some Plant Protein Sources

    Directory of Open Access Journals (Sweden)

    gasem tahan

    2016-06-01

    Full Text Available Effect of electron beam irradiation on degradability coefficients and ruminal- postruminal digestibility of dry matter and crude protein of soybean meal, canola meal and Lathyrus sativus seed, irradiated at doses of 50, 100 and 150 kGy was investigated. Ruminal degradability of dry matter and crude protein was determined by in situ method using two cannulated Holstein heifers. Ruminal- postruminal digestibility of dry matter and crude protein was determined by in situ (nylon bag-in vitro (daisy digestor techniques. Data analyzed using SAS software as randomized completely design and the treatment means were compared using Tukey test. The results indicated that irradiation had no effect on dry matter, ether extract and ash content of feeds. In soybean meal, washout fraction and potentially degradable fraction of dry matter and crude protein was higher and lower at dose of 150 kGy irradiation than other treatments, respectively, and degradation rate constant and ruminal effective degradability of dry matter and crude protein was lower at all doses of irradiation than untreated soybean meal. In canola meal, irradiation at doses of 50 and 100 kGy decreased washout fraction and increased potentially degradable fraction of crude protein compared with untreated canola meal. In Lathyrus sativus seed, only potentially degradable fraction of dry matter and crude protein was lower at dose of 150 kGy irradiation than untreated Lathyrus sativus seed. Ruminal digestibility of crude protein decreased in soybean meal at doses of 100 and 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. Total tract digestibility of crude protein decreased in soybean meal at dose of 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. In Lathyrus sativus seed, ruminal-postruminal digestibility and total tract digestibility of dry matter increased at doses of 100 and 150 kGy irradiation than untreated

  5. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways.

    Science.gov (United States)

    Doll, Tusnelda E; Frimmel, Fritz H

    2004-02-01

    The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.

  6. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Matulionis, Arvydas

    2013-01-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation–dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested. (invited review)

  7. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere

    International Nuclear Information System (INIS)

    Dubau, L.; Castanheira, L.; Berthomé, G.; Maillard, F.

    2013-01-01

    This study shows that the predominant degradation mechanism of Pt/Vulcan XC72 electrocatalysts strongly depends on the nature of the gas atmosphere and of the upper potential limit used in accelerated stress tests (ASTs). The morphological changes of Pt/Vulcan XC72 nanoparticles were studied by identical location transmission electron microscopy (IL-TEM), following accelerated stress tests in different potential ranges and under various gas atmospheres. X-ray photoelectron spectroscopy was used to probe changes in carbon surface chemistry. Whereas minor changes were detected under neutral atmosphere (Ar) and low potential limit conditions (0.05 2 ). With an increase of the upper potential limit to 1.23 V vs. RHE, the trends observed previously were maintained but 3D Ostwald ripening strongly overlapped with the three other degradation mechanisms, precluding any identification of the dominant mechanism

  8. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  9. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  10. New pathways in electronics and optoelectronics driven by new physics of nonconventional materials

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2015-01-01

    Nonconventional materials (NCM) - 2D materials and topological insulators (TI) - have opened a gateway to search new physical phenomena and states of the condensed matter as well as to pave new platform of modern technology. This stems on their unique attributes - non equivalence of electronic and dielectric states to vacuum ones, topological protection (reduced backscattering), spin momentum locking property, magnetoelectric coupling, generations of new quasiparticles like Majorana fermions. Increasing the surface state contribution in proportion to the bulk is critical to investigate the surface states and for future innovative device applications. The way to achieve this is to configure NCM into nanostructures, which at the same time in combination with others materials significantly enlarge the variety of new states and phenomena. This article reviews the recent progress made in NCM and nano heterostructures investigation. The state of art of different new scenario of engineering topologically interface states in the TI heterostructures are revealed, in particular by using polarization fields and antiferromagnetic ordering. Some of new proposals for innovative electronic and optoelectronic devices are discussed. (author)

  11. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams

    International Nuclear Information System (INIS)

    Bjoerk, Peter; Knoeoes, Tommy; Nilsson, Per

    2004-01-01

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm 2 ), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber

  12. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    Science.gov (United States)

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers

  13. Defining Data Access Pathways for Atmosphere to Electrons Wind Energy Data

    Science.gov (United States)

    Macduff, M.; Sivaraman, C.

    2016-12-01

    Atmosphere to Electrons (A2e), is a U.S. Department of Energy (DOE) Wind Program research initiative designed to optimize the performance of wind power plants by lowering the levelized cost of energy (LCOE). The Data Archive and Portal (DAP), managed by PNNL and hosted on Amazon Web Services, is a key capability of the A2e initiative. The DAP is used to collect, store, catalog, preserve and disseminate results from the experimental and computational studies representing a diverse user community requiring both open and proprietary data archival solutions(http://a2e.pnnl.gov). To enable consumer access to the data in DAP it is being built on a set of API's that are publically accessible. This includes persistent references for key meta-data objects as well as authenticated access to the data itself. The goal is to make the DAP catalog visible through a variety of data access paths bringing the data and metadata closer to the consumer. By providing persistent metadata records we hope to be able to build services that capture consumer utility and make referencing datasets easier.

  14. TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

    DEFF Research Database (Denmark)

    Andreasen, Birgitta; Tanenbaum, David; Hermenau, Martin

    2012-01-01

    -depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without......-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in...... of organic solar cells....

  15. DEGRADATION OF SOLAR CELLS PARAMETERS FABRICATED ON THE BASIS OF Cu(In,GaSe2 SEMICONDUCTOR SOLID SOLUTIONS UNDER ELECTRON IRRADIATION

    Directory of Open Access Journals (Sweden)

    A. V. Mudryi

    2014-01-01

    Full Text Available Polycrystalline Cu(In,GaSe2 (CIGS thin films were grown on molybdenum-coated soda-lime glass substrates by co-evaporation of the elements Cu, In, Ga and Se from independent sources. The effect of electron irradiation on the electrical and optical properties of CIGS thin films and solar cells with the structure ZnO:Al/i-ZnO/CdS/CIGS/Mo/glass was studied. It was found that the degradation of the electrical parameters of solar cells (open-circuit voltage, short-circuit current density and efficiency took place due to the formation of radiation defects (recombination centers with deep energy levels in the bandgap of CIGS. It was revealed that after electron irradiation intensity of near band-edge luminescence band at about 1,1 eV decreased considerably and bands of luminescence with maxima at 0,93 and 0,75 eV appeared.

  16. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...

  17. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental investigation of dissociation pathways of cooled HeH+ following valence electron excitation at 32 nm by intense free-electron-laser radiation

    International Nuclear Information System (INIS)

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-01-01

    The dissociation pathways of HeH + have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He + (1s)+H(nl) and He(1snl)+H + were separated and the He(1snl)+H + channel was particularly studied by coincidence detection of the He and H + fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be σ He + +H /σ He+H + =0.96±0.11 for vibrationally hot and 1.70±0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH + . The fragment angular distributions showed that dissociation into the He+H + channel mostly (∼70%) proceeds through 1 Π states, while for the He + +H channel 1 Σ and 1 Π states are of about equal importance.

  19. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    Science.gov (United States)

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  20. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Evangelia C.Vouvoudi; Aristea T.Rousi; Dimitris S.Achilias

    2017-01-01

    Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused.In the framework of sustainable recycling of plastics from WEEE,pyrolysis is proposed here as a means of obtaining secondary value-added products.The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE,using thermogravimetric analysis and a pyrolizer equipped with a GC/MS.Polymers studied include ABS,HIPS,PC and a blend having a composition similar to that appearing in WEEE.It was found that,PC shows greater heat endurance compared to the other polymers,whereas ABS depolymerizes in three-steps.The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation.Moreover,the fragmentation occurred in the pyrolyzer,at certain temperatures,resulted in a great variety of compounds,depending on the polymer type,such as monomers,aromatic products,phenolic compounds and hydrocarbons.The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

  1. Following patient pathways to psycho-oncological treatment: Identification of treatment needs by clinical staff and electronic screening.

    Science.gov (United States)

    Loth, Fanny L; Meraner, Verena; Holzner, Bernhard; Singer, Susanne; Virgolini, Irene; Gamper, Eva M

    2018-04-01

    In this retrospective investigation of patient pathways to psycho-oncological treatment (POT), we compared the number of POT referrals before and after implementation of electronic screening for POT needs and investigated psychosocial predictors for POT wish at a nuclear medicine department. We extracted medical chart information about number of referrals and extent of follow-up contacts. During standard referral (November 2014 to October 2015), POT needs were identified by clinical staff only. In the screening-assisted referral period (November 2015 to October 2016), identification was supported by electronic screening for POT needs. Psychosocial predictors for POT wish were examined using logistic regression. We analysed data from 487 patients during standard referral (mean age 56.4 years; 60.2% female, 88.7% thyroid carcinoma or neuroendocrine tumours) of which 28 patients (5.7%) were referred for POT. Of 502 patients in the screening-assisted referral period (mean age 57.0 years; 55.8% female, 86.6% thyroid carcinoma or neuroendocrine tumours), 69 (13.7%) were referred for POT. Of these, 36 were identified by psycho-oncological (PO) screening and 33 by clinical staff. After PO-screening implementation, referrals increased by a factor of 2.4. The strongest predictor of POT wish was depressive mood (P patients visited the PO outpatient unit additionally to inpatient PO consultations. Our results provide evidence from a real-life setting that PO screening can foster POT referrals, reduce barriers to express the POT wish, and hence help to meet psychosocial needs of this specific patient group. Differences between patients' needs, wish, and POT uptake should be further investigated. © 2018 The Authors. Psycho-Oncology Published by John Wiley & Sons Ltd.

  2. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  3. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways

    NARCIS (Netherlands)

    Poelarends, GJ; Kulakov, LA; Larkin, MJ; van Hylckama Vlieg, Johan E.T.; Janssen, DB

    The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct

  4. Analysis of degradation in nickel-based alloys using focused ion beam imaging and specimen preparation combined with analytical electron microscopy

    International Nuclear Information System (INIS)

    Phaneuf, M.W.; Botton, G.A.

    2002-01-01

    Focused ion beam (FIB) microscopes have become well-established in the semiconductor industry during the past decade, and are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided transmission electron microscope (TEM) specimens and as stand alone specimen preparation and imaging systems. FIB secondary electron imaging (SEI) of nickel-based alloys, such as commercially produced Alloy 600 (approximately Ni 15Cr 10Fe 0.5C), has been demonstrated to show a high degree of sensitivity to the presence of deformation in the alloy, and FIB secondary ion imaging (SII) is particularly useful for identifying the presence of grain boundary corrosion, as secondary ion yields from metallic specimens can increase by three orders of magnitude in the presence of oxygen. This 'oxygen enhanced yield', makes FIB SII ideal for detection of corrosion at grain boundaries down to thicknesses of only a few tens of nanometers. Historically, while TEM has been considered the tool of choice for high resolution chemical and crystallographic analysis of specimens, the technique has suffered from difficulties in producing suitable samples from site-specific areas with a high probability of success. The advent of FIB specimen preparation for TEM has largely changed that. FIB imaging can be combined with FIB 'nano-machining' techniques to produce site-specific, parallel sided TEM specimens well-suited to analytical electron microscopy (AEM) analyses in the TEM, including electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDX) and electron diffraction. When combined with new FIB-based methodologies for surveying large areas to exactly select the regions of interest, such as crack tips or the maximum extent of penetration of intergranular attack (IGA), subsequent FIB TEM specimen preparation and TEM analysis unite to produce a powerful tool to study these phenomena. Examples of these applications of FIB

  5. Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one

    Science.gov (United States)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2011-03-01

    Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  7. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    Unknown

    DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the ther- mal degradation of cellular DNA and isolated DNA showed that cellular ..... definite level of energy (e.g. depurination active energy,.

  8. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy.

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A

    2014-09-10

    In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.

  9. Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2018-03-01

    Full Text Available The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL. Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.

  10. Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials

    KAUST Repository

    Hong, Minki

    2016-07-25

    We investigate the dissociation mechanism of the C-N bond between carbazole and dibenzothiophene in carbazole-dibenzothiophene (Cz-DBT) positional isomers, selected as representative systems for blue host materials in organic light-emitting diodes (OLEDs). The C-N bond dissociation energies, calculated at the density functional theory level, are found to depend strongly on the charge states of the parental molecules. In particular, the anionic C-N bond dissociations resulting in a carbazole anion can have low dissociation energies (∼1.6 eV) with respect to blue emission energy. These low values are attributed to the large electron affinity of the carbazole radical, a feature that importantly can be modulated via substitution. Substitution also impacts the energies of the first excited electronic states of the Cz-DBT molecules since these states have an intramolecular charge-transfer nature due to the spatially localized character of the frontier molecular orbitals within the carbazole moiety (for the HOMO) and the dibenzothiophene moiety (for the LUMO). The implications of these results must be considered when designing blue OLED hosts since these materials must combine chemical stability and high triplet energy. © 2016 American Chemical Society.

  11. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-10-01

    Full Text Available Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’ leaves were excised and incubated in 3 mM 2-(N-morpholino ethanesulfonic buffer (pH 5.8 supplemented with melatonin or water (control and exposed to dark treatment for 8 d. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69 during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant

  12. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites

    Institute of Scientific and Technical Information of China (English)

    Ming GE; Changsheng GUO; Xingwang ZHU; Lili MA; Zhefian HAN; Wei HU; Yuqiu WANG

    2009-01-01

    ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composi-tion and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.

  13. Comparative scanning electron microscope study of the degradation of a plasticized polyvinyl chloride waterproofing membrane in different conditions

    International Nuclear Information System (INIS)

    Pedrosa, A.; Del Río, M.

    2017-01-01

    This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather. [es

  14. Microscopic properties of degradation-free capped GdN thin films studied by electron spin resonance

    International Nuclear Information System (INIS)

    Shimokawa, Tokuro; Fukuoka, Yohei; Fujisawa, Masashi; Zhang, Weimin; Okubo, Susumu; Ohta, Hitoshi; Sakurai, Takahiro; Vidyasagar, Reddithota; Yoshitomi, Hiroaki; Kitayama, Shinya; Kita, Takashi

    2015-01-01

    The microscopic magnetic properties of high-quality GdN thin films have been investigated by electron spin resonance (ESR) and ferromagnetic resonance (FMR) measurements. Detailed temperature dependence ESR measurements have shown the existence of two ferromagnetic components at lower temperatures, which was not clear from the previous magnetization measurements. The temperature, where the resonance shift occurs for the major ferromagnetic component, seems to be consistent with the Curie temperature obtained from the previous magnetization measurement. On the other hand, the divergence of line width is observed around 57 K for the minor ferromagnetic component. The magnetic anisotropies of GdN thin films have been obtained by the analysis of FMR angular dependence observed at 4.2 K. Combining the X-ray diffraction results, the correlation between the magnetic anisotropies and the lattice constants is discussed

  15. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC

    NARCIS (Netherlands)

    Oosterkamp, M.J.; Boeren, S.; Atashgahi, S.; Plugge, C.M.; Schaap, P.J.; Stams, A.J.M.

    2015-01-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In

  16. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fangbai [Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650 (China); Jiang, Longfei [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Yan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation.

  17. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  18. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    International Nuclear Information System (INIS)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang

    2016-01-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H_2O_2) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm"−"2 meanwhile the current efficiency of H_2O_2 generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H_2O_2 generation 1-h electrolysis reaches 43%.

  19. Electron transfer number control of the oxygen reduction reaction on nitrogen-doped reduced graphene oxides for the air electrodes of zinc-air batteries and organic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Hui; Li, Po-Chieh; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw

    2016-11-01

    The mean electron transfer number (n) of the oxygen reduction reaction (ORR) on reduced graphene oxide (rGO) is controlled by nitrogen doping for the air electrodes of Zn-air batteries and electrochemical organic degradation. Melamine and pyrrole are employed as the nitrogen sources for fabricating N-doped rGO (N-rGO) by microwave-assisted hydrothermal synthesis (MAHS). The n value of the ORR is determined by the rotating ring-disk electrode (RRDE) voltammetry and is successfully controlled from 2.34 to 3.93 by preparation variables. The N-doped structures are examined by the x-ray photoelectron spectroscopic (XPS) analysis. The morphology and the defect degree of N-rGOs are characterized by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. N-rGOs with high and low n values are employed as the air electrode catalysts of zinc-air batteries and in-situ hydrogen peroxide (H{sub 2}O{sub 2}) generation, respectively. The highest discharge cell voltage of 1.235 V for a Zn-air battery is obtained at 2 mA cm{sup −2} meanwhile the current efficiency of H{sub 2}O{sub 2} generation in 1-h electrolysis at 0 V (vs. RHE) reaches 43%. The electrocatalytic degradation of orange G (OG), analyzed by UV-VIS absorption spectra, reveals a high decoloration degree from the relative absorbance of 0.38 for the azo π-conjugation structure of OG. - Highlights: • The mean electron transfer number (n) is controlled by nitrogen doping. • Melamine and pyrrole are used as the nitrogen sources for fabricating N-rGO. • The n value is successfully controlled from 2.34 to 3.93 by preparation variables. • The highest discharge cell voltage of 1.235 V for a Zn-air battery. • The current efficiency of H{sub 2}O{sub 2} generation 1-h electrolysis reaches 43%.

  20. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  1. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  2. Remote interfacial dipole scattering and electron mobility degradation in Ge field-effect transistors with GeO x /Al2O3 gate dielectrics

    Science.gov (United States)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Shengkai; Wang, Wenwu; Zhao, Chao; Ye, Tianchun; Xiong, Yuhua; Zhang, Jing

    2016-06-01

    Remote Coulomb scattering (RCS) on electron mobility degradation is investigated experimentally in Ge-based metal-oxide-semiconductor field-effect-transistors (MOSFETs) with GeO x /Al2O3 gate stacks. It is found that the mobility increases with greater GeO x thickness (7.8-20.8 Å). The physical origin of this mobility dependence on GeO x thickness is explored. The following factors are excluded: Coulomb scattering due to interfacial traps at GeO x /Ge, phonon scattering, and surface roughness scattering. Therefore, the RCS from charges in gate stacks is studied. The charge distributions in GeO x /Al2O3 gate stacks are evaluated experimentally. The bulk charges in Al2O3 and GeO x are found to be negligible. The density of the interfacial charge is  +3.2  ×  1012 cm-2 at the GeO x /Ge interface and  -2.3  ×  1012 cm-2 at the Al2O3/GeO x interface. The electric dipole at the Al2O3/GeO x interface is found to be  +0.15 V, which corresponds to an areal charge density of 1.9  ×  1013 cm-2. The origin of this mobility dependence on GeO x thickness is attributed to the RCS due to the electric dipole at the Al2O3/GeO x interface. This remote dipole scattering is found to play a significant role in mobility degradation. The discovery of this new scattering mechanism indicates that the engineering of the Al2O3/GeO x interface is key for mobility enhancement and device performance improvement. These results are helpful for understanding and engineering Ge mobility enhancement.

  3. Characterization of 3-Ketosteroid 9α-Hydroxylase, a Rieske Oxygenase in the Cholesterol Degradation Pathway of Mycobacterium tuberculosis*S⃞

    OpenAIRE

    Capyk, Jenna K.; D'Angelo, Igor; Strynadka, Natalie C.; Eltis, Lindsay D.

    2009-01-01

    KshAB (3-Ketosteroid 9α-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and m...

  4. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures.

    Science.gov (United States)

    Rao, Martha Purnachander; Wu, Jerry J; Asiri, Abdullah M; Anandan, Sambandam

    2017-03-01

    Straw-sheaf-like CuO nanostructures were fruitfully synthesized using a chemical precipitation approach for the photocatalytic degradation assessment of tartrazine. Phase identification, composition, and morphological outlook of prepared CuO nanostructures were established by X-ray diffraction and scanning electron microscopy analysis. The photocatalytic performance of the synthesized CuO nanostructures was appraised in the presence of visible light and the possible intermediates formed during the photocatalytic degradation were analyzed by gas chromatography-mass spectrometry. A suitable degradation pathway has also been proposed.

  5. Free radical reaction pathway, thermohemistry of peracetic acid homolysis and its application for phenol degradation: spectroscopic sti=udy and quantum chemistry calculations

    NARCIS (Netherlands)

    Rokhina, E.V.; Makarova, K.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2010-01-01

    The homolysis of peracetic acid (PAA) as a relevant source of free radicals (e.g., •OH) was studied in detail. Radicals formed as a result of chain radical reactions were detected with electron spin resonance and nuclear magnetic resonance spin trapping techniques and subsequently identified by

  6. Photodegradation of lambda-cyhalothrin and cypermethrin in aqueous solution as affected by humic acid and/or copper: intermediates and degradation pathways.

    Science.gov (United States)

    Xie, Jimin; Wang, Pingli; Liu, Jun; Lv, Xiaomeng; Jiang, Deli; Sun, Cheng

    2011-11-01

    The influence of coexisting humic acids (HA) or Cu²⁺ on the photodegradation of pesticides lambda-cyhalothrin (λ-CHT) and cypermethrin (CPM) in aqueous solution was studied under xenon lamp irradiation. The removal efficiency of pesticides λ-CHT and CPM were enhanced in the presence of either Cu²⁺ or HA but restrained in the presence of both Cu²⁺ and HA. The photodegradation of λ-CHT and CPM followed first-order reaction kinetics. The photodegradation intermediates of λ-CHT and CPM were determined using gas chromatography/mass spectrometry. Possible photodegradation pathways included decarboxylation, ester bond cleavage, dechlorination, and phenyl group removal. Copyright © 2011 SETAC.

  7. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  8. A new pathway for transmembrane electron transfer in photosyntetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  9. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers.

    Science.gov (United States)

    Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich

    2017-06-06

    Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.

  10. Removal efficiency and economic cost comparison of hydrated electron-mediated reductive pathways for treatment of bromate

    DEFF Research Database (Denmark)

    Nawaz, Shah; Shah, Noor S.; Khan, Javed Ali

    2017-01-01

    Bromate, a potential carcinogen, is a well known highly persistent and environmentally recalcitrant contaminant. UV-254/sulfite-based advanced reductive pathways (ARPs) were proposed to eliminate bromate successfully from water. Experiments with N2, N2O, 2-chlorophenol, inorganic ions, and differ...

  11. Genetic and functional characterization of a novel meta-pathway for degradation of naringenin in Herbaspirillum seropedicae SmR1.

    Science.gov (United States)

    Maria Marin, Anelis; de la Torre, Jésus; Ricardo Marques Oliveira, Alfredo; Barison, Andersson; Satie Chubatsu, Leda; Adele Monteiro, Rose; de Oliveira Pedrosa, Fabio; Maltempi de Souza, Emanuel; Wassem, Roseli; Duque, Estrella; Ramos, Juan-Luis

    2016-12-01

    In this study, a random mutant library of Herbaspirillum seropedicae SmR1 was constructed by Tn5 insertion and a mutant incapable of utilizing naringenin as a carbon source was isolated. The Tn5 transposon was found to be inserted in the fdeE gene (Hsero_1007), which encodes a monooxygenase. Two other mutant strains in fdeC (Hsero_1005) and fdeG (Hsero_1009) genes coding for a dioxygenase and a putative cyclase, respectively, were obtained by site-directed mutagenesis and then characterized. Liquid Chromatography coupled to mass spectrometry (LC-MS)/MS analyses of culture supernatant from the fdeE mutant strain revealed that naringenin remained unaltered, suggesting that the FdeE protein is involved in the initial step of naringenin degradation. LC-MS/MS analyses of culture supernatants from the wild-type (SmR1) and FdeC deficient mutant suggested that in H. seropedicae SmR1 naringenin is first mono-oxygenated by the FdeE protein, to produce 5,7,8-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, that is subsequently dioxygenated and cleaved at the A-ring by the FdeC dioxygenase, since the latter compound accumulated in the fdeC strain. After meta-cleavage of the A-ring, the subsequent metabolic steps generate oxaloacetic acid that is metabolized via the tricarboxylic acid cycle. This bacterium can also modify naringenin by attaching a glycosyl group to the B-ring or a methoxy group to the A-ring, leading to the generation of dead-end products. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    Science.gov (United States)

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  13. Remote interfacial dipole scattering and electron mobility degradation in Ge field-effect transistors with GeOx/Al2O3 gate dielectrics

    International Nuclear Information System (INIS)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Shengkai; Wang, Wenwu; Zhao, Chao; Ye, Tianchun; Xiong, Yuhua; Zhang, Jing

    2016-01-01

    Remote Coulomb scattering (RCS) on electron mobility degradation is investigated experimentally in Ge-based metal–oxide–semiconductor field-effect-transistors (MOSFETs) with GeO x /Al 2 O 3 gate stacks. It is found that the mobility increases with greater GeO x thickness (7.8–20.8 Å). The physical origin of this mobility dependence on GeO x thickness is explored. The following factors are excluded: Coulomb scattering due to interfacial traps at GeO x /Ge, phonon scattering, and surface roughness scattering. Therefore, the RCS from charges in gate stacks is studied. The charge distributions in GeO x /Al 2 O 3 gate stacks are evaluated experimentally. The bulk charges in Al 2 O 3 and GeO x are found to be negligible. The density of the interfacial charge is  +3.2  ×  10 12 cm −2 at the GeO x /Ge interface and  −2.3  ×  10 12 cm −2 at the Al 2 O 3 /GeO x interface. The electric dipole at the Al 2 O 3 /GeO x interface is found to be  +0.15 V, which corresponds to an areal charge density of 1.9  ×  10 13 cm −2 . The origin of this mobility dependence on GeO x thickness is attributed to the RCS due to the electric dipole at the Al 2 O 3 /GeO x interface. This remote dipole scattering is found to play a significant role in mobility degradation. The discovery of this new scattering mechanism indicates that the engineering of the Al 2 O 3 /GeO x interface is key for mobility enhancement and device performance improvement. These results are helpful for understanding and engineering Ge mobility enhancement. (paper)

  14. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  15. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  16. Characterization of 3-Ketosteroid 9α-Hydroxylase, a Rieske Oxygenase in the Cholesterol Degradation Pathway of Mycobacterium tuberculosis*S⃞

    Science.gov (United States)

    Capyk, Jenna K.; D'Angelo, Igor; Strynadka, Natalie C.; Eltis, Lindsay D.

    2009-01-01

    KshAB (3-Ketosteroid 9α-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O2. Nevertheless, the reactivity of KshAB with O2 was low in the presence of 1,4-androstadiene-3,17-dione, with a kcat/KmO2 of 2450 ± 80 m–1 s–1. The crystallographic structure of KshA, determined to 2.3Å, revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance. PMID:19234303

  17. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    Science.gov (United States)

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  20. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  1. Degradation of phosphorene in air: understanding at atomic level

    International Nuclear Information System (INIS)

    Wang, Gaoxue; Slough, William J; Pandey, Ravindra; Karna, Shashi P

    2016-01-01

    Phosphorene is a promising two-dimensional (2D) material with a direct band gap, high carrier mobility, and anisotropic electronic properties. Phosphorene-based electronic devices, however, are found to degrade upon exposure to air. In this paper, we provide an atomic level understanding of the stability of phosphorene in terms of its interaction with O 2 and H 2 O. The results based on density functional theory together with first principles molecular dynamics calculations show that O 2 could the spontaneously dissociate on phosphorene at room temperature. H 2 O will not strongly interact with pristine phosphorene, however, an exothermic reaction could occur if phosphorene is first oxidized. The pathway of oxidation first, followed by exothermic reaction with water is the most likely route for the chemical degradation of phosphorene-based devices in air. (paper)

  2. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chang; Liao, XueYang; Li, RuGuan; Wang, YuanSheng; Chen, Yiqiang, E-mail: yiqiang-chen@hotmail.com; Su, Wei; Liu, Yuan; Wang, Li Wei; Lai, Ping; Huang, Yun; En, YunFei [Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, 510610 Guangzhou (China)

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Based on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.

  3. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  4. Use of liquid chromatography/electrospray ionization tandem mass spectrometry to study the degradation pathways of terbuthylazine (TER) by Typha latifolia in constructed wetlands: identification of a new TER metabolite.

    Science.gov (United States)

    Gikas, Evagelos; Papadopoulos, Nikolaos G; Bazoti, Fotini N; Zalidis, Georgios; Tsarbopoulos, Anthony

    2012-01-30

    S-Triazines are used worldwide as herbicides for agricultural and non-agricultural purposes. Although terbuthylazine (TER) is the second most frequently used S-triazine, there is limited information on its metabolism. For this reason, an analytical method based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) has been developed aiming at the identification of TER and its five major metabolites (desisopropyl-hydroxy-atrazine, desethyl-hydroxy-terbuthylazine, desisopropyl-atrazine, hydroxy-terbuthylazine and desethyl-terbuthylazine) in constructed wetland water samples. The separation of TER and its major metabolites was performed by reversed-phase high-performance liquid chromatography (HPLC) on a C(8) column using a gradient elution of aqueous acetic acid 1% (solvent A) and acetonitrile (solvent B), followed by MS/MS analysis on a triple quadrupole mass spectrometer. The data-depended analysis (DDA) scan approach has been employed and the main degradation pathways of both hydroxyl and chloro (dealkylated and alkylated) metabolites are elucidated through the tandem mass spectral (MS/MS) interpretation of triazine fragments under CID conditions. In addition, another major metabolite of TER, namely N2-tert-butyl-N4-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine, has been identified. This methodology can be further employed in biodegradation studies of TER, thus assisting the assessment of its environmental impact. Copyright © 2011 John Wiley & Sons, Ltd.

  5. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    Science.gov (United States)

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  6. Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal

    DEFF Research Database (Denmark)

    Behrendt, Anna; Tarre, Sheldon; Beliavski, Michael

    2014-01-01

    The possible shift of a bioreactor for NO3- removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3- ratio in one of two initially identical reactors, the production of high...... sulfide concentrations was induced. The response of the dissimilatory NO3- reduction processes to the increased availability of organic carbon and sulfide was monitored in a batch incubation system. The expected shift from a DEN- towards a DNRA-dominated bioreactor was not observed, also not under...

  7. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-01

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH3COOH)n.H+, the feature related to the fragment ions (CH3COOH)H+.COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH3COOH).H+ and (CH3COOH)H+.COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH3COOH)H+.COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH3COOH)+ becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH3COOH).CH3CO+. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  8. Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis.

    Science.gov (United States)

    Derambure, C; Dzangue-Tchoupou, G; Berard, C; Vergne, N; Hiron, M; D'Agostino, M A; Musette, P; Vittecoq, O; Lequerré, T

    2017-05-25

    In the current context of personalized medicine, one of the major challenges in the management of rheumatoid arthritis (RA) is to identify biomarkers that predict drug responsiveness. From the European APPRAISE trial, our main objective was to identify a gene expression profile associated with responsiveness to abatacept (ABA) + methotrexate (MTX) and to understand the involvement of this signature in the pathophysiology of RA. Whole human genome microarrays (4 × 44 K) were performed from a first subset of 36 patients with RA. Data validation by quantitative reverse-transcription (qRT)-PCR was performed from a second independent subset of 32 patients with RA. Gene Ontology and WikiPathways database allowed us to highlight the specific biological mechanisms involved in predicting response to ABA/MTX. From the first subset of 36 patients with RA, a combination including 87 transcripts allowed almost perfect separation between responders and non-responders to ABA/MTX. Next, the second subset of patients 32 with RA allowed validation by qRT-PCR of a minimal signature with only four genes. This latter signature categorized 81% of patients with RA with 75% sensitivity, 85% specificity and 85% negative predictive value. This combination showed a significant enrichment of genes involved in electron transport chain (ETC) pathways. Seven transcripts from ETC pathways (NDUFA6, NDUFA4, UQCRQ, ATP5J, COX7A2, COX7B, COX6A1) were significantly downregulated in responders versus non-responders to ABA/MTX. Moreover, dysregulation of these genes was independent of inflammation and was specific to ABA response. Pre-silencing of ETC genes is associated with future response to ABA/MTX and might be a crucial key to susceptibility to ABA response.

  9. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  10. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations.

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  11. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  12. PHOTOCATALYTIC DEGRADATION OF CRYSTAL VIOLET BY ...

    African Journals Online (AJOL)

    In recent years, removal of undesirable organic contaminants from water and wastewater is ... accidental leakage of tanks containing pollutants, etc. ..... Consideration of reaction pathways and degradation rates is critical for detection of waste.

  13. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  14. Identical location transmission electron microscopy in combination with rotating disc electrode measurements. The activity of fuel cell catalysts and their degradation

    Energy Technology Data Exchange (ETDEWEB)

    Schloegl, Katrin G.

    2011-07-13

    As an alternative to conventional combustion engines, the Proton Exchange Membrane Fuel Cell (PEMFC) using hydrogen as a fuel is a promising concept owing to its potential independence from fossil fuels, high efficiency and zero emissions. Concerning its commercial viability, the fundamental problem of high system cost per power output and lifetime is closely related to finding more active and stable catalysts for the oxygen reduction reaction. In the presented work, several methods are combined to examine the parameters and processes responsible for both activity and degradation of platinum-based catalysts. Degradation mechanisms are scrutinized by means of electrochemical measurements with the rotating disc electrode in combination with a recently developed TEM technique, which allows for the comparison of identical locations before and after accelerated stress tests. (orig.) [German] Die mit Wasserstoff betriebene Proton Exchange Membrane Brennstoffzelle (PEMFC) stellt aufgrund ihrer potentiellen Unabhaengigkeit von fossilen Energietraegern, ihrem hohen Wirkungsgrad und fehlendem Schadstoffausstoss eine vielversprechende Alternative zum konventionellen Verbrennungsmotor dar. Das grundlegende Problem der zu hohen Systemkosten und zu geringen Lebensdauer fuer kommerzielle Anwendungen ist eng mit der Entwicklung aktiverer und stabiler Elektrokatalysatoren fuer die Sauerstoffreduktion verknuepft. In der vorliegenden Arbeit werden verschiedene Methoden kombiniert, um die Parameter und Prozesse zu untersuchen, welche fuer die Aktivitaet und Degradation platinbasierter Katalysatoren verantwortlich sind. Zur Aufklaerung vorliegender Degradationsmechanismen werden elektrochemische Messungen mit der rotierenden Scheibenelektrode in Kombination mit einer neu entwickelten TEM Methode eingesetzt, welche es ermoeglicht, identische Stellen vor und nach beschleunigten Degradationstests zu untersuchen.

  15. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Yang, Qiaoyun [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Yuxia [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Li, Ran [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Ge, Jie [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Qiu, Xinghua, E-mail: xhqiu@pku.edu.cn [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Li, Guang, E-mail: lig@tijmu.edu.cn [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China)

    2015-02-15

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights:

  16. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  17. A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization

    International Nuclear Information System (INIS)

    Jeong, Chan-Yong; Lee, Daeun; Song, Sang-Hun; Kwon, Hyuck-In; Kim, Jong In; Lee, Jong-Ho

    2014-01-01

    We discuss the device degradation mechanism of amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses based on the electronic trap characterization results. The transfer curve exhibits an apparent negative shift as the stress time increases, and a formation of hump is observed in the transfer curve after stresses. A notable increase of the frequency dispersion is observed after stresses in both gate-to-drain capacitance–voltage (C GD –V G ) and gate-to-source capacitance–voltage (C GS –V G ) curves, which implies that the subgap states are generated by simultaneous gate and drain bias stresses, and the damaged location is not limited to the drain side of TFTs. The larger frequency dispersion is observed in C GD –V G  curves after stresses in a wider channel device, which implies that the heat is an important factor in the generation of the subgap states under simultaneous gate and drain bias stresses in a-IGZO TFTs. Based on the electronic trap characterization results, we conclude that the impact ionization near the drain side of the device is not a dominant mechanism causing the generation of subgap states and device degradation in a-IGZO TFTs under simultaneous gate and drain bias stresses. The generation of oxygen vacancy-related donor-like traps near the conduction band edge is considered as a possible mechanism causing the device degradation under simultaneous gate and drain bias stresses in a-IGZO TFTs. (paper)

  18. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    Science.gov (United States)

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.

    Science.gov (United States)

    Shi, Yantao; Zhu, Chao; Wang, Lin; Li, Wei; Fung, Kwok Kwong; Wang, Ning

    2013-01-02

    Through a rapid and template-free precipitation approach, we synthesized an asymmetric panel-like ZnO hierarchical architecture (PHA) for photoanodes of dye-sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono-crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low-temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59% for ZnO-based quasi-solid DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen M.; Sharma, Deepak; Varney, Rebecca; Simmons, Blake A.; Isern, Nancy G.; Markillie, Lye Meng; Nicora, Carrie D.; Norbeck, Angela D.; Taylor, Ronald C.; Aldrich, Joshua T.; Robinson, Errol W.

    2013-08-29

    The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have examined differential expression of the anaerobic isolate Enterobacter lignolyticus SCF1 during growth on lignin. After 48 hours of growth, we used transcriptomics and proteomics to define the enzymes and other regulatory machinery that these organisms use to degrade lignin, as well as metabolomics to measure lignin degradation and monitor the use of lignin and iron as terminal electron acceptors that facilitate more efficient use of carbon. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  1. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Chengdu, E-mail: qichengdu@mail.tsinghua.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084 (China); Liu, Xitao, E-mail: liuxt@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Li, Yang; Lin, Chunye; Ma, Jun; Li, Xiaowan; Zhang, Huijuan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-04-15

    Highlights: • S(IV)/PDS system showed synergistic degradation of BPA than S(IV) and PDS. • BPA degradation involved hydroxyl and oxysulfur radicals in the S(IV)/PDS system. • Based on the identified intermediates, the BPA degradation pathway was proposed. - Abstract: In this study, the bisulfite-peroxydisulfate system (S(IV)/PDS) widely used in polymerization was innovatively applied for organic contaminants degradation in water. The addition of S(IV) into PDS system remarkably enhanced the degradation efficiency of bisphenol A (BPA, a frequently detected endocrine disrupting chemical in the environments) from 17.0% to 84.7% within 360 min. The degradation efficiency of BPA in the S(IV)/PDS system followed pseudo-first-order kinetics, with rate constant values ranging from 0.00005 min{sup −1} to 0.02717 min{sup −1} depending on the operating parameters, such as the initial S(IV) and PDS dosage, solution pH, reaction temperature, chloride and water type. Furthermore, nitrogen purging experiment, radical scavenging experiment and electron spin resonance (ESR) analysis were used to elucidate the possible mechanism. The results revealed that sulfate radical was the dominant reactive species in the S(IV)/PDS system. Finally, based on the results of liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS), the BPA degradation pathway was proposed to involve β-scission (C−C), hydroxylation, dehydration, oxidative skeletal rearrangement, and ring opening. This study helps to characterize the combination of PDS and inorganic S(IV), a common industrial contaminant, to generate reactive species to enhance organic contaminants degradation in water.

  2. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    DEFF Research Database (Denmark)

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...

  3. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework ...

  4. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  5. CoFe{sub 2}O{sub 4} magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jing [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); Shao, Yisheng, E-mail: shaoyisheng2011@163.com [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); China Academy of Urban Planning and Design, Beijing 100037 (China); Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China)

    2013-11-15

    Highlights: • CoFe{sub 2}O{sub 4} MNPs tested as heterogeneous catalyst for the activation of oxone. • The catalytic performance was typically affected by several key operating parameters. • The catalyst exhibited good stability and easily recovered with excellent reusability. • Degradation pathway was proposed according to the results of LC-MS/MS analysis. -- Abstract: A magnetic nanoscaled catalyst cobalt ferrite (CoFe{sub 2}O{sub 4}) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe{sub 2}O{sub 4}-300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5–9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe{sub 2}O{sub 4} could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed.

  6. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water

    International Nuclear Information System (INIS)

    Deng, Jing; Shao, Yisheng; Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao

    2013-01-01

    Highlights: • CoFe 2 O 4 MNPs tested as heterogeneous catalyst for the activation of oxone. • The catalytic performance was typically affected by several key operating parameters. • The catalyst exhibited good stability and easily recovered with excellent reusability. • Degradation pathway was proposed according to the results of LC-MS/MS analysis. -- Abstract: A magnetic nanoscaled catalyst cobalt ferrite (CoFe 2 O 4 ) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe 2 O 4 -300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5–9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe 2 O 4 could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed

  7. Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species.

    Science.gov (United States)

    Tan, Haiyan; Tian, He; Verbeeck, Jo; Monico, Letizia; Janssens, Koen; Van Tendeloo, Gustaaf

    2013-10-18

    Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of core-shell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    Science.gov (United States)

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  9. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  11. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  12. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway.

    Science.gov (United States)

    Zeyer, J; Wasserfallen, A; Timmis, K N

    1985-08-01

    Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.

  13. Advances of naphthalene degradation in Pseudomonas putida ND6

    Science.gov (United States)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  14. Migration pathways in soils

    International Nuclear Information System (INIS)

    Gronow, J.R.

    1986-01-01

    This study looked at diffusive migration through three types of deformation; the projectile pathways, hydraulic fractures of the sediments and faults, and was divided into three experimental areas: autoradiography, the determination of diffusion coefficients and electron microscopy of model projectile pathways in clay. For the autoradiography, unstressed samples were exposed to two separate isotopes, Pm-147 (a possible model for Am behaviour) and the poorly sorbed iodide-125. The results indicated that there was no enhanced migration through deformed kaolin samples nor through fractured Great Meteor East (GME) sediment, although some was evident through the projectile pathways in GME and possibly through the GME sheared samples. The scanning electron microscopy of projectile pathways in clay showed that emplacement of a projectile appeared to have no effect on the orientation of particles at distances greater than two projectile radii from the centre of a projectile pathway. It showed that the particles were not simply aligned with the direction of motion of the projectile but that, the closer to the surface of a particular pathway, the closer the particles lay to their original orientation. This finding was of interest from two points of view: i) the ease of migration of a pollutant along the pathway, and ii) possible mechanisms of hole closure. It was concluded that, provided that there is no advective migration, the transport of radionuclides through sediments containing these defects would not be significantly more rapid than in undeformed sediments. (author)

  15. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    Science.gov (United States)

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is

  16. Radiation degradation of silk protein

    International Nuclear Information System (INIS)

    Pewlong, W.; Sudatis, B.; Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl 2 /C 2 H 5 OH/H 2 O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  17. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Pewlong, W; Sudatis, B [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  18. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  19. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  20. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  1. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells.

    Science.gov (United States)

    Raja, Srikumar M; Clubb, Robert J; Bhattacharyya, Mitra; Dimri, Manjari; Cheng, Hao; Pan, Wei; Ortega-Cava, Cesar; Lakku-Reddi, Alagarsamy; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2008-10-01

    ErbB2 (or Her2/Neu) overexpression in breast cancer signifies poorer prognosis, yet it has provided an avenue for targeted therapy as demonstrated by the success of the humanized monoclonal antibody Trastuzumab (Herceptin). Resistance to Trastuzumab and eventual failure in most cases, however, necessitate alternate ErbB2-targeted therapies. HSP90 inhibitors such as 17-allylaminodemethoxygeldanamycin (17-AAG), potently downregulate the cell surface ErbB2. While the precise mechanisms of Trastuzumab or 17-AAG action remain unclear, ubiquitinylation-dependent proteasomal or lysosomal degradation of ErbB2 appears to play a substantial role. As Trastuzumab and 17-AAG induce the recruitment of distinct E3 ubiquitin ligases, Cbl and CHIP respectively, to ErbB2, we hypothesized that 17-AAG and Trastuzumab combination could induce a higher level of ubiquitinylation and downregulation of ErbB2 as compared to single drug treatments. We present biochemical and cell biological evidence that combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2. Importantly, combined 17-AAG and Trastuzumab treatment induced synergistic growth arrest and cell death specifically in ErbB2-overexpressing but not in ErbB2-low breast cancer cells. Our results suggest the 17-AAG and Trastuzumab combination as a mechanism-based combinatorial targeted therapy for ErbB2-overexpressing breast cancer patients.

  2. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  3. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    Science.gov (United States)

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  4. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Edinson Puentes-Cala

    2018-02-01

    Full Text Available The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon–carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.

  6. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  7. Response of Chloroplast NAD(PH Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    Directory of Open Access Journals (Sweden)

    Jemaa eEssemine

    2016-03-01

    Full Text Available Cyclic electron flow around PSI can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and PSII to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e. Q4149 with a high capacity (hcef and C4023 with a low capacity (lcef. The absorbance change at 820 nm (ΔA820 was used here to assess the charge separation in the photosystem I (PSI reaction center (P700. The results obtained show that short-term heat stress abolishes the FQR-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C because of a partial restriction of FQR but it was decreased following high heat-stress (42°C. Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than photosystem II (PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149 was characterized by higher FQR- and NDH-dependent CEF rates than lcef (C4023. Following thermal stress, the activation of NDH-pathway was 130% and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defence against heat stress after the main route, i.e. FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

  8. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  9. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o-phenylphenol degradation.

    Science.gov (United States)

    Hou, Jifei; Yang, Shasha; Wan, Haiqin; Fu, Heyun; Qu, Xiaolei; Xu, Zhaoyi; Zheng, Shourong

    2018-04-01

    As a broad-spectrum preservative, toxic o-phenylphenol (OPP) was frequently detected in aquatic environments. In this study, N-doped mesoporous carbon was prepared by a hard template method using different nitrogen precursors and carbonization temperatures (i.e., 700, 850 and 1000 °C), and was used to activate peroxymonosulfate (PMS) for OPP degradation. For comparison, mesoporous carbon (CMK-3) was also prepared. Characterization results showed that the N-doped mesoporous carbon samples prepared under different conditions were perfect replica of their template. In comparison with ethylenediamine (EDA) and dicyandiamide (DCDA) as the precursors, N-doped mesoporous carbon prepared using EDA and carbon tetrachloride as the precursors displayed a higher catalytic activity for OPP degradation. Increasing carbonization temperature of N-doped mesoporous carbon led to decreased N content and increased graphitic N content at the expense of pyridinic and pyrrolic N. Electron paramagnetic resonance (EPR) analysis showed that PMS activation on N-doped mesoporous carbon resulted in highly active species and singlet oxygen, and catalytic PMS activation for OPP degradation followed a combined radical and nonradical reaction mechanism. Increasing PMS concentration enhanced OPP degradation, while OPP degradation rate was independent on initial OPP concentration. Furthermore, the dependency of OPP degradation on PMS concentration followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. Based on the analysis by time-of-flight mass spectrometry, the degradation pathway of OPP was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth

    DEFF Research Database (Denmark)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia

    2015-01-01

    pyruvate decarboxylase and having a reduced glucose uptake rate due to a mutation in the transcriptional regulator Mth1, IMI076 (Pdc-MTH1-ΔT ura3-52). PFL was expressed with two different electron donors, reduced ferredoxin or reduced flavodoxin, respectively, and it was found that the coexpression...

  11. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  12. Phytohormone and Light Regulation of Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhu

    2017-11-01

    Full Text Available Degreening, due to the net loss of chlorophyll (Chl, is the most prominent symptom during the processes of leaf senescence, fruit ripening, and seed maturation. Over the last decade or so, extensive identifications of Chl catabolic genes (CCGs have led to the revelation of the biochemical pathway of Chl degradation. As such, exploration of the regulatory mechanism of the degreening process is greatly facilitated. During the past few years, substantial progress has been made in elucidating the regulation of Chl degradation, particularly via the mediation of major phytohormones' signaling. Intriguingly, ethylene and abscisic acid's signaling have been demonstrated to interweave with light signaling in mediating the regulation of Chl degradation. In this review, we briefly summarize this progress, with an effort on providing a framework for further investigation of multifaceted and hierarchical regulations of Chl degradation.

  13. Accelerated Testing Of Photothermal Degradation Of Polymers

    Science.gov (United States)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  14. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB.

    Science.gov (United States)

    Ji, Xiangyu; Xu, Jing; Ning, Shuxiang; Li, Nan; Tan, Liang; Shi, Shengnan

    2017-12-01

    Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.

  15. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    Energy Technology Data Exchange (ETDEWEB)

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Włoch, Marta [Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931 (United States); Gour, Jeffrey R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA and Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-01-22

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.

  16. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    Science.gov (United States)

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    interface for ion insertion and extraction, (2) providing mechanical constraints to maintain structural integrity and robust electronic and ionic conduction pathways, and (3) introducing spatial confinements on the electrode material matrix to alter the phase transformation (delaying the occurrence of the conversion reaction) upon Li insertion, which results in superior electrode performance, excellent capacity retention, and improved reversibility. Taken together, these examples portray a valuable role for thin protection layers synthesized over electrode surfaces, both for their benefit to cycle stability and for revealing insights into degradation and mitigation mechanisms. Furthermore, they underscore the impact of complex electrochemical behavior at nanoscale materials and nanostructure interfaces in modulating the behavior of energy storage devices at the mesoscale and macroscale.

  17. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis

    2013-09-01

    Full Text Available The anaerobic isolate Enterobacter lignolyticus SCF1 was initially cultivated based on anaerobic growth on lignin as sole carbon source. The source of the isolated bacteria was from tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, making it likely that bacteria using oxygen-independent enzymes play an important role in decomposition. We have used transcriptomics and proteomics to examine the increased growth of the anaerobic isolate Enterobacter lignolyticus SCF1 when grown on media amended with lignin compared to unamended growth. Proteomics revealed accelerated xylose uptake and metabolism under lignin-amended growth, and lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC transporters. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate increased xylose utilization in lignin-amended compared to unamended growth. Our data shows the advantages of a multi-omics approach, where incomplete pathways identified by genomics were completed, and new observations made on coping with poor carbon availability. The fast growth, high efficiency and specificity of enzymes employed in bacterial anaerobic litter deconstruction makes these soils useful templates for improving biofuel production.

  18. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  20. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  1. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  2. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  3. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Wachiraporn Pewlong; Boonya Sudatis [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-09-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated in the dose range up to 2500 kGy using an electron beam accelerator to apply the radiation degradation technique as a means to solubilize fibroin. The tensile strength of irradiated fibroin fiber decreased with increasing dose and the presence of oxygen in the irradiation atmosphere enhanced the degradation. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: calcium chloride solution (CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O = 1 : 2 : 8 in mole ratio), hydrochloric acid (0.5N) and distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water-soluble protein was extracted by distilled water. (author)

  4. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.

    Science.gov (United States)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-03-21

    In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  6. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    International Nuclear Information System (INIS)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-01-01

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe 2+ , Ca 2+ , HCO 3 − , and NO 3 − , of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h −1 . Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions

  7. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Li [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhanqi, Gao [State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210036 (China); Yuefei, Ji [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Xiaobin, Hu [School of Life Science, Huzhou University, Huzhou 313000 (China); Cheng, Sun, E-mail: envidean@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-03-21

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe{sup 2+}, Ca{sup 2+}, HCO{sub 3}{sup −}, and NO{sub 3}{sup −}, of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h{sup −1}. Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.

  8. VUV/UV light inducing accelerated phenol degradation with a low electric input† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26043h Click here for additional data file.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong

    2017-01-01

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4–6 min. The HO˙ and HO2˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H2O2 and Fe3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H2O2 or Fe3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants. PMID:28496972

  9. A novel photocatalytic material for removing microcystin-LR under visible light irradiation: degradation characteristics and mechanisms.

    Directory of Open Access Journals (Sweden)

    Xin Sui

    Full Text Available Microcystin-LR (MC-LR, a common toxic species in contaminated aquatic systems, persists for long periods because of its cyclic structure. Ag3PO4 is an environment-friendly photocatalyst with relatively good degradation capacity for hazardous organic pollutants. This study aimed to investigate the degradation capacity of Ag3PO4 for MC-LR under visible light.An Ag3PO4 photocatalyst was synthesized by the ion-exchange method and characterized by X-ray diffraction, field-emission scanning electron microscope, and UV-Vis spectrophotometer. MC-LR was quantified in each sample through high-performance liquid chromatograph. The degradation efficiency of MC-LR was affected by initial pH, initial Ag3PO4 concentration, initial MC-LR concentration, and recycle experiments. The degradation intermediates of MC-LR were examined by liquid chromatography-mass spectrometry (LC/MS.The degradation process can be well fitted with the pseudo-first-order kinetic model. The maximum MC-LR degradation rate of 99.98% can be obtained within 5 h under the following optimum conditions: pH of 5.01, Ag3PO4 concentration of 26.67 g/L, and MC-LR concentration of 9.06 mg/L. Nine intermediates were detected and analyzed by LC/MS. Three main degradation pathways were proposed based on the molecular weight of the intermediates and the reaction mechanism: (1 hydroxylation on the aromatic ring of Adda, (2 hydroxylation on the diene bonds of Adda, and (3 internal interactions on the cyclic structure of MC-LR.Ag3PO4 is a highly efficient catalyst for MC-LR degradation in aqueous solutions.

  10. Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    International Nuclear Information System (INIS)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-01-01

    Highlights: ► Sequential photocatalytic reduction–oxidation degradation of TBBPA was firstly examined. ► Different atmospheres were found to have significant effect on debromination reaction. ► A possible sequential photocatalytic reduction–oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC–MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N 2 -saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO 2 system by changing the reaction atmospheres.

  11. Photoelectrocatalytic degradation of diazo dyes on nanostructured WO{sub 3} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hepel, Maria [Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676 (United States)]. E-mail: hepelmr@potsdam.edu; Hazelton, Sandra [Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676 (United States)

    2005-09-05

    Photoelectrocatalytic degradation of Remazol Black B (RBB) dye in aqueous solutions was investigated. The degradation was carried out on a highly efficient n-WO{sub 3} photoelectrode, which was synthesized by electrochemical processing. Effects of various synthesis and post-treatment conditions were investigated using electrochemical techniques and AFM imaging. Photocurrent measurements have shown that Butler-Gartner equation is fulfilled for n-WO{sub 3} films, which allowed us to determine the flat-band potential (E {sub fb} = 0.35 V versus Ag/AgCl, for pH = 0). The WO{sub 3} film electrode was found to be a better photelectrocatalyst than TiO{sub 2} with similar AFM surface roughness. Kinetic measurements of photoelectrocatalytic RBB degradation have shown that a generalized Langmuir-Hinshelwood model applies to the system, leading to the overall rate constant k' = 1.1 x 10{sup -9} mol cm{sup -2} s{sup -1}, with RBB adsorption equilibrium constant K = 3.35 x 10{sup 4} mol{sup -1} L and Gibbs free energy of adsorption {delta}G deg. = -6.16 kcal/mol (-25.8 kJ/mol). In mechanistic considerations of possible lines of oxidative attack on RBB, we looked at electrolyte composition and properties of electronic structure of RBB, by utilizing quantum mechanical calculations of molecular orbitals. The ab initio SCF Hartree-Fock calculations of molecular orbitals were carried out to evaluate most vulnerable areas of RBB molecule for electrophilic and nucleophilic attacks, as well as for a direct charge transfer oxidation process. Several electronic properties were mapped onto the total electron density surface and analyzed to reveal initial reaction pathways for oxidative degradation of RBB.

  12. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function

    Science.gov (United States)

    Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP4- (out) for ADP3- (in) + 0.5 phosphate2- (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  13. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  14. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs

    Science.gov (United States)

    Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina

    2017-11-01

    In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.

  15. ESR studies on degradation processes in polyethyleneterephtalate

    International Nuclear Information System (INIS)

    Chipara, M.; Chipara, M.D.; Georgescu, L.; Constantinescu, L.; Morosanu, C.

    2002-01-01

    Complete text of publication follows. The generation of free radicals by degradation processes (thermal, plasma and radiation induced) is analyzed. Details regarding the generation of free radicals, their interactions, and kinetics, as revealed by electron spin resonance (ESR), with emphasis on laser beam degradation, are discussed. Some ESR lines of laser-irradiated polyethyleneterephtalate (PET), recorded at room temperature, are shown in Figure 1. The lines are narrow singlets located around g=2.003. The resonance line amplitude, width and double integral of the resonance line are affected by the power of the incident beam. The common features of these degradation processes (universal behavior) as well as the fingerprints of each degradation process are analyzed in detail

  16. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response.

    Science.gov (United States)

    Zhang, Conggang; Liu, Zeyu; Bunker, Eric; Ramirez, Adrian; Lee, Schuyler; Peng, Yinghua; Tan, Aik-Choon; Eckhardt, S Gail; Chapnick, Douglas A; Liu, Xuedong

    2017-09-08

    Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m -chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  18. Interfacial reaction pathways and kinetics during annealing of 111-textured Al/TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study

    International Nuclear Information System (INIS)

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Petrov, I.; Cabral, C. Jr.; Greene, J. E.

    2001-01-01

    Growth of TiN layers in most diffusion-barrier applications is limited to deposition temperatures T s s =450 deg. C on SiO 2 by ultrahigh vacuum reactive magnetron sputter deposition in pure N 2 . Al overlayers, 160 nm thick with inherited 111 preferred orientation, were then deposited at T s =100 deg. C without breaking vacuum. The as-deposited TiN layer is underdense due to the low deposition temperature (T s /T m ≅0.23 in which T m is the melting point) resulting in kinetically limited adatom mobilities leading to atomic shadowing which, in turn, results in a columnar microstructure with both inter- and intracolumnar voids. The Al overlayer is fully dense. Synchrotron x-ray diffraction was used to follow interfacial reaction kinetics during postdeposition annealing of the 111-textured Al/TiN bilayers as a function of time (t a =12-1200 s) and temperature (T a =440-550 deg. C). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of plan-view and cross-sectional specimens. Interfacial reaction during annealing is initiated at the Al/TiN interface. Al diffuses rapidly into TiN voids during anneals at temperatures ∼ 3 Ti at the interface. Al 3 Ti exhibits a relatively planar growth front extending toward the Al free surface. Analyses of time-dependent x-ray diffraction peak intensities during isothermal annealing as a function of temperature show that Al 3 Ti growth kinetics are, for the entire temperature range investigated, diffusion limited with an activation energy of 1.5±0.2 eV

  19. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F

    Directory of Open Access Journals (Sweden)

    Vinay Kumar

    2017-09-01

    Full Text Available Dibutyl phthalate is (DBP the top priority toxicant responsible for carcinogenicity, teratogenicity and endocrine disruption. This study demonstrates the DBP degradation capability of the two newly isolated bacteria from municipal solid waste leachate samples. The isolated bacteria were designated as Pseudomonas sp. V21b and Comamonas sp. 51F after scanning electron microscopy, transmission electron microscopy, Gram-staining, antibiotic sensitivity tests, biochemical characterization, 16S-rRNA gene identification and phylogenetic studies. They were able to grow on DBP, benzyl butyl phthalate, monobutyl phthalate, diisodecyl phthalate, dioctyl phthalate, and protocatechuate. It was observed that Pseudomonas sp. V21b was more efficient in DBP degradation when compared with Comamonas sp. 51F. It degraded 57% and 76% of the initial DBP in minimal salt medium and in DBP contaminated samples respectively. Kinetics for the effects of DBP concentration on Pseudomonas sp. V21b and Comamonas sp. 51F growth was also evaluated. Stoichiometry for DBP degradation and biomass formation were compared for both the isolates. Two major metabolites diethyl phthalate and monobutyl phthalates were identified using GC–MS in the extracts. Key genes were amplified from the genomes of Pseudomonas sp. V21b and Comamonas sp. 51F. DBP degradation pathway was also proposed.

  20. Molecular Pathways

    Science.gov (United States)

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  1. Aging effect on radiation-induced degradation of polypropylene

    International Nuclear Information System (INIS)

    Imai, M.; Sekiguchi, M.; Tabei, M.; Yamada, Y.; Shimizu, H.

    1995-01-01

    PP sheets and films were irradiated with γ-ray and with high energy electron beam. The mechanical degradation, decay of peroxy radical and the variation of molecular weight with storage time were measured. The variation of molecular weight corresponded to mechanical degradation. The molecular weight of sheet sample at which elongation falls to zero was much higher than that of film sample. The relation between mechanical degradation and sample thickness was discussed. (author)

  2. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  3. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangkun [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Bao, Jianguo, E-mail: bjianguo@cug.edu.cn [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Liu, Ying; Ling, Haibo; Zheng, Han [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-12-15

    Highlights: Manganese catalyst was immobilized on Fe{sub 3}O{sub 4}/graphene hybrids to facilitate magnetic separation. Magnetic manganese catalyst exhibited high efficacy and long-term stability for catalytic PMS activation. The minerlization efficiency and the biotoxicity of BPA byproducts were evaluated. The degradation pathways of BPA and the possible activation mechanism of PMS were proposed. - Abstract: A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO{sub 4} by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system. Regardless of the initial pH, the solution pH significantly dropped after the reaction, which was caused by catalytic PMS activation. The production of sulfate radicals and hydroxyl radicals was validated through radical quenching and electron paramagnetic resonances (EPR) tests. BPA degradation pathways were proposed on the basis of LC-MS and GC-MS analyses. Finally, a possible mechanism of catalytic PMS activation was proposed that involved electron transfer from MnO or Mn{sub 2}O{sub 3} to PMS with the generation of sulfate radicals, protons and MnO{sub 2}, as well as the simultaneous reduction of MnO{sub 2} by PMS.

  4. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Science.gov (United States)

    Gurusamy, Raman; Natarajan, Sakthivel

    2013-01-01

    Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788

  5. Mechanisms of metallization degradation in high power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Kristensen, Peter Kjær; Pedersen, Kristian Bonderup

    2016-01-01

    Under operation the topside metallization of power electronic chips is commonly observed to degrade and thereby affecta device's electrical characteristics. However, the mechanisms of the degradation process and the role of environmental factors are not yet fully understood. In this work, we...

  6. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  7. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Cellular proteostasis: degradation of misfolded proteins by lysosomes

    Science.gov (United States)

    Jackson, Matthew P.

    2016-01-01

    Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333

  9. Direct uptake and degradation of DNA by lysosomes

    Science.gov (United States)

    Fujiwara, Yuuki; Kikuchi, Hisae; Aizawa, Shu; Furuta, Akiko; Hatanaka, Yusuke; Konya, Chiho; Uchida, Kenko; Wada, Keiji; Kabuta, Tomohiro

    2013-01-01

    Lysosomes contain various hydrolases that can degrade proteins, lipids, nucleic acids and carbohydrates. We recently discovered “RNautophagy,” an autophagic pathway in which RNA is directly taken up by lysosomes and degraded. A lysosomal membrane protein, LAMP2C, a splice variant of LAMP2, binds to RNA and acts as a receptor for this pathway. In the present study, we show that DNA is also directly taken up by lysosomes and degraded. Like RNautophagy, this autophagic pathway, which we term “DNautophagy,” is dependent on ATP. The cytosolic sequence of LAMP2C also directly interacts with DNA, and LAMP2C functions as a receptor for DNautophagy, in addition to RNautophagy. Similarly to RNA, DNA binds to the cytosolic sequences of fly and nematode LAMP orthologs. Together with the findings of our previous study, our present findings suggest that RNautophagy and DNautophagy are evolutionarily conserved systems in Metazoa. PMID:23839276

  10. High Doses Gamma Radiolysis of PVC: Mechanisms of Degradation

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    PVC radiolysis leads to the formation of various degradation products: radicals, gas, oxidized products or polyenes. In order to predict the formation of the degradation products with regard to irradiation and ageing parameters, it is important to improve the understanding of the radiolysis mechanisms of PVC. Thus, we used several analytical techniques (Electron Spin Resonance, Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance, Size Exclusion Chromatography) to get information on PVC samples irradiated at high doses (up to 4MGy) under different conditions. Gamma irradiation induces the formation of various radicals into PVC. Older studies were generally focused on the effect of low dose and/or low temperature irradiations on PVC. We present here ESR signals of PVC irradiated at high doses and at room temperature. We show that peroxyl radicals are producted by radiolysis under aerobe conditions and that polyenyl radicals are formed under anaerobe conditions. PVC radiolysis induces gas production and especially hydrogen chloride. Production of hydrogen chloride is well known until 1 MGy. We have studied by FTIR, the evolution of the quantity of HCl produced until 4 MGy. We show that higher irradiation dose leads to the lower radiolytic yield of HCl (G(HCl)). Moreover, G(HCl) obtained in aerobe conditions is about fourfold as great as G(HCl) observed in anaerobe radiolysis. Propagation and termination reactions induce degradation products: polyene sequences and crosslinking reactions are observed under anaerobe conditions; oxidized products with addition of chain scissions are formed under aerobe conditions. Although the literature about PVC radiolysis is rich, the main reacting pathways are not well established. Moreover the high doses studies are almost non-existent. We show by FTIR that aerobe radiolysis induces formation of ketons and acids. NMR experiments confirme these results but also focuse on small acids formed (with 2, 3 or 4 carbons). The

  11. Nanobiocatalytic Degradation of Acid Orange 7

    Science.gov (United States)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC),