WorldWideScience

Sample records for degradable peg-based hydrogel

  1. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    Science.gov (United States)

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  2. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    Science.gov (United States)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  3. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    Science.gov (United States)

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  4. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.

    Science.gov (United States)

    Tong, Xinming; Lee, Soah; Bararpour, Layla; Yang, Fan

    2015-12-01

    Poly(ethylene glycol) (PEG)-based hydrogels are popular biomaterials for protein delivery to guide desirable cellular fates and tissue repair. However, long-term protein release from PEG-based hydrogels remains challenging. Here, we report a PEG-based hydrogel platform for long term protein release, which allows efficient loading of proteins via physical entrapment. Tuning hydrogel degradation led to increase in hydrogel mesh size and gradual release of protein over 60 days of with retained bioactivity. Importantly, this platform does not require the chemical modification of loaded proteins, and may serve as a versatile tool for long-term delivery of a wide range of proteins for drug-delivery and tissue-engineering applications.

  5. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    Science.gov (United States)

    Kharkar, Prathamesh Madhav

    thiol exchange reaction facilitated rapid and responsive protein release in the presence of GSH. A photolabile o-nitrobenzyl ether group (o-NB) was subsequently incorporated within the PEG-based, gel-forming monomers to demonstrate cargo release triggered by exogenous stimuli for patient-specific therapies. Upon the application of cytocompatible doses of light, the photolabile o-NB linkage underwent irreversible cleavage yielding ketone and carboxylic acid-based cleavage products. Hydrogel degradation kinetics was characterized in response to externally applied cytocompatible light or GSH in aqueous microenvironments. By incorporating a photodegradable o-nitrobenzyl ether group, a thiol-sensitive succinimide thioether linkage, and ester linkages within the hydrogels, we demonstrated unique control over degradation via surface erosion or bulk degradation mechanisms, respectively, with degradation rate constants ranging from 10-1 min-1 to 10-4 min-1. As a proof of concept, the controlled release of nanobeads from the hydrogel was demonstrated in a preprogrammed and stimuli-responsive fashion. The multimodal degradable hydrogels were then investigated for the local controlled release of small molecular weight proteins, which are of interest for regulating various cellular functions and fates in vivo. Low molecular weight heparin, a highly sulfated polysaccharide was incorporated within the hydrogel network by Michael-type reaction due to its affinity with biologics such as growth factors and immunomodulatory proteins. Incorporation of reduction-sensitive linkages resulted in 2.3 fold differences in the release profile of fibroblast growth factor-2 (FGF-2) in the presence of GSH compared to non-reducing microenvironment. Bioactivity of released FGF-2 was comparable to pristine FGF-2, indicating the ability of the hydrogel to retain bioactivity of cargo molecules during encapsulation and release. Further, preliminary in vivo studies demonstrated control over hydrogel

  6. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S [Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building Room 3115A, 269 Campus Drive, Stanford, CA 94305 (United States); Lee, Wonjae [Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Chiao, Eric; Baker, Julie [Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 (United States); Frank, Curtis W, E-mail: jeffrey.glenn@stanford.ed, E-mail: curt.frank@stanford.ed [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2009-02-15

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from {approx}50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 +- 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  7. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    Science.gov (United States)

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  8. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Directory of Open Access Journals (Sweden)

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  9. Protease-degradable electrospun fibrous hydrogels

    Science.gov (United States)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  10. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light.

  11. Imine Hydrogels with Tunable Degradability for Tissue Engineering.

    Science.gov (United States)

    Boehnke, Natalie; Cam, Cynthia; Bat, Erhan; Segura, Tatiana; Maynard, Heather D

    2015-07-13

    A shortage of available organ donors has created a need for engineered tissues. In this context, polymer-based hydrogels that break down inside the body are often used as constructs for growth factors and cells. Herein, we report imine cross-linked gels where degradation is controllable by the introduction of mixed imine cross-links. Specifically, hydrazide-functionalized poly(ethylene glycol) (PEG) reacts with aldehyde-functionalized PEG (PEG-CHO) to form hydrazone linked hydrogels that degrade quickly in media. The time to degradation can be controlled by changing the structure of the hydrazide group or by introducing hydroxylamines to form nonreversible oxime linkages. Hydrogels containing adipohydrazide-functionalized PEG (PEG-ADH) and PEG-CHO were found to degrade more rapidly than gels formed from carbodihydrazide-functionalized PEG (PEG-CDH). Incorporating oxime linkages via aminooxy-functionalized PEG (PEG-AO) into the hydrazone cross-linked gels further stabilized the hydrogels. This imine cross-linking approach should be useful for modulating the degradation characteristics of 3D cell culture supports for controlled cell release.

  12. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    Science.gov (United States)

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  13. Broad-spectrum antimicrobial polycarbonate hydrogels with fast degradability.

    Science.gov (United States)

    Pascual, Ana; Tan, Jeremy P K; Yuen, Alex; Chan, Julian M W; Coady, Daniel J; Mecerreyes, David; Hedrick, James L; Yang, Yi Yan; Sardon, Haritz

    2015-04-13

    In this study, a new family of broad-spectrum antimicrobial polycarbonate hydrogels has been successfully synthesized and characterized. Tertiary amine-containing eight-membered monofunctional and difunctional cyclic carbonates were synthesized, and chemically cross-linked polycarbonate hydrogels were obtained by copolymerizing these monomers with a poly(ethylene glycol)-based bifunctional initiator via organocatalyzed ring-opening polymerization using 1,8-diazabicyclo[5.4.0]undec-7-ene catalyst. The gels were quaternized using methyl iodide to confer antimicrobial properties. Stable hydrogels were obtained only when the bifunctional monomer concentration was equal to or higher than 12 mol %. In vitro antimicrobial studies revealed that all quaternized hydrogels exhibited broad-spectrum antimicrobial activity against Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), Pseudomonas aeruginosa (Gram-negative), and Candida albicans (fungus), while the antimicrobial activity of the nonquaternized hydrogels was negligible. Moreover, the gels showed fast degradation at room temperature (4-6 days), which makes them ideal candidates for wound healing and implantable biomaterials.

  14. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  15. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  16. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Directory of Open Access Journals (Sweden)

    Song Bao

    Full Text Available Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1. The hydrogel also exhibited higher separation selectivity to Pb(2+ than Cu(2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  17. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Science.gov (United States)

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1). The hydrogel also exhibited higher separation selectivity to Pb(2+) than Cu(2+). The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  18. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    Science.gov (United States)

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds.

  19. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels.

    Science.gov (United States)

    Lim, Khoon S; Alves, Marie H; Poole-Warren, Laura A; Martens, Penny J

    2013-09-01

    Development of tissue engineering solutions for biomedical applications has driven the need for integration of biological signals into synthetic materials. Approaches to achieve this typically require chemical modification of the biological molecules. Examples include chemical grafting of synthetic polymers onto protein backbones and covalent modification of proteins using crosslinkable functional groups. However, such chemical modification processes can cause protein degradation, denaturation or loss of biological activity due to side chain disruption. This study exploited the observation that native tyrosine rich proteins could be crosslinked via radical initiated bi-phenol bond formation without any chemical modification of the protein. A new, tyramine functionalised poly(vinyl alcohol) (PVA) polymer was synthesised and characterised. The tyramine modified PVA (PVA-Tyr) was fabricated into hydrogels using a visible light initiated crosslinking system. Mass loss studies showed that PVA-Tyr hydrogels were completely degraded within 19 days most likely via degradation of ester linkages in the network. Protein incorporation to form a biosynthetic hydrogel was achieved using unmodified gelatin, a protein derived from collagen and results showed that 75% of gelatin was retained in the gel post-polymerisation. Incorporation of gelatin did not alter the sol fraction, swelling ratio and degradation profile of the hydrogels, but did significantly improve the cellular interactions. Moreover, incorporation of as little as 0.01 wt% gelatin was sufficient to facilitate fibroblast adhesion onto PVA-Tyr/gelatin hydrogels. Overall, this study details the synthesis of a new functionalised PVA macromer and demonstrates that tyrosine containing proteins can be covalently incorporated into synthetic hydrogels using this innovative PVA-Tyr system. The resultant degradable biosynthetic hydrogels hold great promise as matrices for tissue engineering applications.

  20. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    Science.gov (United States)

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels.

  1. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.

    Science.gov (United States)

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, (1)H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10(-6) S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative

  2. Evaluation of the in vitro degradation of macroporous hydrogels using gravimetry, confined compression testing, and microcomputed tomography.

    Science.gov (United States)

    Behravesh, Esfandiar; Timmer, Mark D; Lemoine, Jeremy J; Liebschner, Michael A K; Mikos, Antonios G

    2002-01-01

    This study investigated the in vitro degradation characteristics of macroporous hydrogels based on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)). Four formulations were fabricated to test the effect of porosity and cross-linking density on the degradation of the resulting macroporous hydrogels. Macroporosity was introduced by the addition of sodium bicarbonate and ascorbic acid, the precursors of the carbon dioxide porogen, in the initiation system for the hydrogel cross-linking. Macroporous hydrogels with porosities of 0.80 +/- 0.03 and 0.89 +/- 0.03 were synthesized by the addition of sodium bicarbonate of concentrations 40 and 80 mg/mL and ascorbic acid of concentrations 0.05 and 0.1 mol/L, respectively. Poly(ethylene glycol) diacrylate (PEG-DA) was utilized as a cross-linker. The molecular weight between cross-links had a significant effect on weight loss after 12 weeks, where samples with M(C) of 1,880 +/- 320 synthesized with a P(PF-co-EG):PEG-DA ratio of 3:1 had a significantly greater mass loss due to degradation than those with M(C) of 1,000 +/- 100 synthesized with a P(PF-co-EG):PEG-DA ratio of 1:1. In contrast, porosity played a minimal role in determining the weight loss. Mechanical testing of the hydrogels under confined compression showed a decrease in compressive modulus over the degradation time for all formulations. In addition, an increase in hydrogel equilibrium water content and pore wall thickness was observed with degradation time, whereas the hydrogel porosity and surface area density remained invariant. The results from microcomputed tomography corroborated with the rest of the measurements and indicated a bulk degradation mechanism of the macroporous hydrogels.

  3. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    Science.gov (United States)

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  5. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release.

    Science.gov (United States)

    Gupta, Mukesh K; Martin, John R; Werfel, Thomas A; Shen, Tianwei; Page, Jonathan M; Duvall, Craig L

    2014-10-22

    A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive oxygen species (ROS) triggered degradation and drug release. At ambient temperature (25 °C), PPS-b-PDMA-b-PNIPAAM assembled into 66 ± 32 nm micelles comprising a hydrophobic PPS core and PNIPAAM on the outer corona. Upon heating to physiologic temperature (37 °C), which exceeds the lower critical solution temperature (LCST) of PNIPAAM, micelle solutions (at ≥2.5 wt %) sharply transitioned into stable, hydrated gels. Temperature-dependent rheology indicated that the equilibrium storage moduli (G') of hydrogels at 2.5, 5.0, and 7.5 wt % were 20, 380, and 850 Pa, respectively. The PPS-b-PDMA-b-PNIPAAM micelles were preloaded with the model drug Nile red, and the resulting hydrogels demonstrated ROS-dependent drug release. Likewise, exposure to the peroxynitrite generator SIN-1 degraded the mechanical properties of the hydrogels. The hydrogels were cytocompatible in vitro and were demonstrated to have utility for cell encapsulation and delivery. These hydrogels also possessed inherent cell-protective properties and reduced ROS-mediated cellular death in vitro. Subcutaneously injected PPS-b-PDMA-b-PNIPAAM polymer solutions formed stable hydrogels that sustained local release of the model drug Nile red for 14 days in vivo. These collective data demonstrate the potential use of PPS-b-PDMA-b-PNIPAAM as an injectable, cyto-protective hydrogel that overcomes conventional PNIPAAM hydrogel limitations such as syneresis, lack of degradability, and lack of inherent drug loading and environmentally responsive release mechanisms.

  6. A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels.

    Science.gov (United States)

    Lam, Johnny; Kim, Kyobum; Lu, Steven; Tabata, Yasuhiko; Scott, David W; Mikos, Antonios G; Kasper, F Kurtis

    2014-10-01

    In this study, a full factorial approach was used to investigate the effects of poly(ethylene glycol) (PEG) molecular weight (MW; 10,000 vs. 35,000 nominal MW), crosslinker-to-macromer carbon-carbon double bond ratio (DBR; 40 vs. 60), crosslinker type (PEG-diacrylate (PEGDA) vs. N,N'-methylene bisacrylamide (MB)), crosslinking extent of incorporated gelatin microparticles (low vs. high), and incubation medium composition (with or without collagenase) on the swelling and degradation characteristics of oligo[(poly(ethylene glycol) fumarate)] (OPF) hydrogel composites as indicated by the swelling ratio and the percentage of mass remaining, respectively. Each factor consisted of two levels, which were selected based on previous in vitro and in vivo studies utilizing these hydrogels for various tissue engineering applications. Fractional factorial analyses of the main effects indicated that the mean swelling ratio and the mean percentage of mass remaining of OPF composite hydrogels were significantly affected by every factor. In particular, increasing the PEG chain MW of OPF macromers significantly increased the mean swelling ratio and decreased the mean percentage of mass remaining by 5.7 ± 0.3 and 17.2 ± 0.6%, respectively. However, changing the crosslinker from MB to PEGDA reduced the mean swelling ratio and increased the mean percentage of mass remaining of OPF composite hydrogels by 4.9 ± 0.2 and 9.4 ± 0.9%, respectively. Additionally, it was found that the swelling characteristics of hydrogels fabricated with higher PEG chain MW or with MB were more sensitive to increases in DBR. Collectively, the main and cross effects observed between factors enables informed tuning of the swelling and degradation properties of OPF-based hydrogels for various tissue engineering applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3477-3487, 2014. © 2013 Wiley Periodicals, Inc.

  7. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    Science.gov (United States)

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  9. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    Science.gov (United States)

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content.

  10. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice

    Science.gov (United States)

    Tondera, Christoph; Hauser, Sandra; Krüger-Genge, Anne; Jung, Friedrich; Neffe, Axel T.; Lendlein, Andreas; Klopfleisch, Robert; Steinbach, Jörg; Neuber, Christin; Pietzsch, Jens

    2016-01-01

    Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue. PMID:27698944

  11. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.

    Science.gov (United States)

    Rios, Peter Daniel; Zhang, Xiaomin; Luo, Xunrong; Shea, Lonnie D

    2016-11-01

    Islet transplantation is a potential cure for diabetic patients, however this procedure is not widely adopted due to the high rate of graft failure. Islet encapsulation within hydrogels is employed to provide a three-dimensional microenvironment conducive to survival of transplanted islets to extend graft function. Herein, we present a novel macroencapsulation device, composed of PEG hydrogel, that combines encapsulation with lithography techniques to generate polydimethylsiloxane (PDMS) molds. PEG solutions are mixed with islets, which are then cast into PDMS molds for subsequent crosslinking. The molds can also be employed to provide complex architectures, such as microchannels that may allow vascular ingrowth through pre-defined regions of the hydrogel. PDMS molds allowed for the formation of stable gels with encapsulation of islets, and in complex architectures. Hydrogel devices with a thickness of 600 μm containing 500 islets promoted normoglycemia within 12 days following transplantation into the epididymal fat pad, which was sustained over the two-month period of study until removal of the device. The inclusion of microchannels, which had a similar minimum distance between islets and the hydrogel surface, similarly promoted normoglycemia. A glucose challenge test indicated hydrogel devices achieved normoglycemia 90 min post-dextrose injections, similar to control mice with native pancreata. Histochemical staining revealed that transplanted islets, identified as insulin positive, were viable and isolated from host tissue at 8 weeks post-transplantation, yet devices with microchannels had tissue and vascular ingrowth within the channels. Taken together, these results demonstrate a system for creating non-degradable hydrogels with complex geometries for encapsulating islets capable of restoring normoglycemia, which may expand islet transplantation as a treatment option for diabetic patients. Biotechnol. Bioeng. 2016;113: 2485-2495. © 2016 Wiley

  12. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.

    Science.gov (United States)

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J

    2013-03-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth.

  13. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    Science.gov (United States)

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  14. (*) Understanding the Spatiotemporal Degradation Behavior of Aggrecanase-Sensitive Poly(ethylene glycol) Hydrogels for Use in Cartilage Tissue Engineering.

    Science.gov (United States)

    Chu, Stanley; Sridhar, Shankar Lalitha; Akalp, Umut; Skaalure, Stacey C; Vernerey, Franck J; Bryant, Stephanie J

    2017-08-01

    Enzyme-sensitive hydrogels are promising cell delivery vehicles for cartilage tissue engineering. However, a better understanding of their spatiotemporal degradation behavior and its impact on tissue growth is needed. The goal of this study was to combine experimental and computational approaches to provide new insights into spatiotemporal changes in hydrogel crosslink density and extracellular matrix (ECM) growth and how these changes influence the evolving macroscopic properties as a function of time. Hydrogels were designed from aggrecanase-sensitive peptide crosslinks using a simple and robust thiol-norbornene photoclick reaction. To study the influence of variations in cellular activity of different donors, chondrocytes were isolated from either juvenile or adult bovine donors. Initial studies were performed to validate and calibrate the model against experiments. Through this process, two key features were identified. These included spatial variations in the hydrogel crosslink density in the immediate vicinity of the cell and the presence of cell clustering within the construct. When these spatial heterogeneities were incorporated into the computational model along with model inputs of initial hydrogel properties and cellular activity (i.e., enzyme and ECM production rates), the model was able to capture the spatial and temporal evolution of ECM growth that was observed experimentally for both donors. In this study, the juvenile chondrocytes produced an interconnected matrix within the cell clusters leading to overall improved ECM growth, while the adult chondrocytes resulted in poor ECM growth. Overall, the computational model was able to capture the spatiotemporal ECM growth of two different donors and provided new insights into the importance of spatial heterogeneities in facilitating ECM growth. Our long-term goal is to use this model to predict optimal hydrogel designs for a wide range of donors and improve cartilage tissue engineering.

  15. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction.

    Science.gov (United States)

    Della Rocca, Domenico G; Willenberg, Bradley J; Ferreira, Leonardo F; Wate, Prateek S; Petersen, John W; Handberg, Eileen M; Zheng, Tong; Steindler, Dennis A; Terada, Naohiro; Batich, Christopher D; Byrne, Barry J; Pepine, Carl J

    2012-11-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI.

  16. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions.

  17. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    Science.gov (United States)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  18. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes

    Science.gov (United States)

    Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.

    2016-12-01

    The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.

  19. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.

    Science.gov (United States)

    Brink, Kelly S; Yang, Peter J; Temenoff, Johnna S

    2009-02-01

    Our laboratory is currently exploring synthetic oligo(poly(ethylene glycol)fumarate) (OPF)-based biomaterials as a means to deliver fibroblasts to promote regeneration of central/partial defects in tendons and ligaments. In order to further modulate the swelling and degradative characteristics of OPF-based hydrogels, OPF crosslinking via a radically initiated, mixed-mode reaction involving poly(ethylene glycol) (PEG)-diacrylate and PEG-dithiol was investigated. Results demonstrate that mixed-mode hydrogels containing OPF can be formed and that the presence of 20 wt.% PEG-dithiol increases swelling and decreases degradation time vs. 10 wt.% PEG-dithiol and non-thiol-containing hydrogels (20% thiol fold swelling 28.7+/-0.8; 10% thiol fold swelling 11.6+/-1.4; non-thiol 8.7+/-0.2; 20% thiol-containing hydrogels degrade within 15 days in vitro). After encapsulation, tendon/ligament fibroblasts remained largely viable over 8 days of static culture. While the presence of PEG-dithiol did not significantly affect cellularity or collagen production within the constructs over this time period, image analysis revealed that the 20% PEG-dithiol gels did appear to promote cell clustering, with greater values for aggregate area observed by day 8. These experiments suggest that mixed-mode OPF-based hydrogels may provide an interesting alternative as a cell carrier for engineering a variety of soft orthopedic tissues, particularly for applications when it is important to encourage cell-cell contact.

  20. PRAGMATIC HYDROGELS

    Directory of Open Access Journals (Sweden)

    Patil S.A.

    2011-03-01

    Full Text Available Man has always been plagued with many ailments and diseases. The field of pharmaceutical science has today become more invaluable in helping to keep us healthy and prevent disease. The availability of large molecular weight protein and peptide-based drugs due to the recent advances has given us a new ways to treat a number of diseases. I wish to present new and promising techniques for the production of drug and protein delivery formulations that have been developed that is Hydrogel. These are presently under investigation as a delivery system for bioactive molecules as having similar physical properties as that of living tissue, which is due to their high water content, soft and rubbery consistency and low interfacial tension with water and biological fluids. Hydrogels are three-dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers, and are insoluble due to the presence of chemical crosslink (tie-points, junctions or physical crosslink, such as entanglements or crystallite. The latter provide the network structure and physical integrity. These hydrogels exhibit a thermodynamic compatibility with water which allows them to swell in aqueous media. The nature of the degradation product can be tailored by a rational and proper selection of building blocks. The soft and rubbery nature of hydrogels minimizes irritation to surrounding tissues. In general, hydrogels possess good biocompatibility and biodegradability.

  1. Doxycycline loaded poly(ethylene glycol) hydrogels for healing vesicant-induced ocular wounds

    OpenAIRE

    Anumolu, SivaNaga S.; DeSantis, Andrea S; Menjoge, Anupa R; Hahn, Rita A.; Beloni, John A; Gordon, Marion. K.; Sinko, Patrick J.

    2009-01-01

    Half mustard (CEES) and nitrogen mustard (NM) are commonly used surrogates and vesicant analogs of the chemical warfare agent sulfur mustard. In the current study, in situ forming poly(ethylene glycol) (PEG)-based doxycycline hydrogels are developed and evaluated for their wound healing efficacy in CEES and NM exposed rabbit corneas in organ culture. The hydrogels, characterized by UV-Vis spectrophotometry, rheometry, and swelling kinetics, showed that the hydrogels are optically transparent,...

  2. Digital Drug Dosing: Dosing in Drug Assays by Light-Defined Volumes of Hydrogels with Embedded Drug-Loaded Nanoparticles

    DEFF Research Database (Denmark)

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjær Unmack;

    2014-01-01

    Polyethylene glycol (PEG)-based hydrogels are widely used for biomedical applications, including matrices for controlled drug release. We present a method for defining drug dosing in screening assays by light-activated cross-linking of PEG-diacrylate hydrogels with embedded drug-loaded liposome...

  3. Characterizing the Degradation of Alginate Hydrogel for Use in Multilumen Scaffolds for Spinal Cord Repair.

    Science.gov (United States)

    Shahriari, Dena; Koffler, Jacob; Lynam, Daniel A; Tuszynski, Mark H; Sakamoto, Jeffrey S

    2015-10-21

    Alginate was studied as a degradable nerve guidance scaffold material in vitro and in vivo. In vitro degradation rates were determined using rheology to measure the change in shear modulus vs time. The shear modulus decreased from 155 kPa to 5 kPa within 2 days; however, alginate samples maintained their superficial geometry for over 28 days. The degradation behavior was supported by materials characterization data showing alginate consisted of high internal surface area (400 m(2) /g), which likely facilitated the release of cross-linking cations resulting in the rapid decrease in shear modulus. To assess the degradation rate in vivo, multilumen scaffolds were fabricated using a fiber templating technique. The scaffolds were implanted in a 2 mm-long T3 full transection rodent spinal cord lesion model for 14 days. Although there was some evidence of axon guidance, in general, alginate scaffolds degraded before axons could grow over the 2 mm-long lesion. Enabling alginate-based scaffolds for nerve repair will likely require approaches to slow its degradation. This article is protected by copyright. All rights reserved.

  4. Real-time, non-invasive monitoring of hydrogel degradation using LiYF4:Yb(3+)/Tm(3+) NIR-to-NIR upconverting nanoparticles.

    Science.gov (United States)

    Jalani, Ghulam; Naccache, Rafik; Rosenzweig, Derek H; Lerouge, Sophie; Haglund, Lisbet; Vetrone, Fiorenzo; Cerruti, Marta

    2015-07-14

    To design a biodegradable hydrogel as cell support, one should know its in vivo degradation rate. A technique commonly used to track gel degradation is fluorescence spectroscopy. However, the fluorescence from conventional fluorophores quickly decays, and the fluorophores are often moderately cytotoxic. Most importantly, they require ultraviolet or visible (UV-Vis) light as the excitation source, which cannot penetrate deeply through biological tissues. Lanthanide-doped upconverting nanoparticles (UCNPs) are exciting alternatives to conventional fluorophores because they can convert near-infrared (NIR) to UV-Vis-NIR light via a sequential multiphoton absorption process referred to as upconversion. NIR light can penetrate up to few cm inside tissues, thus making these UCNPs much better probes than conventional fluorophores for in vivo monitoring. Also, UCNPs have narrow emission bands, high photoluminescence (PL) signal-to-noise ratio, low cytotoxicity and good physical and chemical stability. Here, we show a nanocomposite system consisting of a biodegradable, in situ thermogelling injectable hydrogel made of chitosan and hyaluronic acid encapsulating silica-coated LiYF4:Yb(3+)/Tm(3+) UCNPs. We use these UCNPs as photoluminescent tags to monitor the gel degradation inside live, cultured intervertebral discs (IVDs) over a period of 3 weeks. PL spectroscopy and NIR imaging show that NIR-to-NIR upconversion of LiYF4:Yb(3+)/Tm(3+)@SiO2 UCNPs allows for tracking of the gel degradation in living tissues. Both in vitro and ex vivo release of UCNPs follow a similar trend during the first 5 days; after this time, ex vivo release becomes faster than in vitro, indicating a faster gel degradation ex vivo. Also, the amount of released UCNPs in vitro increases continuously up to 3 weeks, while it plateaus after 15 days inside the IVDs showing a homogenous distribution of UCNPs throughout the IVD tissue. This non-invasive optical method for real time, live tissue imaging holds

  5. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on polystyrene-co

  6. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds

    NARCIS (Netherlands)

    Holland, T.A.; Bodde, E.W.H.; Baggett, L.S.; Tabata, Y.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    In this study, hydrogel scaffolds, based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF), were implanted into osteochondral defects in the rabbit model. Scaffolds consisted of two layers-a bottom, bone forming layer and a top, cartilage forming layer. Three scaffold formulations were impl

  7. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    Science.gov (United States)

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  8. Bioactive hydrogels made from step-growth derived PEG-peptide macromers.

    Science.gov (United States)

    Miller, Jordan S; Shen, Colette J; Legant, Wesley R; Baranski, Jan D; Blakely, Brandon L; Chen, Christopher S

    2010-05-01

    Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)(m)-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by

  9. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.

    Science.gov (United States)

    Chen, Shizhu; Yang, Keni; Tuguntaev, Ruslan G; Mozhi, Anbu; Zhang, Jinchao; Wang, Paul C; Liang, Xing-Jie

    2016-02-01

    Multidrug resistance is one of the biggest obstacles in the treatment of cancer. Recent research studies highlight that tumor microenvironment plays a predominant role in tumor cell proliferation, metastasis, and drug resistance. Hence, targeting the tumor microenvironment provides a novel strategy for the evolution of cancer nanomedicine. The blooming knowledge about the tumor microenvironment merging with the design of PEG-based amphiphilic nanoparticles can provide an effective and promising platform to address the multidrug resistant tumor cells. This review describes the characteristic features of tumor microenvironment and their targeting mechanisms with the aid of PEG-based amphiphilic nanoparticles for the development of newer drug delivery systems to overcome multidrug resistance in cancer cells. Cancer is a leading cause of death worldwide. Many cancers develop multidrug resistance towards chemotherapeutic agents with time and strategies are urgently needed to combat against this. In this review article, the authors discuss the current capabilities of using nanomedicine to target the tumor microenvironments, which would provide new insight to the development of novel delivery systems for the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    Science.gov (United States)

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  11. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.

    Science.gov (United States)

    Shih, Han; Lin, Chien-Chi

    2015-07-13

    Polymers or hydrogels containing modified cyclodextrin (CD) are highly useful in drug delivery applications, as CD is a cytocompatible amphiphilic molecule that can complex with a variety of hydrophobic drugs. Here, we designed modular photoclick thiol-ene hydrogels from derivatives of βCD and poly(ethylene glycol) (PEG), including βCD-allylether (βCD-AE), βCD-thiol (βCD-SH), PEG-thiol (PEGSH), and PEG-norbornene (PEGNB). Two types of CD-PEG hybrid hydrogels were prepared using radical-mediated thiol-ene photoclick reactions. Specifically, thiol-allylether hydrogels were formed by reacting multiarm PEGSH and βCD-AE, and thiol-norbornene hydrogels were formed by cross-linking βCD-SH and multiarm PEGNB. We characterized the properties of these two types of thiol-ene hydrogels, including gelation kinetics, gel fractions, hydrolytic stability, and cytocompatibility. Compared with thiol-allylether hydrogels, thiol-norbornene photoclick reaction formed hydrogels with faster gelation kinetics at equivalent macromer contents. Using curcumin, an anti-inflammatory and anticancer hydrophobic molecule, we demonstrated that CD-cross-linked PEG-based hydrogels, when compared with pure PEG-based hydrogels, afforded higher drug loading efficiency and prolonged delivery in vitro. Cytocompatibility of these CD-cross-linked hydrogels were evaluated by in situ encapsulation of radical sensitive pancreatic MIN6 β-cells. All formulations and cross-linking conditions tested were cytocompatible for cell encapsulation. Furthermore, hydrogels cross-linked by βCD-SH showed enhanced cell proliferation and insulin secretion as compared to gels cross-linked by either dithiothreitol (DTT) or βCD-AE, suggesting the profound impact of both macromer compositions and gelation chemistry on cell fate in chemically cross-linked hydrogels.

  12. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Apeldoorn, van Aart A.; Verrijk, Ruud; Blitterswijk, van Clemens A.; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable par

  13. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2014-02-01

    Hydrogels have been widely used as artificial cell niche to mimic extracellular matrix with tunable properties. However, changing biochemical cues in hydrogels developed-to-date would often induce simultaneous changes in mechanical properties, which do not support mechanistic studies on stem cell-niche interactions. Here we report the development of a PEG-based interpenetrating network (IPN), which is composed of two polymer networks that can independently and simultaneously crosslink to form hydrogels in a cell-friendly manner. The resulting IPN hydrogel allows independently tunable biochemical and mechanical properties, as well as stable and more homogeneous presentation of biochemical ligands in 3D than currently available methods. We demonstrate the potential of our IPN platform for elucidating stem cell-niche interactions by modulating osteogenic differentiation of human adipose-derived stem cells. The versatility of such IPN hydrogels is further demonstrated using three distinct and widely used polymers to form the mechanical network while keeping the biochemical network constant.

  14. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study.

    Science.gov (United States)

    Zhang, Yi; Wang, Hongxin; Wang, Peng; Ma, ChaoYang; He, GuoHua; Rahman, Md Ramim Tanver

    2016-11-01

    Polyethylene glycol (PEG) as a green solvent was employed to extract polysaccharide. The optimal conditions for PEG-based ultrasonic extraction of Dendrobium nobile Lindl. polysaccharide (JCP) were determined by response surface methodology. Under the optimal conditions: extraction temperature of 58.5°C; ultrasound power of 193W, and the concentration of polyethylene glycol-200 (PEG-200) solution of 45%, the highest JCP yield was obtained as 15.23±0.57%, which was close to the predicted yield, 15.57%. UV and FT-IR analysis revealed the general characteristic absorption peaks of both JCP with water extraction (JCPw) and PEG-200 solvent extraction (JCPp). Thermal analysis of both JCPs was performed with Thermal Gravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). Antioxidant activities of two polysaccharides were also compared and no significant difference in vitro was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    Science.gov (United States)

    Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.

    2017-01-01

    Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  16. Synthesis and Characterization of Phosphated Konjac Glucomannan Hydrogels

    Institute of Scientific and Technical Information of China (English)

    Li Gui CHEN; Zhi Lan LIU; Ying Jun CHEN; Ren Xi ZHUO

    2005-01-01

    Konjac glucomannan (KGM) was crosslinked with sodium tripolyphosphate (STPP) to synthesize hydrogels. The crosslinking reaction was confirmed by FT-IR. The results of degradation test show that the hydrogels retain the enzymatic degradation character of KGM and can be degraded for 74.45% in 5 days by cellulase E0240.

  17. Preparation of a Rapidly Forming Poly(ferrocenylsilane)-Poly(ethylene glycol)-based Hydrogel by a Thiol–Michael Addition Click Reaction

    NARCIS (Netherlands)

    Sui, Xiaofeng; van Ingen, Lennard; Hempenius, Mark A.; Vancso, Gyula J.

    2010-01-01

    The synthesis of a rapidly forming redox responsive poly(ferrocenylsilane)-poly(ethylene glycol) (PFS-PEG)-based hydrogel is described, achieved by a thiol-Michael addition click reaction. PFS bearing acrylate side groups (PFS-acryl) was synthesized by side group modification of

  18. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    Science.gov (United States)

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrogel based occlusion systems

    OpenAIRE

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A; Mendes, E.; Neves, H.P.; Herijgers, P; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  20. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests

    Directory of Open Access Journals (Sweden)

    M Likhitpanichkul

    2014-07-01

    Full Text Available Annulus fibrosus (AF defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation.

  1. Design of Hydrogels for Biomedical Applications.

    Science.gov (United States)

    Kamata, Hiroyuki; Li, Xiang; Chung, Ung-Il; Sakai, Takamasa

    2015-11-18

    Hydrogels are considered key tools for the design of biomaterials, such as wound dressings, drug reservoirs, and temporary scaffolds for cells. Despite their potential, conventional hydrogels have limited applicability under wet physiological conditions because they suffer from the uncontrollable temporal change in shape: swelling takes place immediately after the installation. Swollen hydrogels easily fail under mechanical stress. The morphological change may cause not only the slippage from the installation site but also local nerve compression. The design of hydrogels that can retain their original shape and mechanical properties in an aqueous environment is, therefore, of great importance. On the one hand, the controlled degradation of used hydrogels has to be realized in some biomedical applications. This Progress Report provides a brief overview of the recent progress in the development of hydrogels for biomedical applications. Practical approaches to control the swelling properties of hydrogels are discussed. The designs of hydrogels with controlled degradation properties as well as the theoretical models to predict the degradation behavior are also introduced. Moreover, current challenges and limitation toward biomedical applications are discussed, and future directions are offered.

  2. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation.

    Science.gov (United States)

    Zhang, Xiangmei; Xu, Ling; Huang, Xin; Wei, Shicheng; Zhai, Maolin

    2012-11-01

    Under γ-irradiation, concentrated collagen solutions yielded collagen hydrogels and liquid products. The molecular structure of collagen hydrogels and the source of the liquid products were studied. Furthermore, preliminary biological properties of the hydrogels were investigated. The results revealed that crosslinking occurred to form collagen hydrogel and the crosslinking density increased with the increasing of the absorbed dose, and the collagen hydrogels showed enhanced mechanical properties. Meanwhile, collagen underwent radiation degradation and water was squeezed out from hydrogel by contraction of hydrogel, yielding liquid products. Collagen hydrogels induced by γ-irradiation maintained the backbone structure of collagen, and tyrosine partially involved in crosslinking. The irradiated collagen hydrogels have higher denatured temperature, can promote fibroblasts proliferation, and their degradation rate in vivo depended on the absorbed dose. The comprehensive results suggested that the collagen hydrogels prepared by radiation crosslinking preserved the triple helical conformation, possessed improved thermal stability and mechanical properties, excellent biocompatibility, which is expected to favor its application as biomaterials.

  3. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant

    Science.gov (United States)

    Mondini, Sara; Drago, Carmelo; Ferretti, Anna M.; Puglisi, Alessandra; Ponti, Alessandro

    2013-03-01

    Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius Rh and volume-weighted size distribution Pv obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH4AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH4AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.

  4. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer.

    Science.gov (United States)

    Fang, Huagao; Jiang, Feng; Wu, Qianghua; Ding, Yunsheng; Wang, Zhigang

    2014-08-27

    Supertough biocompatible and biodegradable polylactide materials were fabricated by applying a novel and facile method involving reactive blending of polylactide (PLA) and poly(ethylene glycol) diacylate (PEGDA) monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra confirm that cross-linking reaction of acylate groups occurs in the melt blending process according to the free radical polymerization mechanism. The results from differential scanning calorimetry, phase contrast optical microscopy and transmission electron microscopy indicate that the in situ polymerization of PEGDA leads to a phase separated morphology with cross-linked PEGDA (CPEGDA) as the dispersed particle phase domains and PLA matrix as the continuous phase, which leads to increasing viscosity and elasticity with increasing CPEGDA content and a rheological percolation CPEGDA content of 15 wt %. Mechanical properties of the PLA materials are improved significantly, for example, exhibiting improvements by a factor of 20 in tensile toughness and a factor of 26 in notched Izod impact strength at the optimum CPEGDA content. The improvement of toughness in PLA/CPEGDA blends is ascribed to the jointly contributions of crazing and shear yielding during deformation. The toughening strategy in fabricating supertoughened PLA materials in this work is accomplished using biocompatible PEG-based polymer as the toughening modifier with no toxic radical initiators involved in the processing, which has a potential for biomedical applications.

  5. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms.

    Science.gov (United States)

    Islan, German A; Dini, Cecilia; Bartel, Laura C; Bolzán, Alejandro D; Castro, Guillermo R

    2015-12-30

    The aim of the present work is the characterization of smart auto-degradable microspheres composed of calcium alginate/high methoxylated pectin containing an alginate lyase (AL) from Sphingobacterium multivorum and levofloxacin. Microspheres were prepared by ionotropic gelation containing AL in its inactive form at pH 4.0. Incubation of microspheres in Tris-HCl and PBS buffers at pH 7.40 allowed to establish the effect of ion-chelating phosphate on matrix erodability and suggested an intrinsically activation of AL by turning the pH close to neutrality. Scanning electron and optical microscopies revealed the presence of holes and surface changes in AL containing microspheres. Furthermore, texturometric parameters, DSC profiles and swelling properties were showing strong changes in microspheres properties. Encapsulation of levofloxacin into microspheres containing AL showed 70% efficiency and 35% enhancement of antimicrobial activity against Pseudomonas aeruginosa biofilm. Levofloxacin release from microspheres was not changed at acidic pH, but was modified at neutral pH in presence of AL. Advantageously, only gel matrix debris were detectable after overnight incubation, indicating an autodegradative gel process activated by the pH. Absence of matrix cytotoxicity and a reduction of the levofloxacin toxicity after encapsulation were observed in mammalian CHO-K1 cell cultures. These properties make the system a potent and versatile tool for antibiotic oral delivery targeted to intestine, enhancing the drug bioavailability to eradicate bacterial biofilm and avoiding possible intestinal obstructions.

  6. A temperature-regulating fiber made of PEG-based smart copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qinghao; Hu, Jinlian [Shape Memory Textile Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2008-10-15

    A poly(ethylene glycol) (PEG)-based thermoplastic shape memory polyurethane was synthesized via bulk polymerization. The corresponding fiber, as a temperature-regulating fiber, was fabricated via melt spinning. The prepared 100-dtex fiber had a tenacity of 0.7 cN/dtex and breaking elongation of about 488%. The fiber's phase change behaviors, crystalline morphology, dynamic mechanical properties, and temperature-resistant performance were investigated using polarizing optical microscopy, differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetry. The PEG soft segment phase transfer between crystalline and amorphous states resulted in heat storage and release. The hydrogen-bonded hard segment phase, serving as 'physical cross-links,' restricted the free movement of soft segments, hence at temperatures above the PEG phase melting transition, the fiber still possessed certain mechanical strength. The differential scanning calorimetry results indicated that the fiber had large latent heat-storage capacity of about 100 J/g with a crystallizing temperature of 20.9 C and a melting temperature of 44.7 C. The dynamic mechanical analysis results showed that the fiber has a plateau elastic modulus in the region above the PEG phase melting transition and below 160 C. The thermogravimetry results suggested that the fiber had a much broader applicable temperature range compared to pure PEG. The thermo-mechanical cyclic tensile testing results showed that the fiber had good shape memory effect with the shape fixity ratio more than 85.8% and the recovery ratio above 95.4%. (author)

  7. Polyethylene glycol-based hydrogels for controlled release of the antimicrobial subtilosin for prophylaxis of bacterial vaginosis.

    Science.gov (United States)

    Sundara Rajan, Sujata; Cavera, Veronica L; Zhang, Xiaoping; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-05-01

    Current treatment options for bacterial vaginosis (BV) have been shown to be inadequate at preventing recurrence and do not provide protection against associated infections, such as that with HIV. This study examines the feasibility of incorporating the antimicrobial peptide subtilosin within covalently cross-linked polyethylene glycol (PEG)-based hydrogels for vaginal administration. The PEG-based hydrogels (4% and 6% [wt/vol]) provided a two-phase release of subtilosin, with an initial rapid release rate of 4.0 μg/h (0 to 12 h) followed by a slow, sustained release rate of 0.26 μg/h (12 to 120 h). The subtilosin-containing hydrogels inhibited the growth of the major BV-associated pathogen Gardnerella vaginalis with a reduction of 8 log10 CFU/ml with hydrogels containing ≥15 μg entrapped subtilosin. In addition, the growth of four common species of vaginal lactobacilli was not significantly inhibited in the presence of the subtilosin-containing hydrogels. The above findings demonstrate the potential application of vaginal subtilosin-containing hydrogels for prophylaxis of BV.

  8. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Garagorri, Nerea; Fermanian, Sara; Thibault, Richard; Ambrose, Winnette McIntosh; Schein, Oliver D; Chakravarti, Shukti; Elisseeff, Jennifer

    2008-09-01

    The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light. Additional hydrogels contained adhesive YRGDS and nonadhesive YRDGS peptides. Hydrogel constructs were cultured in DMEM/F-12 with 10% FBS for 2 and 4 weeks. Cell viability was assessed by DNA quantification and vital staining. Biglycan, type I collagen, type III collagen, keratocan and lumican expression were determined by reverse transcriptase-polymerase chain reaction. Deposition of type I collagen, type III collagen and keratan sulfate (KS)-containing matrix components was visualized using confocal microscopy. Keratocytes in a monolayer lost their stellate morphology and keratocan expression, displayed elongated cell bodies, and up-regulated biglycan, type I collagen and type III collagen characteristic of corneal fibroblasts. Encapsulated keratocytes remained viable for 4 weeks with spherical morphologies. Hydrogels supported production of KS, type I collagen and type III collagen matrix components. PEG-based hydrogels can support keratocyte viability and matrix production. 3-D hydrogel culture can stabilize but not restore the keratocyte phenotype. This novel application of PEG hydrogels has potential use in the study of corneal keratocytes in a 3-D environment.

  9. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    Science.gov (United States)

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  10. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  11. Bioresponsive hydrogels

    Directory of Open Access Journals (Sweden)

    Rein V. Ulijn

    2007-04-01

    Full Text Available We highlight recent developments in hydrogel materials with biological responsiveness built in. These ‘smart’ biomaterials change properties in response to selective biological recognition events. When exposed to a biological target (nutrient, growth factor, receptor, antibody, enzyme, or whole cell, molecular recognition events trigger changes in molecular interactions that translate into macroscopic responses, such as swelling/collapse or solution-to-gel transitions. The hydrogel transitions may be used directly as optical readouts for biosensing, linked to the release of actives for drug delivery, or instigate biochemical signaling events that control or direct cellular behavior. Accordingly, bioresponsive hydrogels have gained significant interest for application in diagnostics, drug delivery, and tissue regeneration/wound healing.

  12. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  13. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016.

  14. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunge [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Qian, Yufeng [Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, TX 78712 (United States); Zhao, Shuang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Yin, Yuji, E-mail: yinyuji@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Li, Junjie, E-mail: li41308@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850 (China)

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  15. Designing hydrogels for controlled drug delivery

    Science.gov (United States)

    Li, Jianyu; Mooney, David J.

    2016-12-01

    Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

  16. Photochemical Patterning of Ionically Cross-Linked Hydrogels

    Directory of Open Access Journals (Sweden)

    Marion Bruchet

    2013-08-01

    Full Text Available Iron(III cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

  17. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.

    Science.gov (United States)

    Keeney, Michael; Onyiah, Sheila; Zhang, Zhe; Tong, Xinming; Han, Li-Hsin; Yang, Fan

    2013-12-01

    Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.

  18. Long-term stability of PEG-based antifouling surfaces in seawater

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    2016-01-01

    Poly(ethylene glycol) (PEG) is a hydrophilic polymer that has been extensively used in the biomedical and marine environment due to its antifouling properties. In the biomedical field, PEG has been successfully used to functionalize surfaces due to its resistance to cell and nonspecific protein...... adsorption. However, the long-term stability of PEG has limited its use in some areas. In the shipping industry, there is a great need for long-term solutions to keep the hulls of the ships fouling-free. The long-term stability of PEG in polydimethylsiloxane (PDMS) fouling-release coatings is studied here....... The influence of the chemistry of the PEG compounds, the chosen laboratory degrading agents, and the possible degradation pathways and products are discussed....

  19. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  20. Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Thennakoon M. Sampath Udeni Gunathilake

    2017-02-01

    Full Text Available A unique biodegradable, superporous, swellable and pH sensitive nanocellulose reinforced chitosan hydrogel with dynamic mechanical properties was prepared for oral administration of curcumin. Curcumin, a less water-soluble drug was used due to the fact that the fast swellable, superporous hydrogel could release a water-insoluble drug to a great extent. CO2 gas foaming was used to fabricate hydrogel as it eradicates using organic solvents. Field emission scanning electron microscope images revealed that the pore size significantly increased with the formation of widely interconnected porous structure in gas foamed hydrogels. The maximum compression of pure chitosan hydrogel was 25.9 ± 1 kPa and it increased to 38.4 ± 1 kPa with the introduction of 0.5% cellulose nanocrystals. In vitro degradation of hydrogels was found dependent on the swelling ratio and the amount of CNC of the hydrogel. All the hydrogels showed maximum swelling ratios greater than 300%. The 0.5% CNC-chitosan hydrogel showed the highest swelling ratio of 438% ± 11%. FTIR spectrum indicated that there is no interaction between drug and ingredients present in hydrogels. The drug release occurred in non-Fickian (anomalous manner in simulated gastric medium. The drug release profiles of hydrogels are consistent with the data obtained from the swelling studies. After gas foaming of the hydrogel, the drug loading efficiency increased from 41% ± 2.4% to 50% ± 2.0% and release increased from 0.74 to 1.06 mg/L. The drug release data showed good fitting to Ritger-Peppas model. Moreover, the results revealed that the drug maintained its chemical activity after in vitro release. According to the results of this study, CNC reinforced chitosan hydrogel can be suggested to improve the bioavailability of curcumin for the absorption from stomach and upper intestinal tract.

  1. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  2. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    Science.gov (United States)

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-01

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications.

  3. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    Science.gov (United States)

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  4. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liqiang [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); University of Chinese Academy of Sciences, Beijing (China); Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Zhang, Huiwen, E-mail: hwzhang@iae.ac.cn [State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China)

    2015-04-28

    Highlights: • Esterase SulE was entrapped in a three-dimensional network of CPE. • CPE-SulE obviously improved thermostability, pH stability and reusability. • CPE-SulE displayed obviously enhanced efficiency in degrading chlorimuron-ethyl. • The three-dimensional network and kinetic parameters of CPE-SulE were analysed. • CPE-SulE possesses the great potential to remediate chlorimuron-ethyl contaminated in situ. - Abstract: Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ.

  5. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  6. Kinetics of Iododeoxyuridine release from sodium alginate hydrogel in vitro

    Institute of Scientific and Technical Information of China (English)

    XU Yong-hua; Mandar R Jagtap; ZHANG Dian-bo; YING Jun; Ronald C McGarry; Marc S. Mendonca; Gordon McLennan

    2006-01-01

    Objective To investigate the kinetics of Iododeoxyuridine (IUdR)release from sodium alginate hydrogel cross-linked with varying amounts of calcium chloride, and to optimize sustained release for further periadventitial I125-labeled IUdR delivery to suppress intimal hyperplasia following angioplasty in vivo.Methods Four hydrogels,composed of 0.16 mEq sodium alginate and 200 g IUdR, were cross-linked with calcium chloride to yield ion equivalence (IE) ratios (Calcium: alginate) of 3:1, 4:1, 5:1, or 6:1. 2 ml of normal saline was placed on top of each hydrogel and allowed to remain in contact at 37℃ for up to 30 days. At set time intervals, the concentration and amount of IUdR in the eluate were assayed by high performance liquid chromatography using UV detection and Water symmetry C18 column. The data for accumulated release rate and concentration in the eluate were calculated based on the calibration curve of peak area versus IUdR concentration. The hydrogel morphologic degradations were also observed. Results The hydrogels entrapped 92.9%, 98.6%, 98.4% and 98.6% of the IUdR with 3:1, 4:1, 5:1 and 6:1 IE ratios, respectively. IUdR concentration in eluates from 3:1 IE ratio hydrogel decreased faster than that from other hydrogels over time (P < 0.01). The 4:1, 5:1 and 6:1 IE ratio hydrogels produced more than 10 μm IUdR concentrations in eluates for the first 8 days, while the 3:1 IE ratio hydrogel for 4 days. IUdR release rates of the 4:1, 5:1 and 6:1 IE ratio hydrogels were very close, however they were lower than that of the 3:1 IE hydrogel in the first 48 hours (P < 0.05). At day 30, the 3:1 and 4:1 IE ratio hydrogels had 100% and 88% degradation, but no significant degradation was observed in the other hydrogels. Conclusion The sodium alginate hydrogel with 4:1 IE ratio exhibited an optimal IUdR sustained release and almost complete degradation in 30 days. (J Intervent Radiol,2006 , 15: 293-298)

  7. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    Science.gov (United States)

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  8. Injectable Biopolymer-hydroxyapatite Hydrogels: Obtaining and their Characterization

    Directory of Open Access Journals (Sweden)

    L.B. Sukhodub

    2016-03-01

    Full Text Available Hydrogels based on hydroxyapatite (HA and Chitosan (CS with addition of sodium alginate (Alg were synthesized by in situ precipitation method. Structure, morphology, chemical and phase composition of the HA/CS and HA/CS/Alg hydrogels were characterized by TEM, FTIR and XRD. Hydrogels consist of low crystallinity calcium deficient hydroxyapatite (JCPDS 9 432, the needle-like crystallites have an average size 25 nm. The introduction of Alginate powder into HA/CS hydrogel solution demonstrate the viscosity enhancing of the HA/CS hydrogel due to polyelectrolyte reaction between Alginate and Chitosan macromolecules. Two natural polymers and partially released from hydroxyapatite Ca2+ ions formed a matrix by crosslinking the polymer macromolecules through hydroxyl, amino and carbonyl groups. These processes promote the formation of a more stable structure of HA/CS/Alg hydrogel as compared to HA/CS. The structural integrity and degradation tests have demonstrated that HA/CS/Alg1.0 saved its initial shape in 7 days of shaking in SBF solution, meanwhile for HA/CS, a structural decay was observed. The HA/CS hydrogel had completely lost its volume support after 1 day shaking in SBF. Thus, the ability of HA/CS hydrogel to maintain its shape with implantation into bone tissue defect may be enhanced with alginate addition, but alginate content more than 1 w/w % reduces the hydrogel plasticity, increases the swelling and accelerates the shape decay.

  9. Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels.

    Science.gov (United States)

    Henke, Matthias; Brandl, Ferdinand; Goepferich, Achim M; Tessmar, Joerg K

    2010-02-01

    Hydrogels play an important role in drug delivery and tissue engineering applications due to their excellent biocompatibility and their variable mechanical and physical properties, which allow their optimization for many different aspects of the intended use. In this study, we examined the suitability of poly(ethylene glycol) (PEG)-based hydrogels as release systems for nanometer-sized drugs or drug carriers, like nanoparticles, using the radically cross-linkable oligo(poly(ethylene glycol)fumarate) (OPF) together with two cross-linking agents. Different fluorescent nanoparticulate probes with respect to size and physical structure were incorporated in the cross-linked hydrogels, and the obtained release profiles were correlated with the physical properties and the chemical structure of the gels, indicating a strong dependence of the release on the chosen PEG prepolymers. The prepared hydrogels were characterized by oscillatory rheometry and swelling experiments. Release experiments as well as diffusion measurements using fluorescence recovery after photobleaching showed the great potential of this type of hydrogels for the preparation of adjustable release systems by altering the molecular weights of the used PEG molecules.

  10. Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior.

    Science.gov (United States)

    Lin, Fei; Yu, Jiayi; Tang, Wen; Zheng, Jukuan; Defante, Adrian; Guo, Kai; Wesdemiotis, Chrys; Becker, Matthew L

    2013-10-14

    We demonstrate the formation of polyethylene glycol (PEG) based hydrogels via oxime ligation and the photoinitiated thiol-ene 3D patterning of peptides within the hydrogel matrix postgelation. The gelation process and final mechanical strength of the hydrogels can be tuned using pH and the catalyst concentration. The time scale to reach the gel point and complete gelation can be shortened from hours to seconds using both pH and aniline catalyst, which facilitates the tuning of the storage modulus from 0.3 to over 15 kPa. Azide- and alkene-functionalized hydrogels were also synthesized, and we have shown the post gelation "click"-type Huisgen 1,3 cycloaddition and thiolene-based radical reactions for spatially defined peptide incorporation. These materials are the initial demonstration for translationally relevant hydrogel materials that possess tunable mechanical regimes attractive to soft tissue engineering and possess atom neutral chemistries attractive for post gelation patterning in the presence or absence of cells.

  11. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility.

    Science.gov (United States)

    Li, Xian; Xue, Wenjiao; Liu, Yannan; Li, Weina; Fan, Daidi; Zhu, Chenhui; Wang, Yaoyu

    2016-01-01

    New locally injectable biomaterials that are suitable for use as soft tissue fillers are needed to address a significant unmet medical need. In this study, we used pullulan and human-like collagen (HLC) based hydrogels with various molecular weights (MWs) in combination therapy against tissue defects. Briefly, pullulan was crosslinked with NaIO4 to form a pullulan hydrogel and then may coupled with HLC using the reaction between the -NH2 end-group of HLC and the -CHO group present on the aldehyde pullulan to form the HLC/pullulan hydrogel, wherein the NaIO4 acted as the crosslinking and oxidizing agent. The good miscibility of pullulan and HLC in the hydrogels was confirmed via Fourier transform infrared spectroscopy, scanning electron microscopy, compression testing, enzyme degradation testing, cell adhesions, live/dead staining and subcutaneous filling assays. Here, pullulan hydrogels with various MWs were fabricated and physicochemically characterized. Limitations of the pullulan hydrogels included inflammation, poor mechanical strength, and degradation. By contrast, the properties of the HLC/pullulan hydrogels strongly enhanced. The efficacy of these hydrogels was evaluated both in vitro and in vivo. Our results indicate that HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and delayed hydrogel degradation.

  12. Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides

    Science.gov (United States)

    Stahl, Patrick

    The ECM is a complex natural system evolved to promote proliferation and differentiation of cells during tissue development. In order to create synthetic biomaterials for studying cell-scaffold interactions and ultimately for engineering tissues, scientists strive to recapitulate many characteristics of ECM by developing hydrogels that contain mechanical cues and biochemical signals such as adhesion moieties and cell growth factors. While synthetic hydrogels bypass limitations of naturally-derived materials (e.g. transfer of pathogens), nature provides inspiration to enhance the functionality of synthetic hydrogels through biomimetic approaches. The collagen triple helix is the basis for the supramolecular structure of collagen in the ECM, and its adaptation in collagen mimetic peptides (CMPs) has provided hybridization mechanisms that can be employed in the formation and functionalization of synthetic hydrogels. The aim of this dissertation is to develop novel poly(ethylene glycol) (PEG)-based hydrogels that employ CMP triple helix assembly as a non-covalent yet target-specific tool to encode physical and chemical cues into the hydrogel with spatial control. We demonstrate that multi-arm PEG functionalized with CMPs form hydrogels supported by physical crosslinks mediated by CMP triple helix. Particle tracking microrheology shows that these physical crosslinks are sensitive to temperature as well as addition of exogenous CMPs that can disrupt crosslinks by competing for triple helix formation. This physical crosslink disruption enables the modulation of bulk hydrogel elasticity and the introduction of local stiffness gradients in PEG-CMP hydrogels. We also present photopolymerized PEG diacrylate (PEGDA) hydrogels displaying CMPs that can be further conjugated to CMPs with bioactive moieties via triple helix hybridization. Encoding these hydrogels with cell-adhesive CMPs induces cell spreading and proliferation. We further demonstrate generation of gradients and

  13. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Science.gov (United States)

    Hütten, Mareike; Dhanasingh, Anandhan; Hessler, Roland; Stöver, Timo; Esser, Karl-Heinz; Möller, Martin; Lenarz, Thomas; Jolly, Claude; Groll, Jürgen; Scheper, Verena

    2014-01-01

    Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX). To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO) prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  14. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  15. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.

    Science.gov (United States)

    Skaalure, Stacey C; Chu, Stanley; Bryant, Stephanie J

    2015-02-18

    A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.

  16. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process.

    Science.gov (United States)

    Manjula, Bandla; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Reddy, G Venkata Subba; Raju, Konduru Mohana

    2014-04-01

    In this investigation, an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using biodegradable gelatin as a stabilizing agent is reported. Here, we prepared thermosensitive silver nanocomposite hydrogels composed of gelatin and N-isopropylacrylamide. In this green process AgNPs were formed from Ag(+) ions and reduced with leaf [Azadirachta indica (neem leaf)] extracts, resulting in a hydrogel network. The Ag(0) nanoparticles affect the hydrogel strength and improved the biological activity (inactivation effect of bacteria) of the biodegradable hydrogels. The resulted hydrogel structure, morphology, thermal, swelling behavior, degradation, and antibacterial properties were systematically investigated. The biodegradable thermosensitive silver nanocomposite hydrogels developed were tested for antibacterial activities. The results indicate that these biodegradable silver nanocomposite hydrogels are suitable potential candidates for antibacterial applications.

  17. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Directory of Open Access Journals (Sweden)

    Michael Floren

    2016-09-01

    Full Text Available Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.

  18. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Science.gov (United States)

    Floren, Michael; Migliaresi, Claudio; Motta, Antonella

    2016-01-01

    Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. PMID:27649251

  19. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Xue, Wenjiao [Shannxi provincial institute of microbiology, Xi’ an 710043 (China); Liu, Yannan; Li, Weina [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Wang, Yaoyu, E-mail: wyaoyu@nwu.edu.cn [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China)

    2016-01-01

    New locally injectable biomaterials that are suitable for use as soft tissue fillers are needed to address a significant unmet medical need. In this study, we used pullulan and human-like collagen (HLC) based hydrogels with various molecular weights (MWs) in combination therapy against tissue defects. Briefly, pullulan was crosslinked with NaIO{sub 4} to form a pullulan hydrogel and then may coupled with HLC using the reaction between the –NH{sub 2} end-group of HLC and the –CHO group present on the aldehyde pullulan to form the HLC/pullulan hydrogel, wherein the NaIO{sub 4} acted as the crosslinking and oxidizing agent. The good miscibility of pullulan and HLC in the hydrogels was confirmed via Fourier transform infrared spectroscopy, scanning electron microscopy, compression testing, enzyme degradation testing, cell adhesions, live/dead staining and subcutaneous filling assays. Here, pullulan hydrogels with various MWs were fabricated and physicochemically characterized. Limitations of the pullulan hydrogels included inflammation, poor mechanical strength, and degradation. By contrast, the properties of the HLC/pullulan hydrogels strongly enhanced. The efficacy of these hydrogels was evaluated both in vitro and in vivo. Our results indicate that HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and delayed hydrogel degradation. - Graphical abstract: The HLC/pullulan hydrogels were prepared by dialysis, wet granulation and UV radiation after various MWs of pullulan and HLC were crosslinked with NaIO{sub 4}, and injected subcutaneously into Kunming mouse. The formation of HLC/pullulan hydrogels is due to the amide bond linkage with the amino group of HLC and the aldehyde groups in pullulan aqueous media after crosslinking by NaIO{sub 4}. HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and

  20. Injectable silk-polyethylene glycol hydrogels.

    Science.gov (United States)

    Wang, Xiaoqin; Partlow, Benjamin; Liu, Jian; Zheng, Zhaozhu; Su, Bo; Wang, Yansong; Kaplan, David L

    2015-01-01

    Silk hydrogels for tissue repair are usually pre-formed via chemical or physical treatments from silk solutions. For many medical applications, it is desirable to utilize injectable silk hydrogels at high concentrations (>8%) to avoid surgical implantation and to achieve slow in vivo degradation of the gel. In the present study, injectable silk solutions that formed hydrogels in situ were generated by mixing silk with low-molecular-weight polyethylene glycol (PEG), especially PEG300 and 400 (molecular weight 300 and 400g mol(-1)). Gelation time was dependent on the concentration and molecular weight of PEG. When the concentration of PEG in the gel reached 40-45%, gelation time was less than 30min, as revealed by measurements of optical density and rheological studies, with kinetics of PEG400 faster than PEG300. Gelation was accompanied by structural changes in silk, leading to the conversion from random coil in solution to crystalline β-sheets in the gels, based on circular dichroism, attenuated total reflection Fourier transform infrared spectroscopy and X-ray diffraction. The modulus (127.5kPa) and yield strength (11.5kPa) determined were comparable to those of sonication-induced hydrogels at the same concentrations of silk. The time-dependent injectability of 15% PEG-silk hydrogel through 27G needles showed a gradual increase of compression forces from ∼10 to 50N within 60min. The growth of human mesenchymal stem cells on the PEG-silk hydrogels was hindered, likely due to the presence of PEG, which grew after a 5 day delay, presumably while the PEG solubilized away from the gel. When 5% PEG-silk hydrogel was subcutaneously injected in rats, significant degradation and tissue in-growth took place after 20 days, as revealed by ultrasound imaging and histological analysis. No significant inflammation around the gel was observed. The features of injectability, slow degradation and low initial cell attachment suggests that these PEG-silk hydrogels are of interest

  1. Patterning surface by site selective capture of biopolymer hydrogel beads.

    Science.gov (United States)

    Guyomard-Lack, Aurélie; Moreau, Céline; Delorme, Nicolas; Marquis, Mélanie; Fang, Aiping; Bardeau, Jean-François; Cathala, Bernard

    2012-06-01

    This communication describes the fabrication of microstructured biopolymer surfaces by the site-selective capture of pectin hydrogel beads. A positively charged surface consisting of poly-L-lysine (PLL) was subjected to site-selective enzymatic degradation using patterned polydimethylsiloxane (PDMS) stamps covalently modified with trypsin, according to the recently described method. The patterned surface was used to capture ionically cross-linked pectin beads. The desired patterning of the hydrogel surfaces was generated by site-selective immobilization of these pectin beads. The ability of the hydrogels to be dried and swollen in water was assessed.

  2. Synthesis and evaluation of iron-doped titania/silane based hydrogel for the adsorptional photocatalytic degradation of Victoria blue under visible light.

    Science.gov (United States)

    Anirudhan, Thayyath S; Divya, Peethambaran L; Nima, Jayachandran; Sandeep, Sadanandan

    2014-11-15

    Novel photocatalyst, poly(itaconic acid-co-2-acrylamido-2-methylpropane-1-sulfonic acid) iron doped titania/silane was successfully prepared by the polymerization of iron doped titania/silane and two functional monomers, itaconic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in aqueous solution using ethylene glycol dimethacrylate as cross-linker and benzoylperoxide as initiator. The sample was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Diffuse reflectance spectroscopy (DRS) techniques. Effects of various factors like pH, adsorbent dose, contact time, and ionic strength on the adsorption capacity of photocatalyst for Victoria blue (VB) were studied by batch adsorption experiments. The kinetic data were found to follow pseudo-second-order kinetic model with low chi square, χ(2) values and R(2) values closer to unity. The equilibrium data were in well agreement with Langmuir isotherm model and maximum adsorption capacity was found to be 153.89 mg/g. The swelling capacity of the adsorbent with changes in pH, time and temperature was also investigated. The kinetics of photocatalytic degradation of VB by the photocatalyst found to follow first-order kinetics. The regeneration and repeated use of photocatalyst were also examined upto four cycles. The prepared photocatalyst was found to be efficient photocatalyst-cum-adsorbent for the degradation of VB from aqueous solutions under solar light.

  3. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Assunta Borzacchiello

    2015-01-01

    Full Text Available Hyaluronic acid (HA hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests.

  4. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.

    Science.gov (United States)

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun; Aktas, Nahit; Turk, Mustafa

    2016-01-01

    A novel resourceful bulk poly(Tannic Acid) (p(TA)) hydrogel was prepared by crosslinking TA molecules with an epoxy crosslinker, trimethylolpropane triglycidyl ether (TMPGDE), in an autoclave at 90°C for 2h. The obtained p(TA) hydrogels were in disk form and have highly porous morphology. The swelling characteristics of p(TA) hydrogels were investigated in wound healing pH conditions of pH 5.4, 7.4, and 9 at 37.5°C, and the hydrogels showed good swelling and moisture content behavior. Especially, p(TA) hydrogels were found to be sensitive to pH 9 with 1669% maximum swelling. P(TA) hydrogels were completely degraded at pH 9 hydrolytically in 9 days. Total phenol contents and the effects of scavenging ABTS(+) radicals of degraded p(TA) hydrogels at pH 5.4, 7.4, and 9 were evaluated and calculated in terms of gallic acid equivalent and trolox equivalent antioxidant capacity, respectively, and found to be very effective. Moreover, degraded p(TA) hydrogels display strong antimicrobial behavior against gram positive Staphylococcus aureus, Bacillus subtilis, gram negative Pseudomonas aeruginosa bacteria strains and Candida albicans fungus strain. The WST-1 results indicated that bulk p(TA) hydrogels have no cyctotoxicity to the L929 fibroblast cell line in vitro.

  5. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  6. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.

    Science.gov (United States)

    Kai, Dan; Prabhakaran, Molamma P; Stahl, Benjamin; Eblenkamp, Markus; Wintermantel, Erich; Ramakrishna, Seeram

    2012-03-01

    Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.

  7. Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering.

    Science.gov (United States)

    Vulpe, Raluca; Popa, Marcel; Picton, Luc; Balan, Vera; Dulong, Virginie; Butnaru, Maria; Verestiuc, Liliana

    2016-03-01

    Zero-length crosslinked hydrogels have been synthesized by covalent linking of three natural polymers (collagen, hyaluronic acid and sericin), in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The hydrogels have been investigated by FT-IR spectroscopy, microcalorimetry, in vitro swelling, enzymatic degradation, and in vitro cell viability studies. The obtained crosslinked hydrogels showed a macroporous structure, high swelling degree and in vitro enzymatic resistance compared to uncrosslinked collagen. The in vitro cell viability studies performed on normal human dermal fibroblasts assessed the sericin proliferation properties indicating a potential use of the hydrogels based on collagen, hyaluronic acid and sericin in skin tissue engineering.

  8. A synthetic thermo-sensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides

    Science.gov (United States)

    Blokzijl, Maarten M.; Gawlitta, Debby; Dhert, Wouter J. A.; Hennink, Wim E.; Malda, Jos; Vermonden, Tina

    2016-01-01

    Hydrogels based on triblock copolymers of polyethylene glycol and partially methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) are an attractive class of biomaterials due to their biodegradability, cytocompatibility, and tunable thermo-responsive and mechanical properties. By fine-tuning these properties, the hydrogels can be 3D bioprinted, to generate e.g. constructs for cartilage repair. This study investigated whether hydrogels based on the above mentioned polymer with a 10% degree of methacrylation (M10P10), support cartilage formation by chondrocytes, and whether the incorporation of methacrylated chondroitin sulfate (CSMA) or methacrylated hyaluronic acid (HAMA) can improve the mechanical properties, long-term stability, and printability. Chondrocyte-laden M10P10 hydrogels were cultured for 42 days to evaluate chondrogenesis. M10P10 hydrogels with or without polysaccharides were evaluated for their mechanical properties (before and after UV photo-cross-linking), degradation kinetics, and printability. Extensive cartilage matrix production occurred in M10P10 hydrogels, highlighting their potential for cartilage repair strategies. The incorporation of polysaccharides increased the storage modulus of polymer mixtures and decreased the degradation kinetics in cross-linked hydrogels. Addition of HAMA to M10P10 hydrogels improved printability and resulted in 3D constructs with excellent cell viability. Hence, this novel combination of M10P10 with HAMA forms an interesting class of hydrogels for cartilage bioprinting. PMID:27171342

  9. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.

    Science.gov (United States)

    Liu, Y; Vrana, N E; Cahill, P A; McGuinness, G B

    2009-08-01

    Polyvinyl alcohol (PVA) hydrogels have been considered potentially suitable for applications as engineered blood vessels because of their structure and mechanical properties. However, PVA's hydrophilicity hinders its capacity to act as a substrate for cell attachment. As a remedy, PVA was blended with chitosan, gelatin, or starch, and hydrogels were formed by subjecting the solutions to freeze-thaw cycles followed by coagulation bath immersion. The structure-property relationships for these hydrogels were examined by measurement of their swelling, rehydration, degradation, and mechanical properties. For the case of pure PVA hydrogels, the equilibrium swelling ratio was used to predict the effect of freeze thaw cycles and coagulation bath on average molecular weights between crosslinks and on mesh size. For all hydrogels, trends for the reswelling ratio, which is indicative of the crosslinked polymer fraction, were consistent with relative tensile properties. The coagulation bath treatment increased the degradation resistance of the hydrogels significantly. The suitability of each hydrogel for cell attachment and proliferation was examined by protein adsorption and bovine vascular endothelial cell culture experiments. Protein adsorption and cell proliferation was highest on the PVA/gelatin hydrogels. This study demonstrates that the potential of PVA hydrogels for artificial blood vessel applications can be improved by the addition of natural polymers, and that freeze-thawing and coagulation bath treatment can be utilized for fine adjustment of the physical characteristics.

  10. Fabrication of Hyaluronan-Poly(vinylphosphonic acid-Chitosan Hydrogel for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Dang Hoang Phuc

    2016-01-01

    Full Text Available A new hydrogel made of hyaluronan, poly(vinylphosphonic acid, and chitosan (HA/PVPA/CS hydrogel was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally, in vivo study was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity against E. coli. Finally, in vivo study indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.

  11. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    Science.gov (United States)

    Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery. PMID:27703850

  12. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid-polyacrylonitrile copolymeric hydrogels

    Science.gov (United States)

    Bera, Anuradha; Misra, R. K.; Singh, Shailendra K.

    2013-10-01

    Copolymeric hydrogels of polyacrylic acid (PAA) - polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off.

  13. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  14. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery

    Science.gov (United States)

    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles ...

  15. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    Science.gov (United States)

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  16. Antitumor efficacy of doxorubicin-loaded laponite/alginate hybrid hydrogels.

    Science.gov (United States)

    Gonçalves, Mara; Figueira, Priscilla; Maciel, Dina; Rodrigues, João; Shi, Xiangyang; Tomás, Helena; Li, Yulin

    2014-01-01

    Degradable hybrid hydrogels with improved stability are prepared by incorporating nanodisks of biocompatible laponite (LP) in alginate (AG) hydrogels using Ca(2+) as a crosslinker. The Dox-loaded hybrid hydrogels give a controlled Dox release at physiological environment in a sustained manner. Under conditions that mimic the tumor environment, both the sustainability in the Dox release (up to 17 d) and the release efficiency from LP/AG-Dox hydrogels are improved. The in situ degradation of these hybrid hydrogels gives rise to nanohybrids that might serve as vehicles for carrying Dox through the cell membrane and diminish the effect of Dox ion-trapping in the acidic extracellular environment of the tumor and/or in the endo-lysosomal cell compartments.

  17. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering

    Science.gov (United States)

    Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.

  18. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.

    Science.gov (United States)

    Van Hove, Amy H; Burke, Kathleen; Antonienko, Erin; Brown, Edward; Benoit, Danielle S W

    2015-11-10

    Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.

  19. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading

    Directory of Open Access Journals (Sweden)

    T. D. Jones

    2016-01-01

    Full Text Available Introduction. HyStem-C™ is a commercially available injectable hydrogel composed of polyethylene glycol diacrylate (PEGDA, hyaluronan (HA, and gelatin (Gn. These components can be mechanically tuned to enhance cell viability and spreading. Methods. The concentration of PEGDA with an added disulfide bond (PEGSSDA was varied from 0.5 to 8.0% (w/v to determine the optimal concentration for injectable clinical application. We evaluated the cell viability of human dental pulp stem cells (hDPSCs embedded in 2% (w/v PEGSSDA-HA-Gn hydrogels. Volume ratios of HA : Gn from 100 : 0 to 25 : 75 were varied to encourage hDPSC spreading. Fibronectin (Fn was added to our model to determine the effect of extracellular matrix protein concentration on hDPSC behavior. Results. Our preliminary data suggests that the hydrogel gelation time decreased as the PEGSSDA cross-linker concentration increased. The PEGSSDA-HA-Gn was biocompatible with hDPSCs, and increased ratios of HA : Gn enhanced cell viability for 14 days. Additionally, cell proliferation with added fibronectin increased significantly over time at concentrations of 1.0 and 10.0 μg/mL in PEGDA-HA-Gn hydrogels, while cell spreading significantly increased at Fn concentrations of 0.1 μg/mL. Conclusions. This study demonstrates that PEG-based injectable hydrogels maintain hDPSC viability and facilitate cell spreading, mainly in the presence of extracellular matrix (ECM proteins.

  20. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.

    Science.gov (United States)

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2014-11-01

    Protein and peptide delivery by the use of stimuli triggered polymers remains to be the area of interest among the scientist and innovators. In-situ forming gel for the parenteral route in the form of hydrogel and implants are being utilized for various biomedical applications. The formulation of gel depends upon factors such as temperature modulation, pH changes, the presence of ions and ultra-violet irradiation, from which drug is released in a sustained and controlled manner. Among various stimuli triggered factors, thermoresponsive is the most potential one for the delivery of protein and peptides. Poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of its biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review, stresses on the physicochemical property, stability and compositions prospects of smart thermoresponsive polymer specifically, PEG/Poly(N-isopropylacrylamide) (PNIPAAm) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. PEG-PNIPAAm based hydrogel exhibits good gelling mechanical strength and minimizes the initial burst effect of the drug. In addition, upon changing the composition and proportion of the copolymer molecular weight and ratio, the gelling time can be reduced to a great extent providing better sol-gel transition. The hydrogel formed by the same is able to release the drug over a long duration of time, meanwhile is also biocompatible and biodegradable. Manuscript will give the new researchers an idea about the potential and benefits of PNIPAAm based thermoresponsive hydrogels for the biomedical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Gen-Jian Zheng; Ya-Tong Guo; Lan Zhou; Jie Du; Hong He

    2014-01-01

    Objective:To prepare a novel biodegradable poly(2-hydroxyethylmethacrilate)(pHEMA) hydrogel as tissue engineering scaffold.Methods:The pHEMA hydrogel was synthesized by microwave-assisted polymerization using2-hydroxyethyl methacrylate(HEMA) as the raw material, potassium persulfate as the initiator, andPCLX as the cross-linking additive.The hydrogels was characterized withFTIR andNMR spectroscopy.The physical and chemical properties of the prepared hydrogel were evaluated, and its degradation performance was tested.The cytotoxicity of the optimum composite hydrogel was measured by anMTT assay to confirm the feasibility of its use in tissue engineering.Results:The optimum conditions under which the hydrogel was prepared by microwave-assisted polymerization are as follows:1.5 g cross-linking additive,0.3 g initiator, reaction temperature of80℃, and microwave power of800W.Degradation studies showed good degradation profiles with75% in17 days.Additionally, the hydrogels did not elicit any cytotoxic response inin vitro cytotoxic assays.Conclusion:A biodegradable pHEMA hydrogel was successfully prepared by microwave-assisted polymerization, as confirmed from FTIR andNMR results.The hydrogel shows promising applications in tissue engineering, and its healing ability and biocompatibility will be evaluated in detail in the future.

  2. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline.

    Science.gov (United States)

    Tormos, Christian J; Abraham, Carol; Madihally, Sundararajan V

    2015-12-01

    Although local cell delivery is an option to repair tissues, particularly using chitosan-based hydrogels, significant attrition of injected cells prior to engraftment has been a problem. To address this problem, we explored the possibility of stabilizing the chitosan-gelatin (CG) injectable hydrogels using (1) controlled release of doxycycline (DOX) to prevent premature degradation due to increased gelatinase activity (MMP-2 and MMP-9), and (2) transglutaminase (TG) to in situ cross-link gelatin to improve the mechanical stability. We prepared DOX-loaded PLGA nanoparticles, loaded into the CG hydrogels, measured DOX release for 5 days, and modeled using a single-compartmental assumption. Next, we assessed the influence of TG and DOX on hydrogel compression properties by incubating hydrogels for 7 days in PBS. We evaluated the effect of these changes on retention of fibroblasts and alterations in MMP-2/MMP-9 activity by seeding 500,000 fibroblasts for 5 days. These results showed that 90 % of DOX released from cross-linked CG hydrogels after 4 days, unlike CG hydrogels where 90 % of DOX was released within the first day. Addition of TG enhanced the CG hydrogel stability significantly. More than 60 % of seeded fibroblasts were recovered from the CG-TG hydrogels at day 5, unlike 40 % recovered from CG-hydrogels. Inhibition of MMP-2/MMP-9 were observed. In summary, controlled release of DOX from CG hydrogels cross-linked with TG shows a significant potential as a carrier for cell delivery.

  3. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    Directory of Open Access Journals (Sweden)

    Andreia Ribeiro

    2010-08-01

    Full Text Available Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices.

  4. Template-synthesized opal hydrogels

    Institute of Scientific and Technical Information of China (English)

    LI Jun; JI Lijun; RONG Jianhua; YANG Zhenzhong

    2003-01-01

    Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response to pH were investigated. Through the sol-gel process of tetrabutyl titanate, opal titania was obtained with the opal hydrogel template.

  5. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Burns, Beijing Jishuitan Hospital, Beijing 100035 (China); Zhang, Yaqing; Zhang, Xiangmei [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Shenzhen Key Laboratory for Polymer Science, Peking University Shenzhen Institute, Shenzhen 518057 (China); Chen, Xin, E-mail: xchin@vip.sina.com [Department of Burns, Beijing Jishuitan Hospital, Beijing 100035 (China); Wei, Shicheng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2013-12-01

    A series of carboxymethyl chitosan (CM-chitosan) and gelatin hydrogels were prepared by radiation crosslinking. A pre-clinical study was performed by implantation model and full-thickness cutaneous wound model in Sprague–Dawley rats to preliminarily evaluate the biocompatibility, biodegradability and effects on healing. In the implantation test, as a component of the hydrogels, CM-chitosan showed a positive effect on promoting cell proliferation and neovascularization, while gelatin was efficient to stabilize the structure and prolong the degradation time. To evaluate the function on wound healing, the hydrogels were applied to the relatively large full-thickness cutaneous wounds (Φ3.0 cm). Compared with the control groups, the hydrogel group showed significantly higher percentage of wound closure on days 9, 12 and 15 postoperatively, which was consistent with the significantly thicker granulation tissue on days 3 and 6. All results apparently revealed that the radiation crosslinked CM-chitosan/Gelatin hydrogels could induce granulation tissue formation and accelerate the wound healing. - Highlights: • The hydrogels were prepared by a facile and green method, radiation crosslinking. • The biodegradability and mechanical strength can be regulated by composition. • The hydrogels promote fibroblasts proliferation and neovascularization. • The hydrogels lead to earlier tissue granulation and re-epithelialization. • The hydrogels are ideal wound healing materials with excellent biocompatibility.

  6. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.

    Science.gov (United States)

    Bae, Jin Woo; Choi, Jong Hoon; Lee, Yunki; Park, Ki Dong

    2015-11-01

    In situ-forming hydrogels are an attractive class of implantable biomaterials that are used for biomedical applications. These injectable hydrogels are versatile and provide a convenient platform for delivering cells and drugs via minimally invasive surgery. Although several crosslinking methods for preparing in situ forming hydrogels have been developed over the past two decades, most hydrogels are not sufficiently versatile for use in a wide variety of tissue-engineering applications. In recent years, enzyme-catalysed crosslinking approaches have been emerged as a new approach for developing in situ-forming hydrogels. In particular, the horseradish peroxidase (HRP)-catalysed crosslinking approach has received increasing interest, due to its highly improved and tunable capacity to obtain hydrogels with desirable properties. The HRP-catalysed crosslinking reaction immediately occurs upon mixing phenol-rich polymers with HRP and hydrogen peroxide (H2O2) in aqueous media. Based on this unique gel-forming feature, recent studies have shown that various properties of formed hydrogels, such as gelation time, stiffness and degradation rate, can be easily manipulated by varying the concentrations of HRP and H2O2. In this review, we outline the versatile properties of HRP-catalysed in situ-forming hydrogels, with a brief introduction to the crosslinking mechanisms involved. In addition, the recent biomedical applications of HRP-catalysed in situ-forming hydrogels for tissue regeneration are described.

  7. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application.

  8. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pengfei; Zhai Maolin; Li Jiuqiang; Peng Jing; Wu Jilan E-mail: wangwq@sun.ihep.ac.cn

    2002-03-01

    Sodium carboxymethyl cellulose (CMC) is a kind of degraded polymer under {gamma}-irradiation. However, in this work, it has been found that CMC crosslinks partially to form hydrogel by radiation technique at more than 20% CMC aqueous solution. The gel fraction increases with the dose. The crosslinking reaction of CMC is promoted in the presence of N{sub 2} or N{sub 2}O due to the increase of free radicals on CMC backbone, but gel fraction of CMC hydrogel is not high (<40%). Some important values related to this kind of new CMC hydrogel synthesized under different conditions, such as radiation yield of crosslinking G(x), gelation dose R{sub g}, number average molecular weight of network M{sub c} were calculated according to the Charlesby-Pinner equation. The results indicated that although crosslinked CMC hydrogel could be prepared by radiation method, the rate of radiation degradation of CMC was faster than that of radiation crosslinking due to the character of CMC itself. Swelling dynamics of CMC hydrogel and its swelling behavior at different conditions, such as acidic, basic, inorganic salt as well as temperature were also investigated. Strong acidity, strong basicity, small amount of inorganic salts and lower temperature can reduce swelling ratio.

  9. Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab.

    Science.gov (United States)

    Kirchhof, Susanne; Gregoritza, Manuel; Messmann, Viktoria; Hammer, Nadine; Goepferich, Achim M; Brandl, Ferdinand P

    2015-10-01

    Eight-armed PEG was functionalized with furyl and maleimide groups (8armPEG20k-Fur and 8armPEG20k-Mal); degradable hydrogels were obtained by cross-linking via Diels-Alder chemistry. To increase the stability to degradation, the macromonomers were modified by introducing a hydrophobic 6-aminohexanoic acid spacer between PEG and the reactive end-groups (8armPEG20k-Ahx-Fur and 8armPEG20k-Ahx-Mal). In an alternative approach, the number of reactive groups per macromonomer was increased by branching the terminal ends of eight-armed PEG with lysine (Lys) and Ahx residues (8armPEG20k-Lys-Ahx-Fur2 and 8armPEG20k-Lys-Ahx-Mal2). The hydrolytic resistance of the synthesized macromonomers was determined by UV spectroscopy; the obtained hydrogels were characterized by rheology and degradation studies. The degradation time of 5% (w/v) 8armPEG20k-Ahx hydrogels (28days) was twice as long as the degradation time of 5% (w/v) 8armPEG20k hydrogels (14days); this is explained by increased hydrolytic resistance of the maleimide group. Using dendritic 8armPEG20k-Lys-Ahx macromonomers substantially increased the stability of the resulting hydrogels; degradation of 5% (w/v) 8armPEG20k-Lys-Ahx hydrogels occurred after 34 weeks. 8armPEG20k hydrogels had the largest mesh size of all tested hydrogels, while hydrogels made from dendritic 8armPEG20k-Lys-Ahx macromonomers showed the smallest value. To evaluate their potential for the controlled release of therapeutic antibodies, the hydrogels were loaded with bevacizumab. The incorporated bevacizumab was released over 10 days (8armPEG20k) and 42days (8armPEG20k-Ahx), respectively; release from 8armPEG20k-Lys-Ahx hydrogels was not completed after 105 days. In summary, we believe that 8armPEG20k-Ahx or 8armPEG20k-Lys-Ahx hydrogels could serve as controlled release system for therapeutic antibodies such as bevacizumab.

  10. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.

    Science.gov (United States)

    Bian, Shaoquan; He, Mengmeng; Sui, Junhui; Cai, Hanxu; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-04-01

    Although the disulfide bond crosslinked hyaluronic acid hydrogels have been reported by many research groups, the major researches were focused on effectively forming hydrogels. However, few researchers paid attention to the potential significance of controlling the hydrogel formation and degradation, improving biocompatibility, reducing the toxicity of exogenous and providing convenience to the clinical operations later on. In this research, the novel controllable self-crosslinking smart hydrogels with in-situ gelation property was prepared by a single component, the thiolated hyaluronic acid derivative (HA-SH), and applied as a three-dimensional scaffold to mimic native extracellular matrix (ECM) for the culture of fibroblasts cells (L929) and chondrocytes. A series of HA-SH hydrogels were prepared depending on different degrees of thiol substitution (ranging from 10 to 60%) and molecule weights of HA (0.1, 0.3 and 1.0 MDa). The gelation time, swelling property and smart degradation behavior of HA-SH hydrogel were evaluated. The results showed that the gelation and degradation time of hydrogels could be controlled by adjusting the component of HA-SH polymers. The storage modulus of HA-SH hydrogels obtained by dynamic modulus analysis (DMA) could be up to 44.6 kPa. In addition, HA-SH hydrogels were investigated as a three-dimensional scaffold for the culture of fibroblasts cells (L929) and chondrocytes cells in vitro and as an injectable hydrogel for delivering chondrocytes cells in vivo. These results illustrated that HA-SH hydrogels with controllable gelation process, intelligent degradation behavior, excellent biocompatibility and convenient operational characteristics supplied potential clinical application capacity for tissue engineering and regenerative medicine.

  11. Improvement of mechanical properties of hydrogel by irradiation of polymers in aqueous solution with {kappa}-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, K.; Yoshii, F. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Aranilla, C.T. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines); Zhai, M. [Department of Technical Physics, Peking Univ., Beijing (China)

    2000-03-01

    Predominate radiation reaction of {kappa}-carrageenan (KC) hydrogel is the main chain scission of KC. The gel strength of KC hydrogel decreased with increasing irradiation dose. However, KC was found to enhances the radiation crosslinking of synthetic water-soluble polymer (SWSP) such as poly(ethylene oxide) (PEO) and poly(N-vinylpyrolidone) (PVP) in aqueous solution. The gel strength of SWSP hydrogel increased with increasing dose when KC was blended. Probably the radiation degraded KC radicals are recombined with radicals of PVP and PEO. The hydrogel thus prepared absorbs huge amounts of water due to the presence of strong hydrophilic -OSO{sub 3}{sup -} groups in KC. (author)

  12. Adhesion in hydrogel contacts

    Science.gov (United States)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  13. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    Science.gov (United States)

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  14. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.

    Science.gov (United States)

    Haryanto; Singh, Deepti; Huh, Pil Ho; Kim, Seong Cheol

    2016-01-01

    A microporous hydrogel scaffold was developed from hyperbranched poly(glycidol) (HPG) and poly(ethylene oxide) (PEO) using electron beam (e-beam) induced cross-linking for tissue engineering applications. In this study, HPG was synthesized from glycidol using trimethylol propane as a core initiator and cross-linked hydrogels were made using 0, 10, 20, and 30% HPG with respect to PEO. The effects of %-HPG on the swelling ratio, cross-linking density, mechanical properties, morphology, degradation, and cytotoxicity of the hydrogel scaffolds were then investigated. Increasing the HPG content increased the pore size of the hydrogel scaffold, as well as the porosity, elongation at break, degree of degradation and swelling ratio. In contrast, the presence of HPG decreased the cross-linking density of the hydrogel. There was no significant difference in compressive modulus and tensile strength of all compositions. The pore size of hydrogel scaffolds could be easily tailored by controlling the content of HPG in the polymer blend. Evaluation of the cytotoxicity demonstrated that HPG/PEO hydrogel scaffold has potential for use as a matrix for cellular attachment and proliferation. These results indicate that cross-linked HPG/PEO hydrogel can function as a potential material for tissue engineering scaffolds. Moreover, a facile method to prepare hydrogel microporous scaffolds for tissue engineering by e-beam irradiation was developed.

  15. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    Science.gov (United States)

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field.

  16. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    Science.gov (United States)

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  17. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    Science.gov (United States)

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.

  18. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingjing; Ma, Xiaoxuan, E-mail: xiaoxuanma@163.com; Fan, Daidi, E-mail: fandaidi@nwu.edu.cn; Zhu, Chenhui; Deng, Jianjun; Hui, Junfeng; Ma, Pei

    2014-10-01

    Injectable hydrogel plays an important role in soft tissue filling and repair. We report an injectable hydrogel based on hyaluronic acid (HA) and human-like collagen (HLC), both with favorable biocompatibility and biodegradability. These two types of biomacromolecules were crosslinked with 1,4-butanediol diglycidyl ether to form a three-dimensional network. The redundant crosslinker was removed by dialysis and distillation. An HA-based hydrogel prepared by the same method was used as a control. The cytocompatibility was studied with a Cell Counting Kit-8 (CCK-8) test. Carbazole colorimetry was used to analyze the in vitro degradation rate. The histocompatibility was evaluated by hematoxylin and eosin (H and E) staining analysis and immunohistochemical analysis. The CCK-8 assay demonstrated that the HA/HLC hydrogel was less cytotoxic than the HA-based hydrogel and could promote baby hamster kidney cell (BHK) proliferation. The cell adhesion indicated that BHK could grow well on the surface of the materials and maintain good cell viability. The in vitro degradation test showed that the HA/HLC hydrogel had a longer degradation time and an excellent antienzyme ability. In vivo injection showed that there was little inflammatory response to HA/HLC after 1, 2, and 4 weeks. Therefore, the HA/HLC hydrogel is a promising biomaterial for soft tissue filling and repair. - Highlights: • Human-like collagen was used with hyaluronic acid to prepare soft tissue filling meterials. • 1,4-Butanediol diglycidyl ether (BDDE) was introduced to treat the hydrogels. • The addition of human-like collagen could improve the biological properties of hydrogels.

  19. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels

    Science.gov (United States)

    Liu, Pengfei; Zhai, Maolin; Li, Jiuqiang; Peng, Jing; Wu, Jilan

    2002-03-01

    Sodium carboxymethyl cellulose (CMC) is a kind of degraded polymer under γ-irradiation. However, in this work, it has been found that CMC crosslinks partially to form hydrogel by radiation technique at more than 20% CMC aqueous solution. The gel fraction increases with the dose. The crosslinking reaction of CMC is promoted in the presence of N 2 or N 2O due to the increase of free radicals on CMC backbone, but gel fraction of CMC hydrogel is not high (radiation crosslinking due to the character of CMC itself. Swelling dynamics of CMC hydrogel and its swelling behavior at different conditions, such as acidic, basic, inorganic salt as well as temperature were also investigated. Strong acidity, strong basicity, small amount of inorganic salts and lower temperature can reduce swelling ratio.

  20. Stimuli-sensitive hydrogels for pharmaceutical and medical applications

    Directory of Open Access Journals (Sweden)

    Ilić-Stojanović Snežana

    2011-01-01

    Full Text Available Hydrogels are three-dimensional cross-linked hydrophilic polymers that swell in water and aqueous solutions without dissolving in them. They are very sensitive to environmental stimulus, which is manifested by a sharp phase transition. This feature is important for their application in the pharmaceutical field, especially for making formulations with controlled release of active ingredients, with the correction of the solubility, degradation and their toxicity reducing. Because of the compatibility with living tissues, hydrogels can be used in different medical purposes (for making contact lenses, stents, balloon catheters, artificial muscles, substitutes for arteries and veins, trachea, oviduct. This work presents methods (chemical and physical for obtaining hydrogels, their properties and sensitivity to environmental stimuli (temperature, pH, magnetic field, as well as their potential application in medicine and pharmacy.

  1. A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation.

    Science.gov (United States)

    Bobula, Tomáš; Buffa, Radovan; Hermannová, Martina; Kohutová, Lenka; Procházková, Pavlína; Vágnerová, Hana; Čepa, Martin; Wolfová, Lucie; Židek, Ondřej; Velebný, Vladimír

    2017-04-01

    A new photopolymerizable derivative of hyaluronan (methacrylhydrazide-HA, MAHA) was prepared by carbodiimide chemistry. The reaction conditions were optimized for molecular weight (Mw), reaction time and amount of reagents with a degree of methacrylation (DM) ranging from 2% to 58%. Methacrylhydrazide-HA was hydrolytically stable (PBS, 7days, 37°C) in contrast to commonly used methacrylester analoque (23% hydrolyzed). MAHA readily photopolymerized into densely crosslinked hydrogels under physiological conditions. The varied DM, Mw, irradiation time (texp) and macromer concentration in photocrosslinking afforded hydrogels with different physical (swelling ratio, degradation rate) and mechanical properties (stiffness, toughness). Three-dimensional fabrication and surface patterning of MAHA hydrogels were demonstrated by photolithography and light mediated micromolding. A live-dead assay with skin fibroblasts showed convenient biocompatibility of MAHA (16%, 116kDa) for potential scaffolding applications in tissue engineering and regenerative medicine.

  2. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    Science.gov (United States)

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-05-07

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.

  3. Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ram V. Devireddy

    2013-06-01

    Full Text Available The thermoresponsive behavior of a Methylcellulose (MC polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000 in water with 0.5× PBS (~150mOsm. This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs. The results indicated that the addition (evenly spread of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5 over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell–cell and cell–extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C within minutes.

  4. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    Science.gov (United States)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-05-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39-132 kg mol-1. Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm-3, that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby-Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain.

  5. Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

    Science.gov (United States)

    Lian, Sheng; Xiao, Yan; Bian, Qingqing; Xia, Yu; Guo, Changfa; Wang, Shenguo; Lang, Meidong

    2012-01-01

    A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and macromer 2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) (HEMAPCL). The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS) solution (pH = 7.4) with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST), cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity of the hydrogels both with and without collagen was also addressed. PMID:23028218

  6. Synthesis of hydrogel by radiation and its application as wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-06-01

    Synthesis of hydrogel with no contamination has been attempted using radiological techniques aiming at its application to medical substances. In this report, radiation crosslinking of polyethyleneoxide (PEO), polyvinylalcohol (PVA) and polyvinylpyrrolidone (PVP) as well as application of hydrogels produced from these polymers were described. Generally, these hydrogels have been synthesized through radiation-induced crosslinking. However, crosslinking occurred easily by radiation exposure of a melt phase polymer like PEO, of which molecular movement is active, resulting in production of hydrogel of high purity. Either of heat resistance or gel strength of hydrogel was low, because those were full of water. When molecular chain was slightly fixed through acetalation before irradiation as seen in the synthesis from PVA, much smooth crosslinking occurred, leading to production of a hydrogel superior in strength. Regarding the blend hydrogel produced from PVP and carrageenan, gel strength was markedly increased by graft polymerization of PVP chain and the carrageenan chain was degraded by irradiation. Present results suggested that multifunctional hydrogels could be produced by complex irradiation. (M.N.)

  7. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    Science.gov (United States)

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering.

  8. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix.

  9. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.

    Science.gov (United States)

    Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M

    2013-06-05

    In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA.

  10. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    Science.gov (United States)

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering.

  11. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

    Science.gov (United States)

    Boffito, Monica; Sirianni, Paolo; Di Rienzo, Anna Maria; Chiono, Valeria

    2015-03-01

    This review focuses on the challenges associated with the design and development of injectable hydrogels of synthetic origin based on FDA approved blocks, such as polyethylene glycol (PEG) and poly(ɛ-caprolactone) (PCL). An overview of recent studies on inverse thermosensitive PEG/PCL hydrogels is provided. These systems have been proposed to overcome the limitations of previously introduced degradable thermosensitive hydrogels [e.g., PEG/poly(lactide-co-glycolic acid) hydrogels]. PEG/PCL hydrogels are advantageous due to their higher gel strength, slower degradation rate and availability in powder form. Particularly, triblock PEG/PCL copolymers have been widely investigated, with PCL-PEG-PCL (PCEC) hydrogels showing superior gel strength and slower degradation kinetics than PEG-PCL-PEG (PECE) hydrogels. Compared to triblock PEG/PCL copolymers, concentrated solutions of multiblock PEG/PCL copolymers were stable due to their slower crystallization rate. However, the resulting hydrogel gel strength was low. Inverse thermosensitive triblock PEG/PCL hydrogels have been mainly applied in tissue engineering, to decrease tissue adherence or, in combination with bioactive molecules, to promote tissue regeneration. They have also found application as in situ drug delivery carriers. On the other hand, the wide potentialities of multiblock PEG/PCL hydrogels, associated with the stability of their water-based solutions under storage, their higher degradation time compared to triblock copolymer hydrogels and the possibility to insert bioactive building blocks along the copolymer chains, have not been fully exploited yet. A critical discussion is provided to highlight advantages and limitations of currently developed themosensitive PEG/PCL hydrogels, suggesting future strategies for the realization of PEG/PCL-based copolymers with improved performance in the different application fields.

  12. [Experimental implantation of hydrogel into bone].

    Science.gov (United States)

    Korbelár, P; Vacík, J; Dylevský, I; Sulc, J; Hulvert, J

    1989-02-01

    hydrogel, the adhesivity of the macrophages increases markedly. There also appears the destruction of the polymer, marked, above all, in the spongious bone. The gel is actively degraded in the marrow, although the direct phagocytosis can be proved. At degradation of the implant in the compact bone the activity of the macrophages is belated; at application of the gel without methacrylate acid it does not occur even after 193 days and the implant is pervaded only by the bone beams. When adding methacrylate acid to the polymer degradation occurs, in which process there play also an active role the blood vessels pervading the site of the gel implantation.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas.

    Science.gov (United States)

    Esposito, Annaclaudia; Sannino, Alessandro; Cozzolino, Anna; Quintiliano, Sergio Nappo; Lamberti, Monica; Ambrosio, Luigi; Nicolais, Luigi

    2005-07-01

    The elimination of water from the body represents a fundamental therapeutic goal in those diseases in which oedemas occur. Aim of this work is the design of a material able to absorb large amount of water to be used, by oral administration, in those cases in which resistance to diuretics appears. Sorption and mechanical properties of the cellulose based superabsorbent hydrogel acting as a water elimination system have been modulated through the insertion of molecular spacers between the crosslinks. Starting polymers are the sodium salt of carboxymethylcellulose (CMCNa), a polyelectrolyte cellulose derivative, and the hydroxyethylcellulose (HEC), a non-polyelectrolyte derivative. Polyethyleneglycol (PEG) with various molecular weights, has been linked by its free ends at two divinylsulfone (DVS) crosslinker molecules, in order to increase the average distance between two crosslinking sites and thus acting as spacer. Both the effect of concentration and molecular weight of the spacer resulted to significantly affect the hydrogel final sorption properties and thus the efficiency of the body water elimination system. Biocompatibility studies have been performed to test the hydrogel compatibility with respect to intestinal and macrophages cell lines. To investigate the effects of intestinal cells conditioned media after the contact with the gel on macrophages nitric oxide release tests have been carried out.

  14. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-01-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate. PMID:27869192

  15. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  16. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel.

    Science.gov (United States)

    Li, Xianfeng; Murthy, N Sanjeeva; Becker, Matthew L; Latour, Robert A

    2016-06-24

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications.

  17. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration.

    Science.gov (United States)

    Zhang, Mimi W; Park, Hansoo; Guo, Xuan; Nakamura, Kenta; Raphael, Robert M; Kasper, F Kurtis; Mikos, Antonios G; Tsonis, Panagiotis A

    2010-04-01

    This study investigated the encapsulation of newt iris pigment epithelial cells (PECs), which have the ability to regenerate a lens by trans-differentiation in vivo, within a biodegradable hydrogel of oligo(poly(ethylene glycol) fumarate) crosslinked with poly(ethylene glycol)-diacrylate. Hydrogel beads of initial diameter of 1 mm were fabricated by a molding technique. The swelling ratio and degradation rate of the hydrogel beads decreased with increasing crosslinking ratios. Confocal microscopy confirmed the cytocompatibility of crosslinking hydrogel formulations as evidenced by the viability of an encapsulated model cell line within a crosslinked hydrogel bead. Hydrogel beads encapsulating iris PECs were also implanted into lentectomized newts in vivo; histological evaluation of explants after 30 days revealed a regenerated lens, thus demonstrating that the presence of degrading hydrogel did not adversely affect lens regeneration. The results of this study suggest the potential of a method for lens regeneration involving oligo(poly(ethylene glycol) fumarate) hydrogels for iris PEC encapsulation and transplantation.

  18. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).

    Science.gov (United States)

    Hodgson, Sabrina M; Bakaic, Emilia; Stewart, S Alison; Hoare, Todd; Adronov, Alex

    2016-03-14

    A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.

  19. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Tan, Huaping; Jia, Yang; Zou, Siyue; Guo, Shuxuan; Zhao, Meng; Huang, Hao; Ling, Zhonghua; Chen, Yong; Hu, Xiaohong

    2017-02-01

    Injectable hydrogels and microspheres derived from natural polysaccharides have been extensively investigated as drug delivery systems and cell scaffolds. In this study, we report a preparation of covalent hydrogels basing polysaccharides via the Schiff' base reaction. Water soluble carboxymethyl chitosan (CMC) and oxidized chondroitin sulfate (OCS) were prepared for cross-linking of hydrogels. The mechanism of cross-linking is attributed to the Schiff' base reaction between amino and aldehyde groups of polysaccharides. Furthermore, bovine serum albumin (BSA) loaded chitosan-based microspheres (CMs) with a diameter of 3.8-61.6μm were fabricated by an emulsion cross-linking method, followed by embedding into CMC-OCS hydrogels to produce a composite CMs/gel scaffold. In the current work, gelation rate, morphology, mechanical properties, swelling ratio, in vitro degradation and BSA release of the CMs/gel scaffolds were examined. The results show that mechanical and bioactive properties of gel scaffolds can be significantly improved by embedding CMs. The solid CMs can serve as a filler to toughen the soft CMC-OCS hydrogels. Compressive modulus of composite gel scaffolds containing 20mg/ml of microspheres was 13KPa, which was higher than the control hydrogel without CMs. Cumulative release of BSA during 2weeks from CMs embedded hydrogel was 30%, which was significantly lower than those of CMs and hydrogels. Moreover, the composite CMs/gel scaffolds exhibited lower swelling ratio and slower degradation rate than the control hydrogel without CMs. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes in vitro. These results demonstrate the potential of CMs embedded CMC-OCS hydrogels as an injectable drug and cell delivery system in cartilage tissue engineering.

  20. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    Science.gov (United States)

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  1. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2016-12-05

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    Science.gov (United States)

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-02

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  3. Stretchable Hydrogel Electronics and Devices.

    Science.gov (United States)

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-06-01

    Stretchable hydrogel electronics and devices are designed by integrating stretchable conductors, functional chips, drug-delivery channels, and reservoirs into stretchable, robust, and biocompatible hydrogel matrices. Novel applications include a smart wound dressing capable of sensing the temperatures of various locations on the skin, delivering different drugs to these locations, and subsequently maintaining sustained release of drugs.

  4. Hydrogels with micellar hydrophobic (nanodomains

    Directory of Open Access Journals (Sweden)

    Miloslav ePekař

    2015-01-01

    Full Text Available Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  5. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Science.gov (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  6. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    Science.gov (United States)

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  7. MESO—STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhongYang; Jian-huaRong; DanLi

    2003-01-01

    Meso-structured(opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods:post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers.A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color,which is important in designing tunable photonic crystals.Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed.The catalytic effect of acid groups in the templates was emphasized for a preferential formation of TiO2 in the region containing acid groups,which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  8. MESO-STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang; Jian-hua Rong; Dan Li

    2003-01-01

    Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods: post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO2 in the region containing acid groups, which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  9. Structure-property-function relationships in triple helical collagen hydrogels

    CERN Document Server

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2012-01-01

    In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content...

  10. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel

    Directory of Open Access Journals (Sweden)

    Luis A Castillo Diaz

    2016-07-01

    Full Text Available An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1, osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone.

  11. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    Science.gov (United States)

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  12. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin.

    Science.gov (United States)

    Yuan, Liu; Wu, Yu; Gu, Qi-Sheng; El-Hamshary, Hany; El-Newehy, Mohamed; Mo, Xiumei

    2017-03-01

    Recently, photocrosslinked hydrogels have attracted more and more attention in biomedical applications. In this study, a serials of injectable hydrogels were fabricated from aldehyde methacrylate sodium alginate and amino gelatin (AMSA/AG) using a two-step process. Here, sodium alginate, a kind of natural polysaccharide, was modified by oxidizer to form aldehyde sodium alginate (ASA), and methacrylate groups were further grafted on the main chain of ASA. Gelatin, the denatured form of collagen, was modified with ethylenediamine (ED) to graft more amino groups. When AMSA and AG aqueous solutions were mixed, the Schiff base reaction occurred quickly to form the primary network between aldehyde groups in AMSA and amino groups in AG, and then a 365nm ultraviolet (UV) light was used to initiate the radical reaction of methacrylate groups in AMSA to produce the secondary network. The structures and properties of AMSA/AG hydrogels were evaluated by Fourier Transforms Infrared spectroscopy (FTIR) and (1)HNMR analysis. The swelling ratio confirmed the density of crosslinked networks, and the mechanical performance demonstrated that the UV initiated the double crosslinking network hydrogels have an improved mechanical properties compared to the single Schiff base networks hydrogels. The results showed that the photocrosslinked double network hydrogels have enhanced mechanical properties, good biocompatibility and controllable degradation rate. So, this hydrogels may have great potential utilized in regenerative medicine as therapeutic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Mohamed, Riham R; Abu Elella, Mahmoud H; Sabaa, Magdy W

    2015-09-01

    Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios – 1.0 and 5.0% – have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.

  14. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  15. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide).

    Science.gov (United States)

    Tavsanli, Burak; Can, Volkan; Okay, Oguz

    2015-11-21

    Hyaluronan (HA) is a natural polyelectrolyte with distinctive biological functions. Cross-linking of HA to generate less degradable hydrogels for use in biomedical applications has attracted interest over many years. One limitation of HA hydrogels is that they are very brittle and/or easily dissolve in physiological environments, which limit their use in load-bearing applications. Herein, we describe the preparation of triple-network (TN) hydrogels based on HA and poly(N,N-dimethylacrylamide) (PDMA) of high mechanical strength by sequential gelation reactions. TN hydrogels containing 81-91% water sustain compressive stresses above 20 MPa and exhibit Young's moduli of up to 1 MPa. HA of various degrees of methacrylation was used as a multifunctional macromer for the synthesis of the brittle first-network component, while loosely cross-linked PDMA was used as the ductile, second and third network components of TN hydrogels. By tuning the methacrylation degree of HA, double-network hydrogels with a fracture stress above 10 MPa and a fracture strain of 96% were obtained. Increasing the ratio of ductile-to-brittle components via the TN approach further increases the fracture stress above 20 MPa. Cyclic mechanical tests show that, although TN hydrogels internally fracture even under small strain, the ductile components hinder macroscopic crack propagation by keeping the macroscopic gel samples together.

  16. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio E-mail: yoshii@taka.jaeri.go.jp; Zhao, Long; Wach, Radoslaw A.; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Polysaccharides such as cellulose, starch, chitin/chitosan and their water-soluble derivatives have been known as degradable type polymers under action of ionizing radiation. Recently, we found that water-soluble polysaccharides derivatives such as carboxymethylcellulose (CMC), carboxymethylstarch (CMS) and carboxymethylchitin (CMCT), carboxymethylchitosan (CMCTS) lead to radiation crosslinking at high concentrated aqueous solution (more than 10%, paste-like state). It was proved that the crosslinking was remarkably affected by their concentration. It was assumed that radiation formation of hydrogels of these polysaccharides derivatives were mainly due to the mobility of side chains. Side-chains radicals were formed mostly via indirect effects, by the abstraction of H atoms by the intermediate products of water radiolysis. Some important characteristics of these novel hydrogels were also investigated. These hydrogels exhibited good swelling in water and possess satisfying biodegradability. In addition, the antibacterial activity against E.coli was also found in CMCTS hydrogel.

  17. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    Science.gov (United States)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  18. Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc

    Directory of Open Access Journals (Sweden)

    Luigi Ambrosio

    2012-09-01

    Full Text Available Hydrogels currently represent a powerful solution to promote the regeneration of soft and hard tissues. Primarily, they assure efficient bio-molecular interactions with cells, also regulating their basic functions, guiding the spatially and temporally complex multi-cellular processes of tissue formation, and ultimately facilitating the restoration of structure and function of damaged or dysfunctional tissues. In order to overcome basic drawbacks of traditional synthesized hydrogels, many recent strategies have been implemented to realize multi-component hydrogels based on natural and/or synthetic materials with tailored chemistries and different degradation kinetics. Here, a critical review of main strategies has been proposed based on the use of hydrogels-based devices for the regeneration of complex tissues, i.e., osteo-chondral tissues and intervertebral disc.

  19. Hydrogel wound dressing by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Water soluble polymers such as polyethyleneoxide (PEO), polyvinyl alcohol (PVA) were irradiated in solid and molten states as well as in aqueous solution in order to synthesize a hydrogel. PEO undergoes crosslinking at all phases by radiation initiation. Among these phases, the radiation in the aqueous solution requires the lowest dose for crosslinking due to the contribution of OH radical created in radiolysis of water. The hydrogel prepared by irradiation in aqueous solution was applied to a dressing for healing of wound. In order to evaluate the healing effect of the PEO hydrogel dressing, wounds formed on the back of marmots were covered by the hydrogel. The healing under the wet environment of the hydrogel dressing had three advantages, compared with that of gauze dressing, which gives a dry environment: (1) enhancement of healing rate, (2) facilitation for changing the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated skin surface, and (3) hydrogel dressing material does not remain stuck on the wound. (author)

  20. Syneresis in agar hydrogels.

    Science.gov (United States)

    Boral, Shilpi; Saxena, Anita; Bohidar, H B

    2010-03-01

    Agar hydrogels exhibit syneresis which creates internal osmotic stress on the physical network. It was observed that such a stress gives rise to characteristic pulsating modes (breathing modes). Experiments carried over a period of 60-day revealed that the network deformations grew monotonously when the solvent released by syneresis was removed periodically from gel surface. However, when the solvent was not withdrawn, the gel exhibited very slowly relaxing breathing modes. The swelling-deswelling dynamics has been discussed in the generalized framework of a dissipative damped oscillator.

  1. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel

    Science.gov (United States)

    Singh, Narendra K.; Nguyen, Quang Vinh; Kim, Bong Sup; Lee, Doo Sung

    2015-02-01

    The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new

  2. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    Science.gov (United States)

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana

    2011-10-01

    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  3. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto,; Singh, Deepti; Han, Sung Soo [Department of Advanced Organic Materials Engineering, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of); Son, Jun Hyuk [Department of Ophthalmology, College of Medicine, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of); Kim, Seong Cheol, E-mail: sckim07@ynu.ac.kr [Department of Advanced Organic Materials Engineering, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of)

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks.

  4. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jiachuan [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Zheng, E-mail: lizheng_nx@163.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Xia, Wen; Yang, Ning; Gong, Jixian [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Jianfei, E-mail: zhangjianfei1960@126.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Qiao, Changsheng [Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457 (China)

    2016-04-01

    In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3–11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of –COOH/–NH{sub 2} and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields. - Highlights: • We prepared a biocompatible and degradable poly amino acids hydrogel via EDC

  5. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    Science.gov (United States)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-11-20

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  6. Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Chao; Sangaj, Nivedita; Hwang, Yongsung; Phadke, Ameya; Chang, Chien-Wen; Varghese, Shyni

    2011-09-01

    A triblock co-polymer of oligo(trimethylene carbonate)-block-poly(ethylene glycol) 20000-block-oligo(trimethylene carbonate) diacrylate (TMC20) was used as a photo-polymerizable precursor for the encapsulation of primary articular chondrocytes. The efficacy of TMC20 as a biodegradable scaffold for cartilage tissue engineering was compared with non-degradable poly(ethylene glycol) 20000 diacrylate (PEG20) hydrogel. Chondrocytes encapsulated in PEG hydrogels containing oligo(trimethylene carbonate) (OTMC) moieties underwent spontaneous aggregation during in vitro culture, which was not observed in the PEG hydrogel counterparts. The aggregation of cells was found to be dependent on the initial cell density, as well as the mesh size of the hydrogels. Similarly, cell aggregation was also found in biodegradable PEG hydrogels containing caprolactone moieties. The aggregation of cells in TMC20 hydrogels resulted in enhanced cartilage matrix production compared with their PEG20 counterparts over 3 weeks of culture. Taken together, these results indicate that PEG hydrogels containing degradable OTMC moieties promote the aggregation and biosynthetic activity of encapsulated chondrocytes, indicating their potential as scaffolds for the repair of cartilage tissue. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Eco-friendly PEG-based controlled release nano-formulations of Mancozeb: Synthesis and bioefficacy evaluation against phytopathogenic fungi Alternaria solani and Sclerotium rolfsii.

    Science.gov (United States)

    Majumder, Sujan; Shakil, Najam A; Kumar, Jitendra; Banerjee, Tirthankar; Sinha, Parimal; Singh, Braj B; Garg, Parul

    2016-12-01

    Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t1/2) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL(-1) (ED50) values of developed formulations varied from 1.31 to 2.79 mg L(-1) for A. solani, and 1.60 to 3.14 mg L(-1) for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing use

  8. Synthetically simple, highly resilient hydrogels.

    Science.gov (United States)

    Cui, Jun; Lackey, Melissa A; Madkour, Ahmad E; Saffer, Erika M; Griffin, David M; Bhatia, Surita R; Crosby, Alfred J; Tew, Gregory N

    2012-03-12

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were controlled by the relative amounts of PEG and PDMS. The fracture toughness (G(c)) was increased to 80 J/m(2) as the water content of the hydrogel decreased from 95% to 82%. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains.

  9. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference.

  10. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  11. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.

    Science.gov (United States)

    Tam, Roger Y; Smith, Laura J; Shoichet, Molly S

    2017-04-18

    hydrogel. By controlling the spatial location of protein immobilization, we created 3D patterns and protein concentration gradients within these gels. We used the latter to study the effect of VEGF-165 concentration gradients on the interactions between endothelial cells and retinal stem cells. Hyaluronic acid (HA) is particularly compelling as it is naturally found in the ECM of many tissues and the tumor microenvironment. We used Diels-Alder click chemistry and cryogelation to alter the chemical and physical properties of these hydrogels. We also designed HA hydrogels to study the invasion of breast cancer cells. HA gels were chemically cross-linked with matrix metalloproteinase (MMP)-degradable peptides that degrade in the presence of cancer cell-secreted MMPs, thus allowing cells to remodel their local microenvironment and invade into HA/MMP-degradable gels.

  12. Collagen/elastin hydrogels cross-linked by squaric acid.

    Science.gov (United States)

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  13. Supramolecular hydrogels as drug delivery systems.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Tabatabaei, Roya Mahdavi

    2015-04-01

    Drug delivery from a hydrogel carrier implanted under the kidney capsule is an innovative way to induce kidney tissue regeneration and/or prevent kidney inflammation or fibrosis. We report here on the development of supramolecular hydrogels for this application. Chain-extended hydrogelators containing hydrogen bonding units in the main chain, and bifunctional hydrogelators end-functionalized with hydrogen bonding moieties, were made. The influence of these hydrogels on the renal cortex when implanted under the kidney capsule was studied. The overall tissue response to these hydrogels was found to be mild, and minimal damage to the cortex was observed, using the infiltration of macrophages, formation of myofibroblasts, and the deposition of collagen III as relevant read-out parameters. Differences in tissue response to these hydrogels could be related to the different physico-chemical properties of the three hydrogels.

  14. Patterns in swelling hydrogels

    Science.gov (United States)

    MacMinn, Chris; Bertrand, Thibault; Peixinho, Jorge; Mukhopadhyay, Shomeek

    2016-11-01

    Swelling is a process in which a porous material spontaneously grows by absorbing additional pore fluid. Polymeric hydrogels are highly deformable materials that can experience very large volume changes during swelling. This allows a small amount of dry gel to absorb a large amount of fluid, making gels extremely useful in applications from moisture control to drug delivery. However, a well-known consequence of these extreme volume changes is the emergence of a striking morphological instability. We study the transient mechanics of this instability here by combining a theoretical model with a series of simple experiments, focusing on the extent to which this instability can be controlled by manipulating the rate of swelling.

  15. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    Science.gov (United States)

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  16. A thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability

    Science.gov (United States)

    Ma, Zuwei; Nelson, Devin M.; Hong, Yi; Wagner, William R.

    2011-01-01

    Injectable thermoresponsive hydrogels are of interest for a variety of biomedical applications, including regional tissue mechanical support as well as drug and cell delivery. Within this class of materials there is a need to provide options for gels with stronger mechanical properties as well as variable degradation profiles. To address this need, the hydrolytically labile monomer, methacrylate-polylactide (MAPLA), with an average 2.8 lactic acid units, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm) and 2-hydroxyethyl methacrylate (HEMA) to obtain bioabsorbable thermally responsive hydrogels. Poly(NIPAAm-co-HEMA-co-MAPLA) with three monomer feed ratios (84/10/6, 82/10/8 and 80/10/10) was synthesized and characterized with NMR, FTIR and GPC. The copolymers were soluble in saline at reduced temperature (<10°C), forming clear solutions that increased in viscosity with the MAPLA feed ratio. The copolymers underwent sol-gel transition at lower critical solution temperatures of 12.4, 14.0 and 16.2°C respectively and solidified immediately upon being placed in a 37°C water bath. The warmed hydrogels gradually excluded water to reach final water contents of ~45%. The hydrogels as formed were mechanically strong, with tensile strengths as high as 100 kPa and shear moduli of 60 kPa. All three hydrogels were completely degraded (solubilized) in PBS over a 6–8 month period at 37°C, with a higher MAPLA feed ratio resulting in a faster degradation period. Culture of primary vascular smooth muscle cells with degradation solutions demonstrated a lack of cytotoxicity. The synthesized hydrogels provide new options for biomaterial injection therapy where increased mechanical strength and relatively slow resorption rates would be attractive. PMID:20575552

  17. Production of endothelial cell-enclosing alginate-based hydrogel fibers with a cell adhesive surface through simultaneous cross-linking by horseradish peroxidase-catalyzed reaction in a hydrodynamic spinning process.

    Science.gov (United States)

    Liu, Yang; Sakai, Shinji; Taya, Masahito

    2012-09-01

    We developed an alginate-based hydrogel fiber enabling to enclose endothelial cells, degradable on-demand by alginate lyase, and having a cell adhesive surface. The hydrogel fiber was obtained by extruding an aqueous solution of 4% (w/v) alginate derivative possessing phenolic hydroxyl moieties (Alg-Ph) and horseradish peroxidase (HRP) into a flow of aqueous solution containing 0.3 mM H(2)O(2) and gelatin derivative possessing Ph moieties (Gelatin-Ph). In the process, cross-linking of Alg-Ph resulting in a hydrogel fiber and immobilization of Gelatin-Ph on the surface of the hydrogel fiber were simultaneously accomplished by an HRP-catalyzed cross-linking reaction between Ph moieties. The diameter of the hydrogel fiber and the quantity of immobilized Gelatin-Ph on the fiber were controllable by changing the flow rates of the solutions and the concentration of HRP in the Alg-Ph-containing solution, respectively. The viability of the human endothelial cells enclosed in the hydrogel fibers obtained by 10 s of flowing in the H(2)O(2)-containing solution was 87.1%. In addition, the cells harvested from the hydrogel fibers through degradation using alginate lyase grew on tissue culture dishes in the same fashion as the cells seeded by a conventional subculture protocol. Human smooth muscle cells adhered, grew and achieved confluence on the surface of the hydrogel fibers. By degrading the hydrogel fibers using alginate lyase, a tubular cell construct was successfully obtained.

  18. Alginate-Collagen Fibril Composite Hydrogel.

    Science.gov (United States)

    Baniasadi, Mahmoud; Minary-Jolandan, Majid

    2015-02-16

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  19. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  20. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function.

    Science.gov (United States)

    Ngoenkam, Jatuporn; Faikrua, Atchariya; Yasothornsrikul, Sukkid; Viyoch, Jarupa

    2010-05-31

    An injectable hydrogel for chondrocyte delivery was developed by blending chitosan and starch derived from various sources with beta-glycerol phosphate (beta-GP) in the expectation that it would retain a liquid state at room temperature and gel at raised temperatures. Rheological investigation indicated that the system consisting of chitosan derived from crab shell and corn starch at 4:1 by weight ratio (1.53%, w/v of total polymers), and 6.0% (w/v) beta-GP (C/S/GP system) exhibited the sharpest sol-gel transition at 37+/-2 degrees C. The C/S/GP hydrogel was gradually degraded by 67% within 56 days in PBS containing 0.02 mg/ml lysozyme. The presence of starch in the system increased the water absorption of the hydrogel when compared to the system without starch. SEM observation revealed to the interior structure of the C/S/GP hydrogel having interconnected pore structure (average pore size 26.4 microm) whereas the pore size of the hydrogel without starch was 19.8 microm. The hydrogel also showed an ability to maintain chondrocyte phenotype as shown by cell morphology and expression of type II collagen mRNA and protein. In vivo study revealed that the gel was formed rapidly and localized at the injection site.

  1. Progress in peptide hydrogel%多肽水凝胶的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘群峰; 原波

    2011-01-01

    多肽水凝胶具有良好的生物相容性和可降解性,是一种很有前景的生物材料,按照交联方式的不同,多肽水凝胶可分为化学交联的水凝胶和物理水凝胶,本文中按此分类对多肽水凝胶的研究做了一个总结和简要评述,同时阐述了多肽水凝胶具有智能水凝胶的特点,并进一步对其在生物医学方面的应用进行了介绍和展望.%Peptide hydrogel is a kind of hiomaterial with good developmental potential since it possesses good biocompatibility and degradability. Peptide hydrogel can be classified as chemical crosslinked peptide hydrogel and physical self-assemblcd peptide hydrogel according to its crosslinking style. Based on these two classifications, study on pepiide hydrogel is summarized and briefly commented. Meanwhile , its characteristic as intelligent hydrogel is expatiated.Finally,its application in hio-medical field is introduced and forecast.

  2. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model.

    Science.gov (United States)

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2015-05-01

    The treatment of impaired wounds requires the use of biomaterials that can provide mechanical and biological queues to the surrounding environment to promote angiogenesis, granulation tissue formation, and wound closure. Porous hydrogels show promotion of angiogenesis, even in the absence of proangiogenic factors. It is hypothesized that the added delivery of nonviral DNA encoding for proangiogenic growth factors can further enhance this effect. Here, 100 and 60 μm porous and nonporous (n-pore) hyaluronic acid-MMP hydrogels with encapsulated reporter (pGFPluc) or proangiogenic (pVEGF) plasmids are used to investigate scaffold-mediated gene delivery for local gene therapy in a diabetic wound healing mouse model. Porous hydrogels allow for significantly faster wound closure compared with n-pore hydrogels, which do not degrade and essentially provide a mechanical barrier to closure. Interestingly, the delivery of pDNA/PEI polyplexes positively promotes granulation tissue formation even when the DNA does not encode for an angiogenic protein. And although transfected cells are present throughout the granulation tissue surrounding, all hydrogels at 2 weeks, pVEGF delivery does not further enhance the angiogenic response. Despite this, the presence of transfected cells shows promise for the use of polyplex-loaded porous hydrogels for local gene delivery in the treatment of diabetic wounds.

  3. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  4. Magnetically Remanent Hydrogels with Colloidal Crosslinkers

    NARCIS (Netherlands)

    van Berkum, S.

    2014-01-01

    Hydrogels are widely used in biomedical applications such as drug delivery and tissue engineering. In this research, the feasibility of a hydrogel with embedded magnetic nanoparticles, also called a ferrogel, for biosensor applications was tested. A pH sensitive poly(acrylic acid) hydrogel was used

  5. Hydrogels with covalent and noncovalent crosslinks

    Science.gov (United States)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  6. Magnetically Remanent Hydrogels with Colloidal Crosslinkers

    NARCIS (Netherlands)

    van Berkum, S.

    2014-01-01

    Hydrogels are widely used in biomedical applications such as drug delivery and tissue engineering. In this research, the feasibility of a hydrogel with embedded magnetic nanoparticles, also called a ferrogel, for biosensor applications was tested. A pH sensitive poly(acrylic acid) hydrogel was used

  7. Evaluation of a polyacrylamide hydrogel in the treatment of induced osteoarthritis in a goat model

    DEFF Research Database (Denmark)

    Tnibar, Aziz; Persson, Ann; Jensen, Henrik Elvang;

    2014-01-01

    Polyacrylamide hydrogel (PAAG) is an inert, non-degradable, non-immunogenic polymer gel with high viscoelasticity consisting of 97.5% sterile water and 2.5% cross-linked polyacrylamide. Its biocompatibility in soft tissues has been demonstrated. PAAG has recently been tested for the treatment...

  8. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications.

    Science.gov (United States)

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2013-12-28

    Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations. © 2013.

  9. Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

    Directory of Open Access Journals (Sweden)

    Lian S

    2012-09-01

    Full Text Available Sheng Lian,1Yan Xiao,1 Qingqing Bian,1Yu Xia,2 Changfa Guo,2 Shenguo Wang,2 Meidong Lang11Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; 2Department of Cardiac Surgery, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of ChinaAbstract: A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm, acrylic acid (AAc and macromer 2-hydroxylethyl methacrylate-poly(ε-caprolactone (HEMAPCL. The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS solution (pH = 7.4 with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST, cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity

  10. Biodegradable hydrophobic-hydrophilic hybrid hydrogels: swelling behavior and controlled drug release.

    Science.gov (United States)

    Wu, Da-Qing; Chu, Chih-Chang

    2008-01-01

    The objective of this work was to investigate a new family of hydrophobic-hydrophilic biodegradable hybrid hydrogels as drug carriers. A series of hydrophobic-hydrophilic biodegradable hybrid hydrogels was formulated via photo means from hydrophobic three-arm poly (epsilon-caprolactone) maleic acid (PGCL-Ma) and hydrophilic dextran maleic acid (Dex-Ma) precursors over a wide range of the two precursors' feed ratio (PGCL-Ma/Dex-Ma at 100:0, 70:30, 50:50, 30:70 and 0:100). A low-molecular-weight and hydrophilic drug, the alpha-7 agonist cocaine methiodide, was used as the model drug for the release study from the hybrid hydrogels in pH 7.4 phosphate buffer solution at 37 degrees C. The swelling data of these hybrid hydrogels depended on the hydrophobic to hydrophilic precursors' feed ratio, and there were several-fold differences in swelling ratios between a pure hydrophilic Dex-Ma and a pure hydrophobic PGCL-Ma hydrogels. The presence of the hydrophobic PGCL-Ma component significantly reduced the initial burst swelling of the hybrid hydrogels. Depending on the two precursors' feed ratios, the swelling data during the early period obeyed either Fickian diffusion (for 50:50 PGCL-Ma/Dex-Ma hydrogel), non-Fickian or anomalous transport (for 70:30 and 100:0 PGCL-Ma/Dex-Ma), or relaxation-controlled (for 30:70 and 0:100 PGCL-Ma/Dex-Ma). A wide range of cocaine methiodide release profiles was achieved by controlling hydrophobic to hydrophilic precursors' feed ratios. Initial drug burst release was significantly reduced as the concentration of the hydrophobic PGCL-Ma component increased in the hybrid hydrogels. The bulk of cocaine methiodide released during the 160-h period was via diffusion-controlled mechanism, while degradation-controlled mechanism dominated thereafter.

  11. Chitosan Hydrogel as siRNA vector for prolonged gene silencing

    Science.gov (United States)

    2014-01-01

    Background The periodontitis is one of the most prevalent diseases with alveolar resorption in adult people and is the main cause of the tooth loss. To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive chitosan hydrogel as siRNA reservoir and vector. Results The thermosensitive chitosan hydrogel was formed from solution (PH = 7.2, at 4°C) at 37°C within 8 minutes. The degradation rates of hydrogel were ~50% and 5% (W remaining/W beginning) in the presence and absence of lysozyme, respectively, over a period of 20 days. The concurrent cumulative in vitro release of Cy3-labeled siRNA from the hydrogel was 50% and 17% over 14 days, with or without lysozyme digestion, respectively. High cell viability (>88%) was maintained for cells treated with hydrogel loaded with RANK specific siRNA and RANK knockdown was prolonged for up to 9 days when cells were incubated with siRNA/hydrogel complex. In vivo release of siRNA was investigated in a subcutaneous delivery setup in mice. The fluorescent signal from siRNA within hydrogel was remained for up to 14 days compared to less than one day for siRNA alone. Conclusions Chitosan hydrogel can potentially serve as a suitable reservoir and vector for local sustained delivery of siRNA in potential therapy. PMID:24946934

  12. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    Science.gov (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  13. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-05

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  14. Buccal mucosal ulcer healing effect of rhEGF/Eudispert hv hydrogel.

    Science.gov (United States)

    Park, Jeong Sook; Yoon, Joon Il; Li, Hong; Moon, Dong Cheul; Han, Kun

    2003-08-01

    We have studied the effect of rhEGF on the buccal mucosal ulcer healing. rhEGF was rapidly degraded upon incubation with the hamster buccal mucosal homogenates; The degradation of rhEGF was significantly inhibited by sodium lauryl sulfate (SLS). Eudispert hv hydrogel and Polycarbophil 974P hydrogel were prepared for rhEGF delivery and their mucoadhesiveness was measured by the Instron method. The mucoadhesive force of Eudispert hv was significantly greater than that of Polycarbophil 974P. Moreover, rhEGF in Eudispert hv hydrogel remained stable for about 2 months. To evaluate the ulcer healing effect of rhEGF, the buccal mucosal ulcer was induced in golden hamsters using acetic acid. At 24 h after administration of rhEGF/Eudispert hv hydrogel, the ulcerous area was decreased compared with rhEGF solution and, as a result, the curative ratio was 36.8 +/- 5.68%. By the addition of SLS (0.5%) to Eudispert hv hydrogel, the curative ratio increased 1.5 times. The mechanism of the action was probably due to a combination of protection of the drug against proteases present in mucosa and prolongation of the release of rhEGF from the formulation at the site of action.

  15. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation.

    Directory of Open Access Journals (Sweden)

    Michael V Turturro

    Full Text Available The spatial presentation of immobilized extracellular matrix (ECM cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP. Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.

  16. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  17. Development of polymer-polysaccharide hydrogels for controlling drug delivery

    Science.gov (United States)

    Baldwin, Aaron David

    The use of polymers as biomaterials has evolved over the past several decades, encompassing an expanding synthetic toolbox and many bio-mimetic approaches. Both synthetic and natural polymers have been used as components for biomaterials as their unique chemical structures can provide specific functions for desired applications. Of these materials, heparin, a highly sulfated naturally occurring polysaccharide, has been investigated extensively as a core component in drug delivery platforms and tissue engineering. The goal of this work was to further explore the use of heparin via conjugation with synthetic polymers for applications in drug delivery. We begin by investigating low molecular weight heparin (LMWH), a depolymerized heparin that is used medicinally in the prevention of thrombosis by subcutaneous injection or intravenous drip. Certain disease states or disorders require frequent administration with invasive delivery modalities leading to compliance issues for individuals on prolonged therapeutic courses. To address these issues, a long-term delivery method was developed for LMWH via subcutaneous injection of in situ hydrogelators. This therapy was accomplished by chemical modification of LMWH with maleimide functionality so that it may be crosslinked into continuous hydrogel networks with four-arm thiolated polyethylene glycol (PEG-SH). These hydrogels degrade via hydrolysis over a period of weeks and release bioactive LMWH with first-order kinetics as determined by in vitro and in vivo models, thus indicating the possibility of an alternative means of heparin delivery over current accepted methodologies. Evaluation of the maleimide-thiol chemistries applied in the LMWH hydrogels revealed reversibility for some conjugates under reducing conditions. Addition chemistries, such as maleimide-thiol reactions, are widely employed in biological conjugates and are generally accepted as stable. Here we show that the resulting succinimide thioether formed by the

  18. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.

    Science.gov (United States)

    Culver, Heidi R; Clegg, John R; Peppas, Nicholas A

    2017-02-21

    physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.

  19. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  20. Tough photoluminescent hydrogels doped with lanthanide.

    Science.gov (United States)

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels.

  1. Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture.

    Science.gov (United States)

    Peng, Sydney; Wu, Chih-Wei; Lin, Ji-Yu; Yang, Chin-Yu; Cheng, Ming-Huei; Chu, I-Ming

    2017-07-01

    Hydrogels are considered to be attractive cell-matrix for chondrocytes due to their similarity in properties to the natural cartilage. However, the formation of chondrocyte cell clusters in hydrogels has been mostly limited to naturally-derived or relatively fast degrading materials. In this study, a series of diblock copolymer poly(ethylene glycol)-poly(alanine) (mPEG-PA) was synthesized and investigated as injectable biomimic hydrogels for the culturing of chondrocytes. Depending on the poly(alanine) chain length, afforded hydrogels exhibited variable mechanical property and microarchitecture due to difference in secondary structure arrangement. After 21days of culture, cell clusters were observed in all hydrogels with longer PA chains and these hydrogels supported more homogenous and established clustering as well as significantly higher glycosaminoglycan and collagen deposition. Interestingly, scanning electron microscopy revealed a distinct micron range fibrillar-like microarchitecture that may be responsible for maintaining chondrocyte phenotype and matrix production. In addition, micrographs revealed the presence of collagen fibrils and an extensive extracellular matrix network. Therefore, it is reasonable to conclude that mPEG-PA hydrogels possess the desirable properties for chondrocyte cluster formation and serve as potential candidate in cartilage tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    Science.gov (United States)

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthetic hydrogel matrices for guided bladder tissue regeneration.

    Science.gov (United States)

    Adelöw, Catharina A M; Frey, Peter

    2007-01-01

    Tissue engineering aims to provide a temporary scaffold for repair at the site of injury or disease that is able to support cell attachment and growth while synthesis of matrix proteins and reorganization take place. Although relatively successful, bladder tissue engineering suffers from the formation of scar tissue at the scaffold implant site partly due to the phenotypic switch of smooth muscle cells (SMCs) from a quiescent contractile phenotype to a synthetic proliferative phenotype, known as myofibroblast. We hypothesize that culturing human SMCs in enzymatically degradable poly(ethylene) glycol (PEG) hydrogels modified with integrin-binding peptides, and in co-culture with human urothelial cells (UCs), will offer some insight as to the required environment for their subsequent differentiation into quiescent SMCs. We have established protocols for isolation, culture, and characterization of human bladder UCs, SMCs, and fibroblasts and investigated co-culture conditions for SMCs and UCs. The optimal PEG hydrogel properties, promoting growth of these cells, have been investigated by varying the amounts of cell adhesion peptide, PEG, and crosslinker and examined using light and fluorescence microscopy. Furthermore, the cell organization within and on top of gels 14 days post seeding has been examined by histology and immunohistochemistry. We have investigated a co-culture model for UCs and SMCs integrated into PEG hydrogels, mimicking a section of the bladder wall for reconstructive purposes that also could contribute to the understanding of the underlying basic mechanisms of SMC differentiation.

  5. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  6. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chen, Zhu; Zhao, Ming; Liu, Kang; Wan, Yuqing; Li, Xudong; Feng, Gang

    2014-08-01

    Traditional chitosan hydrogels were prepared by chemical or physical crosslinker, and both of the two kinds of hydrogels have their merits and demerits. In this study, researchers attempted to prepare one kind of chitosan hydrogel by slightly crosslinker, which could combine the advantages of the two kinds of hydrogels. In this experiment, the crosslinker was formed by a reaction between the isocyanate group of 1,6-diisocyanatohexan and the hydroxyl group of polyethylene glycol-400 (PEG-400), then the crosslinker reacted with the amidine and the hydroxyl group of ethylene glycol chitosan to form the network structure. Physical properties of the hydrogel were tested by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and biodegradation. Biocompatibility was assessed by cell implantation in vitro and the scaffold was used as a cartilage tissue engineering scaffold to repair a defect in rabbit knee joints in vivo. FTIR results show the formation of a covalent bond during thickening of the ethylene glycol chitosan. SEM and degradation experiments showed that the ethylene glycol chitosan hydrogel is a 3-D, porous, and degradable scaffold. The hydrogel contained 2% ethylene glycol chitosan and 10 μl crosslinker was selected for the biocompatibility experiment in vitro and in vivo. After chondrocytes were cultured in the ethylene glycol chitosan hydrogel scaffold for 1 week cells exhibited clustered growth and had generated extracellular matrix on the scaffold in vitro. The results in vivo showed that hydrogel-chondrocytes promoted the repair of defect in rabbits. Based on these results, it could be concluded that ethylene glycol chitosan hydrogel is a scaffold with excellent physicochemical properties and it is a promising tissue engineering scaffold.

  7. Novel thermosensitive hydrogel for preventing formation of abdominal adhesions

    Directory of Open Access Journals (Sweden)

    Gao X

    2013-07-01

    Full Text Available Xiang Gao,1,2 Xiaohui Deng,3 Xiawei Wei,2 Huashan Shi,2 Fengtian Wang,2 Tinghong Ye,2 Bin Shao,2 Wen Nie,2 Yuli Li,2 Min Luo,2 Changyang Gong,2 Ning Huang1 1Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 3Department of Human Anatomy, Xinxiang Medical University, Xinxiang, People’s Republic of China Abstract: Adhesions can form after almost any type of abdominal surgery. Postoperative adhesions can be prevented by improved surgical techniques, such as reducing surgical trauma, preventing ischemia, and avoiding exposure of the peritoneal cavity to foreign materials. Although improved surgical techniques can potentially reduce formation of adhesions, they cannot be eliminated completely. Therefore, finding more effective methods to prevent postoperative adhesions is imperative. Recently, we found that a novel thermosensitive hydrogel, ie, poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone (PCEC had the potential to prevent postoperative adhesions. Using the ring-opening polymerization method, we prepared a PCEC copolymer which could be dissolved and assembled at 55°C into PCEC micelles with mean size of 25 nm. At body temperature, a solution containing PCEC micelles could convert into a hydrogel. The PCEC copolymer was biodegradable and had low toxicity in vitro and in vivo. We found that most animals in a hydrogel-treated group (n = 10 did not develop adhesions. In contrast, 10 untreated animals developed adhesions that could only be separated by sharp dissection (P < 0.001. The hydrogel could adhere to peritoneal wounds and degraded gradually over 7–9 days, transforming into a viscous fluid that was completely absorbed within 12 days. The injured parietal and visceral peritoneum remesothelialized over about seven and nine days

  8. Heparin release from thermosensitive hydrogels

    NARCIS (Netherlands)

    Gutowska, Anna; Bae, You Han; Feijen, Jan; Kim, Sung Wan

    1992-01-01

    Thermosensitive hydrogels (TSH) were synthesized and investigated as heparin releasing polymers for the prevention of surface induced thrombosis. TSH were synthesized with N-isopropyl acrylamide (NiPAAm) copolymerized with butyl methacrylate (BMA) (hydrophobic) or acrylic acid (AAc) (hydrophilic) co

  9. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  10. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.

    Science.gov (United States)

    El-Fiqi, Ahmed; Lee, Jae Ho; Lee, Eun-Jung; Kim, Hae-Won

    2013-12-01

    Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col-mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col-mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ∼20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering.

  11. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature.

    Science.gov (United States)

    Bilanovic, Dragoljub; Starosvetsky, Jeanna; Armon, Robert H

    2016-09-01

    Polymers, hence hydrogels, pollute waters and soils accelerating environmental degradation. Environmentally benign hydrogels were made in water from biodegradable xanthan (X) and glycerol (G) at 22.5±2.5°C. Molar ratio [G]/[X]aerogel. Anionic character of XG-materials changes with changing [G]/[X] ratio. XG-films made from XG-hydrogels absorb up to 40 times more water than XG-films made from XG-foams. The films made from XG-foams and HCl do not dissolve in water during 48h. Making XG-materials is a no-waste process which decreases pollution, eliminates waste disposal costs, and minimizes energy expenses. XG-materials are suitable for both industrial and environmental applications including slow release and concentration of cations. XG-materials, made of xanthan, microbial polysaccharide, could also be used in applications targeting populations that do not consume meat or meat based products.

  12. Design, synthesis and characterization of a novel pH-sensitive hydrogel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel degradable pH-sensitive hydrogel with pendent carboxyl groups was designed and synthesized from ethylenediami-netetraacetic dianhydride (EDTAh) and butanediamine (BDA) with dicyclohexylcarbodiimide (DCC) as a condensating agent and BDA as a crosslinking agent. The obtained polymers were characterized by 13C NMR, 1H NMR and FTIR. The swelling experiments of the hydrogel in pH 3, 7, and 12 media indicated much higher swelling ratio in pH 12 media than in pH 3 and pH 7 media, exhibiting sound pH sensitivity. The pH sensitivity of this type of hydrogel may be regulated through controlling the type and the dose of the crosslinking agent.

  13. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold

    Directory of Open Access Journals (Sweden)

    Wei GJ

    2013-08-01

    Full Text Available Guo-Jun Wei,1 Meng Yao,1 Yan-Song Wang,1 Chang-Wei Zhou,1 De-Yu Wan,1 Peng-Zhen Lei,1 Jian Wen,1 Hong-Wei Lei,2 Da-Ming Dong1 1Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; 2Department of Rheumatology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China Background: Peripheral nerve injury is a common trauma, but presents a significant challenge to the clinic. Silk-based materials have recently become an important biomaterial for tissue engineering applications due to silk’s biocompatibility and impressive mechanical and degradative properties. In the present study, a silk fibroin peptide (SF16 was designed and used as a component of the hydrogel scaffold for the repair of peripheral nerve injury. Methods: The SF16 peptide’s structure was characterized using spectrophotometry and atomic force microscopy, and the SF16 hydrogel was analyzed using scanning electron microscopy. The effects of the SF16 hydrogel on the viability and growth of live cells was first assessed in vitro, on PC12 cells. The in vivo test model involved the repair of a nerve gap with tubular nerve guides, through which it was possible to identify if the SF16 hydrogel would have the potential to enhance nerve regeneration. In this model physiological saline was set as the negative control, and collagen as the positive control. Walking track analysis and electrophysiological methods were used to evaluate the functional recovery of the nerve at 4 and 8 weeks after surgery. Results: Analysis of the SF16 peptide’s characteristics indicated that it consisted of a well-defined secondary structure and exhibited self-assembly. Results of scanning electron microscopy showed that the peptide based hydrogel may represent a porous scaffold that is viable for repair of peripheral nerve injury. Analysis of cell culture also supported that the hydrogel was an effective

  15. Effect of kappa-carrageenan on the properties of poly(N-vinyl pyrrolidone)/kappa-carrageenan blend hydrogel synthesized by {gamma}-radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Maolin E-mail: zkkf@pku.edu.cn; Ha Hongfei; Yoshii, F.; Makuuchi, K

    2000-03-01

    A series of hydrogels in the form of rods were prepared from kappa-carrageenan (KC) and poly (N-vinyl pyrrolidone) (PVP) by gamma radiation with {sup 60}Co {gamma} source at room temperature. The properties of the prepared hydrogels, such as the gel strength, gel fraction and swelling behavior were investigated. Incorporation of KC into the PVP/water system increased obviously the gel strength and equilibrium degree of swelling (EDS) of PVP hydrogel. The experimental analyses showed that the crosslinking reaction of PVP was quicker than the degradation of KC at a low dose (less than 30 kGy), and the degradation of KC was inhibited in the PVP/KC mixture system. So an interpenetrating polymer network (IPN) hydrogel composed of PVP (a chemical crosslinking network) and KC (a physical crosslinking network) was proposed here. The existence of different classes of water in this IPN system was shown by water melting curves using DCS. (author)

  16. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel

    Directory of Open Access Journals (Sweden)

    Yang B

    2012-02-01

    Full Text Available Bing Yang1,2*, ChangYang Gong1*, Xia Zhao2, ShengTao Zhou2, ZhengYu Li2, XiaoRong Qi2, Qian Zhong2, Feng Luo1, ZhiYong Qian11State Key Laboratory of Biotherapy, West China University Hospital, Sichuan University, Chengdu, People's Republic of China; 2Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China*These authors contributed equally in this workBackground: Poly (ethylene glycol-poly (ε-caprolactone-poly (ethylene glycol (PEG-PCL-PEG, PECE hydrogel has been demonstrated to be biocompatible and thermosensitive. In this study, its potential efficacy and mechanisms of preventing postsurgical abdominal adhesions were investigated.Results: PECE hydrogel was transformed into gel state from sol state in less than 20 seconds at 37°C. None of the animals treated with the hydrogel (n = 15 developed adhesions. In contrast, all untreated animals (n = 15 had adhesions that could only be separated by sharp dissection (P < 0.001. The hydrogel adhered to the peritoneal wounds, gradually disappeared from the wounds within 7 days, and transformed into viscous fluid, being completely absorbed within 12 days. The parietal and visceral peritoneum were remesothelialized in about 5 and 9 days, respectively. The hydrogel prevented the formation of fibrinous adhesion and the invasion of fibroblasts. Also, along with the hydrogel degradation, a temporary inflammatory cell barrier was formed which could effectively delay the invasion of fibroblasts during the critical period of mesothelial regeneration.Conclusion: The results suggested that PECE hydrogel could effectively prevent postsurgical intra-abdominal adhesions, which possibly result from the prevention of the fibrinous adhesion formation and the fibroblast invasion, the promotion of the remesothelialization, and the hydroflotation effect.Keywords: anti-adhesion, thermosensitive, barrier, biocompatible

  17. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel.

    Science.gov (United States)

    Yu, Dehong; Sun, Changling; Zheng, Zhaozhu; Wang, Xueling; Chen, Dongye; Wu, Hao; Wang, Xiaoqin; Shi, Fuxin

    2016-04-30

    Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming, 10 μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100 ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (Silk-PEG-mDEX hydrogel. A transient hearing threshold shift was found but then resolved after 14 days as revealed by auditory brainstem response (ABR), showing minimal inflammatory responses on the round window membrane and scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid.

  18. Peptide hydrogelation triggered by enzymatic induced pH switch

    Science.gov (United States)

    Cheng, Wei; Li, Ying

    2016-07-01

    It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

  19. Novel hydrogels based on carboxyl pullulan and collagen crosslinking with 1, 4-butanediol diglycidylether for use as a dermal filler: initial in vitro and in vivo investigations.

    Science.gov (United States)

    Li, Xian; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi; Liu, Yannan; XiaoxuanMa

    2015-12-01

    Novel hydrogels based on carboxyl pullulan (PC) and human-like collagen (HLC) crosslinking with 1,4-butanediol diglycidyl ether (BDDE) are promising soft fillers for tissue engineering due to their highly tunable properties. Recent studies, however, have shown that incorporating hyaluronic acid and BDDE results in hydrogels with a microporous structure, a large pore size and high porosity, which reduce cell adhesion and enhance degradation in vivo. To improve biocompatibility and prevent biodegradation, the use of PC to replace hyaluronic acid in the fabrication of PC/BDDE (PCB) and PC/BDDE/HLC (PCBH) hydrogels was investigated. Preparation of gels with PC is a promising strategy due to the high reactivity, superb selectivity, and mild reaction conditions of PC. In particular, the Schiff base reaction of HLC and PC produces the novel functional group -RCONHR' in PCBH hydrogels. Twenty-four weeks after subcutaneous injection of either PCB or PCBH hydrogel in mice, the surrounding tissue inflammation, enzymatic response and cell attachment were better compared to hyaluronic acid-based hydrogels. However, the biocompatibility, cytocompatibility and non-biodegradability of PCBH were milder than those of the PCB hydrogels both in vivo and in vitro. These results show that the proposed use of PC and HLC for the fabrication of hydrogels is a promising strategy for generating soft filler for tissue engineering.

  20. An amidated carboxymethylcellulose hydrogel for cartilage regeneration.

    Science.gov (United States)

    Leone, Gemma; Fini, Milena; Torricelli, Paola; Giardino, Roberto; Barbucci, Rolando

    2008-08-01

    An amidic derivative of carboxymethylcellulose was synthesized (CMCA). The new polysaccharide was obtained by converting a large percentage of carboxylic groups ( approximately 50%) of carboxymethylcellulose into amidic groups rendering the macromolecule quite similar to hyaluronan. Then, the polysaccharide (CMCA) was crosslinked. The behavior of CMCA hydrogel towards normal human articular chondrocytes (NHAC) was in vitro studied monitoring the cell proliferation and synthesis of extra cellular matrix (ECM) components and compared with a hyaluronan based hydrogel (Hyal). An extracellular matrix rich in cartilage-specific collagen and proteoglycans was secreted in the presence of hydrogels. The injectability of the new hydrogels was also analysed. An experimental in vivo model was realized to study the effect of CMCA and Hyal hydrogels in the treatment of surgically created partial thickness chondral defects in the rabbit knee. The preliminary results pointed out that CMCA hydrogel could be considered as a potential compound for cartilage regeneration.

  1. Hydrogels for Engineering of Perfusable Vascular Networks.

    Science.gov (United States)

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S P; Machens, Hans-Günther; Schilling, Arndt F

    2015-07-14

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  2. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing.

    Science.gov (United States)

    Huang, Xin; Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Chen, Xin; Wei, Shicheng

    2013-12-01

    A series of carboxymethyl chitosan (CM-chitosan) and gelatin hydrogels were prepared by radiation crosslinking. A pre-clinical study was performed by implantation model and full-thickness cutaneous wound model in Sprague-Dawley rats to preliminarily evaluate the biocompatibility, biodegradability and effects on healing. In the implantation test, as a component of the hydrogels, CM-chitosan showed a positive effect on promoting cell proliferation and neovascularization, while gelatin was efficient to stabilize the structure and prolong the degradation time. To evaluate the function on wound healing, the hydrogels were applied to the relatively large full-thickness cutaneous wounds (Φ3.0 cm). Compared with the control groups, the hydrogel group showed significantly higher percentage of wound closure on days 9, 12 and 15 postoperatively, which was consistent with the significantly thicker granulation tissue on days 3 and 6. All results apparently revealed that the radiation crosslinked CM-chitosan/Gelatin hydrogels could induce granulation tissue formation and accelerate the wound healing.

  3. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    Science.gov (United States)

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices.

  4. In situ thiolated alginate hydrogel: Instant formation and its application in hemostasis.

    Science.gov (United States)

    Xu, Guanzhe; Cheng, Liang; Zhang, Qintong; Sun, Yunlong; Chen, Changlin; Xu, Heng; Chai, Yimin; Lang, Meidong

    2016-11-01

    An in situ formed hydrogel was synthesized by sodium alginate and cysteine methyl ester, which turned the sodium alginate into thiolated alginate (SA-SH). SA-SH can in situ formed into hydrogel (SA-SS-SA) with a large amount of water through covalent bond in less than 20 s. The structure characterization showed that the mechanism of SA-SH gelation was thiol-disulfide transformation. The rheology and cytotoxicity experiments of SA-SS-SA hydrogel were also investigated, which indicated that SA-SS-SA hydrogel had an appropriate mechanical strength as well as an excellent biocompatibility. The SA-SS-SA hydrogel would degrade under certain conditions after a few days and its mechanism was disulfide alkaline reduction. Finally, the hemostatic property of SA-SH was tested by rat tail amputation experiment. The time to hemostasis of rat reduced from 8.26 min to 3.24 min, which proved that SA-SH had an excellent hemostatic property.

  5. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    Science.gov (United States)

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Injectable, Biodegradable Hydrogels for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huaping Tan

    2010-03-01

    Full Text Available Hydrogels have many different applications in the field of regenerative medicine. Biodegradable, injectable hydrogels could be utilized as delivery systems, cell carriers, and scaffolds for tissue engineering. Injectable hydrogels are an appealing scaffold because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, and may be delivered in a minimally invasive manner. This review will discuss recent advances in the field of injectable hydrogels, including both synthetic and native polymeric materials, which can be potentially used in cartilage and soft tissue engineering applications.

  7. Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering.

    Science.gov (United States)

    Ekenseair, Adam K; Boere, Kristel W M; Tzouanas, Stephanie N; Vo, Tiffany N; Kasper, F Kurtis; Mikos, Antonios G

    2012-09-10

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.

  8. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.

    Science.gov (United States)

    Baniasadi, Hossein; Mashayekhan, Shohreh; Fadaoddini, Samira; Haghirsharifzamini, Yasamin

    2016-07-01

    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering. © The Author(s) 2016.

  9. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

    Science.gov (United States)

    Xie, Zhiwei; Aphale, Nikhil V; Kadapure, Tejaswi D; Wadajkar, Aniket S; Orr, Sara; Gyawali, Dipendra; Qian, Guoying; Nguyen, Kytai T; Yang, Jian

    2015-12-01

    Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.

  10. Temporally tunable, enzymatically responsive delivery of proangiogenic peptides from poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Van Hove, Amy H; Antonienko, Erin; Burke, Kathleen; Brown, Edward; Benoit, Danielle S W

    2015-09-16

    Proangiogenic drugs hold great potential to promote reperfusion of ischemic tissues and in tissue engineering applications, but efficacy is limited by poor targeting and short half-lives. Methods to control release duration or provide enzymatically responsive drug delivery have independently improved drug efficacy. However, no material has been developed to temporally control the rate of enzymatically responsive drug release. To address this void, hydrogels are developed to provide sustained, tunable release of Qk, a proangiogenic peptide mimic of vascular endothelial growth factor, via tissue-specific enzymatic activity. After confirmation that sustained delivery of Qk is necessary for proangiogenic effects, a variety of previously identified matrix metalloproteinase (MMP)-degradable linkers are used to tether Qk to hydrogels. Of these, three (IPES↓LRAG, GPQG↓IWGQ, and VPLS↓LYSG) show MMP-responsive peptide release. These linkers provide tunable Qk release kinetics, with rates ranging from 1.64 to 19.9 × 10(-3) h(-1) in vitro and 4.82 to 8.94 × 10(-3) h(-1) in vivo. While Qk is confirmed to be bioactive as released, hydrogels releasing Qk fail to induce significant vascularization in vivo after one week, likely due to the use of nonenzymatically degradable hydrogels. While Qk is the focus of this study, the approach could easily be adapted to control the delivery of a variety of therapeutic molecules.

  11. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction.

    Science.gov (United States)

    Projahn, Delia; Simsekyilmaz, Sakine; Singh, Smriti; Kanzler, Isabella; Kramp, Birgit K; Langer, Marcella; Burlacu, Alexandrina; Bernhagen, Jürgen; Klee, Doris; Zernecke, Alma; Hackeng, Tilman M; Groll, Jürgen; Weber, Christian; Liehn, Elisa A; Koenen, Rory R

    2014-05-01

    Myocardial infarction (MI) induces a complex inflammatory immune response, followed by the remodelling of the heart muscle and scar formation. The rapid regeneration of the blood vessel network system by the attraction of hematopoietic stem cells is beneficial for heart function. Despite the important role of chemokines in these processes, their use in clinical practice has so far been limited by their limited availability over a long time-span in vivo. Here, a method is presented to increase physiological availability of chemokines at the site of injury over a defined time-span and simultaneously control their release using biodegradable hydrogels. Two different biodegradable hydrogels were implemented, a fast degradable hydrogel (FDH) for delivering Met-CCL5 over 24 hrs and a slow degradable hydrogel (SDH) for a gradual release of protease-resistant CXCL12 (S4V) over 4 weeks. We demonstrate that the time-controlled release using Met-CCL5-FDH and CXCL12 (S4V)-SDH suppressed initial neutrophil infiltration, promoted neovascularization and reduced apoptosis in the infarcted myocardium. Thus, we were able to significantly preserve the cardiac function after MI. This study demonstrates that time-controlled, biopolymer-mediated delivery of chemokines represents a novel and feasible strategy to support the endogenous reparatory mechanisms after MI and may compliment cell-based therapies.

  12. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects.

    Science.gov (United States)

    Priddy, Lauren B; Chaudhuri, Ovijit; Stevens, Hazel Y; Krishnan, Laxminarayanan; Uhrig, Brent A; Willett, Nick J; Guldberg, Robert E

    2014-10-01

    Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12weeks by radiography, micro-computed tomography analyses, and biomechanical testing. Bone mineral density was significantly greater for the oxidized-irradiated alginate group at 8weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12weeks of healing.

  13. Oxidized alginate hydrogels for BMP-2 delivery in long bone defects

    Science.gov (United States)

    Priddy, Lauren B; Chaudhuri, Ovijit; Stevens, Hazel Y; Krishnan, Laxminarayanan; Uhrig, Brent A; Willett, Nick J; Guldberg, Robert E

    2014-01-01

    Autograft treatment of large bone defects and fracture non-unions is complicated by limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone regeneration and restoration of function in a critically sized rat femoral defect model. However, slow degradation of irradiated alginate hydrogels may impede integration and remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been used to promote degradation of alginate matrices. The objective of this study was to evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 26 days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed in both groups through 12 weeks by radiography, micro-CT analyses, and biomechanical testing. Bone mineral density (BMD) was significantly greater for the oxidized-irradiated alginate group at 8 weeks. Histological analyses of bone defects revealed enhanced degradation of oxidized-irradiated alginate and suggested the presence of more mature bone after 12 weeks of healing. PMID:24954001

  14. Hydrogel-based reinforcement of 3D bioprinted constructs

    Science.gov (United States)

    Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, W E; Vermonden, T; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as є-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  15. Hydrogel-based reinforcement of 3D bioprinted constructs.

    Science.gov (United States)

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-07-19

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as [Formula: see text]-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year.

  16. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.

    Science.gov (United States)

    Wang, Tao; Chen, Liman; Shen, Tingting; Wu, Dayang

    2016-12-01

    Chitosan-based thermosensitive hydrogels are known as injectable in situ gelling thermosensitive polymer solutions which are suitable for biomaterials. In this study, a novel thermosensitive hydrogel gelling under physiological conditions was prepared using chitosan together with hydroxypropyl methylcellulose and glycerol. Hydroxypropyl methylcellulose is to facilitate the thermogelation through large amounts of hydrophobic interactions. Glycerol in heavy concentration destroys the polymer water sheaths promoting the formation of the hydrophobic regions, and lowering the phase transition temperature. The thermosensitive hydrogels showed a physiological pH ranging from 6.8 to 6.9 and gelation time within 15min at 37°C. The prepared hydrogels were characterized by FT-IR, XRD, SEM, and rheological studies, mechanical studies and contact angle studies. The properties of degradability, cytotoxicity and protein release behaviors of the hydrogels were investigated. The results indicate this thermosensitive hydrogel possess good fluidity, thermosensitivity and biodegradability, as well as low-cytotoxicity and controlled release, showing the potential use in biomedical applications.

  17. Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-02-01

    Full Text Available Development of the technique for constructing an internal perfusable vascular network is a challenging issue in fabrication of dense three-dimensional tissues in vitro. Here, we report a method for realizing it. We assembled small tissue (about 200 μm in diameter-enclosing hydrogel microcapsules and a single hydrogel fiber, both covered with human vascular endothelial cells in a collagen gel. The microcapsules and fiber were made from alginate and gelatin derivatives, and had cell adhesive surfaces. The endothelial cells on the hydrogel constructs sprouted and spontaneously formed a network connecting the hydrogel constructs with each other in the collagen gel. Perfusable vascular network-like structure formation after degrading the alginate-based hydrogel constructs by alginate lyase was confirmed by introducing solution containing tracer particles of about 3 μm in diameter into the lumen templated by the alginate hydrogel fiber. The introduced solution flowed into the spontaneously formed capillary branches and passed around the individual spherical tissues.

  18. Bone Regeneration using an Alpha 2 Beta 1 Integrin-Specific Hydrogel as a BMP-2 Delivery Vehicle

    Science.gov (United States)

    Shekaran, Asha; García, José R.; Clark, Amy Y.; Kavanaugh, Taylor E.; Lin, Angela S.; Guldberg, Robert E.; García, Andrés J.

    2014-01-01

    Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential. PMID:24726536

  19. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution.

    Science.gov (United States)

    Basri, Sri Norleha; Zainuddin, Norhazlin; Hashim, Kamaruddin; Yusof, Nor Azah

    2016-03-15

    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model.

    Science.gov (United States)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m(2)/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing.

  1. Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration.

    Science.gov (United States)

    Sánchez-Ferrero, Aitor; Mata, Álvaro; Mateos-Timoneda, Miguel A; Rodríguez-Cabello, José C; Alonso, Matilde; Planell, Josep; Engel, Elisabeth

    2015-11-01

    Bone tissue engineering demands alternatives overcoming the limitations of traditional approaches in the context of a constantly aging global population. In the present study, elastin-like recombinamers hydrogels were produced by means of carbodiimide-catalyzed crosslinking with citric acid, a molecule suggested to be essential for bone nanostructure. By systematically studying the effect of the relative abundance of reactive species on gelation and hydrogel properties such as functional groups content, degradation and structure, we were able to understand and to control the crosslinking reaction to achieve hydrogels mimicking the fibrillary nature of the extracellular matrix. By studying the effect of polymer concentration on scaffold mechanical properties, we were able to produce hydrogels with a stiffness value of 36.13 ± 10.72 kPa, previously suggested to be osteoinductive. Microstructured and mechanically-tailored hydrogels supported the growth of human mesenchymal stem cells and led to higher osteopontin expression in comparison to their non-tailored counterparts. Additionally, tailored hydrogels were able to rapidly self-mineralize in biomimetic conditions, evidencing that citric acid was successfully used both as a crosslinker and a bioactive molecule providing polymers with calcium phosphate nucleation capacity.

  2. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    Science.gov (United States)

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers.

  3. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.

    Science.gov (United States)

    Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K

    2008-01-01

    Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats.

  4. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction.

    Science.gov (United States)

    Fu, Shuangli; Dong, Hui; Deng, Xueyi; Zhuo, Renxi; Zhong, Zhenlin

    2017-08-01

    This paper reports injectable hyaluronic acid (HA)-based hydrogels crosslinked with azide-modified poly(ethylene glycol) (PEG) via the strain-promoted azide-alkyne cycloaddition (SPAAC) between cyclooctyne and azide groups. Cyclooctyne-modified HA (Cyclooctyne-HA) is prepared by the reaction of HA with 2-(aminoethoxy)cyclooctyne. To crosslink the modified HA, quadruply azide-terminated poly(ethylene glycol) (Azide-PEG) is designed and prepared. The mixture of Cyclooctyne-HA and Azide-PEG gelates in a few minutes to form a strong HA-PEG hydrogel. The hydrogel has fast gelation time, good strength, and slow degradation rate, because of the high reactivity of SPAAC, high crosslinking density originated from the quadruply-substituted Azide-PEG, and the good stability of the crosslinking amide bonds. In vitro cell culturing within the hydrogel demonstrated an excellent cell-compatibility. The bioorthogonality of SPAAC makes the hydrogel injectable. With good mechanical properties and biocompatibility, the hydrogel would be useful in a wide range of applications such as injection filling materials for plastic surgery. Copyright © 2017. Published by Elsevier Ltd.

  5. Bundle Formation in Biomimetic Hydrogels.

    Science.gov (United States)

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-08-08

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.

  6. Fewer Bacteria Adhere to Softer Hydrogels

    Science.gov (United States)

    Kolewe, Kristopher W.; Peyton, Shelly R.; Schiffman, Jessica D.

    2015-01-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were twenty times thicker than the cumulative size of bacterial cell appendages, as a function of Young’s moduli. Soft (44.05 – 308.5 kPa), intermediate (1495 – 2877 kPa), and stiff (5152 – 6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 hr incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 hr incubation period, there were 52% and 82% less E. coli adhered to soft PEGDMA hydrogels, than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62% and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 hr incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that, potentially, could be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion, and therefore the occurrence of biofilm-associated infections. PMID:26291308

  7. Fewer Bacteria Adhere to Softer Hydrogels.

    Science.gov (United States)

    Kolewe, Kristopher W; Peyton, Shelly R; Schiffman, Jessica D

    2015-09-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections.

  8. Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat.

    Science.gov (United States)

    Dewi, Anne Handrini; Ana, Ika Dewi; Wolke, Joop; Jansen, John

    2015-10-01

    Gypsum or calcium sulfate (CS) or plaster of Paris (POP) is considered as a fast degradable material that usually resorbs before the bone defect area is completely filled by new bone. In this study, the incorporation of CaCO3 hydrogel into POP in different compositions was proposed to enhance the bone biological activity of POP and to decrease its degradability. The mechanical and degradation properties of the various materials were characterized by in vitro analysis. Subsequently, the materials were inserted into cylindrically sized bone defects as created into the femoral condyle of rats and left in situ for 1, 4, and 8 weeks. Histological analysis of the retrieved specimens indicated that the addition of CaCO3 hydrogel into POP increased bone formation, angiogenesis and collagen density and resulted into faster bone formation and maturation. It was also confirmed that the degradation rate of the POP decreased by the addition of CaCO3 hydrogel. The in vivo findings did corroborate with the in vitro analysis. In conclusion, the incorporation of CaCO3 hydrogel provides a promising technology to improve the properties of POP, the oldest biomaterial used for bone grafting. © 2015 Wiley Periodicals, Inc.

  9. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  10. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; Blitterswijk, van Clemens A.; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the depos

  11. Rapid Self-Integrating, Injectable Hydrogel for Tissue Complex Regeneration.

    Science.gov (United States)

    Hou, Sen; Wang, Xuefei; Park, Sean; Jin, Xiaobing; Ma, Peter X

    2015-07-15

    A novel rapid self-integrating, injectable, and bioerodible hydrogel is developed for bone-cartilage tissue complex regeneration. The hydrogels are able to self-integrate to form various structures, as can be seen after dying some hydrogel disks pink with rodamine. This hydrogel is demonstrated to engineer cartilage-bone complex.

  12. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the

  13. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  14. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization.

    Science.gov (United States)

    Wei, Wei; Hu, Xinyu; Qi, Xiaoliang; Yu, Hao; Liu, Yucheng; Li, Junjian; Zhang, Jianfa; Dong, Wei

    2015-01-01

    Salecan is a novel microbial polysaccharide produced by Agrobacterium sp. ZX09. The salt-tolerant strain was isolated from a soil sample in our laboratory and the 16S rDNA sequence was deposited in the GenBank database under the accession number GU810841. Salecan is suitable to fabricate hydrogel for biomedical applications due to the excellent hydrophilicity and biocompatibility. Here, salecan has been introduced into poly(N-isopropylacrylamide) (PNIPAm) network to form novel thermo-sensitive semi-interpenetrating polymer networks (semi-IPNs). The structure of salecan/PNIPAm semi-IPNs was confirmed by Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) proved the stability of the semi-IPNs. Rheological and compressive tests revealed an elastic solid-like behavior and good mechanical properties of the hydrogels. Swelling behavior test showed the hydrogels possessed high water content at room temperature. An excellent thermo-sensitive property of fast response rates to temperature had been demonstrated as well. In vitro degradation measurements ensured the semi-IPNs were degradable. Cytotoxicity and cell adhesion study suggested the synthesized salecan/PNIPAm hydrogels were non-toxic and biocompatibility. The results indicated the novel thermo-responsive hydrogels could be a suitable candidate for biomedical applications.

  15. Hydrogels with Micellar Hydrophobic (Nano)Domains

    OpenAIRE

    Pekař, Miloslav

    2015-01-01

    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  16. Hydrogels with micellar hydrophobic (nano)domains

    OpenAIRE

    Miloslav ePekař

    2015-01-01

    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  17. Flexible hydrogel-based functional composite materials

    Science.gov (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  18. Impermeable Robust Hydrogels via Hybrid Lamination.

    Science.gov (United States)

    Parada, German A; Yuk, Hyunwoo; Liu, Xinyue; Hsieh, Alex J; Zhao, Xuanhe

    2017-07-17

    Hydrogels have been proposed for sensing, drug delivery, and soft robotics applications, yet most of these materials suffer from low mechanical robustness and high permeability to small molecules, limiting their widespread use. This study reports a general strategy and versatile method to fabricate robust, highly stretchable, and impermeable hydrogel laminates via hybrid lamination of an elastomer layer bonded between hydrogel layers. By controlling the layers' composition and thickness, it is possible to tune the stiffness of the impermeable hydrogels without sacrificing the stretchability. These hydrogel laminates exhibit ultralow surface coefficients of friction and, unlike common single-material hydrogels, do not allow diffusion of various molecules across the structure due to the presence of the elastomer layer. This feature is then used to release different model drugs and, in a subsequent experiment, to sense different pH conditions on the two sides of the hydrogel laminate. A potential healthcare application is shown using the presented method to coat medical devices (catheter, tubing, and condom) with hydrogel, to allow for drug release and sensing of environmental conditions for gastrointestinal or urinary tract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photopatterning of hydrogel microarryas in closed microchips

    NARCIS (Netherlands)

    Gümüscü, B.; Bomer, Johan G.; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip

  20. Hydrogels with micellar hydrophobic (nano)domains

    Science.gov (United States)

    Pekař, Miloslav

    2014-12-01

    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  1. Photopatterning of hydrogel microarryas in closed microchips

    NARCIS (Netherlands)

    Gumuscu, Burcu; Bomer, Johan G.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip mainta

  2. Soy-based Hydrogels for Biomedical Applications

    Science.gov (United States)

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, following hydrolysis of formed polymers. The hydrogels were evaluated loading and releasing water-soluble anticancer drug doxorubin (Dox). The results suggest that this new system offers a great potential t...

  3. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  4. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels.

    Science.gov (United States)

    Hua, Jiachuan; Li, Zheng; Xia, Wen; Yang, Ning; Gong, Jixian; Zhang, Jianfei; Qiao, Changsheng

    2016-04-01

    In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3-11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of -COOH/-NH2 and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields.

  5. Cellulose/polyvinyl alcohol-based hydrogels for reconfigurable lens

    Science.gov (United States)

    Jayaramudu, T.; Ko, Hyun-U.; Gao, Xiaoyuan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    Electroactive hydrogels are attractive for soft robotics and reconfigurable lens applications. Here we describe the design and fabrication of cellulose-poly vinyl alcohol based hydrogels. The fabricated hydrogels were confirmed by Fourier transformer spectroscopy, swelling studies, thermal analysis, surface morphology of fabricated hydrogel was study by using scanning electron microscopy. The effect of poly vinyl alcohol concentration on the optical and electrical behavior of hydrogels was studied.

  6. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.

    Science.gov (United States)

    Yan, Shifeng; Wang, Taotao; Feng, Long; Zhu, Jie; Zhang, Kunxi; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2014-12-08

    Injectable hydrogels as an important biomaterial class have been widely used in regenerative medicine. A series of injectable poly(l-glutamic acid)/alginate (PLGA/ALG) hydrogels were fabricated by self-cross-linking of hydrazide-modified poly(l-glutamic acid) (PLGA-ADH) and aldehyde-modified alginate (ALG-CHO). Both the degree of PLGA modification and the oxidation degree of ALG-CHO could be adjusted by the amount of activators and sodium periodate, respectively. The effect of the solid content of the hydrogels and oxidation degree of ALG-CHO on the gelation time, equilibrium swelling, mechanical properties, microscopic morphology, and in vitro degradation of the hydrogels was examined. Encapsulation of rabbit chondrocytes within hydrogels showed viability of the entrapped cells and good biocompatibility of the injectable hydrogels. A preliminary study exhibited injectability and rapid in vivo gel formation, as well as mechanical stability, cell ingrowth, and ectopic cartilage formation. The injectable PLGA/ALG hydrogels demonstrated attractive properties for future application in a variety of pharmaceutical delivery and tissue engineering, especially in cartilage tissue engineering.

  7. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    OpenAIRE

    Hacker, Michael C.; Hafiz Awais Nawaz

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustmen...

  8. Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations%Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations

    Institute of Scientific and Technical Information of China (English)

    陈国钦; 任春华; 王玲; 徐兵; 杨志谋

    2012-01-01

    Enzyme-responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gelsol phase transitions. The gelation process and visco-elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self-assembled nanostructure were characterized by theology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme-responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled-drug release, etc.

  9. RF-interrogatable hydrogel-actuated biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, Z; Wang, A W; Darrow, C B; Lee, A P; McConaghy, C F; Krulevitch, P; Gilman, A; Satcher, J H; Lane, S M

    2000-01-10

    The authors present a novel micromachined sensor that couples a swellable hydrogel with capacitive detection. The hydrogel swells in response to analyte concentration, exerting contact pressure on a deformable conducting membrane. Results are presented for characterization of a PHEMA hydrogel swelling in response to a calcium nitrate solution. Pressure-deflection measurements are performed on NiTi-based membranes. Hydrogel-actuated deflections of the membranes are measured. These measurements are correlated to determine the pressure generating characteristics of the hydrogel. Membrane deflection techniques have not previously been employed for hydrogel characterization. The PHEMA sample exhibited greatest sensitivity in the pH range of 6.0--6.5 and performed an average of 2.8 Joules of work per m{sup 3} per pH unit in response to ambient conditions over the pH range 3.5--6.5. The membrane deflections correspond to capacitive shifts of about 4 pF per pH unit for a capacitive transducer with initial gap of 100 {micro}m, capacitor plate area of 18.5 mm{sup 2} , and initial hydrogel volume of 11 {micro}L.

  10. Photopatterning of Hydrogel Microarrays in Closed Microchips.

    Science.gov (United States)

    Gumuscu, Burcu; Bomer, Johan G; van den Berg, Albert; Eijkel, Jan C T

    2015-12-14

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip maintains a large spacing (typically 525 μm) between the photomask and hydrogel precursor, leading to diffraction of UV light at the edges of mask patterns, (2) diffusion of free radicals and monomers results in irregular polymerization near the illumination interface. In this work, we present a simple approach to enable the use of optical lithography to fabricate hydrogel arrays with a minimum feature size of 4 μm inside closed microchips. To achieve this, we combined two different techniques. First, the upper glass layer of the microchip was thinned by mechanical polishing to reduce the spacing between the photomask and hydrogel precursor, and thereby the diffraction of UV light at the edges of mask patterns. The polishing process reduces the upper layer thickness from ∼525 to ∼100 μm, and the mean surface roughness from 20 to 3 nm. Second, we developed an intermittent illumination technique consisting of short illumination periods followed by relatively longer dark periods, which decrease the diffusion of monomers. Combination of these two methods allows for fabrication of 0.4 × 10(6) sub-10 μm sized hydrogel patterns over large areas (cm(2)) with high reproducibility (∼98.5% patterning success). The patterning method is tested with two different types of photopolymerizing hydrogels: polyacrylamide and polyethylene glycol diacrylate. This method enables in situ fabrication of well-defined hydrogel patterns and presents a simple approach to fabricate 3-D hydrogel matrices for biomolecule separation, biosensing, tissue engineering, and immobilized protein microarray applications.

  11. The matrix reloaded: the evolution of regenerative hydrogels

    Directory of Open Access Journals (Sweden)

    Esmaiel Jabbari

    2016-05-01

    Full Text Available Cell-laden hydrogels can regenerate lost, damaged or malfunctioning tissues. Clinical success of such hydrogels is strongly dependent on the ability to tune their chemical, physico-mechanical, and biological properties to a specific application. In particular, mimicking the intricate arrangement of cell-interactive ligands of natural tissues is crucial to proper tissue function. Natural extracellular matrix elements represent a unique source for generating such interactions. A plethora of extracellular matrix-based approaches have been explored to augment the regenerative potential of hydrogels. These efforts include the development of matrix-like hydrogels, hydrogels containing matrix-like molecules, hydrogels containing decellularized matrix, hydrogels derived from decellularized matrix, and decellularized tissues as reimplantable matrix hydrogels. Here we review the evolution, strengths and weaknesses of these developments from the perspective of creating tissue regenerating hydrogels.

  12. Electrochemical Hydrogel Lithography of Calcium-Alginate Hydrogels for Cell Culture

    Directory of Open Access Journals (Sweden)

    Fumisato Ozawa

    2016-08-01

    Full Text Available Here we propose a novel electrochemical lithography methodology for fabricating calcium-alginate hydrogels having controlled shapes. We separated the chambers for Ca2+ production and gel formation with alginate with a semipermeable membrane. Ca2+ formed in the production chamber permeated through the membrane to fabricate a gel structure on the membrane in the gel formation chamber. When the calcium-alginate hydrogels were modified with collagen, HepG2 cells proliferated on the hydrogels. These results show that electrochemical hydrogel lithography is useful for cell culture.

  13. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  14. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery

    Science.gov (United States)

    Zhang, Yeshun; Liu, Jia; Huang, Lei; Wang, Zheng; Wang, Lin

    2015-07-01

    Although alginate hydrogels have been extensively studied for tissue engineering applications, their utilization is limited by poor mechanical strength, rapid drug release, and a lack of cell adhesive ability. Aiming to improve these properties, we employ the interpenetrating hydrogel design rationale. Using alginate and sericin (a natural protein with many unique properties and a major component of silkworm silk), we develop an interpenetrating polymer network (IPN) hydrogel comprising interwoven sericin and alginate double networks. By adjusting the sericin-to-alginate ratios, IPNs’ mechanical strength can be adjusted to meet stiffness requirements for various tissue repairs. The IPNs with high sericin content show increased stability during degradation, avoiding pure alginate’s early collapse. These IPNs have high swelling ratios, benefiting various applications such as drug delivery. The IPNs sustain controlled drug release with the adjustable rates. Furthermore, these IPNs are adhesive to cells, supporting cell proliferation, long-term survival and migration. Notably, the IPNs inherit sericin’s photoluminescent property, enabling bioimaging in vivo. Together, our study indicates that the sericin-alginate IPN hydrogels may serve as a versatile platform for delivering cells and drugs, and suggests that sericin may be a building block broadly applicable for generating IPN networks with other biomaterials for diverse tissue engineering applications.

  15. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    Directory of Open Access Journals (Sweden)

    Thomas Lawyer

    2012-01-01

    Full Text Available To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA- based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S, modified gelatin (Gtn-S, and a crosslinker (PEGda. By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs. In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  16. Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.

    Science.gov (United States)

    Ayyub, Omar B; Kofinas, Peter

    2015-08-25

    The passive monitoring of biological environments by soft materials has a variety of nanobiotechnology applications; however, invoking distinct transitions in geometric, mechanical or optical properties remains a prevalent design challenge. We demonstrate here that close-packed nanoparticle-hydrogel composites can progress through a substantial shift in such properties by the use of a chemical-to-physical cross-link transition mediated by the catalytic activity of different proteases. Catalytic cleavage of the original hydrogel network structure initiates the self-assembled formation of a secondary, physically cross-linked network, causing a 1200% increase in storage modulus. Furthermore, this unique mechanism can be fabricated as a 3D photonic crystal with broad (∼240 nm), visible responses to the targeted enzymes. Moreover, the material provided threshold responses, requiring a certain extent of proteolytic activity before the transition occurred. This allowed for the fabrication of Boolean logic gates (OR and AND), which responded to a specific assortment of proteases. Ultimately, this mechanism enables the design of stimuli-responsive hydrogels, which can proceed through a secondary network formation, after an energetic barrier has been breached. Protease responsive hydrogel nanocomposites, described here, could offer avenues in degradation-stiffening and collapsing materials for a variety of biomaterial applications.

  17. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

    Science.gov (United States)

    Purcell, Brendan P.; Lobb, David; Charati, Manoj B.; Dorsey, Shauna M.; Wade, Ryan J.; Zellars, Kia N.; Doviak, Heather; Pettaway, Sara; Logdon, Christina B.; Shuman, James A.; Freels, Parker D.; Gorman, Joseph H., III; Gorman, Robert C.; Spinale, Francis G.; Burdick, Jason A.

    2014-06-01

    Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.

  18. Ultrasoft Alginate Hydrogels Support Long-Term Three-Dimensional Functional Neuronal Networks.

    Science.gov (United States)

    Palazzolo, Gemma; Broguiere, Nicolas; Cenciarelli, Orlando; Dermutz, Harald; Zenobi-Wong, Marcy

    2015-08-01

    Neuron development and function are exquisitely sensitive to the mechanical properties of their surroundings. Three-dimensional (3D) cultures are therefore being explored as they better mimic the features of the native extracellular matrix. Limitations of existing 3D culture models include poorly defined composition, rapid degradation, and suboptimal biocompatibility. Here we show that ionically cross-linked ultrasoft hydrogels made from unmodified alginate can potently promote neuritogenesis. Alginate hydrogels were characterized mechanically and a remarkable range of stiffness (10-4000 Pa) could be produced by varying the macromer content (0.1-0.4% w/v) and CaCl2 concentration. Dissociated rat embryonic cortical neurons encapsulated within the softest of the hydrogels (0.1% w/v, 10 mM CaCl2) showed excellent viability, extensive formation of axons and dendrites, and long-term activity as determined by calcium imaging. In conclusion, alginate is an off-the-shelf, easy to handle, and inexpensive material, which can be used to make ultrasoft hydrogels for the formation of stable and functional 3D neuronal networks. This 3D culture system could have important applications in neuropharmacology, toxicology, and regenerative medicine.

  19. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  20. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.

    Science.gov (United States)

    Frith, Jessica E; Menzies, Donna J; Cameron, Andrew R; Ghosh, P; Whitehead, Darryl L; Gronthos, S; Zannettino, Andrew C W; Cooper-White, Justin J

    2014-01-01

    Previous reports in the literature investigating chondrogenesis in mesenchymal progenitor cell (MPC) cultures have confirmed the chondro-inductive potential of pentosan polysulphate (PPS), a highly sulphated semi-synthetic polysaccharide, when added as a soluble component to culture media under standard aggregate-assay conditions or to poly(ethylene glycol)/hyaluronic acid (PEG/HA)-based hydrogels, even in the absence of inductive factors (e.g. TGFβ). In this present study, we aimed to assess whether a 'bound' PPS would have greater activity and availability over a soluble PPS, as a media additive or when incorporated into PEG/HA-based hydrogels. We achieved this by covalently pre-binding the PPS to the HA component of the gel (forming a new molecule, HA-PPS). We firstly investigated the activity of HA-PPS compared to free PPS, when added as a soluble factor to culture media. Cell proliferation, as determined by CCK8 and EdU assay, was decreased in the presence of either bound or free PPS whilst chondrogenic differentiation, as determined by DMMB assay and histology, was enhanced. In all cases, the effect of the bound PPS (HA-PPS) was more potent than that of the unbound form. These results alone suggest wider applications for this new molecule, either as a culture supplement or as a coating for scaffolds targeted at chondrogenic differentiation or maturation. We then investigated the incorporation of HA-PPS into a PEG/HA-based hydrogel system, by simply substituting some of the HA for HA-PPS. Rheological testing confirmed that incorporation of either HA-PPS or PPS did not significantly affect gelation kinetics, final hydrogel modulus or degradation rate but had a small, but significant, effect on swelling. When encapsulated in the hydrogels, MPCs retained good viability and rapidly adopted a rounded morphology. Histological analysis of both GAG and collagen deposition after 21 days showed that the incorporation of the bound-PPS into the hydrogel resulted in

  1. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  2. Processing silk hydrogel and its applications in biomedical materials.

    Science.gov (United States)

    Wang, Hai-Yan; Zhang, Yu-Qing

    2015-01-01

    This review mainly introduces the types of silk hydrogels, their processing methods, and applications. There are various methods for hydrogel preparation, and many new processes are being developed for various applications. Silk hydrogels can be used in cartilage tissue engineering, drug release materials, 3D scaffolds for cells, and artificial skin, among other applications because of their porous structure and high porosity and the large surface area for growth, migration, adhesion and proliferation of cells that the hydrogels provide. All of these advantages have made silk hydrogels increasingly attractive. In addition, silk hydrogels have wide prospects for application in the field of biomedical materials.

  3. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  4. Temperature responsive hydrogel nanofibers and nanoparticles

    Science.gov (United States)

    Ruokolainen, Janne

    2011-03-01

    Poly(N-isopropylacrylamide) (PNIPAM) is one of the most extensively investigated synthetic temperature-responsive polymers. In this work temperature-responsive PNIPAM based triblock copolymer hydrogels, their self-assembly and phase behavior in bulk, are described. Additionally, recent results from responsive hydrogel nanofibers and hydrogel nanoparticles are shown. It is known that block copolymers form well-organized nano structures in bulk or thin films when annealed thermally or in solvent vapours. However, in the case of nanofibers or nanoparticles, the annealing leads in most cases to aggregation and particle sintering. This work utilizes aerosol-based gas phase method where the preparation and annealing of hydrogel nanoparticles with well-organized, hierarchical inner structures are performed without any particle coagulation or sintering. In the method, the block copolymers assemble within aerosol nanoparticles to form, for instance, lamellar onion-like or gyroid inner structures.

  5. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.

    2013-01-01

    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter sys

  6. Hydrogels made from chitosan and silver nitrate.

    Science.gov (United States)

    Kozicki, Marek; Kołodziejczyk, Marek; Szynkowska, Małgorzata; Pawlaczyk, Aleksandra; Leśniewska, Ewa; Matusiak, Aleksandra; Adamus, Agnieszka; Karolczak, Aleksandra

    2016-04-20

    This work describes a gelation of chitosan solution with silver nitrate. Above the critical concentration of chitosan (c*), continuous hydrogels of chitosan-silver can be formed. At lower concentrations, the formation of nano- and micro-hydrogels is discussed. The sol-gel analysis was performed to characterise the hydrogels' swelling properties. Moreover, the following were employed: (i) mechanical testing of hydrogels, (ii) inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the measurement of silver concentration, (iii) scanning electron microscopy (SEM) to examine the morphology of products obtained, and (iv) dynamic light scattering (DLS) and UV-vis spectrophotometry to examine products formed at low concentration of chitosan (chydrogels were used for modification of cotton fabric in order to give it antimicrobial properties. The products obtained acted against Escherichia coli and Bacillus subtilis apart from the chitosan used that showed no such activity.

  7. Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration.

    Science.gov (United States)

    Lee, Kwang Ho; Lee, Ki Hwa; Lee, Jeonghoon; Choi, Hyuk; Lee, Donghee; Park, Yongdoo; Lee, Sang-Hoon

    2014-04-01

    A biomimetic hydrogel was integrated into microfluidic chips to monitor glioma cell alignment and migration. The extracellular matrix-based biomimetic hydrogel was remodeled by matrix metalloprotease (MMP) secreted by glioma cells and the hydrogel could thus be used to assess cellular behavior. Both static and dynamic cell growth conditions (flow rate of 0.1 mL/h) were used. Cell culture medium with and without vascular endothelial growth factor (VEGF), insensitive VEGF and tissue inhibitor of metalloproteinases (TIMP) were employed to monitor cell behavior. A concentration gradient formed in the hydrogel resulted in differences in cell behavior. Glioma cell viability in the microchannel was 75-85%. Cells in the VEGF-loaded microchannels spread extensively, degrading the MMP-sensitive hydrogel, and achieved cell sizes almost fivefold larger than seen in the control medium. Our integrated system can be used as a model for the study of cellular behavior in a controlled microenvironment generated by fluidic conditions in a biomimetic matrix.

  8. A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration.

    Science.gov (United States)

    Zang, Shengqi; Dong, Guangying; Peng, Bo; Xu, Jie; Ma, Zhiwei; Wang, Xinwen; Liu, Lingxia; Wang, Qintao

    2014-11-26

    Chitosan has previously been exploited as a scaffold in tissue engineering processes. To avoid infection, chitosan must be sterilized prior to contact with bodily fluids or blood. Previous research has shown that autoclaved chitosan solution lead to decreased molecular weight, dynamic viscosity, and rate of gelling. We prepared a thermosensitive chitosan hydrogel using autoclaved chitosan powder (121 °C, 10 min) and β-glycerophosphate (chitosan-PA/GP) and compared the physicochemical properties and biocompatibility in vitro with autoclaved chitosan solution/GP hydrogel. The chitosan-PA/GP hydrogel had a shortened gelation time, higher viscosity, increased water absorption, appropriate degradation time, porous structure, and no obvious cytotoxicity on human periodontal ligament cells. Scanning electron microscopy demonstrated that the cells exhibited a normal morphology. The chitosan-PA/GP hydrogel promoted periodontal tissue regeneration in dog class III furcation defects. The chitosan-PA/GP thermosensitive hydrogel displayed suitable physicochemical properties and biocompatibilities and represents a promising candidate as an injectable tissue engineering scaffold.

  9. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery.

    Science.gov (United States)

    Cheng, Xinfeng; Jin, Yong; Sun, Tongbing; Qi, Rui; Li, Hanping; Fan, Wuhou

    2016-05-01

    A novel pH and oxidation dual-responsive and injectable supramolecular hydrogel was developed, which was formed from multi-block copolymer poly(ether urethane) (PEU) and α-cyclodextrin (α-CD) inclusion complexes (ICs). The PEU copolymer was synthesized through a simple one-pot condensation polymerization of poly(ethylene glycol), di(1-hydroxyethylene) diselenide, dimethylolpropionic acid and 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate. In aqueous solution, the amphiphilic PEU copolymers could self-assemble into nanoparticles with dual pH and oxidation sensitivities, which can efficiently load and controllably release a hydrophobic drug indomethacin (IND). Then a dual-drug loaded supramolecular hydrogel was obtained by addition of α-CD and hydrophilic model drug (rhodamine B, RB) into the resulting IND-loaded PEU nanoparticle solution. The rheology studies showed that the supramolecular hydrogels with good injectability underwent a pH-induced reversible sol-gel transition and an oxidation-triggered degradation behavior. The in vitro drug release results demonstrated that the hydrogels showed dual drug release behavior and the release rates could be significantly accelerated by addition of an oxidizing agent (H2O2) or increasing the environmental pH. Therefore, this injectable and dual stimuli-responsive supramolecular hydrogel based codelivery systems could potentially be a promising candidate for controlled drug delivery systems.

  10. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction.

    Science.gov (United States)

    Dorsey, Shauna M; McGarvey, Jeremy R; Wang, Hua; Nikou, Amir; Arama, Leron; Koomalsingh, Kevin J; Kondo, Norihiro; Gorman, Joseph H; Pilla, James J; Gorman, Robert C; Wenk, Jonathan F; Burdick, Jason A

    2015-11-01

    Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling techniques now allow for serial, non-invasive estimation of infarct material properties. Specifically, cine magnetic resonance imaging (MRI) assesses global LV structure and function, late-gadolinium enhancement (LGE) MRI enables visualization of infarcted tissue to quantify infarct expansion, and spatial modulation of magnetization (SPAMM) tagging provides passive wall motion assessment as a measure of tissue strain, which can all be used to evaluate infarct properties when combined with finite element (FE) models. In this work, we investigated the temporal effects of degradable hyaluronic acid (HA) hydrogels on global LV remodeling, infarct thinning and expansion, and infarct stiffness in a porcine infarct model for 12 weeks post-MI using MRI and FE modeling. Hydrogel treatment led to decreased LV volumes, improved ejection fraction, and increased wall thickness when compared to controls. FE model simulations demonstrated that hydrogel therapy increased infarct stiffness for 12 weeks post-MI. Thus, evaluation of myocardial tissue properties through MRI and FE modeling provides insight into the influence of injectable hydrogel therapies on myocardial structure and function post-MI.

  11. Further development of a morphine hydrogel suppository.

    OpenAIRE

    Cole, L.; Hanning, C. D.; Robertson, S.; Quinn, K

    1990-01-01

    1. A sustained release monolithic morphine hydrogel suppository (MHS) was developed and administered to five volunteers. 2. The MHS delivered a mean of 55 mg morphine over 12 h. The mean plasma morphine concentration was 15 ng ml-1 from 2 to 12 h after administration. 3. Plasma morphine concentrations were comparable with those reported for the same dose given orally over the same time period. 4. The morphine hydrogel suppository appears to be an effective means of delivering morphine and may...

  12. Multitriggered Shape-Memory Acrylamide-DNA Hydrogels.

    Science.gov (United States)

    Lu, Chun-Hua; Guo, Weiwei; Hu, Yuwei; Qi, Xiu-Juan; Willner, Itamar

    2015-12-23

    Acrylamide-acrylamide nucleic acids are cross-linked by two cooperative functional motives to form shaped acrylamide-DNA hydrogels. One of the cross-linking motives responds to an external trigger, leading to the dissociation of one of the stimuli-responsive bridges, and to the transition of the stiff shaped hydrogels into soft shapeless states, where the residual bridging units, due to the chains entanglement, provide an intrinsic memory for the reshaping of the hydrogels. Subjecting the shapeless states to counter stimuli restores the dissociated bridges, and regenerates the original shape of the hydrogels. By the cyclic dissociation and reassembly of the stimuli-responsive bridges, the reversible switchable transitions of the hydrogels between stiff shaped hydrogel structures and soft shapeless states are demonstrated. Shaped hydrogels bridged by K(+)-stabilized G-quadruplexes/duplex units, by i-motif/duplex units, or by two different duplex bridges are described. The cyclic transitions of the hydrogels between shaped and shapeless states are stimulated, in the presence of appropriate triggers and counter triggers (K(+) ion/crown ether; pH = 5.0/8.0; fuel/antifuel strands). The shape-memory hydrogels are integrated into shaped two-hydrogel or three-hydrogel hybrid structures. The cyclic programmed transitions of selective domains of the hybrid structures between shaped hydrogel and shapeless states are demonstrated. The possible applications of the shape-memory hydrogels for sensing, inscription of information, and controlled release of loads are discussed.

  13. Hydrogel: Preparation, characterization, and applications: A review

    Directory of Open Access Journals (Sweden)

    Enas M. Ahmed

    2015-03-01

    Full Text Available Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Literature on this subject was found to be expanding, especially in the scientific areas of research. However, a number of publications and technical reports dealing with hydrogel products from the engineering points of view were examined to overview technological aspects covering this growing multidisciplinary field of research. The primary objective of this article is to review the literature concerning classification of hydrogels on different bases, physical and chemical characteristics of these products, and technical feasibility of their utilization. It also involved technologies adopted for hydrogel production together with process design implications, block diagrams, and optimized conditions of the preparation process. An innovated category of recent generations of hydrogel materials was also presented in some details.

  14. In vivo behavior of hydrogel beads based on amidated pectins.

    Science.gov (United States)

    Munjeri, O; Collett, J H; Fell, J T; Sharma, H L; Smith, A M

    1998-01-01

    Radio-labeled hydrogel beads, based on amidated pectin, have been produced by adding droplets of an amidated pectin solution to calcium chloride. Incorporation of model drugs into the beads and measurement of the dissolution rate showed that the properties of the beads were unaffected by the incorporation of the radiolabel. The labeled beads were used to carry out an in vivo study of their behavior in the gastrointestinal tract using human volunteers. The volunteers were given the beads after an overnight fast and images were obtained at frequent intervals during transit through the upper gastrointestinal tract and the colon. The beads exhibited rapid gastric emptying and proceeded to pass through the small intestine individually before regrouping at the ileo-caecal junction. Once in the colon, the beads again proceeded as individuals and evidence of the degradation of the beads was observed.

  15. Miniaturized passive hydrogel check valve for hydrocephalus treatment.

    Science.gov (United States)

    Schwerdt, Helen N; Bristol, Ruth E; Junseok Chae

    2014-03-01

    Improvements in cerebrospinal fluid (CSF) draining techniques for treatment of hydrocephalus are urgently sought after to substitute for current CSF shunts that are plagued by high failure rates. The passive check valve aims to restore near natural CSF draining operations while mitigating possible failure mechanisms caused by finite leakage or low resilience that frequently constrain practical implementation of miniaturized valves. A simple hydrogel diaphragm structures core passive valve operations and enforce valve sealing properties to substantially lower reverse flow leakage. Experimental measurements demonstrate realization of targeted cracking pressures (PT ≈ 20-110 mmH2O) and operation at -800 <; ΔP <; 600 mmH2O without observable degradation or leakage.

  16. Effect of Alginate Concentration on Alginate-TiO{sub 2} Hydrogel for Lead Ion Removal

    Energy Technology Data Exchange (ETDEWEB)

    Teoh, W T; Sato, K [Department of Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Saito, N, E-mail: teoh@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)

    2011-03-15

    Alginate-TiO{sub 2} hydrogel was investigated for lead ion (Pb(II)) removal. By immobilizing TiO{sub 2} powder onto an alginate biopolymer, it is possible to utilize the ion exchange properties of the alginate and the photoreducibility of TiO{sub 2} to recover Pb(II). However, these photocatalytic activities degrade the alginate biopolymer in addition to removing Pb(II). This study examines photolytic degradation of alginate-TiO{sub 2} hydrogels prepared with alginate concentrations of 1, 1.5, 2, and 2.5%w/v; the same amount (0.4%w/v) of TiO{sub 2} was added to each alginate solution. The alginate-TiO{sub 2} hydrogels were formed by dripping the alginate-TiO{sub 2} suspension into a 0.2 M calcium chloride solution. The samples were washed and dried and then photoirradiated. The samples with alginate concentrations of 1 and 1.5%w/v were depolymerized, whereas the surface morphology of the sample that prepared from the 2%w/v alginate solution remained unchanged. The samples prepared from 1.5, 2, and 2.5%w/v alginate solutions had Pb(II) uptakes of 24.0, 39.8, and 39.7 mg/g, respectively.

  17. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    Science.gov (United States)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  18. Gellan hydrogel as a powerful tool in paper cleaning process: a detailed study.

    Science.gov (United States)

    Mazzuca, Claudia; Micheli, Laura; Carbone, Marilena; Basoli, Francesco; Cervelli, Eleonora; Iannuccelli, Simonetta; Sotgiu, Silvia; Palleschi, Antonio

    2014-02-15

    Wet cleaning of ancient papers is one of the most critical steps during a conservation treatment. It is used to improve the optical qualities of a graphic work and remove dust and by-products resulting from cellulose degradation. Nevertheless, washing treatment usually involves a substantial impact on the original morphological structure of paper and can sometimes be dangerous for water sensitive inks and pigments. The use of rigid hydrogel of Gellan gum as an alternative paper cleaning treatment is developed. The application of a rigid hydrogel minimizes damages caused by the use of water, and therefore is much more respectful for the original integrity of ancient paper. Gellan hydrogel has been used to clean paper samples belonging to different centuries (from XVI to XIX) and therefore, characterized by a different story in terms of degradation condition and paper composition. Several techniques, such as high-performance liquid chromatography, Fourier transform infrared spectroscopy, scanning electron microscopy and pH measurements, has been employed to assess the effectiveness and safety of the proposed cleaning method. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites.

    Science.gov (United States)

    Hashem, M; Sharaf, S; Abd El-Hady, M M; Hebeish, A

    2013-06-05

    New approach for preparation of CMC hydrogels was undertaken through reacting CMC with either malic, succinic or citric acid. Characteristics of the hydrogels, as monitored by the swelling behavior, FTIR, SEM, EDX, TEM and XRD were dependent on nature and concentration of the polycarboxylic acid, time and temperature of curing. The best practice achieved from these studies was harnessed to synthesize and characterize CMC hydrogel-ZnO-nanocomposites with additional study pertaining to the antibacterial activity of the nanocomposites. CMC hydrogel with excellent swelling behavior could be prepared by adding succinic acid (0.5%) to CMC solution then drying the obtained paste at 80 °C for 5 min followed by curing at 120 °C for 3 min. Similarly, addition of ZnNO3 solution to the CMC paste results in CMC hydrogel-ZnO-nanocomposites having biocidal activity to gram +ve and gram -ve bacteria.

  20. A pH-sensitive Modified Polyacrylamide Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A pH-sensitive modified polyacrylamide hydrogel was prepared by two steps and the modified polyacrylamide was characterized by 1HNMR spectrum. The surface morphology and swelling behavior of the hydrogels were investigated.

  1. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    DeKosky, Brandon J; Dormer, Nathan H; Ingavle, Ganesh C; Roatch, Christopher H; Lomakin, Joseph; Detamore, Michael S; Gehrke, Stevin H

    2010-12-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

  2. Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion.

    Science.gov (United States)

    Zhang, Zheng; Ni, Jian; Chen, Liang; Yu, Lin; Xu, Jianwei; Ding, Jiandong

    2011-07-01

    Biodegradable polymers can serve as barriers to prevent the post-operative intestinal adhesion. Herein, we synthesized a biodegradable triblock copolymer poly(ɛ-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ɛ-caprolactone-co-lactide) (PCLA-PEG-PCLA). The concentrated polymeric aqueous solution was injectable, and a hydrogel could be rapidly formed due to percolation of a self-assembled micelle network at the body temperature without requirement of any chemical reactions. This physical hydrogel retained its integrity in vivo for a bit more than 6 weeks and was eventually degraded due to hydrolysis. The synthesized polymer exhibited little cytotoxicity and hemolysis; the acute inflammatory response after implanting the hydrogel was acceptable, and the degradation products were less acidic than those of other polyester-containing materials. A rabbit model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative peritoneal adhesion has been found in the group of in situ formed PCLA-PEG-PCLA hydrogels.

  3. New in situ crosslinking chemistries for hydrogelation

    Science.gov (United States)

    Roberts, Meredith Colleen

    Over the last half century, hydrogels have found immense value as biomaterials in a vast number of biomedical and pharmaceutical applications. One subset of hydrogels receiving increased attention is in situ forming gels. Gelling by either bioresponsive self-assembly or mixing of binary crosslinking systems, these technologies are useful in minimally invasive applications as well as drug delivery systems in which the sol-to-gel transition aids the formulation's performance. Thus far, the field of in situ crosslinking hydrogels has received limited attention in the development of new crosslinking chemistries. Moreover, not only does the chemical nature of the crosslinking moieties allow these systems to perform in situ, but they contribute dramatically to the mechanical properties of the hydrogel networks. For example, reversible crosslinks with finite lifetimes generate dynamic viscoelastic gels with time-dependent properties, whereas irreversible crosslinks form highly elastic networks. The aim of this dissertation is to explore two new covalent chemistries for their ability to crosslink hydrogels in situ under physiological conditions. First, reversible phenylboronate-salicylhydroxamate crosslinking was implemented in a binary, multivalent polymeric system. These gels formed rapidly and generated hydrogel networks with frequency-dependent dynamic rheological properties. Analysis of the composition-structure-property relationships of these hydrogels---specifically considering the effects of pH, degree of polymer functionality, charge of the polymer backbone and polymer concentration on dynamic theological properties---was performed. These gels demonstrate diverse mechanical properties, due to adjustments in the binding equilibrium of the pH-sensitive crosslinks, and thus have the potential to perform in a range of dynamic or bioresponsive applications. Second, irreversible catalyst-free "click" chemistry was employed in the hydrogelation of multivalent azide

  4. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    OpenAIRE

    2015-01-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of th...

  5. Gellan gum microgel-reinforced cell-laden gelatin hydrogels

    OpenAIRE

    Shin, Hyeongho; Olsen, Bradley D.; Khademhosseini, Ali

    2013-01-01

    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not f...

  6. Research on the printability of hydrogels in 3D bioprinting

    OpenAIRE

    Yong He; FeiFei Yang; HaiMing Zhao; Qing Gao; Bing Xia; JianZhong Fu

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films ...

  7. Synthesis of "click" alginate hydrogel capsules and comparison of their stability, water swelling, and diffusion properties with that of Ca(+2) crosslinked alginate capsules.

    Science.gov (United States)

    Breger, Joyce C; Fisher, Benjamin; Samy, Raghu; Pollack, Steven; Wang, Nam Sun; Isayeva, Irada

    2015-07-01

    Ionically crosslinked alginate hydrogels have been extensively explored for encapsulation and immunoisolation of living cells/tissues to develop implantable cell therapies, such as islet encapsulation for bioartificial pancreas. Chemical instability of these hydrogels during long-term implantation hinders the development of viable cell therapy. The exchange between divalent crosslinking ions (e.g., Ca(+2) ) with monovalent ions from physiological environment causes alginate hydrogels to degrade, resulting in exposure of the donor tissue to the host's immune system and graft failure. The goal of this study was to improve stability of alginate hydrogels by utilizing covalent "click" crosslinking while preserving other biomedically viable hydrogel properties. Alginate was first functionalized to contain either pendant alkyne or azide functionalities, and subsequently reacted via "click" chemistry to form "click" gel capsules. Alginate functionalization was confirmed by NMR and gel permeation chromatography. When compared with Ca(+2) capsules, "click" capsules exhibited superior stability in ionic media, while showing higher permeability to small size diffusants and similar molecular weight cut-off and water swelling. Physicochemical properties of "click" alginate hydrogels demonstrate their potential utility for therapeutic cell encapsulation and other biomedical applications.

  8. Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes.

    Science.gov (United States)

    Braziulis, Erik; Diezi, Mirco; Biedermann, Thomas; Pontiggia, Luca; Schmucki, Marlene; Hartmann-Fritsch, Fabienne; Luginbühl, Joachim; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2012-06-01

    Tissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biological functionality, but their mechanical weakness and their tendency to contract and degrade does not allow producing clinically applicable transplants of larger sizes. We show here that plastically compressed collagen type I hydrogels can be produced in clinically relevant sizes (7×7 cm), and can be safely and conveniently handled by the surgeon. Most importantly, these dermo-epidermal skin substitutes mature into a near normal skin that can successfully reconstitute full-thickness skin defects in an animal model.

  9. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    Science.gov (United States)

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-11-19

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  10. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Michael C. Hacker

    2015-11-01

    Full Text Available Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  11. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    Science.gov (United States)

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  12. Experimental Study on Self-assembly of KLD-12 Peptide Hydrogel and 3-D Culture of MSC Encapsulated within Hydrogel In Vitro

    Institute of Scientific and Technical Information of China (English)

    Jianhua SUN; Qixin ZHENG

    2009-01-01

    o-fiber hydrogel in vitro. MSCs in KLD-12 peptide hydrogel grew well and proliferated with the culture time. KLD-12 peptide hydrogel can serve as an excellent injectable material of biological scaffolds in tissue engineering of IVD.

  13. A novel cellulose hydrogel prepared from its ionic liquid solution

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIN ZhangBi; YANG Xiao; WAN ZhenZhen; CUI ShuXun

    2009-01-01

    A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatibie and may be useful in the future as a biomaterial.

  14. Co-assembly of chitosan and phospholipids into hybrid hydrogels

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Shekarforoush, Elhamalsadat; Engwer, Christoph

    2016-01-01

    Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties...

  15. Molecular dynamic simulations of the water absorbency of hydrogels.

    Science.gov (United States)

    Ou, Xiang; Han, Qiang; Dai, Hui-Hui; Wang, Jiong

    2015-09-01

    A polymer gel can imbibe solvent molecules through surface tension effect. When the solvent happens to be water, the gel can swell to a large extent and forms an aggregate called hydrogel. The large deformation caused by such swelling makes it difficult to study the behaviors of hydrogels. Currently, few molecular dynamic simulation works have been reported on the water absorbing mechanism of hydrogels. In this paper, we first use molecular dynamic simulation to study the water absorbing mechanism of hydrogels and propose a hydrogel-water interface model to study the water absorbency of the hydrogel surface. Also, the saturated water content and volume expansion rate of the hydrogel are investigated by building a hydrogel model with different cross-linking degree and by comparing the water absorption curves under different temperatures. The sample hydrogel model used consists of Polyethylene glycol diglycidyl ether (PEGDGE) as epoxy and the Jeffamine, poly-oxy-alkylene-amines, as curing agent. The conclusions obtained are useful for further investigation on PEGDGE/Jeffamine hydrogel. Moreover, the simulation methods, including hydrogel-water interface modeling, we first propose are also suitable to study the water absorbing mechanism of other hydrogels.

  16. A hydrogel-based enzyme-loaded polymersome reactor

    NARCIS (Netherlands)

    Hoog, de Hans-Peter; Arends, Isabel W.C.E.; Rowan, Alan E.; Cornelissen, Jeroen J.L.M.; Nolte, Roeland J.M.

    2010-01-01

    In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs un

  17. Hydrogels for an accommodating intraocular lens. An explorative study

    NARCIS (Netherlands)

    de Groot, JH; Spaans, CJ; van Calck, RV; van Beijma, FJ; Norrby, S; Pennings, AJ

    2003-01-01

    In this study it was investigated whether hydrogels could be used for an accommodating lens. The requirements of such a hydrogels are a low modulus, high refractive index, transparency, and strength. Since conventional hydrogels do not possess this combination of properties, a novel preparation meth

  18. A hydrogel-based enzyme-loaded polymersome reactor

    NARCIS (Netherlands)

    de Hoog, H.P.M.; de Hoog, Hans-Peter; Arends, Isabel W.C.E.; Rowan, Alan E.; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland J.M.

    2010-01-01

    In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs

  19. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    Science.gov (United States)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to

  20. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.

    Science.gov (United States)

    Soranno, Danielle E; Rodell, Christopher B; Altmann, Christopher; Duplantis, Jane; Andres-Hernando, Ana; Burdick, Jason A; Faubel, Sarah

    2016-08-01

    Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation. Copyright © 2016 the American Physiological Society.

  1. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  2. Magnetic hyaluronate hydrogels: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection.

  3. Radiation synthesis and characterization of polyacrylic acid hydrogels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pH-sensitive polyacrylic acid (PAA) hydrogels were synthesized by gamma-ray irradiation at an ambient temperature. The influences of dose, monomer concentration, cross-linking agent content, pH, and ionic strength on the swelling ratio (SR) of the PAA hydrogels were investigated in detail. The results show that the SR of the hydrogel decreases with an increase in the dose, monomer concentration, and cross-linking agent content. In alkaline solution, the SR of the hydrogels is much higher than that in acid solution. Also, the ionic strength can influence the SR of the hydrogels. The more the concentration, the lower the SR.

  4. Thermo-mechanical behavior of graphene oxide hydrogel

    Science.gov (United States)

    Ghosh, Rituparna; Deka Boruah, Buddha; Misra, Abha

    2017-02-01

    Graphene oxide hydrogel with encapsulated water presents a unique structural characteristic similar to open cell foam. It is demonstrated that the encapsulated water plays a vital role in tailoring compressive behavior of graphene oxide hydrogel under varying thermal conditions. The present study is focused on systematically evaluating both the temperature and frequency dependence on compressive behavior of hydrogel to elucidate the evolution of stiffness in a wider temperature range. The stiffness of the hydrogel is further tailored through encapsulation of nanoparticles to achieve an extraordinary enhancement in storage modulus. It is concluded that the change in phase of water provides a large gradient in the stiffness of the hydrogel.

  5. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part III. Hydrogels as carriers for immobilization of proteins.

    Science.gov (United States)

    Michálek, J; Prádný, M; Artyukhov, A; Slouf, M; Smetana, K

    2005-08-01

    Four series of macroporous hydrogels based on crosslinked copolymers of 2-hydroxyethyl methacrylate (HEMA)-sodium methacrylate (MANa), copolymer HEMA-[2-(methacryloyloxy)ethyl]trimethylammonium chloride (MOETACl), terpolymer HEMA-MANa-MOETACl and on a polyelectrolyte complex were used as carriers for immobilization of proteins, chicken egg white albumin and avidin. The adsorption capacity of the hydrogels for the two proteins, kinetics and pH dependence of albumin adsorption and desorption were studied. The morphology of the hydrogels with and without immobilized albumin was studied by low-vacuum scanning electron microscopy.

  6. Understanding the structure, dynamics, and mass transport properties of self assembling peptide hydrogels for injectable, drug delivery applications

    Science.gov (United States)

    Branco, Monica Cristina

    Advances in biotechnology have led to the rapid development of small protein and antibody therapeutics. However, several limitations remain in the preparation and delivery of these drugs due to the susceptibility of proteins to degrade during storage and upon administration. To address this problem, hydrogels have been used as delivery devices for these protein drugs. We have designed a class of self-assembling peptides, MAX1 and MAX8, that undergo triggered hydrogelation in response to physiological pH and salt conditions (pH 7.4, 150 mM NaCl). These peptides adopt a random coil conformation in aqueous pH 7.4 solutions and are freely soluble. However, when a physiological relevant concentration of NaCl (150 mM) is added, the peptides fold into a beta-hairpin confirmation, and subsequently, self-assemble to form a rigid hydrogel stabilized by non-covalent cross-links. For these peptides, it is possible to control the folding and assembly kinetics to form hydrogels with different mechanical rigidities. These changes affect the porous morphology (i.e., mesh size) within the hydrogel system, and subsequently influence the rate of macromolecular diffusion within the peptide fibrillar network. Another unique characteristic of these hydrogels is that under applied shear, the hydrogel will shear-thin into a low-viscosity gel; however, the gel quickly resets and recovers its initial mechanical rigidity after the applied shear is removed. This property allows hydrogels encapsulating therapeutics to be administered via syringe to target sites for eventual delivery. The objective of this thesis work is to investigate the potential of MAX1 and MAX8 hydrogels as controlled release, drug delivery vehicles for macromolecular therapeutics. First, the differences in the folding and self assembly kinetics, as well as the resultant material properties, of MAX1 and MAX8 are assessed to yield a physical model of the nanoscale topology and dynamics of the self-assembled peptide

  7. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  8. Bisphenol A degradation in water by ligninolytic enzymes.

    Science.gov (United States)

    Gassara, Fatma; Brar, Satinder K; Verma, M; Tyagi, R D

    2013-08-01

    Many endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA. Higher degradation of BPA (90%) by ligninolytic enzymes encapsulated on polyacrylamide hydrogel and pectin after 8h was obtained. The degradation of BPA while using the free enzyme (26%) was lower than the value obtained with encapsulated enzymes. The presence of pectin in the formulation significantly (p>0.05) enhanced the activity of enzymes. Kinetics of BPA degradation showed an increase in Vm, while Km remained constant when enzymes were encapsulated. Hence, encapsulation protected the enzymes from non-competitive inhibition.

  9. Hydrogels: a journey from diapers to gene delivery.

    Science.gov (United States)

    Chawla, Pooja; Srivastava, Alok Ranjan; Pandey, Priyanka; Chawla, Viney

    2014-02-01

    Hydrogels are the biomaterials comprising network of natural or synthetic polymers capable of absorbing large amount of water. Hydrogels are "Smart Gels" or "Intelligent Gels" which can be made to respond to the various environmental conditions like temperature, pH, magnetic/electric field, ionic strength, inflammation, external stress etc. There are numerous potential applications of hydrogels in modern day life ranging from a diaper to gene delivery. This review succinctly describes the classification, properties and preparation methods along with numerous diverse applications of hydrogels like agricultural hydrogels, hydrogel for drug delivery, sensing, dental adhesives, wound healing and tissue regeneration, diet aid and gastric retention and in tissue engineering etc. Hydrogels can be regarded as highly valuable biomaterials for human-beings.

  10. Commercialization of hydrogel for topical anesthesia by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Youngchang; Kang, Philhyun; Lim, Younmook; Gwon, Huijeong; Park, Jongseok

    2013-09-15

    - The technologies to develop topical asesthetic hydrogels were developed and the preliminary clinical test was carried out for the prepared hydrogels at Kyunghee University. - The topical asesthetic hydrogels made by radiation are founded to have appropriate strengths and accelerant delivery behavior for lidocane which has a function of anesthetic. - New type of Hydrogels were designed in these experiments so that they had voids in hydrogels which led to much more absorption of exudate. - Several companies and Philippine Nuclear Research Institute(PNRI) are interested in our technologies to produce the hydrogels, we signed a MOA to support PNRI technically in the field of hydrogels and perform the general technical cooperation between Advanced Radiation Technology and PNRI.

  11. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  12. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.

    Science.gov (United States)

    Chowdhury, M N K; Alam, A K M M; Dafader, N C; Haque, M E; Akhtar, F; Ahmed, M U; Rashid, H; Begum, R

    2006-01-01

    Poly(vinyl alcohol) (PVA) can be modified to polymer hydrogels by radiation crosslinking and can be used in different biomedical applications. A study was done on the optimization of ingredients concentration for preparing good quality PVA hydrogels with natural polysaccharides. The synthesized hydrogels were also characterized by measuring the different physical properties e.g. gel fraction, swelling and absorption rate. Besides these, sterility test were also performed. Good quality hydrogels were obtained from PVA and natural polysaccharides solutions with 27 kGy radiation dose. There is an influence of natural polysaccharides on the gel fraction of hydrogel. The increase in the amount of polysaccharide causes a decrease in gel fraction that is decrease in the crosslinking density of PVA hydrogel network. The prepared hydrogels were found to be sterile.

  13. Thermoresponsive chitosan-agarose hydrogel for skin regeneration.

    Science.gov (United States)

    Miguel, Sónia P; Ribeiro, Maximiano P; Brancal, Hugo; Coutinho, Paula; Correia, Ilídio J

    2014-10-13

    Healing enhancement and pain control are critical issues on wound management. So far, different wound dressings have been developed. Among them, hydrogels are the most applied. Herein, a thermoresponsive hydrogel was produced using chitosan (deacetylation degree 95%) and agarose. Hydrogel bactericidal activity, biocompatibility, morphology, porosity and wettability were characterized by confocal microscopy, MTS assay and SEM. The performance of the hydrogel in the wound healing process was evaluated through in vivo assays, during 21 days. The attained results revealed that hydrogel has a pore size (90-400 μm) compatible with cellular internalization and proliferation. A bactericidal activity was observed for hydrogels containing more than 188 μg/mL of chitosan. The improved healing and the lack of a reactive or a granulomatous inflammatory reaction in skin lesions treated with hydrogel demonstrate its suitability to be used in a near future as a wound dressing.

  14. Antimicrobial hydrogels for the treatment of infection.

    Science.gov (United States)

    Veiga, Ana Salomé; Schneider, Joel P

    2013-11-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.

  15. Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels.

    Science.gov (United States)

    Wickremasinghe, Navindee C; Kumar, Vivek A; Shi, Siyu; Hartgerink, Jeffrey D

    2015-09-14

    Multidomain peptide (MDP) nanofibers create scaffolds that can present bioactive cues to promote biological responses. Orthogonal self-assembly of MDPs and growth-factor-loaded liposomes generate supramolecular composite hydrogels. These composites can act as delivery vehicles with time-controlled release. Here we examine the controlled release of placental growth factor-1 (PlGF-1) for its ability to induce angiogenic responses. PlGF-1 was loaded either in MDP matrices or within liposomes bound inside MDP matrices. Scaffolds showed expected rapid infiltration of macrophages. When released through liposomes incorporated in MDP gels (MDP(Lipo)), PlGF-1 modulates HUVEC VEGF receptor activation in vitro and robust vessel formation in vivo. These loaded MDP(Lipo) hydrogels induce a high level of growth-factor-mediated neovascular maturity. MDP(Lipo) hydrogels offer a biocompatible and injectable platform to tailor drug delivery and treat ischemic tissue diseases.

  16. Synthesis and characterization of anisotropic magnetic hydrogels

    Science.gov (United States)

    Hinrichs, Stephan; Nun, Nils; Fischer, Birgit

    2017-06-01

    Multiresponsive hydrogels are an interesting new class of materials. They offer the advantage, that they respond to different stimuli like temperature, pH and magnetic fields. By this they can change their properties which makes the hydrogels ideal candidates for many applications in the technical as well as medical field. Here we present the synthesis and characterization of hydrogels - micro- as well as macrogels - which consist of an iron oxide core, varying in phase and morphology, embedded in a thermoresponsive polymer, consisting of poly N-isopropylacrylamide. By using dynamic light scattering we investigated the thermoresponsive properties. In addition we were able to follow the formation of the macrogel by monitoring the shear viscosity.

  17. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels

    Science.gov (United States)

    Saik, Jennifer E.; Gould, Daniel J.; Watkins, Emily M.; Dickinson, Mary E.; West, Jennifer L.

    2011-01-01

    The field of tissue engineering is severely limited by a lack of microvascularization in tissue engineered constructs. Biomimetic poly(ethylene glycol) hydrogels containing covalently immobilized platelet-derived growth factor BB (PDGF-BB) were developed to promote angiogenesis. Poly(ethylene glycol) hydrogels resist protein absorption and subsequent non-specific cell adhesion, thus providing a “blank slate”, which can be modified through the incorporation of cell adhesive ligands and growth factors. PDGF-BB is a key angiogenic protein able to support neovessel stabilization by inducing functional anastomoses and recruiting pericytes. Due to the widespread effects of PDGF in the body and a half-life of only 30 min in circulating blood, immobilization of PDGF-BB may be necessary. In this work bioactive, covalently immobilized PDGF-BB was shown to induce tubulogenesis on two-dimensional modified surfaces, migration in three-dimensional (3D) degradable hydrogels and angiogenesis in a mouse cornea micro-pocket angiogenesis assay. Covalently immobilized PDGF-BB was also used in combination with covalently immobilized fibroblast growth factor-2, which led to significantly increased endothelial cell migration in 3D degradable hydrogels compared with the presentation of each factor alone. When a co-culture of endothelial cells and mouse pericyte precursor 10T1/2 cells was seeded onto modified surfaces tubule formation was independent of surface modifications with covalently immobilized growth factors. Furthermore, the combination of soluble PDGF-BB and immobilized PDGF-BB induced a more robust vascular response compared with soluble PDGF-BB alone when implanted into an in vivo mouse cornea micropocket angiogenesis assay. Based on these results, we believe bioactive hydrogels can be tailored to improve the formation of functional microvasculature for tissue engineering. PMID:20801242

  18. Application of hydrogel system for neutron attenuation

    CERN Document Server

    Gupta, S C; Gupta, B P

    2000-01-01

    Hydrogel sheets based on poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) have been prepared by the technique of acetalization of PVA using formaldehyde and grafting of acrylic acid onto PVAc by gamma irradiation. PVA hydrogel (PVAB) sheets have been prepared in geometrically stable shapes by compression moulding process and characterised for their thermal properties, geometrical stability on water absorption, and neutron shielding efficiency. The effective protection from fast neutrons can be increased by a factor of 18% by swelling the PVAB sheets to 210% in water. The water intake and subsequent retention of water by the sheet can be tailored as per shielding requirements.

  19. The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, YuWei; Zhou, Chao; Zhang, AoKai; Xu, LiQun; Yao, Fang [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China); Cen, Lian, E-mail: cenlian@hotmail.com [National Tissue Engineering Center of China, No.68, East Jiang Chuan Road, Shanghai, 200241 (China); School of Chemical Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237 (China); Fu, Guo-Dong, E-mail: fu7352@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China)

    2014-11-30

    Highlights: • Many biological tissues are 3-dimensionally asymmetric in structure and properties, it would be desirable if hydrogels could bear such structural similarity with specialized surface and bulk properties. Moreover, gradual but continuous variation in spatial structural and property is also a common phenomenon in biological tissues, such as interfaces between bone and tendon, or between bone and cartilage. Hence, the development of a method to introduce well-defined functional polymer brushes on PEG hydrogels, especially with precisely controlled spatial structure in 3-dimensions, would impart the hydrogels with special functionalities and wider applications. Poly(ethylene glycol) (PEG) hydrogels with 3-dimensionally controlled well-defined poly(N-isopropylacrylamide) (poly(NIPAAm)) brushes were prepared by combined copper(I)-catalyzed azide-alkyne cycloaddition (“Click Chemistry”) and atom transfer radical polymerization (ATRP). The resulting hydrogels were presented as representatives with their detailed synthesis routes and characterization. H{sub PEG}-S-poly(NIPAAm) is a hydrogel with poly(NIPAAm) brushes mainly grafted on surface, whereas H{sub PEG}-G-poly(NIPAAm) has a gradiently decreased poly(NIPAAm) brushes in their chain length from surface to inside. On the other hand, poly(NIPAAm) brushes in H{sub PEG}-U-poly(NIPAAm) are uniformly dispersed throughout the whole hydrogel network. Successful preparation of H{sub PEG}-S-poly(NIPAAm), H{sub PEG}-G-poly(NIPAAm) and H{sub PEG}-U-poly(NIPAAm) were ascertained by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Hence, the flexibility and controllability of the synthetic strategy in varying the distribution of polymer brushes and hydrogel surface properties was demonstrated. Hydrogels with tunable and well-defined 3-dimensional poly(NIPAAm) polymer brushes could be tailor-designed to find potential applications in smart devices or skin dressing, such as for diabetics

  20. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.

    Science.gov (United States)

    Suri, Shalu; Schmidt, Christine E

    2009-09-01

    To engineer complex tissues, it is necessary to create hybrid scaffolds with micropatterned structural and biomechanical properties, which can closely mimic the intricate body tissues. The current report describes the synthesis of a novel photocrosslinkable interpenetrating polymeric network (IPN) of collagen and hyaluronic acid (HA) with precisely controlled structural and biomechanical properties. Both collagen and HA are present in crosslinked form in IPNs, and the two networks are entangled with each other. IPNs were also compared with semi-IPNs (SIPN), in which only collagen was in network form and HA chains were entangled in the collagen network without being photocrosslinked. Scanning electron microscopy images revealed that IPNs are denser than SIPNs, which results in their molecular reinforcement. This was further confirmed by rheological experiments. Because of the presence of the HA crosslinked network, the storage modulus of IPNs was almost two orders of magnitude higher than SIPNs. The degradation of the collagen-HA IPNs was slower than the SIPNs because of the presence of the crosslinked HA network. Increasing concentration of HA further altered the properties among IPNs. Cytocompatibility of IPNs was confirmed by Schwann cell and dermal fibroblasts adhesion and proliferation studies. We also fabricated patterned scaffolds with regions of IPNs and SIPNs within a bulk hydrogel, resulting in zonal distribution of crosslinking densities, viscoelasticities, water content and pore sizes at the micro- and macro-scales. With the ability to fine-tune the scaffold properties by performing structural modifications and to create patterned scaffolds, these hydrogels can be employed as potential candidates for regenerative medicine applications.

  1. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.

    Science.gov (United States)

    Moreira, Helena R; Munarin, Fabiola; Gentilini, Roberta; Visai, Livia; Granja, Pedro L; Tanzi, Maria Cristina; Petrini, Paola

    2014-03-15

    The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.

  2. Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking.

    Science.gov (United States)

    Patenaude, Mathew; Campbell, Scott; Kinio, Dennis; Hoare, Todd

    2014-03-10

    Injectable, covalently in situ forming hydrogels based on poly(N-isopropylacrylamide) have been designed on the basis of mixing hydrazide-functionalized nucleophilic precursor polymers with electrophilic precursor polymers functionalized with a combination of ketone (slow reacting) and aldehyde (fast reacting) functional groups. By tuning the ratio of aldehyde:ketone functional groups as well as the total number of ketone groups in the electrophilic precursor polymer, largely independent control over hydrogel properties including gelation time (from seconds to hours), degradation kinetics (from hours to months), optical transmission (from 1 to 85%), and mechanics (over nearly 1 order of magnitude) can be achieved. In addition, ketone-functionalized precursor polymers exhibit improved cytocompatibility at even extremely high concentrations relative to polymers functionalized with aldehyde groups, even at 4-fold higher functional group densities. Overall, increasing the ketone content of the precursor copolymers can result in in situ-gellable hydrogels with improved transparency and biocompatibility and equivalent mechanics and stimuli-responsiveness while only modestly sacrificing the speed of gel formation.

  3. In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel.

    Science.gov (United States)

    Abbas, Kahina; Boutier-Pischon, Audrey; Auger, Florian; Françon, Dominique; Almario, Antonio; Frapart, Yves-Michel

    2016-09-01

    In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.

  4. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    Science.gov (United States)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  5. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds

    Directory of Open Access Journals (Sweden)

    Mohandas A

    2015-10-01

    Full Text Available Annapoorna Mohandas,* Sudheesh Kumar PT,* Biswas Raja, Vinoth-Kumar Lakshmanan, Rangasamy Jayakumar Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India *These authors contributed equally to this work Abstract: Alginate hydrogel/zinc oxide nanoparticles (nZnO composite bandage was developed by freeze-dry method from the mixture of nZnO and alginate hydrogel. The developed composite bandage was porous with porosity at a range of 60%–70%. The swelling ratios of the bandages decreased with increasing concentrations of nZnO. The composite bandages with nZnO incorporation showed controlled degradation profile and faster blood clotting ability when compared to the KALTOSTAT® and control bandages without nZnO. The prepared composite bandages exhibited excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and methicillin resistant S. aureus (MRSA. Cytocompatibility evaluation of the prepared composite bandages done on human dermal fibroblast cells by Alamar assay and infiltration studies proved that the bandages have a non-toxic nature at lower concentrations of nZnO whereas slight reduction in viability was seen with increasing nZnO concentrations. The qualitative analysis of ex-vivo re-epithelialization on porcine skin revealed keratinocyte infiltration toward wound area for nZnO alginate bandages. Keywords: alginate, hydrogel, ZnO nanoparticle, hemostatic, antimicrobial activity, wound healing

  6. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

    Science.gov (United States)

    Chwalek, Karolina; Tsurkan, Mikhail V.; Freudenberg, Uwe; Werner, Carsten

    2014-03-01

    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.

  7. In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel

    Science.gov (United States)

    Abbas, Kahina; Boutier-Pischon, Audrey; Auger, Florian; Françon, Dominique; Almario, Antonio; Frapart, Yves-Michel

    2016-09-01

    In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.

  8. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    Science.gov (United States)

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses.

  9. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels.

    Science.gov (United States)

    Othman, Muhammad Bisyrul Hafi; Khan, Abbas; Ahmad, Zulkifli; Zakaria, Muhammad Razlan; Ullah, Faheem; Akil, Hazizan Md

    2016-01-20

    This study attempted to clarify the influence of a cross-linker, N,N-methylenebisacrylamide (MBA), and N-isopropylacrylamide (NIPAM) on the non-isothermal kinetic degradation, solid state and lifetime of hydrogels using the Flynn-Wall-Ozawa (F-W-O), Kissinger, and Coats-Redfern (C-Red) methods. The series of dual-responsive Cs-PNIPAM-MBA microgels were synthesized by soapless-emulsion free radical copolymerization in an aqueous medium at 70 °C. The thermal properties were investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere. The apparent activation energy using the chosen Flynn-Wall-Ozawa and Kissinger methods showed that they fitted each other. Meanwhile, the type of solid state mechanism was determined using the Coats-Redfern method proposed for F1 (pure Cs) and F2 (Cs-PNIPAM-MBA hydrogel series) types, which comprise random nucleation with one nucleus reacting on individual particles, and random nucleation with two nuclei reacting on individual particles, respectively. On average, a higher Ea was attributed to the greater cross-linking density of the Cs hydrogel.

  10. Silk-hyaluronan-based composite hydrogels: a novel, securable vehicle for drug delivery.

    Science.gov (United States)

    Elia, Roberto; Newhide, Danny R; Pedevillano, Paul D; Reiss, G Russell; Firpo, Matthew A; Hsu, Edward W; Kaplan, David L; Prestwich, Glenn D; Peattie, Robert A

    2013-02-01

    A new, biocompatible hyaluronic acid (HA)-silk hydrogel composite was fabricated and tested for use as a securable drug delivery vehicle. The composite consisted of a hydrogel formed by cross-linking thiol-modified HA with poly(ethylene glycol)-diacrylate, within which was embedded a reinforcing mat composed of electrospun silk fibroin protein. Both HA and silk are biocompatible, selectively degradable biomaterials with independently controllable material properties. Mechanical characterization showed the composite tensile strength as fabricated to be 4.43 ± 2.87 kPa, two orders of magnitude above estimated tensions found around potential target organs. In the presence of hyaluronidase (HAse) in vitro, the rate of gel degradation increased with enzyme concentration although the reinforcing silk mesh was not digested. Composite gels demonstrated the ability to store and sustainably deliver therapeutic agents. Time constants for in vitro release of selected representative antibacterial and anti-inflammatory drugs varied from 46.7 min for cortisone to 418 min for hydrocortisone. This biocomposite showed promising mechanical characteristics for direct fastening to tissue and organs, as well as controllable degradation properties suitable for storage and release of therapeutically relevant drugs.

  11. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetical...

  12. Cytocompatibility, antibacterial activity and biodegradability of self-assembling beta-hairpin peptide-based hydrogels for tissue regenerative applications

    Science.gov (United States)

    Salick, Daphne Ann

    Every year, millions of people suffer from tissue loss or failure. One approach to repair damaged or diseased tissue is through tissue/organ transplantation. However, one of the major problems which exist with this approach is that there are more people in need of a transplant than there are donors. Over the past several decades, scientists and doctors have come together to find a way to overcome this challenge. This collaboration has led to the development of biomimetic scaffolds, which closely mimic the desired tissue of interest to act as a substitute for the unfunctional tissue, with hopes to improve the quality of life. The Schneider and Pochan labs have developed a biomimetic scaffold using self-assembling beta-hairpin peptides. The self-assembly event can be triggered in response to physiological conditions, which is dictated by the monomer, to form non covalently crosslinked mechanically rigid hydrogels. In vitro studies showed that hydrogels were cytocompatible and may not elicit a pro-inflammatory response from murine macrophages. These material properties show promise for the use of these hydrogels in tissue engineering. When implanting a material into a host, a major concern is the introduction of infection. Infection, if not prevented or halted, results in poor tissue integration and function, ultimately leading to implant removal from the host. Interestingly, the beta-hairpin hydrogels were shown to exhibit antibacterial properties against pathogens commonly found in hospital environments. This inherently antibacterial hydrogel is advantageous because it may help decrease or diminish bacterial contamination when implanted in vivo, which may help to increase the success of implants. Also, a unique and exciting feature of these peptide-based hydrogels is their ability to shear-thin and self-heal. Hydrogels can be directly formed in a syringe and be subsequently delivered to a tissue defect in a minimally invasive manner where they will recover to their

  13. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Science.gov (United States)

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  14. Polymer Micelles Laden Hydrogel Contact Lenses for Ophthalmic Drug Delivery.

    Science.gov (United States)

    Hu, Xiaohong; Tan, Huaping; Chen, Pin; Wang, Xin; Pang, Juan

    2016-06-01

    Hydrogel contact lens is an attractive drug carrier for the delivery of ophthalmic drugs. But limited drug loading capacity and burst release restricted its application in this field. Polymer micelle laden hydrogel contact lenses were designed for ophthalmic drug delivery in the work. β-CD/PAA/PEG ternary system was chosen to form polymer micelle. The micelle size could be adjusted by β-CD content and PAA/PEG concentration. The zeta potential of micelle was irrelevant to β-CD content, but influenced by PAA/PEG concentration. The absorbed drug concentration in micelle solution depended on both β-CD content and PAA/PEG concentration. Polymer micelle laden hydrogels were obtained by radical polymerization in situ. The transparency of polymer micelle laden hydrogel declined with PAA/PEG concentration increasing. The equilibrium water content and water loss showed that polymer micelle laden hydrogel with higher PAA/PEG concentration was in a higher swollen state. The dynamic viscoelastic properties howed that all polymer micelle laden hydrogels had some characteristics of crosslinked elastomers. The surface structure of freeze dried composite hydrogels was different from freeze dried pure hydrogel. The drug loading and releasing behaviors were detected to evaluate the drug loading and releasing capacity of hydrogels using orfloxacin and puerarin as model drugs. The results indicated the polymer micelle in hydrogel could hold or help to hold some ophthalmic drugs, and slow down orfloxacin release speed or keep puerarin stably stay for a time in hydrogels. In the end, it was found that the transparency of composite hydrogel became better after the hydrogel had been immersed in PBS for several weeks.

  15. Polyacrylamide Hydrogel Properties for Horticultural Applications

    Science.gov (United States)

    Polyacrylamide (PAAm) hydrogels are commonly employed to ensure hydration of the growth media and minimize crop losses during the crop production and postproduction phases in horticulture. However, studies of the effect of these materials have shown that they have a minimal effect on crop life and q...

  16. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  17. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-01-01

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering. PMID:27091175

  18. Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques.

    Science.gov (United States)

    Galante, Raquel; Ghisleni, Daniela; Paradiso, Patrizia; Alves, Vitor D; Pinto, Terezinha J A; Colaço, Rogério; Serro, Ana Paula

    2017-09-01

    Sterilization of hydrogels is challenging due to their often reported sensitivity to conventional methods involving heat or radiation. Although aseptic manufacturing is a possibility, terminal sterilization is safer in biological terms, leading to a higher overall efficiency, and thus should be used whenever it is possible. The main goal of this work was to study the applicability of an innovative ozone gas terminal sterilization method for silicone-based hydrogels and compare its efficacy and effects with those of traditional sterilization methods: steam heat and gamma irradiation. Ozone gas sterilization is a method with potential interest since it is reported as a low cost green method, does not leave toxic residues and can be applied to thermosensitive materials. A hydrogel intended for ophthalmological applications, based on tris(trimethylsiloxy)silyl] propyl methacrylate, was prepared and extensively characterized before and after the sterilization procedures. Alterations regarding transparency, swelling, wettability, ionic permeability, friction coefficient, mechanical properties, topography and morphology and chemical composition were monitored. Efficacy of the ozonation was accessed by performing controlled contaminations and sterility tests. In vitro cytotoxicity testes were also performed. The results show that ozonation may be applied to sterilize the studied material. A treatment with 8 pulses allowed sterilizing the material with bioburdens≤10(3)CFU/mL, preserving all the studied properties within the required known values for contact lenses materials. However, a higher exposure (10 pulses) led to some degradation of the material and induced mild cytotoxicity. Steam heat sterilization led to an increase of swelling capacity and a decrease of the water contact angle. Regarding gamma irradiation, the increase of irradiation dose led to an increase of the friction coefficient. The higher dose (25kGy) originated surface degradation and affected the

  19. Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling.

    Science.gov (United States)

    Li, Rui; Xu, Jianbin; Wong, Dexter Siu Hong; Li, Jinming; Zhao, Pengchao; Bian, Liming

    2017-11-01

    N-cadherin, a transmembrane protein and major component of adherens junction, mediates cell-cell interactions and intracellular signaling that are important to the regulation of cell behaviors and organ development. Previous studies have identified mimetic peptides that possess similar bioactivity as that of N-cadherin, which promotes chondrogenesis of human mesenchymal stem cells (hMSCs); however, the molecular mechanism remains unknown. In this study, we combined the N-cadherin mimetic peptide (HAVDI) with the self-assembling KLD-12 peptide: the resultant peptide is capable of self-assembling into hydrogels functionalized with N-cadherin peptide in phosphate-buffered saline (PBS) at 37 °C. Encapsulation of hMSCs in these hydrogels showed enhanced expression of chondrogenic marker genes and deposition of cartilage specific extracellular matrix rich in proteoglycan and Type II Collagen compared to control hydrogels, with a scrambled-sequence peptide after 14 days of chondrogenic culture. Furthermore, western blot showed a significantly higher expression of active glycogen synthase kinase-3β (GSK-3β), which phosphorylates β-catenin and facilitates ubiquitin-mediated degradation, as well as a lower expression of β-catenin and LEF1 in the N-cadherin peptide hydrogels versus controls. Immunofluorescence staining revealed significantly less nuclear localization of β-catenin in N-cadherin mimetic peptide hydrogels. Our findings suggest that N-cadherin peptide hydrogels suppress canonical Wnt signaling in hMSCs by reducing β-catenin nuclear translocation and the associated transcriptional activity of β-catenin/LEF-1/TCF complex, thereby enhancing the chondrogenesis of hMSCs. Our biomimetic self-assembled peptide hydrogels can serve as a tailorable and versatile three-dimensional culture platform to investigate the effect of biofunctionalization on stem cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  1. Systhesis and Characterization of Novel Carboxymethyl Chitosan Hydrogel%新型羧甲基壳聚糖水凝胶的合成与表征

    Institute of Scientific and Technical Information of China (English)

    朱寿进; 刘法谦; 王璟朝; 宿烽; 李速明

    2014-01-01

    通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐( EDC)/N-羟基琥珀酰亚胺( NHS)催化体系使羧甲基壳聚糖( CMCS)交联,制备了新型羧甲基壳聚糖水凝胶.探讨了EDC用量和EDC/NHS质量比对水凝胶特性的影响. CMCS水凝胶具有pH响应特性,在等电位点溶胀率最小.降解实验结果表明,水凝胶浸泡在磷酸盐缓冲溶液中,10 d失重率在15%~45%之间,主要是未交联部分溶解所致.而浸泡在含有0.2 mg/mL溶菌酶的磷酸盐缓冲溶液中,低交联度水凝胶80 h基本降解,高交联度水凝胶不易降解.初步研究了CMCS水凝胶包埋牛血清白蛋白( BSA)的释放行为.%Novel hydrogels were prepared by crosslinking carboxymethyl chitosan( CMCS) with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide/N-hydroxysuccinimide ( EDC/NHS ) as catalyst at room temperature. The amount of EDC and EDC/NHS mass ratio revealed to be influencing factors on the reaction. The hydrogels exhibited typical pH-responsive character. Solid-state 13 C nuclear magnetic resonance( NMR) and differential scanning calorimetry( DSC) measurements confirmed the effective crosslinking of carboxymethyl chitosan. A minimum swelling ratio is obtained at the isoelectric point in the pH range of 3-5 . Degradation of hydrogels was carried out at 37 ℃ in phosphate buffered saline( PBS) or in PBS containing 0.2 mg/mL lysozyme. The hydrogels appeared rather stable in PBS for 10 d. The initial mass loss of 15%-45% was assigned to the dis-solution of uncrosslinked CMCS. The hydrogel with low crosslink density was degraded after 80 h in the pre-sence of lysozyme, while the hydrogel with high crosslink density was hardly degraded. A model drug, bovine serum albumin( BSA) was loaded in CMCS hydrogels. Preliminary drug release studies show that the hydrogels are promising carrier of hydrophilic drugs.

  2. Versatile Molding Process for Tough Cellulose Hydrogel Materials.

    Science.gov (United States)

    Kimura, Mutsumi; Shinohara, Yoshie; Takizawa, Junko; Ren, Sixiao; Sagisaka, Kento; Lin, Yudeng; Hattori, Yoshiyuki; Hinestroza, Juan P

    2015-11-05

    Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded in the spinning of cellulose hydrogel fibers through a dry jet-wet spinning process. The mechanical property of regenerated cellulose fibers improved by the drawing of cellulose hydrogel fibers during the spinning process. This approach for the fabrication of tough cellulose hydrogels is a major advance in the fabrication of cellulose-based structures with defined shapes.

  3. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  4. Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chaeyeon; Park, Ki-Su; Kang, Sung-Min; Kim, Jongmin; Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-12-15

    This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from 30 μm to 180 μm, by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.

  5. ADDITIVE-INDUCED ENHANCEMENT OF OPTICAL CLARITY OF POLYACRYLAMIDE HYDROGEL

    Institute of Scientific and Technical Information of China (English)

    Jeffery Franklin; Zhi Yuan Wang

    2003-01-01

    The aqueous polymerization of acrylamide and crosslinking with N,N-methylenebisacrylamide afforded hydrogels displaying high levels of light scattering (poor optical clarity). Enhancement of the optical clarity within a polyacrylamide (PAm) hydrogel was accomplished through the implementation of"refractive index matching", Water-soluble additives were utilised to better match the refractive index inhomogeneities throughout a given hydrogel. This resulted in lower light scattering within the system and hence improved clarity. Amino acids, sugars, polymers, and other water-soluble additives such as glycerol were investigated by this methodology. Most additives investigated displayed potential for effectively reducing the light scattering within a PAm hydrogel as a function of increased additive concentration. On increasing the refractive index of the water medium, the overall refractive index of a PAm hydrogel was also observed to increase. This provided a quantitative means of determining the effectiveness of a given additive for improving the optical clarity within a hydrogel.

  6. Swelling Behaviors of Polyaniline-Poly(Acrylic Acid) Hydrogels

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-wei; ZHAO Jiong-xin; LI Xiao-feng; TAO Yong; WU Cheng-xun

    2005-01-01

    Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline(An) and ammonim persulfate(APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds wcre prepared. The swelling properties of the hydrogels in solutions of different pH values(adjusted by adding NaOH or HCl) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel,and molar ratios of AA to An, APS to An, and NaOH to AA.And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.

  7. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    Science.gov (United States)

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels.

  8. Dielectric properties of Rhodamine-B and metal doped hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Okutan, M. [Department of Physics, Yıldız Technical University, 34210 Istanbul (Turkey); Coşkun, R. [Department of Chemistry, Bozok University, 66100 Yozgat (Turkey); Öztürk, M. [Institute of Science, Niğde University, 51240 Niğde (Turkey); Yalçın, O., E-mail: o.yalcin@nigde.edu.tr [Department of Physics, Niğde University, 51240 Niğde (Turkey)

    2015-01-15

    The electric and dielectric properties of Rhodamine-B (RB) and metal ions (Ag{sup +}, Co{sup 2+}, Cr{sup 3+}, Mn{sup 2+} and Ni{sup 2+}) doped hydrogels have been analyzed in an extended frequency range by impedance spectroscopy. The RB doped hydrogels has been found to be sensitive to ionic conduction and electrode polarization according to the metal doped hydrogels. We have shown that the ionic conductive of RB doped hydrogels is originated from the free ions motion within the doped hydrogels at high frequency. We have also taken into account the Cl{sup −} and N{sup +} ions in the structure of RB provide additional ionic contribution to RB doped hydrogels.

  9. Mechanical Behavior of Tough Hydrogels for Structural Applications

    Science.gov (United States)

    Illeperuma, Widusha Ruwangi Kaushalya

    Hydrogels are widely used in many commercial products including Jell-O, contact lenses, and superabsorbent diapers. In recent decades, hydrogels have been under intense development for biomedical applications, such as scaffolds in tissue engineering, carriers for drug delivery, and valves in microfluidic systems. But the scope is severely limited as conventional hydrogels are weak and brittle and are not very stretchable. This thesis investigates the approaches that enhance the mechanical properties of hydrogels and their structural applications. We discov¬ered a class of exceptionally stretchable and tough hydrogels made from poly-mers that form networks via ionic and covalent crosslinks. Although such a hydrogel contains ~90% water, it can be stretched beyond 20 times its initial length, and has a fracture energy of ~9000 J/m2. The combination of large stretchability, remarkable toughness, and recoverability of stiffness and toughness, along with easy synthesis makes this material much superior over existing hydrogels. Extreme stretchability and blunted crack tips of these hydrogels question the validity of traditional fracture testing methods. We re-examine a widely used pure shear test method to measure the fracture energy. With the experimental and simulation results, we conclude that the pure shear test method can be used to measure fracture energy of extremely stretchable materials. Even though polyacrylamide-alginate hydrogels have an extremely high toughness, it has a relatively low stiffness and strength. We improved the stiffness and strength by embedding fibers. Most hydrogels are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. But tough hydrogel composites do not fail by the fibers cutting the hydrogel; instead, it undergoes large deforming by fibers sliding through the matrix. Hydrogels were not considered as materials for structural applications. But with enhanced mechanical properties, they have opened up

  10. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug.

    Science.gov (United States)

    Treenate, Pitchaya; Monvisade, Pathavuth

    2017-06-01

    The aim of this study is to investigate in vitro drug release profiles of pH-sensitive hydrogels composed of hydroxyethylacryl chitosan (HC) and sodium alginate (SA). The hydrogels were crosslinked by dipping method using different ionic crosslinkers (e.g., Ca(2+), Zn(2+) and Cu(2+)). The crosslinking reaction was confirmed by FT-IR. Swelling behavior and stability of the hydrogels in simulated digestive media were investigated. The result indicated that the combination between HC and SA could delay the degradation time of the hydrogels. Calcium crosslinking system showed higher stability than that of zinc or copper crosslinking system. In vitro drug release profiles were studied using paracetamol as a soluble model drug. The amount of paracetamol release in simulated gastric fluid (SGF) was relatively low (<20%). In simulated intestinal fluid (SIF), the burst release of paracetamol was depressed with increasing HC content and/or applying crosslinker. The HC75SA25 formulation demonstrated the linearity of drug release profile. Additionally, the amount of drug release from the 0.5M calcium HC50SA50 hydrogel in SIF was lower than 20%. The comprehensive results of this study suggested their potential in the application of site-specific oral drug delivery in intestine and colon. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a Novel Enzyme-Targeting Radiosensitizer (New KORTUC Using a Gelatin-Based Hydrogel Instead of a Sodium Hyaluronate

    Directory of Open Access Journals (Sweden)

    Shiho Morita-Tokuhiro

    2016-01-01

    Full Text Available We recently developed Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas (KORTUC as a strategy to increase intratumoral oxygen concentrations and degrade antioxidant enzymes such as peroxidase and catalase. We then developed KORTUC II, which uses sodium hyaluronate containing hydrogen peroxide as a radiosensitizer. KORTUC II requires twice-weekly administration to sustain its effects, but decreasing the frequency of radiosensitizer injections to once-weekly would reduce the burden on the patients and the physicians. The goal of this study was thus to develop a new formulation of KORTUC (New KORTUC that only requires once-weekly administration. We performed experimental studies using a mouse tumor model and biodegradable hydrogel. C3H/He mice were allocated to control, KORTUC, or hydrogel groups. At 72 h after injection, each tumor was irradiated with a 6 MeV electron beam to a total dose of 30 Gy. During a 62-day observation period, changes in tumor volume and survival rates were assessed in each group. Tumor growth rate was slowest in the hydrogel groups. These data suggest that hydrogel could represent a useful adjunct as a long-acting radiosensitizer in place of sodium hyaluronate. New KORTUC, which contains hydrogen peroxide and hydrogel, exerted a radiosensitizing effect that persisted beyond 72 h following injection of the agent. Use of this new formulation allows radiosensitizer injections to be performed once-weekly with good effect.

  12. Addition of residues and reintroduction of microorganisms in Jatropha curcas cultivated in degraded soil

    OpenAIRE

    Adriana A. Santos; Agustini,José A.; Katia L. Maltoni; Cassiolato, Ana M. R. [UNESP

    2016-01-01

    ABSTRACT The aim of this study was to evaluate, through mycorrhization (root colonization and number of spores of arbuscular mycorrhizal fungi - AMF), leaf acid phosphatase and soil chemical characteristics, the effects of the addition of residues (macrophytes and ash), hydrogel and the reintroduction of microorganisms in a degraded area cultivated with jatropha. Degradation occurred when the surface soil was removed during the construction of a hydroelectric power plant. The experiment was s...

  13. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    Science.gov (United States)

    Kim, Sung Hye

    Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to endothelial cells overexpressing a relevant receptor VEGFR-2. Addition of dimeric VEGF to 4-arm star-shaped poly(ethylene glycol) (PEG) immobilized with low-molecular weight heparin (LMWH) afforded a non-covalently assembled hydrogel via interaction between heparin and VEGF, with storage modulus 10 Pa. The release of VEGF and hydrogel erosion reached maximum 100 % at day 4 in the presence of VEGFR-2 overexpressing pocine aortic endothelial cell (PAE/KDR), while those of 80% were achieved via passive release at day 5 in the presence of PAE cell lacking VEGFR-2 or in the absence of cell, indicating that the release of VEGF was in targeted manner toward cell receptor. The proliferation of PAE/KDR in the presence of [PEG-LMWH/VEGF] hydrogel was greater by ca. 30% at day 4 compared to that of PAE, confirming that the release of VEGF was in response to the cellular demand. The phosphorylation fraction of VEGFR-2 on PAE/KDR was greater in the presence of [PEG-LMWH/VEGF] hydrogel, increasing from 0.568 at day 1 to 0.790 at day 4, whereas it was maintained at 0.230 at day 4 in the presence of [PEG-LMWH] hydrogel. This study has proven that this hydrogel, assembled via bio-inspired non-covalent interaction, liberating VEGFon celluar demand to target cell, eroding upon VEGF release, and triggering endothelial cell proliferation, could be used in multiple applications including targeted delivery and angiogenesis. Heparin has been widely exploited in growth factor delivery systems owing to its ability to bind many growth factors through the flexible

  14. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.

    Science.gov (United States)

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2015-06-01

    A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2010-04-01

    Full Text Available Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications.

  16. Tough and tunable adhesion of hydrogels: experiments and models

    Science.gov (United States)

    Zhang, Teng; Yuk, Hyunwoo; Lin, Shaoting; Parada, German A.; Zhao, Xuanhe

    2017-06-01

    As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.

  17. PVA/atapulgite hydrogels; Hidrogeis de PVA/atapulgita

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: nunes@metalmat.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Paranhos, C.M. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil); Barreto, L.S. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)

    2010-07-01

    PVA hydrogels can be used as wound-healing as a consequence of their biocompatibility, flexibility, etc. In order to improve mechanical resistance of wound-healing, polymeric hydrogels reinforced with clay have been studied. Among national clays, attapulgite stands out. Once it is a natural material, acid treatment can be required in order to remove impurities. In the present work, PVA hydrogels reinforced with attapulgite were produced and they were characterized by swelling behavior, XRD, DSC and traction test. Among all properties studied, hydrogels reinforced with activated attapulgite showed better mechanical resistance and Young module than the other samples. (author)

  18. Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes

    Directory of Open Access Journals (Sweden)

    Evan Mah

    2013-09-01

    Full Text Available Composite membranes with stimuli-responsive properties can be made by coating a thermo-responsive hydrogel onto a micro- or macroporous support. These hydrogels undergo a temperature induced volume-phase transition, which contributes towards the composite membrane’s stimuli-responsive properties. This paper reviews research done on complimentary forms of temperature responsive “thermophilic” hydrogels, those exhibiting positive volume-phase transitions in aqueous solvent. The influences of intermolecular forces on the mechanism of phase-transition are discussed along with case examples of typical thermophilic hydrogels.

  19. Force-compensated hydrogel-based pH sensor

    Science.gov (United States)

    Deng, Kangfa; Gerlach, Gerald; Guenther, Margarita

    2015-04-01

    This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of t he compensation method to the hydrogel-based sensors.

  20. Physically crosslinked-sacran hydrogel films for wound dressing application.

    Science.gov (United States)

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2016-08-01

    The thin hydrogel films consisting of water-swollen polymer networks can potentially be applied for biomedical fields. Recently, natural polysaccharides have great attentions to be developed as wound healing and protection. In the present study, we newly prepared and characterized a physically crosslinked-hydrogel film composed of a novel megamolecular polysaccharide sacran for wound dressing application. We successfully fabricated a physically crosslinked-sacran hydrogel film by a solvent-casting method. The thickness of a sacran hydrogel film was lower than that of a sodium alginate (Na-alginate) film. Importantly, the swollen ratio of a sacran hydrogel film in water at 24h was 19-fold, compared to initial weight. Meanwhile, a Na-alginate hydrogel film was completely broken apart after rehydration. Moreover, a sacran hydrogel film did not show any cytotoxicity on NIH3T3 cells, a murine fibroblast cell line. The in vivo skin hydration study revealed that a sacran hydrogel film significantly increased the moisture content on hairless mice skin and considerably improved wound healing ability, compared to control (non-treated), probably due to not only the moisturing effect but also the anti-inflammatory effect of sacran. These results suggest that sacran has the potential properties as a basic biomaterial in a hydrogel film for wound dressing application.

  1. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  2. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    Science.gov (United States)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  3. PVA-Sago starch hydrogel and the preliminary clinical animal study of the hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Kamaruddin; Mohd Dahlan, Khairul Zaman [Malaysian Institute for Nuclear Technology Research, Bangi, Kajang (Malaysia); Halim, Ahmad Sukari; Md Nor, Mohd Tarmizi [Sciences University of Malaysia, School of Medical Sciences, Kerian, Kelantan (Malaysia); Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Sago starch granule dissolves in hot water to form physically crosslink semi-gel structure. Polyvinyl alcohol (PVA) in aqueous solution is chemically crosslink and form hydrogel after expose to gamma or electron beam irradiation. Combination of sago starch and PVA give tremendous improvement on strength and elasticity of the gel. Adding additive such as carboxymethyl cellulose enhance the swelling or absorption property of the gel. These properties of hydrogel are important for wound dressing application. The preliminary clinical animal study on the PVA Sago hydrogel dressing shows promising results of healing process in comparison with the conventional dressing using vaseline impregnated gauze acting as control dressing. This re-confirmed by biopsy tests on the wound tissue taking during the healing process. The tests show the increasing amount of fibroblast and endothelial cells on both wounds using hydrogel and jalonet during the healing process. Also, the rate of epitheliazation is almost completed for both wounds after 10 days of dressing and the lymphocytes cell increase tremendously for the first 14 days with hydrogel dressing. (author)

  4. The capture and stabilization of curcumin using hydrophobically modified polyacrylate aggregates and hydrogels.

    Science.gov (United States)

    Harada, Takaaki; Pham, Duc-Truc; Lincoln, Stephen F; Kee, Tak W

    2014-08-07

    Hydrophobically modified polyacrylates are shown to suppress the degradation of the medicinal pigment curcumin under physiological conditions. In aqueous solution, the 3% octadecyl randomly substituted polyacrylate, PAAC18, forms micelle-like aggregates at a concentration of 1 wt %. Under both conditions, PAAC18 shows a remarkable ability to suppress the degradation of curcumin at pH 7.4 and 37 °C such that its degradation half-life is increased by 1600-2000-fold. The suppression of degradation is attributed to hydrophobic interactions between curcumin and the octadecyl substituents of PAAC18 within the micelle-like aggregates and the hydrogel, as indicated by 2D NOESY (1)H NMR spectroscopy. UV-visible absorption titration results are consistent with the interaction of curcumin with five octadecyl substituents on average, which appears to substantially exclude water and greatly decrease the curcumin degradation rate. Dynamic light scattering and zeta potential measurements show the average hydrodynamic diameters of the PAAC18 aggregates to be 0.86-1.15 μm with a negative surface charge. In contrast to the octadecyl substitution, the 3% dodecyl randomly substituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation of curcumin, consistent with the dodecyl substituents being insufficiently long to capture curcumin in a adequately hydrophobic environment. These observations indicate the potential for PAAC18 to act as a model drug delivery system.

  5. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.

    Science.gov (United States)

    Fu, Yao; Kao, Weiyuan John

    2011-08-01

    The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel formation were investigated. Reaction kinetics between maleimide and thiol functional groups were found to be rapid. Molecular weight increase over time was characterized via gel permeation chromatography during step-growth polymerization. Swelling and degradation results showed incorporating gelatin enhanced swelling and accelerated degradation. Increasing gelatin content resulted in the decreased storage modulus (G'). The in vitro release kinetics of fluorescein isothiocyanate (FITC)-labeled dextran from the resulting matrices demonstrated the potential in the development of novel in situ gel-forming drug delivery systems. Moreover, the resulting networks were minimally adhesive to primary human monocytes, fibroblasts, and keratinocytes thus providing an ideal platform for further biofunctionalizations to direct specific biological response.

  6. Poly(N-vinylpyrrolidone) hydrogels. Pt. 2; Hydrogel composites as wound dressing for tropical environment

    Energy Technology Data Exchange (ETDEWEB)

    Hilmy, N.; Darwis, D.; Hardiningsih, L. (Center for the Application of Isotopes and Radiation, BATAN, Jakarta (Indonesia))

    The effects of irradiation on hydration and other properties of poly(vinylpyrrolidone) (PVP) hydrogel composites have been investigated. The aqueous solution of vinylpyrrolidone (VP) 10 wt % was mixed with several additives such as agar and polyethylene glycol (PEG). The solution was then irradiated with gamma rays from a Cobalt-60 source at room temperature. Several parameters such as elongation at break (EB), tensile strength (TS), degree of swelling (DS), water vapor transmission rate (WVTR), equilibrium water content (EWC), microbial growth and penetration tests, and water activity (Aw) were analysed at room temperature of 29 [+-] 2[sup o]C humidity of 80 [+-] 10%. Such hydrogel membranes exhibit the following properties: they are elastic, transparent, flexible, impermeable for bacteria. They absorb a high capacity of water, attach to healthy skin but not to the wound and they are easy to remove. These properties of the hydrogel membranes allow application as a wound dressing in a tropical environment. (author).

  7. Network structure studies on γ-irradiated collagen-PVP superabsorbent hydrogels

    Science.gov (United States)

    Demeter, Maria; Virgolici, Marian; Vancea, Catalin; Scarisoreanu, Anca; Kaya, Madalina Georgiana Albu; Meltzer, Viorica

    2017-02-01

    Collagen-polyvinylpyrrolidone (PVP) superabsorbent hydrogels were synthesized by γ- irradiation in the absence of oxygen, using high molecular weight PVP and acidic collagen Type I. Sol-gel analysis and swelling experiments were performed in order to determine the gel fraction, network parameters, the yield of cross-linking, respectively scission, as well as to establish the diffusion characteristics of water. Rheological experiments and characterization of the chemical structure before and after irradiation were conducted in order to evaluate the gel character and its stability upon irradiation. The relationship between these parameters and radiation dose was also established. Gel fraction reached up to 90%, and the p0/q0 ratio (degradation vs. cross-linking ratio) shows a negligible degradation process. The collagen-PVP hydrogels present swelling in the range 1000-2000%, the diffusion exponent (n) was found to be between 0.59 and 0.68. The network parameters as the molecular weights between two successive cross - links (Mc), the cross-linking density (ϑe) and the mesh size (ξ) are ranged between 3.39-8.08×104g·mol-1, 1.24-2.95×10-5mol·cm-3, respectively 75-134 nm.

  8. Piezoresistive Chemical Sensors Based on Functionalized Hydrogels

    Directory of Open Access Journals (Sweden)

    Margarita Guenther

    2014-06-01

    Full Text Available Thin films of analyte-specific hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. The interference by fructose, human serum albumin, pH, and ionic concentration on glucose sensing was studied. With the help of a database containing the calibration curves of the hydrogel-based sensors at different values of pH and ionic strength, the corrected values of pH and glucose concentration were determined using a novel calibration algorithm.

  9. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian;

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE......)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self...

  10. Using hydrogels in microscopy: A tutorial.

    Science.gov (United States)

    Flood, Peter; Page, Henry; Reynaud, Emmanuel G

    2016-05-01

    Sample preparation for microscopy is a crucial step to ensure the best experimental outcome. It often requires the use of specific mounting media that have to be tailored to not just the sample but the chosen microscopy technique. The media must not damage the sample or impair the optical path, and may also have to support the correct physiological function/development of the sample. For decades, researchers have used embedding media such as hydrogels to maintain samples in place. Their ease of use and transparency has promoted them as mainstream mounting media. However, they are not as straightforward to implement as assumed. They can contain contaminants, generate forces on the sample, have complex diffusion and structural properties that are influenced by multiple factors and are generally not designed for microscopy in mind. This short review will discuss the advantages and disadvantages of using hydrogels for microscopy sample preparation and highlight some of the less obvious problems associated with the area.

  11. Preparation of Polyphosphazene Hydrogels for Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Yue-Cheng Qian

    2014-07-01

    Full Text Available We report on the synthesis and application of a new hydrogel based on a methacrylate substituted polyphosphazene. Through ring-opening polymerization and nucleophilic substitution, poly[bis(methacrylatephosphazene] (PBMAP was successfully synthesized from hexachlorocyclotriphosphazene. By adding PBMAP to methacrylic acid solution and then treating with UV light, we could obtain a cross-linked polyphosphazene network, which showed an ultra-high absorbency for distilled water. Lipase from Candida rugosa was used as the model lipase for entrapment immobilization in the hydrogel. The influence of methacrylic acid concentration on immobilization efficiency was studied. Results showed that enzyme loading reached a maximum of 24.02 mg/g with an activity retention of 67.25% when the methacrylic acid concentration was 20% (w/w.

  12. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  13. Tunable Biodegradable Nanocomposite Hydrogel for Improved Cisplatin Efficacy on HCT-116 Colorectal Cancer Cells and Decreased Toxicity in Rats.

    Science.gov (United States)

    Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S

    2016-02-08

    This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution.

  14. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses.

    Science.gov (United States)

    Read, Michael L; Morgan, Philip B; Maldonado-Codina, Carole

    2009-11-01

    This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2 degrees , whereas intralens COR values (95% confidence intervals) ranged from 4.0 degrees (3.3 degrees , 4.7 degrees ) (lotrafilcon A, captive bubble) to 10.2 degrees (8.4 degrees , 12.1 degrees ) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5 degrees (3.7 degrees , 5.2 degrees ) (lotrafilcon A, captive bubble) to 16.5 degrees (13.6 degrees , 19.4 degrees ) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses.

  15. Comparison of Development of Dry Eye in Conventional Hydrogel and Silicone Hydrogel Contact Lens Users

    Directory of Open Access Journals (Sweden)

    Rukiye Aydın

    2013-01-01

    Full Text Available Pur po se: To compare the level and severity of dry eye between conventional hydrogel and silicone hydrogel contact lens users by using dry eye questionnaires and clinical tests. Ma te ri al and Met hod: Forty-two contact lens users who attended the Cornea and Contact Lens Unit, Department of Ophthalmology at Dokuz Eylül University, were included in this study. The first group consisted of subjects who have used conventional hydrogel (CHL contact lens for minimum one year and maximum five years. The second group consisted of subjects who have used silicone hydrogel (SHL contact lens for minimum one year and maximum 5 years. Twenty healthy individuals with no history of contact lens use were included in the control group. OSDI (Ocular Surface Disease Index questionnaire was performed to all patients. The tear function was determined by Schirmer’s test and tear break-up time in all three groups. Re sults: There was no statistically significant OSDI score differences between CHL and SHL users. Nevertheless, it was noted that OSDI score in both groups was statistically higher than in the control group. There was no statistically significant difference in tear break-up time between CHL and SHL users. On the other hand, tear break-up time was significantly lower in both groups when compared to the control group. There was no significant difference among the groups for Schirmer scoring. Dis cus si on: The use of conventional hydrogel and silicone hydrogel lenses causes a decline in tear break-up time leading to dry eye symptoms. However, no differences were determined between CHL and SHL users with regard to the severity of dry eye symptoms. (Turk J Ophthalmol 2013; 43: 7-14

  16. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Science.gov (United States)

    Gustafson, Carl T; Boakye-Agyeman, Felix; Brinkman, Cassandra L; Reid, Joel M; Patel, Robin; Bajzer, Zeljko; Dadsetan, Mahrokh; Yaszemski, Michael J

    2016-01-01

    Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate)/sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  17. Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels

    OpenAIRE

    Wickremasinghe, Navindee C.; Kumar, Vivek A.; Shi, Siyu; Hartgerink, Jeffrey D.

    2015-01-01

    Multidomain peptide (MDP) nanofibers create scaffolds that can present bioactive cues to promote biological responses. Orthogonal self-assembly of MDPs and growth-factor-loaded liposomes generate supramolecular composite hydrogels. These composites can act as delivery vehicles with time-controlled release. Here we examine the controlled release of placental growth factor-1 (PlGF-1) for its ability to induce angiogenic responses. PlGF-1 was loaded either in MDP matrices or within liposomes bou...

  18. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Directory of Open Access Journals (Sweden)

    Carl T Gustafson

    Full Text Available Surgical site infection (SSI remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycolfumarate/sodium methacrylate (OPF/SMA charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  19. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    Science.gov (United States)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  20. Protein surface patterning using nanoscale PEG hydrogels.

    Science.gov (United States)

    Hong, Ye; Krsko, Peter; Libera, Matthew

    2004-12-01

    We have used focused electron-beam cross-linking to create nanosized hydrogels and thus present a new method with which to bring the attractive biocompatibility associated with macroscopic hydrogels into the submicron length-scale regime. Using amine-terminated poly(ethylene glycol) thin films on silicon substrates, we generate nanohydrogels with lateral dimensions of order 200 nm which can swell by a factor of at least five, depending on the radiative dose. With the focused electron beam, high-density arrays of such nanohydrogels can be flexibly patterned onto silicon surfaces. Significantly, the amine groups remain functional after e-beam exposure, and we show that they can be used to covalently bind proteins and other molecules. We use bovine serum albumin to amplify the number of amine groups, and we further demonstrate that different proteins can be covalently bound to different hydrogel pads on the same substrate to create multifunctional surfaces useful in emerging bio/proteomic and sensor technologies.

  1. Connections matter: channeled hydrogels to improve vascularization

    Directory of Open Access Journals (Sweden)

    Severin eMuehleder

    2014-11-01

    Full Text Available The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser- and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  2. Chitosan Hydrogel Structure Modulated by Metal Ions

    Science.gov (United States)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    As one of the most important polysaccharide, chitosan (CS) has generated a great deal of interest for its desirable properties and wide applications. In the utilization of CS materials, hydrogel is a major and vital branch. CS has the ability to coordinate with many metal ions by a chelation mechanism. While most researchers focused on the applications of complexes between CS and metal ions, the complexes can also influence gelation process and structure of CS hydrogel. In the present work, such influence was studied with different metal ions, revealing two different kinds of mechanisms. Strong affinity between CS and metal ions leads to structural transition from orientation to multi-layers, while weak affinity leads to composite gel with in-situ formed inorganic particles. The study gave a better understanding of the gelation mechanism and provided strategies for the modulation of hydrogel morphology, which benefited the design of new CS-based materials with hierarchical structure and facilitated the utilization of polysaccharide resources.

  3. Engineering hydrogels as extracellular matrix mimics.

    Science.gov (United States)

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-04-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.

  4. Novel thermosensitive chitosan hydrogels: in vivo evaluation.

    Science.gov (United States)

    Patois, Emilie; Osorio-da Cruz, Suzanne; Tille, Jean-Christophe; Walpoth, Beat; Gurny, Robert; Jordan, Olivier

    2009-11-01

    Chitosan is an attractive biopolymer for the preparation of hydrogels. Its unique combination of biocompatibility, biodegradability, bioadhesivity, and tissue-promoting abilities allows pharmaceutical applications. We investigated novel thermosensitive hydrogels based on chitosan homogeneously reacetylated to a deacetylation degree of about 50%, combined with selected polyols or polyoses such as trehalose, a nontoxic polysaccharide. The latter, a gel-inducing and lyoprotective agent enabled the formulation to be lyophilized and rehydrated without affecting the thermosensitive behavior. This made possible long-term storage and promoted its use in a clinical setup. The thermally induced sol-gel transition allowed injectability and in situ setting. Rheological characterization revealed that storage moduli could be increased by one decade by increasing the chitosan concentration from 1.4 to 2.2% (w/w). Evaluation in vivo provided evidence of in situ implant formation in subcutaneous tissue of Sprague-Dawley rats and permanence for up to 3 months. Histopathological analysis demonstrated a mild, chronic, inflammatory reaction that disappeared with the complete absorption of the gel implant over a few months period. Such in situ forming hydrogels could be advantageous for specific applications in drug delivery and tissue engineering.

  5. Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels.

    Science.gov (United States)

    Medina, Scott H; Li, Sandra; Howard, O M Zack; Dunlap, Micah; Trivett, Anna; Schneider, Joel P; Oppenheim, Joost J

    2015-01-01

    DNA that encodes tumor-specific antigens represents potential immunostimulatory agents. However, rapid enzymatic degradation and fragmentation of DNA during administration can result in limited vector expression and, consequently, poor efficacy. These challenges have necessitated the use of novel strategies for DNA delivery. Herein, we study the ability of cationic self-assembling peptide hydrogels to encapsulate plasmid DNA, and enhance its immunostimulatory potential in vivo. The effect of network charge on the gel's ability to retain the DNA was assessed employing three gel-forming peptides that vary systematically in formal charge. The peptide HLT2, having a formal charge of +5 at neutral pH, was optimal in encapsulating microgram quantities of DNA with little effect on its rheological properties, allowing its effective syringe delivery in vivo. The plasmid, DNA(TA), encapsulated within these gels encodes for a melanoma-specific gp100 antigen fused to the alarmin protein adjuvant HMGN1. Implantation of DNA(TA)-loaded HLT2 gels into mice resulted in an acute inflammatory response with the presence of polymorphonuclear cells, which was followed by infiltrating macrophages. These cellular infiltrates aid in the processing of encapsulated DNA, promoting increased lymphoproliferation and producing an enhanced immune response mediated by CD4+/IFNγ+ expressing Th1 cells, and complemented by the formation of gp100-specific antibodies.

  6. Degradation of chitosan-based materials after different sterilization treatments

    Science.gov (United States)

    San Juan, A.; Montembault, A.; Gillet, D.; Say, J. P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L.

    2012-02-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  7. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    Science.gov (United States)

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ((•)OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10(9) and 1.8 × 10(7) M(-1) s(-1), respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N2O) and nitromethane (CH3NO2) were also examined. Decay of [Formula: see text] due to scavenging by N2O and CH3NO2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N2O than for CH3NO2, revealing lower solubility of N2O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH3NO2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N2O was slightly higher than that in water containing N2O, and the same tendency was found for CH3NO2.

  8. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrogel wound dressing and burn dressing. 878... Hydrogel wound dressing and burn dressing. (a) Identification. A hydrogel wound dressing is a sterile or... percent) and capable of absorbing exudate. This classification does not include a hydrogel wound...

  9. Hydrogel microspheres from biodegradable polymers as drug delivery systems

    Science.gov (United States)

    A series of hydrogel microspheres were prepared from pectin, a hydrophilic biopolymer, and zein, a hydrophobic biopolymer, at varying weight ratios. The hydrogel formulation was conducted in the presence of calcium or other divalent metal ions at room temperature under mild conditions. Studies of ...

  10. A Photochromic Copolymer Hydrogel Contact Lens: From Synthesis to Application

    Directory of Open Access Journals (Sweden)

    Xiaoli Yang

    2016-01-01

    Full Text Available A photochromic poly(2-hydroxyl-ethyl methacrylate-N-vinylpyrrolidone-spironaphthoxazine hydrogel (p(HEMA-NVP-SPO has been designed and synthesized by free radical polymerization in this work. The chemical and structural information of hydrogels was investigated by IR spectra, equilibrium water content (EWC, and SEM. The IR spectra confirmed successful synthesis of copolymer. The domain of NVP contributed to not only EWC but also inner structure of hydrogel, while SPO had little influence on these properties of hydrogel. The photochromic behaviors of hydrogel including photochromic properties and thermal fading kinetics were systematically studied and compared with hydrogel made by immersing method. Results showed that when SPO was incorporated in hydrogel by polymerization, maximum absorbance wavelength got shorter, and the relaxation half-life became longer. In addition, salicylic acid as a drug model could be loaded into hydrogel by immersing method, and its sustained drug release in a given period was dependent on the characteristics of solution and loading time.

  11. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Functionalized graphene hydrogel-based high-performance supercapacitors.

    Science.gov (United States)

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility.

  13. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.

    Science.gov (United States)

    Desai, Rajiv M; Koshy, Sandeep T; Hilderbrand, Scott A; Mooney, David J; Joshi, Neel S

    2015-05-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.

  14. Preparation and assessment of ketamine hydrogels for prolonged ...

    African Journals Online (AJOL)

    produced 62.82 % analgesia), the effect of the test formulations seem good for probable therapeutic use. ... The other chemicals ... Table 1: Composition of ketamine hydrogel ... The hydrogels were assessed for colour, ... hair and other fatty and connective tissues) with .... was administered to humans at a dose range of.

  15. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    Science.gov (United States)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  16. Reinforcement of hydrogels using three-dimensionally printed microfibres

    NARCIS (Netherlands)

    Visser, Jetze; Melchels, Ferry P. W.; Jeon, June E.; van Bussel, Erik M.; Kimpton, Laura S.; Byrne, Helen M.; Dhert, Wouter J. A.; Dalton, Paul D.; Hutmacher, Dietmar W.; Malda, J

    2015-01-01

    Despite intensive research, hydrogels currently available for tissue repair in the musculoskeletal system are unable to meet the mechanical, as well as the biological, requirements for successful outcomes. Here we reinforce soft hydrogels with highly organized, high-porosity microfibre networks that

  17. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    Science.gov (United States)

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  18. Lab-on-a-chip devices with patterned hydrogels

    NARCIS (Netherlands)

    Gümüscü, B.

    2016-01-01

    Hydrogels are considered to be in the class of smart materials that find application in diagnostic, therapeutic,and fundamental science tools for miniaturized total analysis systems. In this thesis, the focus is on three major applications of patterned hydrogels, which are explored as an alternative

  19. Hydrogel-based sensor for CO2 measurements

    NARCIS (Netherlands)

    Herber, S.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2004-01-01

    A hydrogel-based sensor is presented for CO2 measurements. The sensor consists of a pressure sensor and porous silicon cover. A pH-sensitive hydrogel is confined between the two parts. Furthermore the porous cover contains a bicarbonate solution and a gaspermeable membrane. CO2 reacts with the solut

  20. Synthesis and Swelling Properties of Thermosensitive Hydrogels based on Terpolymerization

    Institute of Scientific and Technical Information of China (English)

    Cai Hua NI; Xian Yu ZENG; He HUANG

    2005-01-01

    Novel thermosensitive hydrogels based on polymerization of N-isopropyl acrylamide,Sodium acrylate, and diacetone acrylamide were synthesized. The swelling ratio and dynamic swelling were investigated. The results indicated that the hydrogels exhibited high water uptake and themosensitivity. The swelling properties and volume phase transition temperature could be adjusted by contents of the comonomers in the gels.

  1. Keratin sponge/hydrogel II, active agent delivery

    Science.gov (United States)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  2. Injectable hyaluronic acid hydrogel for 19F magnetic resonance imaging

    NARCIS (Netherlands)

    Yang, X.; Sun, Y.; Kootala, S.; Hilborn, J.; Heerschap, A.; Ossipov, D.

    2014-01-01

    We report on a 19F labeled injectable hyaluronic acid (HA) hydrogel that can be monitored by both 1H and 19F MR imaging. The HA based hydrogel formed via carbazone reaction can be obtained within a minute by simple mixing of HA-carbazate and HA-aldehyde derivatized polymers. 19F contrast agent was l

  3. Application of hydrogels in heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Wu, Yan; West, Jennifer L; Grande-Allen, K Jane

    2015-01-01

    With an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.

  4. Self-assembly of polypyrrole/chitosan composite hydrogels.

    Science.gov (United States)

    Huang, Hao; Wu, Jiao; Lin, Xi; Li, Liang; Shang, Songmin; Yuen, Marcus Chun-wah; Yan, Guoping

    2013-06-05

    Hydrogels based on the polypyrrole (PPy)/chitosan (CS) composite are self-assembled and characterized for their electrical and swelling properties. The static polymerization of pyrrole monomer in aqueous solution containing CS is accompanied with the formation of PPy/CS composite hydrogel. The feed order in the reaction process plays a key role in the formation of the hydrogels. The participation of one-dimensional PPy blocks in the formation of the hydrogel network avoids a possible migration of PPy from the hydrogel. The effect of pH and ionic strength on the physical properties of PPy/CS composite hydrogels are investigated in detail. The results indicate that the pH-sensitive PPy/CS composite hydrogels show good water absorbencies in distilled water and saline solution. This method may open a new opportunity for the fabrication of composite hydrogels associating the biomacromolecules and conducting polymers, and the improvement of the comprehensive performance of the resulting products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    NARCIS (Netherlands)

    De Lathouder, K.M.; Smeltink, M.W.; Straathof, A.J.J.; Paasman, M.A.; Van de Sandt, E.J.A.X.; Kapteijn, F.; Moulijn, J.A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilize

  6. A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers

    Science.gov (United States)

    Wang, Qiming; Gao, Zheming

    2016-09-01

    Nanocomposite hydrogels with only nanoparticle crosslinkers exhibit extraordinarily higher stretchability and toughness than the conventional organically crosslinked hydrogels, thus showing great potential in the applications of artificial muscles and cartilages. Despite their potential, the microscopic mechanics details underlying their mechanical performance have remained largely elusive. Here, we develop a constitutive model of the nanoparticle hydrogels to elucidate the microscopic mechanics behaviors, including the microarchitecture and evolution of the nanoparticle crosslinked polymer chains during the mechanical deformation. The constitutive model enables us to understand the Mullins effect of the nanocomposite hydrogels, and the effects of nanoparticle concentrations and sizes on their cyclic stress-strain behaviors. The theory is quantitatively validated by the tensile tests on a nanocomposite hydrogel with nanosilica crosslinkers. The theory can also be extended to explain the mechanical behaviors of existing hydrogels with nanoclay crosslinkers, and the necking instability of the composite hydrogels with both nanoparticle crosslinkers and organic crosslinkers. We expect that this constitutive model can be further exploited to reveal mechanics behaviors of novel particle-polymer chain interactions, and to design unprecedented hydrogels with both high stretchability and toughness.

  7. Macromolecular diffusion in self-assembling biodegradable thermosensitive hydrogels

    NARCIS (Netherlands)

    Vermonden, T.; Jena, S.S.; Barriet, D.; Censi, R.; Gucht, van der J.; Hennink, W.E.; Siegel, R.A.

    2010-01-01

    Hydrogel formation triggered by a change in temperature is an attractive mechanism for in situ gelling biomaterials for pharmaceutical applications such as the delivery of therapeutic proteins. In this study, hydrogels were prepared from ABA triblock polymers having thermosensitive poly(N-(2-hydroxy

  8. HIGH-STRENGTH POLY(METH)ACRYLAMIDE COPOLYMER HYDROGELS

    NARCIS (Netherlands)

    WIERSMA, JA; SOS, M; PENNINGS, AJ

    1994-01-01

    The hydrogels described here are copolymers of acrylamide and methacrylamide highly cross-linked with piperazine diacrylamide or 4,7,10-trioxa-1,13-tridecanediamine diacrylamide by radical polymerisation in highly concentrated aqueous and aqueous gelatin solutions. The hydrogels were characterised b

  9. Syntheses of PVA/starch blend hydrogels by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Maolin [Peking Univ., College of Chemistry, Inst. of Applied Chemistry, Beijing (China); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hashim, Kamaruddin [Malaysian Institute for Nuclear Technology Research, Bangi (Malaysia)

    2002-03-01

    A series of excellent PVA/starch blend hydrogels were prepared by gamma and electric beam (EB) radiation at room temperature. The influence of dose, the content of starch in blend system on the properties of the prepared hydrogels were investigated. The gel strength was improved obviously after adding starch into PVA hydrogels, but the swelling properties decreased slightly due to low swelling capacity of starch. The effect of component of starch on the properties of PVA/starch blend hydrogels as well as the reaction mechanism between PVA and starch under irradiation were investigated further. Comparing with PVA/starch blend hydrogels, PVA/amylose blend hydrogels had higher gel fraction, mechanical strength, and lower swelling capacity. PVA/amylopectin blend hydrogels were over the left. It indicated that the amylose of starch was a key component that influenced the properties of PVA/starch blend hydrogels. The analyses of FTIR and DSC spectra of the prepared gel samples after extracting sol indicated that there was a grafting reaction between PVA and starch molecules except for the crosslinking of PVA molecules under irradiation, and the amylose of starch was a key reactive component. (author)

  10. Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2011-08-01

    Full Text Available This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then demonstrate how the model is implemented to study the sensing and actuating behavior of hydrogels for different microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based flow controller is slow. Therefore, two strategies to improve the response rate of the hydrogels are proposed and demonstrated. Finally, we highlight that the model can be extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and glucose-sensitive hydrogels.

  11. Fabrication of Negative Charged Poly (Ethylene glycol)-diacrylate Hydrogel as a Bone Tissue Engineering scaffold

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-qi; LIU Jie; TAN Fei; XIE Wei

    2016-01-01

    Objective To improve the cell attachment of PEGDA hydrogel, the SMAS small molecule was used to modify the PEGDA hydrogel. The charged hydrogel would show improved cell attachment and enhanced protein adsorption caused by enhancement of electrostatic adsorption.Method In this study, a series of charged hydrogels were produced by adding different concentrations of charged small molecule monomer into the PEGDA solution. Then, we investigate the physicochemical and biological characteristics of charged hydrogels, including FTIR, swelling ratio, contact angle, cell attachment.Result The results indicate that the charged monomer had been successfully incorporated into PEGDA hydrogel. Meanwhile, the protein adsorption of the hydrogel increased with increasing concentration of charge modification. Moreover, compared to PEGDA hydrogel, the cell attachment significantly improved on the charged hydrogel.Conclusion The charged hydrogel would be a promising scaffold candidate for bone tissue engineering.

  12. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  13. Removal of toxic metal ions with magnetic hydrogels.

    Science.gov (United States)

    Ozay, Ozgur; Ekici, Sema; Baran, Yakup; Aktas, Nahit; Sahiner, Nurettin

    2009-09-01

    Hydrogels, based on 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) were synthesized via photopolymerization technique and used for the preparation of magnetic responsive composite hydrogels. These composite hydrogels with magnetic properties were further utilized for the removal of toxic metal ions such as Cd(II), Co(II), Fe(II), Pb(II), Ni(II), Cu(II) and Cr(III) from aqueous environments. It was revealed that hydrogel networks with magnetic properties can effectively be utilized in the removal of pollutants. The results verified that magnetic iron particle containing p(AMPS) hydrogel networks provide advantageous over conventional techniques. Langmuir and Freundlich adsorption isotherms were applied for toxic metal removal and both isotherms were fit reasonably well for the metal ion absorptions.

  14. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Science.gov (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  15. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-02-01

    Full Text Available This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.. Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  16. States of Water in Hydrogels Containing with Glyceryl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; LIU Li; HUANG Zhi-rong; LIN Dong-qing

    2014-01-01

    Hydrogel materials were prepared by thermopolymerization with different content of glyceryl methacrylate and hydroxyethyl methacrylate. The different states of water in swelling hydrogels were described and studied by differential scanning calorimetry (DSC). It was found that the hydrophilicity of GMA was stronger than HEMA, the water content and bound water of GMA hydrogel are higher than HEMA hydrogel. With the increase of GMA content, the content of free water in hydrogel increased. When GMA content was lower than 50%, the increase of GMA content also increased the content of bound water; but when GMA content was higher than 50%, the increase of GMA content decreased the content of bound water, which was caused by the chain hydrogen bond formed on the GMA chain with hydroxyl group each other.

  17. Synthesis and characterization of hydrogel bonded with rare earth

    Institute of Scientific and Technical Information of China (English)

    YAN Changhao; JIAO Lianlian; GUO Chunfang; ZHANG Ming; QIU Guanming

    2008-01-01

    Chitosan-poly(acrylic acid) hydrogel bonded with Eu3+ was prepared by radical solution polymerization. Biodegradable chitosan,N,N'-methylen-diacrylamide, and potassium persulphate were used as the basic material, cross-linking agent, and initiator, respectively. The structure and thermal property of hydrogel were characterized by infrared spectrometry, X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The swollen property and fluorescent performance were also characterized. The results showed that the rare earth presented unique distribution in the hydrogel due to the formation of chemical bonds after polymerization. The glass transition tem-perature of the hydrogel decreased remarkably, which might broaden the range of its elastic application considerably. Moreover, the charac-teristic fluorescent emission of Eu3+ was observed in the hydrogel, which was indicative of the excellent luminescent performance.

  18. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    Science.gov (United States)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-02-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the "bound" water in hydrogels is 50-70% and independent of gel fraction content. In addition to "bound" and "free" states, water in hydrogels is also present in the intermediate state.

  19. Thermoresponsive hydrogels in biomedical applications: A seven-year update.

    Science.gov (United States)

    Klouda, Leda

    2015-11-01

    Thermally responsive hydrogels modulate their gelation behavior upon temperature change. Aqueous solutions solidify into hydrogels when a critical temperature is reached. In biomedical applications, the change from ambient temperature to physiological temperature can be employed. Their potential as in situ forming biomaterials has rendered these hydrogels very attractive. Advances in drug delivery, tissue engineering and cell sheet engineering have been made in recent years with the use of thermoresponsive hydrogels. The scope of this article is to review the literature on thermosensitive hydrogels published over the past seven years. The article concentrates on natural polymers as well as synthetic polymers, including systems based on N-isopropylacrylamide (NIPAAm), poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO), poly(ethylene glycol) (PEG)-biodegradable polyester copolymers, poly(organophosphazenes) and 2-(dimethylamino) ethyl methacrylate (DMAEMA).

  20. Classification, processing and application of hydrogels: A review.

    Science.gov (United States)

    Ullah, Faheem; Othman, Muhammad Bisyrul Hafi; Javed, Fatima; Ahmad, Zulkifli; Md Akil, Hazizan

    2015-12-01

    This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.

  1. Development of sago starch hydrogel for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin Hashim; Khairul Zaman HJ. Mohd Dahlan; Kamarudin Bahari [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  2. Mechanics and chemical thermodynamics of a temperature-sensitive hydrogel

    Science.gov (United States)

    Cai, Shengqiang; Suo, Zhigang

    2011-03-01

    A temperature-sensitive hydrogel is a network of polymers containing monomers, whose interaction with water molecules can be tuned dramatically by changing temperature. In most cases, the swelling ratio of a temperature-sensitive hydrogel changes discontinuously upon heating above or cooling below a critical temperature, which is called volume phase transition. Interestingly, the coexistence of swollen phases and shrunk phases are frequently observed in the experiments for temperature-sensitive hydrogels and additionally, people have also discovered that a uniaxial force can induce phase transition in a temperature-sensitive gel bar .In order to understand these phenomena, we studied the mechanics and chemical thermodynamics of a temperature-sensitive hydrogel bar, by using the free-energy landscape of a bar made from PNIPAM gel. Following Gibbs, we plot the phase diagram of a temperature-sensitive hydrogel bar under uniaxial force. This work is supported by the NSF (CMMI-0800161) and by the MRSEC at Harvard University.

  3. Preparation and characterization of bioglass/polyvinyl alcohol composite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Zheng Yudong [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ren Li [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wu Gang [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang Xiaoshan [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-06-01

    In order to form firm active fixation with the adjacent bone, a new kind of bioactive composite hydrogel was prepared with polyvinyl alcohol (PVA) and bioglass (BG) through ultrasonic dispersion, heat-high-pressure and freeze/thawed technique. A digital speckle correlation method (DSCM) was utilized to characterize the mechanical properties of the series of BG/PVA composites. Results showed that at different load pressures, the composite hydrogel displayed different displacement and deformation in the V field. Results also showed that an increase of PVA percentage (15-30 wt%) or of bioglass percentage (2-10 wt%) in composite hydrogel could lead to an increase in the elastic compression modulus. Scanning electron microscope results indicated that bioglass was uniformly dispersed in the BG/PVA composite hydrogel. The BG/PVA composite hydrogel shows a promising prospect as a new bionic cartilage implantation material.

  4. Synthesis of Gelatin-γ-Polyglutamic Acid-Based Hydrogel for the In Vitro Controlled Release of Epigallocatechin Gallate (EGCG from Camellia sinensis

    Directory of Open Access Journals (Sweden)

    John Philip Domondon Garcia

    2013-12-01

    Full Text Available The antioxidant property and other health benefits of the most abundant catechin, epigallocatechin gallate (EGCG, are limited because of poor stability and permeability across intestine. Protecting the EGCG from the harsh gastrointestinal tract (GIT environment can help to increase its bioavailability following oral administration. In this study, EGCG was loaded to hydrogel prepared from ionic interaction between an optimized concentration of gelatin and γ-polyglutamic acid (γ-PGA, with ethylcarbodiimide (EDC as the crosslinker. Physicochemical characterization of hydrogel was done using Fourier transform-infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. The dependence of the swelling degree (SD of the hydrogel to the amount of gelatin, γ-PGA, EDC, swelling time and pH was determined. A high SD of the crosslinked hydrogel was noted at pH 4.5, 6.8 and 9.0 compared to pH 7.4, which describes pH-responsiveness. Approximately 67% of the EGCG from the prepared solution was loaded to the hydrogel after 12 h post-loading, in which loading efficiency was related to the amount of EDC. The in vitro release profile of EGCG at pH 1.2, 6.8 and 7.4, simulating GIT conditions, resulted in different sustained release curves. Wherein, the released EGCG was not degraded instantly compared to free-EGCG at controlled temperature of 37 °C at different pH monitored against time. Therefore, this study proves the potential of pH-responsive gelatin-γ-PGA-based hydrogel as a biopolymer vehicle to deliver EGCG.

  5. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture.

    Science.gov (United States)

    Lam, Jonathan; Carmichael, S Thomas; Lowry, William E; Segura, Tatiana

    2015-03-11

    Bioactive signals can be incorporated in hydrogels to direct encapsulated cell behavior. Design of experiments methodology methodically varies the signals systematically to determine the individual and combinatorial effects of each factor on cell activity. Using this approach enables the optimization of three ligands concentrations (RGD, YIGSR, IKVAV) for the survival and differentiation of neural progenitor cells.

  6. Development and initial characterization of a chemically stabilized elastin-glycosaminoglycan-collagen composite shape-memory hydrogel for nucleus pulposus regeneration.

    Science.gov (United States)

    Mercuri, Jeremy; Addington, Caroline; Pascal, Richard; Gill, Sanjitpal; Simionescu, Dan

    2014-12-01

    Nucleus pulposus (NP) is a resilient and hydrophilic tissue which plays a significant role in the biomechanical function of the intervertebral disc (IVD). Destruction of the NP extracellular matrix (ECM) is observed during the early stages of IVD degeneration. Herein, we describe the development and initial characterization of a novel biomaterial which attempts to recreate the resilient and hydrophilic nature of the NP via the construction of a chemically stabilized elastin-glycosaminoglycan-collagen (EGC) composite hydrogel. Results demonstrated that a resilient, hydrophilic hydrogel which displays a unique "shape-memory" sponge characteristic could be formed from a blend of soluble elastin aggregates, chondroitin-6-sulfate, hyaluronic acid and collagen following freeze-drying, stabilization with a carbodiimide and penta-galloyl glucose-based fixative, and subsequent partial degradation with glycosaminoglycan degrading enzymes. The resultant material exhibited the ability to restore its original dimensions and water content following multi-cycle mechanical compression and illustrated resistance to accelerated enzymatic degradation. Preliminary in vitro studies utilizing human adipose derived stem cells (hADSCs) demonstrated that the material was cytocompatible and supported differentiation towards an NP cell-like phenotype. In vivo biocompatibility studies illustrated host cell infiltration and evidence of active remodeling following 4 weeks of implantation. Feasibility studies demonstrated that the EGC hydrogel could be delivered via minimally invasive methods.

  7. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy.

    Science.gov (United States)

    Chen, Pengfei; Xia, Chen; Mei, Sheng; Wang, Jiying; Shan, Zhi; Lin, Xianfeng; Fan, Shunwu

    2016-03-01

    Reduced expression of autophagy regulators has been observed in pathological cartilage in humans and mice. The present study aimed to investigate the synergistic therapeutic effect of promotion of chondrocyte autophagy via exposure to sinomenium (SIN) encapsulated by chitosan microspheres (CM-SIN) and photo-crosslinked gelatin methacrylate (GelMA) hydrogel, with the goal of evaluating CM-SIN as a treatment for patients with osteoarthritis. First, we fabricated and characterized GelMA hydrogels and chitosan microspheres. Next, we measured the effect of SIN on cartilage matrix degradation induced by IL1-β in chondrocytes and an ex vivo model. SIN ameliorated the pathological changes induced by IL1-β at least partially through activation of autophagy. Moreover, we surgically induced osteoarthritis in mice, which were injected intra-articularly with CM-SIN and GelMA. Cartilage matrix degradation and chondrocyte autophagy were evaluated 4 and 8 weeks after surgery. Treatment with the combination of CM-SIN and GelMA retarded the progression of surgically induced OA. SIN ameliorated cartilage matrix degradation at least partially by inducing autophagy in vivo. Our results demonstrate that injection of the combination of GelMA hydrogel and CM-SIN could be a promising strategy for treating patients with osteoarthritis.

  8. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  9. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs.

    Science.gov (United States)

    Vemula, Praveen Kumar; Li, Jun; John, George

    2006-07-12

    We report a novel approach for the controlled delivery of an antiinflammatory, chemopreventive drug by an enzyme-triggered drug release mechanism via the degradation of encapsulated hydrogels. The hydro- and organogelators are synthesized in high yields from renewable resources by using regioselective enzyme catalysis, and a known chemopreventive and antiinflammatory drug, i.e., curcumin, is used for the model study. The release of the drug occurred at physiological temperature, and control of the drug release rate is achieved by manipulating the enzyme concentration and/or temperature. The byproducts formed after the gel degradation were characterized and clearly demonstrated the site specificity of degradation of the gelator by enzyme catalysis. The present approach could have applications in developing cost-effective controlled drug delivery vehicles from renewable resources, with a potential impact on pharmaceutical research and molecular design and delivery strategies.

  10. Soft nanotube hydrogels functioning as artificial chaperones.

    Science.gov (United States)

    Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2012-06-26

    Self-assembly of rationally designed asymmetric amphiphilic monomers in water produced nanotube hydrogels in the presence of chemically denatured proteins (green fluorescent protein, carbonic anhydrase, and citrate synthase) at room temperature, which were able to encapsulate the proteins in the one-dimensional channel of the nanotube consisting of a monolayer membrane. Decreasing the concentrations of the denaturants induced refolding of part of the encapsulated proteins in the nanotube channel. Changing the pH dramatically reduced electrostatic attraction between the inner surface mainly covered with amino groups of the nanotube channel and the encapsulated proteins. As a result, the refolded proteins were smoothly released into the bulk solution without specific additive agents. This recovery procedure also transformed the encapsulated proteins from an intermediately refolding state to a completely refolded state. Thus, the nanotube hydrogels assisted the refolding of the denatured proteins and acted as artificial chaperones. Introduction of hydrophobic sites such as a benzyloxycarbony group and a tert-butoxycarbonyl group onto the inner surface of the nanotube channels remarkably enhanced the encapsulation and refolding efficiencies based on the hydrophobic interactions between the groups and the surface-exposed hydrophobic amino acid residues of the intermediates in the refolding process. Refolding was strongly dependent on the inner diameters of the nanotube channels. Supramolecular nanotechnology allowed us to not only precisely control the diameters of the nanotube channels but also functionalize their surfaces, enabling us to fine-tune the biocompatibility. Hence, these nanotube hydrogel systems should be widely applicable to various target proteins of different molecular weights, charges, and conformations.

  11. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit [ISOMED, Radiation Technology Development Section, Radio-Chemistry and Isotope Group, B.A.R.C, Mumbai 400 085 (India)]. E-mail: lalitv@barc.gov.in

    2007-02-15

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm{sup 2} to 411 g/cm{sup 2}, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  12. Peptide hydrogels – versatile matrices for 3D cell culture in cancer medicine

    Directory of Open Access Journals (Sweden)

    Peter eWorthington

    2015-04-01

    Full Text Available Traditional two-dimensional (2D cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell-cell and cell-material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture are short sequence, self-assembling peptide hydrogels. In addition to the review of recent work towards the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture.

  13. Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates.

    Science.gov (United States)

    Xie, Hao; Tang, Shaochun; Li, Dongdong; Vongehr, Sascha; Meng, Xiangkang

    2017-05-22

    To push the energy density limit of supercapacitors (SCs), new electrode materials with hierarchical nano-micron pore architectures are strongly desired. Graphene hydrogels that consist of 3 D porous frameworks have received particular attention but their capacitance is limited by electrical double layer capacitance. In this work, we report the rational design and fabrication of a composite hydrogel of N-doped graphene (NG) that contains embedded Ni(OH)2 nanoplates that is cut conveniently into films to serve as positive electrodes for flexible asymmetric solid-state SCs with NG hydrogel films as negative electrodes. The use of high-power ultrasound leads to hierarchically porous micron-scale sheets that consist of a highly interconnected 3 D NG network in which Ni(OH)2 nanoplates are well dispersed, which avoids the stacking of NG, Ni(OH)2 , and their composites. The optimal SC device benefits from the compositional features and 3 D electrode architecture and has a high specific areal capacitance of 255 mF cm(-2) at 1.0 mA cm(-2) and a very stable, high output cell voltage of 1.45 V, which leads to an energy density of 80 μW h cm(-2) even at a high power of 944 μW cm(-2) , considerably higher than that reported for similar devices. The devices exhibit a high rate capability and only 8 % capacitance loss over 10 000 charging cycles as well as excellent flexibility with no clear performance degradation under strong bending. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Amidated pectin based hydrogels: synthesis, characterization and cytocompatibility study.

    Science.gov (United States)

    Mishra, R K; Singhal, J P; Datt, M; Banthia, A K

    2007-01-01

    The design and development of pectin-based hydrogels were attempted through the chemical modification of pectin with diethanolamine (DA). Diethanolamine modified pectin (DAMP) was synthesized by the chemical modification of pectin with varying concentrations of DA (1:1,1:2,1:3 and 1:4) at 5 oC in methanol. The modified product was used for the preparation of the hydrogel with glutaraldehyde (GA) reagent. The prepared hydrogels were characterized by Fourier transform infrared (FTIR) spectroscopy; organic elemental analysis, and X-ray diffraction (XRD), and swelling, hemocompatibility and cytocompatibility studies of the prepared hydrogels were also done. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. The XRD pattern of the DAMP hydrogel clearly indicated that there was a considerable increase in crystallinity as compared to parent pectin. The degree of amidation (DA) and molar and mass reaction yields (Ym and Yn) was calculated based on the results of organic elemental analysis. Drug release studies from the hydrogel membranes were also evaluated in a Franz's diffusion cell. The hydrogels demonstrated good water holding properties and were found to be compatible with B-16 melanoma cells and human blood.

  15. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves.

    Science.gov (United States)

    Satarkar, Nitin S; Zhang, Wenli; Eitel, Richard E; Hilt, J Zach

    2009-06-21

    In recent years, hydrogels have attracted attention as active components in microfluidic devices. Here, we present a demonstration of remote controlled flow regulation in a microfluidic device using a hydrogel nanocomposite valve. To create the nanocomposite hydrogel, magnetic nanoparticles were dispersed in temperature-responsive N-isopropylacrylamide (NIPAAm) hydrogels. The swelling and collapse of the resultant nanocomposite can be remotely controlled by application of an alternating magnetic field (AMF). A ceramic microfluidic device with Y-junction channels was fabricated using low temperature co-fired ceramic (LTCC) technology. The nanocomposite was incorporated as a valve in one of the channels of the device. An AMF of frequency 293 kHz was then applied to the device and ON-OFF control on flow was achieved. A pressure transducer was placed at the inlet of the channel and pressure measurements were done for multiple AMF ON-OFF cycles to evaluate the reproducibility of the valve. Furthermore, the effect of the hydrogel geometry on the response time was characterized by hydrogels with different dimensions. Magnetic hydrogel nanocomposite films of different thicknesses (0.5, 1, 1.5 mm) were subjected to AMF and the kinetics of collapse and recovery were studied.

  16. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration.

    Science.gov (United States)

    Marcinczyk, Madison; Elmashhady, Hady; Talovic, Muhamed; Dunn, Andrew; Bugis, Faiz; Garg, Koyal

    2017-10-01

    Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    Science.gov (United States)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  18. Electrically responsive smart hydrogels in drug delivery: a review.

    Science.gov (United States)

    Kulkarni, R V; Biswanath, Sa

    2007-01-01

    Recently, much of the research activity has been focused on the development of stimuli-responsive hydrogels. Such hydrogels can show a response to the external or internal stimuli in the form of rapid changes in the physical nature of the polymeric network. This hydrogel property can be utilized for drug delivery applications. A literature search suggests that current research related to stimuli responsive drug delivery systems deals with temperature sensitive, pH sensitive, glucose sensitive and bio-molecule sensitive hydrogels. Electrically responsive hydrogels have also been recently developed in the form of gel matrices, implants and membranes for drug delivery. Control over the release of drugs such as quantity and timing, is essential to optimize drug therapy. Reports say that the electrically controlled in vitro and in vivo drug release studies have been carried out on polyelectrolyte hydrogels. A pulsatile pattern of drug release was achieved with the alternative application and removal of the electrical stimulus. This article gives an overview of the latest developments in the formulation of drug delivery systems using electrically responsive hydrogels.

  19. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.

    Science.gov (United States)

    Li, Moxiao; Yang, Qingzhen; Liu, Hao; Qiu, Mushu; Lu, Tian Jian; Xu, Feng

    2016-09-01

    Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce ), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery.

  20. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    Science.gov (United States)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.; Carrow, James K.; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K.

    2016-06-01

    Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem