WorldWideScience

Sample records for degenerate optical parametric

  1. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  2. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.

    Science.gov (United States)

    Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao

    2014-10-06

    Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.

  3. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    Science.gov (United States)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  4. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  5. Optomechanical entanglement via non-degenerate parametric interactions

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Qamar, Shahid

    2017-01-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement. (paper)

  6. Fractional-length sync-pumped degenerate optical parametric oscillator for 500-MHz 3-μm mid-infrared frequency comb generation.

    Science.gov (United States)

    Ingold, Kirk A; Marandi, Alireza; Rudy, Charles W; Vodopyanov, Konstantin L; Byer, Robert L

    2014-02-15

    We demonstrate a mid-IR frequency comb centered at 3120 nm with 650-nm (20-THz) bandwidth at a comb-teeth spacing of 500 MHz. The generated comb is based on a compact ring-type synchronously pumped optical parametric oscillator (SPOPO) operating at degeneracy and pumped by a mode-locked Er-doped 1560 nm fiber laser at a repetition rate of 100 MHz. We achieve high-repetition rate by using a fractional-length cavity with a roundtrip length of 60 cm, which is one-fifth of the length dictated by conventional synchronous pumping.

  7. Frequency domain optical parametric amplification.

    Science.gov (United States)

    Schmidt, Bruno E; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-05-07

    Today's ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength.

  8. Self-seeding ring optical parametric oscillator

    Science.gov (United States)

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  9. Quantum degenerate atomic gases in controlled optical lattice potentials

    Science.gov (United States)

    Gemelke, Nathan D.

    2007-12-01

    Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.

  10. Optical parametric amplification beyond the slowly varying ...

    Indian Academy of Sciences (India)

    The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not ...

  11. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Abstract. Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grat- ing and etalon in combination, grazing angle of incidence, entangled ...

  12. Optical parametrically gated microscopy in scattering media.

    Science.gov (United States)

    Zhao, Youbo; Adie, Steven G; Tu, Haohua; Liu, Yuan; Graf, Benedikt W; Chaney, Eric J; Marjanovic, Marina; Boppart, Stephen A

    2014-09-22

    High-resolution imaging in turbid media has been limited by the intrinsic compromise between the gating efficiency (removal of multiply-scattered light background) and signal strength in the existing optical gating techniques. This leads to shallow depths due to the weak ballistic signal, and/or degraded resolution due to the strong multiply-scattering background--the well-known trade-off between resolution and imaging depth in scattering samples. In this work, we employ a nonlinear optics based optical parametric amplifier (OPA) to address this challenge. We demonstrate that both the imaging depth and the spatial resolution in turbid media can be enhanced simultaneously by the OPA, which provides a high level of signal gain as well as an inherent nonlinear optical gate. This technology shifts the nonlinear interaction to an optical crystal placed in the detection arm (image plane), rather than in the sample, which can be used to exploit the benefits given by the high-order parametric process and the use of an intense laser field. The coherent process makes the OPA potentially useful as a general-purpose optical amplifier applicable to a wide range of optical imaging techniques.

  13. Scattering-initiated parametric noise in optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Wang, Jing; Ma, Jingui; Yuan, Peng; Tang, Daolong; Zhou, Binjie; Xie, Guoqiang; Qian, Liejia

    2015-07-15

    We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering-initiated parametric noise behaves similarly to parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain it inherits the chirp of signal pulses and can be well compressed. We demonstrate that scattering-initiated parametric noise has little influence on the pulse contrast but can degrade the energy conversion efficiency substantially.

  14. Bidirectional, synchronously pumped, ring optical parametric oscillator.

    Science.gov (United States)

    Meng, X; Diels, J C; Kuehlke, D; Batchko, R; Byer, R

    2001-03-01

    We report the operation of a bidirectional femtosecond pulsed ring optical parametric oscillator based on periodically poled lithium niobate, pumped alternately with nonsimultaneous pulses from a Ti:sapphire mode-locked laser. A beat note between the two counterpropagating beams attests to a gyro response without dead band. The sensitivity of the device to differential phase changes is demonstrated by measurement of the nonlinear index of lithium niobate.

  15. Noiseless attenuation using an optical parametric amplifier

    Science.gov (United States)

    Brewster, R. A.; Nodurft, I. C.; Pittman, T. B.; Franson, J. D.

    2017-10-01

    The process of heralded noiseless amplification, and the inverse process of heralded noiseless attenuation, have potential applications in the context of quantum communications. Although several different physical implementations of heralded noiseless amplifiers have now been demonstrated, the research on heralded noiseless attenuators has been largely confined to a beam-splitter based approach. Here we show that an optical parametric amplifier (OPA), combined with appropriate heralding, can also serve as a heralded noiseless attenuator. The counterintuitive use of an optical amplifier as an attenuator is only possible due to the probabilistic nature of the device.

  16. Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Abshire, J. B.; Kawa, S. R.; Mao, J.

    2012-12-01

    We report on airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment and more measurements are needed. In this paper we report on an airborne demonstration of atmospheric methane column optical depth measurements at 1.65 μm using widely tunable, seeded optical parametric amplifier (OPA) and a photon counting detector. Our results show good agreement between the experimentally derived optical depth measurements and theoretical calculations and follow the expected changes for aircraft altitudes from 3 to 11 km. The technique has also been used to measure carbon dioxide and monoxide, water vapor, and other trace gases in the near and mid-infrared spectral regions on the ground.

  17. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  18. Processing of optical combs with fiber optic parametric amplifiers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kakande, J.; Richardson, D.J.; Petropoulos, P.

    2012-01-01

    Roč. 20, č. 9 (2012), s. 10059-10070 ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Fiber - optic parametric amplifier * Phase sensitive * Spectral coverage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  19. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  20. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  1. X-band singly degenerate parametric amplification in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.

    1978-01-01

    Preliminary measurements on a (quasi-) degenerate parametric amplifier using a single Josephson tunnel junction as the active element is reported. The pump frequency is at 18 GHz and the signal and idler frequencies are both at about 9 GHz. A power gain of 16 dB in a 4-MHz 3-dB bandwidth is achie...... is achieved at the top of the cryostat. Applied Physics Letters is copyrighted by The American Institute of Physics....

  2. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  3. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  4. Twin beams, nonlinearity, and walk-off in optical parametric oscillators

    International Nuclear Information System (INIS)

    Zambrini, Roberta; San Miguel, Maxi

    2002-01-01

    We study the quantum properties of the spatially tilted macroscopic signal beams in the transverse pattern formed in a degenerate optical parametric oscillator above threshold. We show that walk-off leads to an imbalance in the intensities and fluctuations of these beams when nonlinear multimode interactions are effective. Still, quantum correlations between the two beams are preserved, so that their intensity difference exhibits sub-Poissonian statistics

  5. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time...... in excess of 14,000 Tb/s x km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed....

  6. Intermodal Parametric Frequency Conversion in Optical Fibers

    Science.gov (United States)

    Demas, Jeffrey D.

    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk chi(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ˜1 mum (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order 'm'. The effective area of modes in these fibers can be very large (>6000

  7. Temporal Simultons in Optical Parametric Oscillators.

    Science.gov (United States)

    Jankowski, Marc; Marandi, Alireza; Phillips, C R; Hamerly, Ryan; Ingold, Kirk A; Byer, Robert L; Fejer, M M

    2018-02-02

    We report the first demonstration of a regime of operation in optical parametric oscillators (OPOs), in which the formation of temporal simultons produces stable femtosecond half-harmonic pulses. Simultons are simultaneous bright-dark solitons of a signal field at frequency ω and the pump field at 2ω, which form in a quadratic nonlinear medium. The formation of simultons in an OPO is due to the interplay of nonlinear pulse acceleration with the timing mismatch between the pump repetition period and the cold-cavity round-trip time and is evidenced by sech^{2} spectra with broad instantaneous bandwidths when the resonator is detuned to a slightly longer round-trip time than the pump repetition period. We provide a theoretical description of an OPO operating in a regime dominated by these dynamics, observe the distinct features of simulton formation in an experiment, and verify our results with numerical simulations. These results represent a new regime of operation in nonlinear resonators, which can lead to efficient and scalable sources of few-cycle frequency combs at arbitrary wavelengths.

  8. Spatiotemporal structures in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a competing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are established where either the up- or down-conversion processes dominate...

  9. OPTICAL PARAMETRIC OSCILLATORS: Optimal feedback in efficient single-cavity optical parametric oscillators

    Science.gov (United States)

    Petnikova, V. M.; Shuvalov, Vladimir V.

    2010-09-01

    An approach based on the description of competition of quadratic processes of merging and decomposition of quanta resulting in the formation of cnoidal waves on an effective cascade cubic Kerr-type nonlinearity is used to optimise the scheme of a single-cavity optical parametric oscillator. It is shown that the use of a feedback circuit (cavity) decreases the period of cnoidal waves produced in a nonlinear crystal, while the optimisation procedure of the transfer constant of this circuit (reflectivity of the output mirror of the cavity) is reduced to matching this period with the nonlinear crystal length.

  10. Optical stochastic cooling for RHIC using optical parametric amplification

    Directory of Open Access Journals (Sweden)

    M. Babzien

    2004-01-01

    Full Text Available We propose using an optical parametric amplifier, with a ∼12   μm wavelength, for optical-stochastic cooling of ^{79}Au ions in the Relativistic Heavy Ion Collider. While the bandwidth of this amplifier is comparable to that of a Ti:sapphire laser, it has a higher average output power. Its wavelength is longer than that of the laser amplifiers previously considered for such an application. This longer wavelength permits a longer undulator period and higher magnetic field, thereby generating a larger signal from the pickup undulator and ensuring a more efficient interaction in the kicker undulator, both being essential elements in cooling moderately relativistic ions. The transition to a longer wavelength also relaxes the requirements for stability of the path length during ion-beam transport between pickup and kicker undulators.

  11. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  12. Optical Parametric Technology for Methane Measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  13. Posterior Lattice Degeneration Characterized by Spectral Domain Optical Tomography

    OpenAIRE

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G.; Duker, Jay S.

    2011-01-01

    PURPOSE: To utilize high-resolution spectral domain optical coherence tomography (SD-OCT) in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. METHODS: A cross-sectional, retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. SD-OCT images taken through the region of latti...

  14. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  15. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  16. Fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  17. OPTICAL PARAMETRIC OSCILLATORS: Optimal feedback in efficient ring double-cavity optical parametric oscillators

    Science.gov (United States)

    Petnikova, V. M.; Shuvalov, Vladimir V.

    2010-09-01

    It is shown that the use of two feedback circuits with matched transfer constants and optimal phase incursions in a nondegenerate optical parametric oscillator (OPO) makes it possible to localise the extremes of intensity distributions of interacting waves on the output face of a nonlinear crystal, which provides maximum possible conversion efficiency of pump energy. The optimisation procedure in this case is rather flexible because it is reduced to ambiguous matching of the period and shift of the extremes of exact analytic solutions of the corresponding problem in the form of cnoidal waves with respect to the nonlinear crystal position. Unlike the single-cavity OPO scheme, both these parameters can substantially exceed the nonlinear crystal length and even tend to infinity, which corresponds to solitary soliton-like solutions.

  18. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  19. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    Science.gov (United States)

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  20. Image-rotating, 4-mirror, ring optical parametric oscillator

    Science.gov (United States)

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  1. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...... optical systems and high gain over broad bandwidths. In particular, the amplification of 400 fs pulses is investigated in a single-pump fiber optical chirped pulse amplification sc heme. First, a dynamic characterization is carried out both in unsaturated and saturated regimes and, then, amplification...

  2. Concurrent optical parametric down-conversion in χ(2) nonlinear photonic crystals.

    Science.gov (United States)

    Chen, L; Xu, P; Bai, Y F; Luo, X W; Zhong, M L; Dai, M; Lu, M H; Zhu, S N

    2014-06-02

    We experimentally investigated concurrent parametric downconversion processes in a two-dimensional hexagonally poled lithium tantalate crystal. The substantial enhancement of parametric gain was observed when concurrent processes shared a common parametric beam. Both degenerate and nondegenerate concurrent parametric downconversion processes were studied. Analyses of the spatial forms and output angles showed a strong dependence on the working temperature, during which a well-defined beamlike parametric output was observed. Our results will stimulate the design for coherent high-gain generation of multiple parametric beams and also shed light on the compact engineering of path-entanglement with specific spatial forms based on concurrent spontaneous parametric downconversion processes.

  3. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance...

  4. Light squeezing in optical parametric amplification beyond the ...

    Indian Academy of Sciences (India)

    Optical parametric amplification (OPA) described usually by the coupled-wave equations with the first-order derivatives of the signal and idler waves, is solved under the slowly-varying amplitude approximation (SVA). In this article, by keeping the second-order derivatives in the coupled-wave equations, we obtained an ...

  5. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion...

  6. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  7. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Now-a-days with the development of coating technology and with the availability of good optical quality crystals having high damage threshold and deep infrared. (IR) transparency it is possible to extend the tunability of the OPO. Particularly, we have to mention that the development of periodically poled crystal has revolu-.

  8. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  9. Dynamics of a periodically modulated optical parametric oscillator near lasing threshold

    International Nuclear Information System (INIS)

    Brazhnyi, V. A.; Konotop, V. V.; Taki, M.

    2009-01-01

    We present analytical investigation of the nonlinear dynamics of a degenerate optical parametric oscillator with periodic modulation of transverse refraction index. By a proper choice of the injected external field that must compensate for losses and match with the modulation period, nonlinear optical cavities can exhibit dissipative Bloch waves which are attracting solutions of nonequilibrium system. This allows us to propose method of experimental visualization of the band structure of the cavity medium. Using multiple-scale expansion near the leasing threshold, we obtain the equation of evolution of the small-amplitude envelop of the signal field which appears strongly affected by the periodic modulation of the refractive index. We discuss the physical meaning of the obtained equation.

  10. A comparison of nonlinear media for parametric all-optical signal processing

    DEFF Research Database (Denmark)

    Martinez Diaz, Jordi; Bohigas Nadal, Jaume; Vukovic, Dragana

    2013-01-01

    We systematically compare nonlinear media for parametric signal processing by determining the minimum pump power that is required for a given conversion efficiency in a degenerate four-wave mixing process, including the effect of nonlinear loss.......We systematically compare nonlinear media for parametric signal processing by determining the minimum pump power that is required for a given conversion efficiency in a degenerate four-wave mixing process, including the effect of nonlinear loss....

  11. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  12. Tunable single-longitudinal-mode fiber optical parametric oscillator.

    Science.gov (United States)

    Yang, Sigang; Cheung, Kim K Y; Zhou, Yue; Wong, Kenneth K Y

    2010-02-15

    A tunable single-longitudinal-mode (SLM) fiber optical parametric oscillator (FOPO) is proposed and demonstrated experimentally. A sub-ring cavity with a short cavity length is used to suppress the longitudinal modes and broaden the longitudinal mode spacing. A fiber loop mirror, consisted of an unpumped erbium-doped fiber, acts as an autotracking filter for providing fine mode restriction and ensuring the single-frequency operation. The measurement based on a homodyne method shows that the FOPO provides the SLM output. Furthermore the SLM FOPO can be tunable over 14 nm for each of the signal and the idler, which is limited only by the gain bandwidth of the fiber optical parametric amplifier.

  13. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  14. Ground and airborne methane measurements with an optical parametric amplifier

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Dawsey, Martha; Ramanathan, Anand; Mao, Jianping; Krainak, Michael; Abshire, James

    2012-06-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at ~11-km altitude.

  15. Beam splitter coupled CdSe optical parametric oscillator

    International Nuclear Information System (INIS)

    Levinos, N.J.; Arnold, G.P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation

  16. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  17. Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber.

    Science.gov (United States)

    Zhou, Yue; Cheung, Kim K Y; Yang, Sigang; Chui, P C; Wong, Kenneth K Y

    2009-04-01

    We demonstrated a fully fiber-integrated widely tunable picosecond optical parametric oscillator based on highly nonlinear fiber. The ring cavity with a 50 m highly nonlinear fiber was synchronously pumped with a picosecond mode-locked fiber laser. The tuning range was from 1413 to 1543 nm and from 1573 to 1695 nm, which was as wide as 250 nm. A high-quality pulse was generated with a pulse width narrower than that of the pump.

  18. Mismatch characteristics of optical parametric chirped pulse amplification

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Turčičová, Hana; Divoký, Martin; Huynh, Jaroslav; Straka, Petr

    2014-01-01

    Roč. 11, č. 2 (2014), 1-7 ISSN 1612-2011 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528 Institutional support: RVO:68378271 Keywords : phase matching * phase mismatch * beam mismatch * broadband amplification * parametric amplifiers * OPCPA * iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.458, year: 2014

  19. Degenerate-band-edge engineering inspired by nonlocal transformation optics

    Directory of Open Access Journals (Sweden)

    Moccia Massimo

    2016-01-01

    Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.

  20. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    Science.gov (United States)

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  1. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty......, and all-optical phase-preserving amplitude regeneration of a 640-Gbit/s return-to-zero differential phase-shift keying optical time-division multiplexed signal.......This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty...

  2. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  3. A high-flux entanglement source based on a doubly resonant optical parametric amplifier

    International Nuclear Information System (INIS)

    Kuklewicz, Christopher E; Keskiner, Eser; Wong, Franco N C; Shapiro, Jeffrey H

    2002-01-01

    A 532 nm pumped type-II phase-matched, doubly resonant KTP optical parametric amplifier (OPA) was operated near frequency degeneracy to yield an inferred downconverted photon pair production rate of 1.7x10 6 s -1 at a pump power of 100 μW. The OPA output consisted of three components: narrowband doubly resonant mode pairs; narrowband singly resonant mode pairs for which either the signal or idler was resonant with the cavity and broadband nonresonant mode pairs. Under frequency-degenerate operation, the broadband nonresonant mode pairs were polarization triplet states. We observed quantum interference between the orthogonally polarized photons of the triplet states when they were analysed with a polarizer set at 45 deg. relative to the OPA's output polarizations, leading to reduced coincidence counts

  4. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    Science.gov (United States)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  5. Classical and quantum properties of optical parametric oscillators

    CERN Document Server

    Martinelli, M; Nussenzveig, P; Souto-Ribeiro, P H

    2001-01-01

    We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the quantum correlation between the light beams generated by this oscillator. We show the construction of an OPO using a Potassium Titanyl Phosphate crystal, pumped by a frequency doubled Nd:YAG laser, and discuss the stability of the system and related thermal effects. We have measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise correlation level 39 % below the shot noise level.

  6. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier

    International Nuclear Information System (INIS)

    Liu Kui; Cui Shu-Zhen; Yang Rong-Guo; Zhang Jun-Xiang; Gao Jiang-Rui

    2012-01-01

    We experimentally demonstrate that HG 01 (Hermit—Gauss) and HG 10 squeezed states can be generated simultaneously in an optical parametric amplifier. The HG 01 mode is a bright squeezed state and the HG 10 mode is a vacuum squeezed state. The squeezing of the HG 01 mode is −2.8 dB, and the squeezing of the HG 10 mode is −1.6 dB. We also demonstrate that the output field is also continuous-variable entanglement with orbital angular momentum. (general)

  7. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  8. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    Science.gov (United States)

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  9. The effects of wallerian degeneration of the optic radiations demonstrated by MRI

    International Nuclear Information System (INIS)

    Savoiardo, M.; Grisoli, M.; Forester, M.; D'Incerti, L.; Farina, L.; Pareyson, D.

    1992-01-01

    The effects of wallerian degeneration can be demonstrated by MRI as abnormal signal along the course of the degenerate fibres; they have previously been reported in the corticospinal tract. We report two cases of wallerian degeneration of the right optic radiations due to lesions of the right lateral geniculate body. The anatomy and the MRI visibility of the normal optic radiations are briefly discussed. (orig.)

  10. Compact, high-pulse-energy, picosecond optical parametric oscillator.

    Science.gov (United States)

    Kienle, Florian; Teh, Peh Siong; Alam, Shaif-Ul; Gawith, Corin B E; Hanna, David C; Richardson, David J; Shepherd, David P

    2010-11-01

    We report a high-energy optical parametric oscillator (OPO) synchronously pumped by a 7.19 MHz, Yb:fiber-amplified, picosecond, gain-switched laser diode. The 42-m-long ring cavity maintains a compact design through the use of an intracavity optical fiber. The periodically poled MgO-doped LiNbO(3) OPO provides output pulse energies as high as 0.49 μJ at 1.5 μm (signal) and 0.19 μJ at 3.6 μm (idler). Tunability from 1.5 to 1.7 μm and from 2.9 to 3.6 μm is demonstrated, and typical M(2) values of 1.5 × 1.3 and 2.8 × 1.9 are measured for the signal and idler, respectively, at high power.

  11. Automation of an "Aculight" continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Morrison, Alexander M; Liang, Tao; Douberly, Gary E

    2013-01-01

    We report the automation of a continuous-wave, singly resonant, optical parametric oscillator (Lockheed-Martin Aculight ARGOS 2400-SF-15). This commercially available optical parametric oscillator (OPO) is capable of producing >1 W of continuously tunable idler output between 2.2 and 4.6 μm. An algorithm based on the feedback from a high accuracy wavemeter is implemented to synchronize three separate OPO tuning elements; the translation of a fan-out type periodically poled lithium niobate crystal, the rotation of an intracavity etalon, and the continuous tuning of the pump and idler wavelengths via piezoelectric strain of the tunable fiber pump laser. This allows for several hundred wavenumbers of efficient, automatic, continuous tuning of the idler wave. Continuous feedback from the wavemeter limits the absolute frequency accuracy to ±20 MHz. The broad, automatic tuning of the OPO is demonstrated via its implementation as a probe laser for the infrared action spectroscopy of methanol solvated in helium nanodroplets. LabVIEW virtual instruments for the automation of this OPO laser system are reported, along with detailed schematics of the associated hardware developed at the University of Georgia.

  12. Investigation of coupled optical parametric oscillators for novel applications

    Science.gov (United States)

    Ding, Yujie J.

    2016-03-01

    In this proceedings article, we summarize our previous results on the novel applications using the coupled optical parametric oscillators (OPO's). In a conventional OPO, a single pump wavelength is capable of generating a pair of the signal and idler beams by placing a bulk nonlinear crystal inside an OPO cavity. When a nonlinear crystal composite consisting of periodically-inverted KTiOPO4 (KTP) plates bonded together by the adhesive-free-bonded (AFB) technique is used instead of the bulk nonlinear crystal, the optical parametric oscillation takes place at two sets of the new wavelengths for the signal and idler beams due to the phase shifts occurring at the interfaces of the adjacent domains making up the composite. These two sets of the signal and idler waves are effectively generated by the two OPO's being coupled to each other. These signals and idlers exhibit ultrastability in terms of their frequency separation. We review the progress made by us on the applications being realized by using such coupled OPO's such as THz generation and restoration of the blurred images after propagating through a distortion plate and a phase plate simulating atmospheric turbulence.

  13. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  14. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  15. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns......, in specific, the design and optimization of such phase sensitive amplifiers (PSAs). For phase sensitive amplification in highly nonlinear fibers, optima points of operation have been identified for both the standard and the novel high stimulated Brillouin scattering (SBS) threshold highly nonlinear fiber...... types. The regeneration capability of PSAs on phase encoded signal in an optical link has been optimized. Flat-top phase sensitive profile has been synthesized. It is able to provide simultaneous amplitude and phase noise squeezing, with enhanced phase noise margin compared to conventional designs...

  16. Testing the energy conservation law in an optical parametric oscillator using phase-controlled femtosecond pulses.

    Science.gov (United States)

    Sun, Jinghua; Gale, Barry J S; Reid, Derryck T

    2007-04-02

    An experimental verification of energy conservation in a parametric oscillator is reported with an optical frequency precision of approximately 200 kHz (< 10(-6) nm). This high precision is made possible by simultaneously measuring the frequency offsets of the pump, signal and idler frequency combs in a singly-resonant femtosecond optical parametric oscillator system.

  17. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  18. Ultrashort pulse shaping by optical parametric chirped amplification

    International Nuclear Information System (INIS)

    Nelet, Ambre

    2007-01-01

    The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr

  19. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  20. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration.

    Science.gov (United States)

    Kim, Benjamin J; Irwin, David J; Song, Delu; Daniel, Ebenezer; Leveque, Jennifer D; Raquib, Aaishah R; Pan, Wei; Ying, Gui-Shuang; Aleman, Tomas S; Dunaief, Joshua L; Grossman, Murray

    2017-10-10

    Whereas Alzheimer disease (AD) is associated with inner retina thinning visualized by spectral-domain optical coherence tomography (SD-OCT), we sought to determine if the retina has a distinguishing biomarker for frontotemporal degeneration (FTD). Using a cross-sectional design, we examined retinal structure in 38 consecutively enrolled patients with FTD and 44 controls using a standard SD-OCT protocol. Retinal layers were segmented with the Iowa Reference Algorithm. Subgroups of highly predictive molecular pathology (tauopathy, TAR DNA-binding protein 43, unknown) were determined by clinical criteria, genetic markers, and a CSF biomarker (total tau: β-amyloid) to exclude presumed AD. We excluded eyes with poor image quality or confounding diseases. SD-OCT measures of patients (n = 46 eyes) and controls (n = 69 eyes) were compared using a generalized linear model accounting for intereye correlation, and correlations between retinal layer thicknesses and Mini-Mental State Examination (MMSE) were evaluated. Adjusting for age, sex, and race, patients with FTD had a thinner outer retina than controls (132 vs 142 μm , p = 0.004). Patients with FTD also had a thinner outer nuclear layer (ONL) (88.5 vs 97.9 μm, p = 0.003) and ellipsoid zone (EZ) (14.5 vs 15.1 μm, p = 0.009) than controls, but had similar thicknesses for inner retinal layers. The outer retina thickness of patients correlated with MMSE (Spearman r = 0.44, p = 0.03). The highly predictive tauopathy subgroup (n = 31 eyes) also had a thinner ONL (88.7 vs 97.4 μm, p = 0.01) and EZ (14.4 vs 15.1 μm, p = 0.01) than controls. FTD is associated with outer retina thinning, and this thinning correlates with disease severity. © 2017 American Academy of Neurology.

  1. Two-stage optical parametric amplifier of a low energy nanosecond pulses

    Science.gov (United States)

    Bagdasarov, V. Kh; Bel'kov, S. A.; Garanin, S. G.; Garnov, S. V.; Nikolaev, D. A.; Orlov, S. N.; Polivanov, Y. N.; Sadovskiy, S. P.; Shcherbakov, I. A.; Tsvetkov, V. B.

    2017-05-01

    A two-stage optical parametric amplifier (OPA) design that provides over  -5  ×  107 gain at 1053 nm is presented. Noise level of the parametric amplifier in the signal wave propagation direction was 2  ×  10-6 from the signal level. The parasitic parametric oscillation under intense pump wave and its contribution to the OPA output was measured to be less than 8%.

  2. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  3. Optimization and characterization of dual-chirped optical parametric amplification

    International Nuclear Information System (INIS)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi; Zhang, Qingbin; Lu, Peixiang

    2015-01-01

    We report optimization and characterization of a dual-chirped optical parametric amplification (DC-OPA) scheme (2011 Opt. Express 19 7190). By increasing a pump pulse energy to 100 mJ, a total (signal + idler) output energy exceeding 30 mJ was recorded with higher than 30% conversion efficiency. The feasibility of further increasing the output energy to a higher scale using the DC-OPA scheme was confirmed by a proof-of-principle experiment, in which 30%–40% conversion efficiency was observed. The signal pulse with the center wavelength of 1.4 μm was compressed to 27 fs (FWHM), which was very close to a transform-limited pulse duration of 25 fs. Since the DC-OPA scheme is efficient for generating high-energy infrared (IR) pulses with excellent scaling ability, the design parameters for obtaining hundred-mJ-level and even joule-level IR pulses are discussed and presented in detail. (invited article)

  4. Active locking and entanglement in type II optical parametric oscillators

    Science.gov (United States)

    Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos

    2018-02-01

    Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.

  5. Mutually incoherent beam combining through optical parametric amplification

    International Nuclear Information System (INIS)

    Tropheme, B.

    2012-01-01

    This work deals with a technique of combination of coherent beams: Optical Parametric Amplification (OPA) with Multiple Pumps. This technique is used to instantly transfer the energy of several pumps on one beam, without energy storage and thus avoiding thermal effects in the amplifying media. It can be useful to combine energy of numerous fiber lasers and to amplify with a high repetition rate very high energy lasers or broadband pulses. With a numerical and experimental study using BBO and LBO as nonlinear crystal, we determine how to dispose the pumps around the signal and the corresponding angular tolerances of such set up. Then we focus our attention on recombining mechanisms between a pump and a non-corresponding idler. We demonstrate experimentally that these cascading effects may decrease the spatial and spectral quality of the amplified signal, and that these phenomena can be avoided with a minimum angle between the different pumps. A novel modelling of multi-pumps OPA links these cascading effects to the gratings generated by the interaction between the pumps. The last part presents a 5 pump OPA experiment. We achieve a pump-to-signal efficiency of 27% and so that a signal more powerful than each pump is obtained. (author) [fr

  6. Ultra-broadband optical parametric amplification by tailoring the group-velocity dispersion of Bragg reflection waveguides

    International Nuclear Information System (INIS)

    Das, Ritwick

    2009-01-01

    The possibility of extending the signal-acceptance bandwidth for a non-degenerate optical parametric amplification process using a non-linear Bragg reflection waveguide (BRW) is explored. The strongly dispersive features of BRWs made up of semiconductors, such as GaN/Al x Ga 1-x N, are employed to maintain the phase-matching condition over a broad range of signal wavelengths. It is found that the signal-acceptance bandwidth could extend over 20 THz in the optical communication band (∼193 THz) which could facilitate simultaneous parametric amplification and wavelength conversion across the entire S-C-L band. Moreover, this idea could also find important applications in optical communication schemes involving ultra-short pulses. The broad bandwidth is essentially a direct consequence of appropriate phase- and group-velocity dispersion compensation by the idler mode in order to preserve the phase-matching condition over a broad spectral range. Since the idea exploits the dispersive features of Bragg reflection based geometries, the scheme could be implemented to realize broadband frequency conversion in any desired spectral region within the constraints imposed by the transparency of non-linear materials and the possibility of periodic poling.

  7. Quantitative assessment of age-related macular degeneration using parametric modeling of the leakage transfer function: preliminary results.

    Science.gov (United States)

    Eldeeb, Safaa M; Abdelmoula, Walid M; Shah, Syed M; Fahmy, Ahmed S

    2012-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness and visual impairment in older adults. The wet form of the disease is characterized by abnormal blood vessels forming a choroidal neovascular membrane (CNV), that result in destruction of normal architecture of the retina. Current evaluation and follow up of wet AMD include subjective evaluation of Fluorescein Angiograms (FA) to determine the activity of the lesion and monitor the progression or regression of the disease. However, this subjective evaluation prevents accurate monitoring of the disease progression or regression in response to a pharmacologic agent. In this work, we present a method that allows objective assessment of the activity of a CNV lesion which can be statistically compared across different patient and time points. The method is based on a hypothesis that the discrepancy in the time-intensity signals among the diseased and normal retinal areas are due to an implicit transfer function whose parameters can be used to characterize the retina. The method begins with parametric modeling of the temporal variation of the lesion and background intensities. Then, the values of the model parameters are used to evaluate the change in the activity of the disease. Preliminary results on five datasets show that the calculated parameters are highly correlated with the Visual Acuity (VA) of the patients.

  8. Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.

    Science.gov (United States)

    Wang, Ke-Yao; Foster, Mark A; Foster, Amy C

    2015-06-15

    Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.

  9. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  10. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  11. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  12. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    International Nuclear Information System (INIS)

    Corona, Maria; Garay-Palmett, Karina; U'Ren, Alfred B.

    2011-01-01

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  13. Few-body interactions in a Fermi degenerate optical lattice clock

    Science.gov (United States)

    Marti, G. Edward; Goban, Akihisa; Hutson, Ross; Campbell, Sara; Ye, Jun

    2017-04-01

    Alkaline-earth-like atoms trapped in optical lattices are at the forefront of both precision measurements, realizing record accuracy as an optical frequency standard, and quantum simulations. Recent advances have sought to use precision spectroscopy on the millihertz-linewidth optical transition to study many-body physics, including the discovery of an interorbital Feshbach resonance, demonstration of spin-orbit coupling, and the realization of a Fermi-degenerate 3D optical lattice clock. In this talk, I will discuss our recent work on resolving few-body interactions of SU(N) fermionic strontium in deep optical lattices with narrow-line optical spectroscopy. By combining spectroscopy with imaging, we can resolve the spatial structure of interacting atoms in a degenerate Fermi gas. This work is supported by NIST, DARPA, and the NSF JILA Physics Frontier Center.

  14. [Optic nerve melanocytoma--associated with age related macular degeneration].

    Science.gov (United States)

    Voinea, Liliana; Andrei, Oana; Florescu, Oana; Totir, Mădălina; Ungureanu, E; Ciuluvică, R; Bădărău, Anca

    2009-01-01

    We report the case of a 73 year old patient who presented for decreased vision in his right eye, ocular examination revealed a pigmented tumour in the left optic disc (optic nerve melanocytoma). We briefly mention another case of optic nerve melanocytoma in a 6 year old, Caucasian patient.

  15. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.

    2016-01-01

    Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  16. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.

    Science.gov (United States)

    Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L

    2015-09-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

  17. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  18. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  19. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-09

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  20. Microwave parametric amplifiers using externally pumped Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1978-01-01

    Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...

  1. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, S M; Harren, Frans J M; Mandon, Julien

    2015-08-10

    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 μm wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights.

  2. Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation.

    Science.gov (United States)

    Zhang, Wen Qi; Sharping, Jay E; White, Richard T; Monro, Tanya M; Afshar V, Shahraam

    2010-08-02

    In this paper, we use a genetic algorithm and pulse-propagation analysis to design and optimize optical parametric oscillators based on soft-glass microstructured optical fibers. The maximum parametric gain, phase-match, walk-off between pump (1560 nm) and signal (880 nm) pulses, signal feedback ratio and signal-pump synchronization of the cavity are optimized. Pulse propagation analysis suggests that one can implement a fiber optical parametric oscillator capable of generating approximately 200-fs pulses at 880 nm with 43% peak-power conversion, high output pulse quality (time-bandwidth product approximately 0.43) and a wavelength tuning range that is limited only by the glass transmission windows.

  3. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    Science.gov (United States)

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  4. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  5. Wideband generation of pulses in dual-pump optical parametric amplifier: theory and experiment.

    Science.gov (United States)

    Shoaie, Mohammad Amin; Mohajerin-Ariaei, Amirhossein; Vedadi, Armand; Brès, Camille-Sophie

    2014-02-24

    The generation of pulses in dual-pump fiber optical parametric amplifier is investigated. Theoretically, it is shown that in an analogical manner to pulse generation in single-pump fiber optical parametric amplifiers, the generated pulse shape depends on the linear phase mismatch between the interacting waves. However the dual-pump architecture allows for the bounding of the phase mismatch over a wide bandwidth. This feature permits the generation of uniform pulses over a wide bandwidth, contrary to the single-pump architecture. Using the developed theory, a pulse source with uniform pulses at 5 GHz repetition rate and duty cycle of 0.265 over 40 nm is demonstrated.

  6. Observations of complex frequency comb structure in a harmonically-pumped femtosecond optical parametric oscillator

    International Nuclear Information System (INIS)

    McCracken, Richard A; Balskus, Karolis; Zhang, Zhaowei; Reid, Derryck T

    2015-01-01

    Various schemes allow femtosecond optical parametric oscillators to produce pulses at harmonics of their pump laser repetition frequency, each apparently offering the possibility of generating widely-spaced, tunable frequency combs. Using a 100-MHz Ti:sapphire pump laser, we have compared two alternative optical parametric oscillator architectures, both leading to 300-MHz pulses but one configured in a cavity three times shorter than the pump laser and the other in a cavity one-third longer. Heterodyne measurements between the pump and each of these two systems show that they possess different carrier-envelope offset characteristics, with implications on the coherence and stabilization of the resulting combs

  7. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis

    Science.gov (United States)

    Goodkin, Olivia; Altmann, Daniel R.; Jenkins, Thomas M.; Miszkiel, Katherine; Mirigliani, Alessia; Fini, Camilla; Gandini Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga; Toosy, Ahmed T.

    2016-01-01

    Abstract In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T 1 -weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients

  8. Can mammalian vision be restored following optic nerve degeneration?

    Directory of Open Access Journals (Sweden)

    Kuffler DP

    2016-07-01

    Full Text Available Damien P Kuffler Institute of Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico Abstract: For most adult vertebrates, glaucoma, trauma, and tumors close to retinal ganglion cells (RGCs result in their neuron death and no possibility of vision reestablishment. For more distant traumas, RGCs survive, but their axons do not regenerate into the distal nerve stump due to regeneration-inhibiting factors and absence of regeneration-promoting factors. The annual clinical incidence of blindness in the United States is 1:28 (4% for persons >40 years, with the total number of blind people approaching 1.6 million. Thus, failure of optic nerves to regenerate is a significant problem. However, following transection of the optic nerve of adult amphibians and fish, the RGCs survive and their axons regenerate through the distal optic nerve stump and reestablish appropriate functional retinotopic connections and fully functional vision. This is because they lack factors that inhibit axon regeneration and possess factors that promote regeneration. The axon regeneration in lower vertebrates has led to extensive studies by using them as models in studies that attempt to understand the mechanisms by which axon regeneration is promoted, so that these mechanisms might be applied to higher vertebrates for restoring vision. Although many techniques have been tested, their successes have varied greatly from the recovery of light and dark perceptions to partial restoration of the optomotor response, depth perception, and circadian photoentrainment, thus demonstrating the feasibility of reconstructing central circuitry for vision after optic nerve damage in mature mammals. Thus, further research is required to induce the restoration of vision in higher vertebrates. This paper examines the causes of vision loss and techniques that promote transected optic nerve axons to regenerate and reestablish functional vision, with a focus on approaches

  9. Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study

    Directory of Open Access Journals (Sweden)

    Saggu Sarabjit K

    2010-08-01

    Full Text Available Abstract Background Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS, could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the "downstream" effect of isolated excitotoxic perikaryal injury on central nervous system (CNS axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders. Herein, we provide ultrastructural information about the retinal ganglion cell (RGC somata and their axons, both unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at 0 h, 24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group. Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining, ultrathin sections of eyes and proximal (intraorbital and distal (intracranial optic nerve segments were evaluated by transmission electron tomography (TEM. Results TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration and demyelination. Conclusion NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like degeneration of the

  10. Highly efficient optical parametric generation in proton exchanged PPLN waveguides

    CERN Document Server

    Chanvillard, L; Baldi, P; De Micheli, M; Ostrowsky, D B; Huang, L; Bamford, G

    1999-01-01

    Summary form only given. Parametric fluorescence, amplification, and oscillation in PPLN waveguides have already been demonstrated. In all previous experiments, the measured efficiencies were smaller than the theoretically predicted values since the waveguide fabrication process utilized, annealed proton exchange (APE) can reduce or even destroy the nonlinear coefficient and/or the periodic domain orientation in a portion of the guiding structure. In the experiment reported here, we used a 2 cm long, Z-cut PPLN with a 18 mu m domain inversion period. The waveguides are created using a direct proton exchange process in a highly diluted melt, which induces no crystallographic phase transition. This allows preserving both the nonlinear coefficient and the domain orientation while fully benefiting from the power confinement associated with the guided wave configuration. (4 refs).

  11. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  12. Traveling wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  13. Travelling-wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  14. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Gross, P.; Klein, M.E.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2002-01-01

    We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO3 crystal in a four-mirror ring cavity. At a pump

  15. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  16. Entanglement in optical parametric down-conversion with losses and noise

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Křepelka, Jaromír

    2009-01-01

    Roč. 282, č. 19 (2009), 3918-3923 ISSN 0030-4018 R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR IAA100100713 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum measurement * parametric down-conversion * nonclassical light Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2009

  17. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  18. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  19. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  20. Optical parametric oscillator-based photoacoustic detection of CO 2 at 4.23 µm allows real-time monitoring of the respiration of small insects

    NARCIS (Netherlands)

    Herpen, van M.M.J.W.; Ngai, A.K.Y.; Bisson, S.E.; Hackstein, J.H.P.; Woltering, E.J.; Harren, F.J.M.

    2006-01-01

    A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium

  1. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 mu m allows real-time monitoring of the respiration of small insects

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Ngai, A.K.Y.; Bisson, S.E.; Hackstein, J.H.P.; Woltering, E.J.; Harren, F.J.M.

    2006-01-01

    A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium

  2. Singly-resonant optical parametric oscillator based on KTA crystal

    Indian Academy of Sciences (India)

    Since the first demonstration of OPO by Giordmaine and Miller in 1965 using. LiNbO3 crystal [1] there has been a lot of improvement in this front making it a real tool for different applications. This becomes possible due to the advent of novel non-linear materials having wide transparency range with very low optical losses,.

  3. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  4. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  5. Angular spectrum characters of high gain non-critical phase match optical parametric oscillators

    International Nuclear Information System (INIS)

    Liu Jian-Hui; Liu Qiang; Gong Ma-Li

    2011-01-01

    The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO 4 and the KTiOPO 4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  7. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  8. Novel Optical Parametric Amplifier at 1572 nm Wavelength Using KTP Crystal

    International Nuclear Information System (INIS)

    Li Huan-Huan; Li Shi-Guang; Ma Xiu-Hua; Wang Jun-Tao; Zhu Xiao-Lei

    2012-01-01

    A novel master oscillator/power amplifier architecture for optical parametric conversion of high pulse energy from 1.064 μm to 1.572 μm in KTiOPO 4 crystal is presented. A high gain of more than 80 at 1.572 μm pumped by a high energy Q-switched pulse laser is realized. With a seeding signal energy of 1 mJ, and 400 mJ pump pulse at 100 Hz, an amplified signal pulse energy of over 80 mJ is obtained. The total optical-optical conversion efficiency reaches 21%

  9. Optical coherence tomography for the assessment of pericardium covered stents for the treatment of degenerated saphenous vein grafts

    NARCIS (Netherlands)

    P. Tyczynski (Pawel); N. Kukreja (Neville); R.J.M. van Geuns (Robert Jan); J.J. Wykrzykowska (Joanna); M.N. Sheppard (Mary); C. di Mario (Carlo)

    2010-01-01

    textabstractAims: Pre- and post-interventional optical coherence tomography (OCT) assessment of degenerated saphenous vein grafts (SVG) treated with implantation of pericardium covered stents. Percutaneous treatment of SVG represents one of the major challenges of current percutaneous coronary

  10. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  11. Optic Nerve Degeneration after Retinal Ischemia/Reperfusion in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Marina Renner

    2017-08-01

    Full Text Available Retinal ischemia is a common pathomechanism in many ocular disorders such as age-related macular degeneration (AMD, diabetic retinopathy, glaucoma or retinal vascular occlusion. Several studies demonstrated that ischemia/reperfusion (I/R leads to morphological and functional changes of different retinal cell types. However, little is known about the ischemic effects on the optic nerve. The goal of this study was to evaluate these effects. Ischemia was induced by raising the intraocular pressure (IOP in one eye of rats to 140 mmHg for 1 h followed by natural reperfusion. After 21 days, histological as well as quantitative real-time PCR (qRT-PCR analyses of optic nerves were performed. Ischemic optic nerves showed an infiltration of cells and also degeneration with signs of demyelination. Furthermore, a migration and an activation of microglia could be observed histologically as well as on mRNA level. In regard to macroglia, a trend toward gliosis could be noted after ischemia induction by vimentin staining. Additionally, an up-regulation of glial fibrillary acidic protein (GFAP mRNA was found in ischemic optic nerves. Counting of oligodendrocyte transcription factor 2 positive (Olig2+ cells revealed a decrease of oligodendrocytes in the ischemic group. Also, myelin basic protein (MBP and myelin oligodendrocyte glycoprotein (MOG mRNA expression was down-regulated after induction of I/R. On immunohistological level, a decrease of MOG was detectable in ischemic optic nerves as well. In addition, SMI-32 stained neurofilaments of longitudinal optic nerve sections showed a strong structural damage of the ischemic optic nerves in comparison to controls. Consequently, retinal ischemia impacts optic nerve degeneration. These findings could help to better understand the course of destruction in the optic nerve after an ischemic insult. Especially for therapeutic studies, the optic nerve is important because of its susceptibility to be damaged as a result

  12. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  13. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  14. Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Křepelka, Jaromír; Peřina ml., Jan; Bondani, M.; Allevi, A.; Andreoni, A.

    2009-01-01

    Roč. 53, č. 3 (2009), 373-382 ISSN 1434-6060 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric process * three-mode state * sub-Poisson statistics * conditional measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.420, year: 2009

  15. Thermal self-frequency locking of doubly-resonant optical parametric oscillator

    DEFF Research Database (Denmark)

    Hansen, P.L.; Buchhave, Preben

    1997-01-01

    The increase in the circulating signal and idler fields that occurs in a high-Q doubly resonant optical parametric oscillator (OPO) as it approaches resonance results in a small increase in the crystal temperature owing to absorption of the generated fields. The temperature change affects....... We show that the experimentally observed effects are consistent with the results of a numerical model of the OPO....

  16. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  17. High energy optical parametric source for multi-wavelength CO2 dial

    Science.gov (United States)

    Barrientos-Barria, Jessica; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Godard, Antoine; Melkonian, Jean-Michel; Lefebvre, Michel

    2017-11-01

    In the scope of the preparation of spaceborne lidar missions to measure the concentration of greenhouse gases with differential absorption LIDAR techniques, we report on the development of a high energy 2.05 μm optical parametric source based on a versatile architecture enabling multiple wavelengths generation in the vicinity of the R30 absorption line of CO2. The multi-wavelength configuration is under study for a few greenhouse gas active detection missions, such as Ascend.

  18. Classification of wet aged related macular degeneration using optical coherence tomographic images

    Science.gov (United States)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  19. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  20. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  1. Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection.

    Science.gov (United States)

    Barria, Jessica Barrientos; Roux, Sophie; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Lefebvre, Michel

    2013-07-01

    We report on the first microsecond doubly resonant optical parametric oscillator (OPO). It is based on a nested cavity OPO architecture allowing single longitudinal mode operation and low oscillation threshold (few microjoule). The combination with a master oscillator-power amplifier fiber pump laser provides a versatile optical source widely tunable in the 3.3-3.5 μm range with an adjustable pulse repetition rate (from 40 to 100 kHz), high duty cycle (~10(-2)) and mean power (up to 25 mW in the idler beam). The potential for trace gas sensing applications is demonstrated through photoacoustic detection of atmospheric methane.

  2. Effects of Temperature and Axial Strain on Four-Wave Mixing Parametric Frequencies in Microstructured Optical Fibers Pumped in the Normal Dispersion Regime

    Directory of Open Access Journals (Sweden)

    Javier Abreu-Afonso

    2014-10-01

    Full Text Available A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates ­–0.04 nm/ºC and 0.3 nm/ºC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.

  3. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems

    Science.gov (United States)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-04-01

    We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

  4. Lycium barbarum (wolfberry reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection.

    Directory of Open Access Journals (Sweden)

    Hongying Li

    Full Text Available Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP are neuroprotective for retinal ganglion cells (RGCs in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1. This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.

  5. Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration.

    Science.gov (United States)

    Li, Ying; Zhong, Haizhe; Yang, Jianlong; Wang, Shiwei; Fan, Dianyuan

    2017-07-15

    Conversion efficiency and phase-matching (PM) bandwidth are both critical issues for broadband parametric processes. In some sense, they determine the highest peak power achieved via the optical parametric amplification. In this Letter, a versatile idler-separated quasi-phase matching scheme capable of both backconversion circumvention and ultra-broadband PM is presented. Full-dimensional spatial-temporal simulations for the typical optical parametric chirped pulse amplification processes at 800 nm and 3.4 μm were presented in detail. By virtue of the broad PM bandwidth on account of the non-collinear PM configuration, the backconversion circumvention on account of the idler-separated design, and the walk-off self-compensation on account of the symmetrical tilting grating patterns, significantly improved gain bandwidth, extremely high conversion efficiency, and a well-preserved beam profile are simultaneously achieved. Compared with the collinear configuration, the peak power can be potentially enhanced by 5-10 times under the same operation circumstances.

  6. Photo Parametric Amplifier Using Up & Down Converter Configuration for Optical Receiver

    Science.gov (United States)

    Abdullah, Mohammad Faiz Liew; Elbireki, Majdi Farag Mohammed

    2012-03-01

    A fundamental requirement in the design of an optical receiver is the achievement of high sensitivity and broad bandwidth. These two features are very important in getting reliable system. In this project a receiver circuit based on Photo parametric Amplifier (PPA), which is suggested as one of the alternative for receiver detection and amplification techniques is fully described. The PPA mode of operation involves optical detection and amplification within a single device. It is able to provide selectivity and sensitivity at the same time, as required for wireless optical communications. The most common problem that any communication system might face is the noise which must be eliminated or at least reduce it. In order to reduce the noise, filters have been implemented before the signal is passes through an amplifier. In this project an Up converter has been placed at the transmitter circuit in order to obtain high frequency, while at the receiver circuit, filters has been placed with Down converter to obtain the desired frequency. Photo diode, PIN type has been used to detect any incoming signal at the receiver circuit. Results showed that the output signal has been improved; with addition power strength and noise reduction which showed that photo parametric amplifier is more reliable and suitable to be used in wireless optical communication system.

  7. All-optical switching in a highly efficient parametric fiber mixer: design study.

    Science.gov (United States)

    Pejkic, Ana; Nissim, Ron R; Myslivets, Evgeny; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan

    2014-09-22

    Ultrafast all-optical switching in a highly nonlinear fiber with a longitudinally varied zero-dispersion wavelength was investigated theoretically and experimentally. We describe fiber-matched methodology for construction of a fast, low energy photon switch. The design relies on static and dynamic models and allows performance target selection, under constraints of physical fiber characteristic. The new design methodology was used to construct one-pump switch in the highly efficient parametric mixer. We demonstrate that such a parametric gate can operate at 100 GHz rate, with 2 aJ control energy, while achieving better than 50% extinction ratio. Theoretical analysis and experimental measurements indicate that accurate mapping of the fiber local dispersion is critical in optimizing the bandwidth and control energy of the switch. Switching performance limits are discussed and means for impairment mitigation are described.

  8. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  9. Ground demonstration of trace gas lidar based on optical parametric amplifier

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has ˜500 MHz linewidth and is widely tunable at both near-infrared and mid-infrared wavelengths, with an optical-optical conversion efficiency of up to ˜39%. Using this laser source, we demonstrated open-path measurements of CH4 (3291 and 1652 nm), CO2 (1573 nm), O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability, and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology.

  10. A flexible receiver with fiber optical parametric amplifier in OCDMA-FSO communication system

    Science.gov (United States)

    Xia, Min; Yuan, Jin-hui; Sang, Xin-zhu; Yin, Xiao-li; Rao, Lan; Yu, Chong-xiu

    2014-11-01

    A new receiver is proposed, which uses the fiber optical parametric amplifier (FOPA) in optical code division multiple access (OCDMA) over free space optic (FSO) communication system. The noise tolerance as the performance index in this receiver is derived. The receiver can not only improve the noise tolerance but also change the pump data conveniently for adapting to the length variation of the coding sequence under a complex and fast-changing weather condition. The influence of different factors on the noise tolerance is analyzed, and a significant improvement of about 18.77 dB for the noise tolerance can be achieved when the pump power and the length of coding sequence are 5 W and 256, respectively.

  11. Wallerian degeneration in the optic nerve stretch-injury model of traumatic brain injury: a stereological analysis.

    Science.gov (United States)

    Maxwell, William L; Bartlett, Emma; Morgan, Hanna

    2015-06-01

    Patients with chronic traumatic encephalopathy (CTE) show loss of central white matter, central gray matter, and cortical gray matter with increasing post-traumatic survival. The majority of experimental studies using animals have, however, discussed only the ultrastructural pathophysiology of injured central white matter leading to secondary axotomy and the formation of axonal terminal bulbs. Using the stretch-injured optic nerve model in adult guinea pigs, the present study provides novel quantitative data concerning Wallerian degeneration of disconnected axonal fragments following secondary axotomy out to 12 weeks after injury to an optic nerve. The time course of Wallerian degeneration at the level of an individual nerve fiber is comparable to that reported in earlier studies over 48 h to two weeks after secondary axotomy. But only a relatively small proportion of nerve fibers within the optic tract degenerate via Wallerian degeneration during the first two weeks. Rather, examples of each of the three stages of Wallerian degeneration-acute axonal degeneration, latency of the distal axonal segment, and granular fragmentation-occur within the optic tract across the entire experimental survival of 12 weeks used in the present study. This data suggests that some nerve fibers initiate Wallerian degeneration days and weeks after the initial time of mechanical injury to an optic nerve. The number of intact nerve fibers continues to fall over at least three months after injury in the stretch-injury model of traumatic axonal injury. It is suggested that these novel findings relate to the mechanism(s) whereby central white matter volume decreases over months and years in CTE patients.

  12. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  13. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  14. Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating.

    Science.gov (United States)

    Jacobsson, Björn; Canalias, Carlota; Pasiskevicius, Valdas; Laurell, Fredrik

    2007-11-15

    We demonstrate a tunable nanosecond optical parametric oscillator with a narrowed signal spectrum. This was done by use of a volume Bragg grating based retroreflector, which makes the tuning simple and yields a compact design. Using periodically poled KTiOPO4 as the nonlinear medium, we generated 0.42 mJ of signal energy at 760 nm with a tuning range of 5 nm(2.6 THz) and a bandwidth of 0.25 nm(130 GHz) when the oscillator was pumped at 532 nm with 1.3 mJ of energy.

  15. Fibre Optical Parametric Amplification in Defect Bragg Fibres with Zero Dispersion Slow Light Effect

    International Nuclear Information System (INIS)

    Li, Xiao; Wei, Zhang; Yi-Dong, Huang; Jiang-De, Peng; Hong, Zhao; Ke-Wu, Yang

    2008-01-01

    Nonlinearity enhancement by slow light effect and strong light confinement in defect Bragg fibres is demonstrated and analysed in applications of fibre optical parametric amplifiers. Broadband low group velocity and zero dispersion as well as the strong light confinement by band gap enhances the nonlinear coefficient up to more than one order than the conventional high nonlinear fibres. Moreover, the zero dispersion wavelength of coupled core mode can be designed arbitrarily, under which the phase-matching bandwidth of the nonlinear process can be extended. (fundamental areas of phenomenology (including applications))

  16. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice.

    Science.gov (United States)

    Nusbaum, Derek M; Wu, Samuel M; Frankfort, Benjamin J

    2015-07-01

    The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Axonal protection by short-term hyperglycemia with involvement of autophagy in TNF-induced optic nerve degeneration

    Directory of Open Access Journals (Sweden)

    Kana eSase

    2015-10-01

    Full Text Available Previous reports showed that short-term hyperglycemia protects optic nerve axons in a rat experimental hypertensive glaucoma model. In this study, we investigated whether short-term hyperglycemia prevents tumor necrosis factor (TNF-induced optic nerve degeneration in rats and examined the role of autophagy in this axon change process. In phosphate-buffered saline-treated rat eyes, no significant difference in axon number between the normoglycemic (NG and streptozotocin-induced hyperglycemic (HG groups was seen at 2weeks. Substantial degenerative changes in the axons were noted 2 weeks after intravitreal injection of TNF in the NG group. However, the HG group showed significant protective effects on axons against TNF-induced optic nerve degeneration compared with the NG group. This protective effect was significantly inhibited by 3-methyladenine, an autophagy inhibitor. Immunoblot analysis showed that the LC3-II level in the optic nerve was increased in the HG group compared with the NG group. Increased p62 protein levels in the optic nerve after TNF injection was observed in the NG group, and this increase was inhibited in the HG group. Electron microscopy showed that autophagosomes were increased in optic nerve axons in the HG group. Immunohistochemical study showed that LC3 was colocalized with nerve fibers in the retina and optic nerve in both the NG and HG groups. Short-term hyperglycemia protects axons against TNF-induced optic nerve degeneration. This axonal-protective effect may be associated with autophagy machinery.

  18. Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology,

  19. All-fiber wavelength-swept optical parametric oscillator at 1 μm band

    Science.gov (United States)

    Yang, Yi; Yang, Si-Gang; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong

    2017-11-01

    We demonstrate an all-fiber and continuously wavelength-swept fiber optical parametric oscillator (FOPO) based on dispersion tuning technology around 1 μm. The alignment-free FOPO is pumped by a pulse train light, driven by a frequency-swept electric pulse source with a repetition rate ranging from 107.24 MHz to 107.31 MHz. Thus, the FOPO demonstrates a wavelength-swept output with a sweeping range of 100 nm centered at 1065.10 nm. The sweeping rate can be improved up to 100 kHz, while the cumulative speed exceeds 1000 000 nm s‑1. Since the electric scanning is used in an all-fiber setup instead of the traditional mechanical scanning method, it demonstrates better stability under prolonged operation, which is promising to be applied in biomedical imaging, such as optical coherence tomography (OCT) systems and other applications.

  20. Multi-wavelength fiber optical parametric oscillator with ultra-narrow wavelength spacing.

    Science.gov (United States)

    Chen, Daru; Sun, Bing

    2010-08-16

    We propose a novel multi-wavelength fiber optical parametric oscillator (MW-FOPO) based on a ring cavity. A highly nonlinear fiber and a Mach-Zehnder interferometer formed by two 3-dB optical couplers are used as the gain medium and the comb filter, respectively. Multi-wavelength lasing of the MW-FOPO with an ultra-narrow wavelength spacing of about 0.08 nm is achieved. The output spectrum of the MW-FOPO covers a wavelength regime from 1510 nm to 1615 nm (for lasing wavelengths with the power that exceeds -60 dBm). The stability of the MW-FOPO is discussed and experimentally demonstrated. A comparison of the output spectra between the MW-FOPO and the multi-wavelength Erbium-doped fiber laser is also presented.

  1. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator

    Science.gov (United States)

    Serikawa, Takahiro; Yoshikawa, Jun-ichi; Makino, Kenzo; Frusawa, Akira

    2016-12-01

    We report a 65MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860nm. The triangle structure of our OPO enables the round-trip length to reach 45mm as a ring cavity, which provides a counter circulating optical path available for introducing a probe beam or generating another squeezed vacuum. Hence our OPO is suitable for the applications in high-speed quantum information processing where two or more squeezed vacua form a complicated interferometer, like continuous-variable quantum teleportation. With a homemade, broadband and low-loss homodyne detector, a direct measurement shows 8.4dB of squeezing at 3MHz and also 2.4dB of squeezing at 100MHz.

  2. Double-pumped multiwavelength fiber optical parametric oscillator based on a Sagnac loop filter.

    Science.gov (United States)

    Sun, Bing; Hu, Kai; Wei, Yizhen; Chen, Daru; Gao, Shiming; Wang, Tianshu; He, Sailing

    2012-01-01

    We propose a double-pumped ring cavity multiwavelength fiber optical parametric oscillator (MW-FOPO) using a highly nonlinear dispersion-shifted fiber (HNL-DSF) as the gain medium and a polarization maintained fiber based Sagnac loop filter as the comblike filter. 22-wavelength lasing of the double-pumped MW-FOPO with a ripple less than ±2.5 dB and a wavelength spacing of about 0.8 nm in a wavelength range from 1541 nm to 1558 nm is experimentally demonstrated. We discussed the power stability of the multiwavelength lasing of the double-pumped MW-FOPO. A comparison of the output spectra between the double-pumped MW-FOPO and single-pumped MW-FOPO is also presented. © 2012 Optical Society of America

  3. Idler-resonant optical parametric oscillator based on KTiOAsO4

    Science.gov (United States)

    Bai, Fen; Wang, Qingpu; Liu, Zhaojun; Zhang, Xingyu; Lan, Weixia; Tao, Xutang; Sun, Youxuan

    2013-08-01

    An idler-resonant KTiOAsO4 (KTA) optical parametric oscillator is demonstrated within a diode-end-pumped acousto-optically Q-switched Nd:YAG laser. With an X-cut KTA crystal, idler wave at 3467 nm and signal wave at 1535 nm are generated. Under an incident diode pump power of 15.4 W, the idler output power of 105 mW and signal power of 720 mW are obtained at a pulse repetition rate of 40 kHz. The pulse widths of the idler and signal waves are 7.2 and 3.1 ns, respectively. The beam quality factors (M2) of the idler wave are within 1.2 in both horizontal and vertical directions.

  4. A STUDY TO COMPARE FUNDUS FLUORESCEIN ANGIOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY IN AGE RELATED MACULAR DEGENERATION

    Directory of Open Access Journals (Sweden)

    Rani Sujatha

    2016-02-01

    Full Text Available PURPOSE To compare the diagnostic accuracy of optical coherence tomography with Fundus Fluorescein Angiography in diagnosing Age related macular degeneration. METHODS A total 25 patients newly diagnosed as Age related macular degeneration were included in the study. The study was done during the time period between August 2013 to November 2015 this is a prospective randomized hospital based study. RESULTS Maximum no of patients affected belonged to the age group of 50-70 years and 60% were females. The most common symptom was defective vision accounting for 92%. Hypertension and hyperlipidemia were the most common risk factors. 12% of the cases had unilateral disease and 88% had bilateral disease. 6% of eyes were normal in both FFA and OCT. 62% of the eyes by FFA and 61% of the eyes by OCT had dry ARMD and 32 % of the eye by FFA and 33 % by OCT had wet ARMD. CONCLUSION Fundus Fluorescein Angiography is the gold standard tool for screening ARMD and OCT is more specific in detecting early subretinal neovascular membrane and also to assess the activity of the neovascular membranes. Hence OCT is superior to FFA in diagnosing early wet ARMD and thus helps in early management of patients with ARMD.

  5. How to tune quantum correlations with an intracavity photonic crystal in an optical parametric oscillator

    Science.gov (United States)

    Garcia-March, Miguel; de Castro, Maria; Gomila, Damia; Zambrini, Roberta

    2011-05-01

    We study the effect of periodic modulations on the quantum correlations of light in a nonlinear optical system, considering an intracavity photonic crystal in a type I optical parametric oscillator (OPO). We use a few modes linear approximation below threshold to obtain analytical expressions for the correlations comparing them with numerical results obtained from Langevin equations below (and also above) threshold. First, we find that the parametric threshold can be either raised or lowered through the amplitude of the photonic crystal, due to the interplay of two competing mechanism, i.e, inhibition of the signal spatial instability and the imprint of a spatial modulation on the pump favouring the instability process. Second, we find that, above threshold, the break of translational invariance provides a mechanism to reduce the quadrature quantum fluctuations leading to squeezing over a larger range of quadrature angles. Finally, inseparable and EPR entangled spatial beams are found in the presence of the PC. Funded by FISICOS (FIS2007-60327), CoQuSys (200450E566), MEC, Fulbright Commision, and FECYT.

  6. Subharmonic synchronously intracavity pumped picosecond optical parametric oscillator for intracavity phase interferometry

    Science.gov (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan

    2014-12-01

    The laser system suitable for precise intracavity phase interferometry is presented. The system is based on an intracavity pumped PPLN linear optical parametrical oscillator (OPO). For synchronous pumping of OPO a SESAM-mode-locked, picosecond, diode-pumped Nd:YVO4 linear oscillator, operating at 1.06 µm was used. The OPO cavity was set to be twice as long as the pumping Nd:YVO4 laser cavity. The pumping laser was set in such a manner that the parametric gain inside the PPLN overcame the OPO threshold only for one direction of pumping pulse propagation. This leads to the generation of two independent trains of pulses at the 1.5 µm spectral range. To verify the system performance, a LiNbO3 electro-optic phase modulator was placed inside the OPO. The RF-signal derived from the pumping pulse train, detected by a fast photodiode and divided by two, was applied on the modulator. A stable beat-note signal between the two OPO trains was successfully measured for the first time from such a compact, all-diode-pumped laser system. For RF-signal amplitude from 100 up to 700 mV beat-note frequency varied from 232 up to 1847 Hz which corresponded to detected phase-shift 36-250 µrad. The bandwidth of beat-note was less than 1 Hz (FWHM) resulting in phase-shift measurement error 1.5 × 10-7 rad.

  7. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  8. Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography

    Science.gov (United States)

    Scolaro, Loretta; McLaughlin, Robert A.; Klyen, Blake R.; Wood, Benjamin A.; Robbins, Peter D.; Saunders, Christobel M.; Jacques, Steven L.; Sampson, David D.

    2012-01-01

    We report the use of optical coherence tomography (OCT) to determine spatially localized optical attenuation coefficients of human axillary lymph nodes and their use to generate parametric images of lymphoid tissue. 3D-OCT images were obtained from excised lymph nodes and optical attenuation coefficients were extracted assuming a single scattering model of OCT. We present the measured attenuation coefficients for several tissue regions in benign and reactive lymph nodes, as identified by histopathology. We show parametric images of the measured attenuation coefficients as well as segmented images of tissue type based on thresholding of the attenuation coefficient values. Comparison to histology demonstrates the enhancement of contrast in parametric images relative to OCT images. This enhancement is a step towards the use of OCT for in situ assessment of lymph nodes. PMID:22312589

  9. High-efficiency mid-infrared optical parametric amplifier with approximate uniform rectangular pump distribution

    Science.gov (United States)

    Wei, Xingbin; Peng, Yuefeng; Luo, Xingwang; Zhou, Tangjian; Peng, Jue; Nie, Zan; Gao, Jianrong

    2017-10-01

    We present a high-efficiency mid-infrared optical parametric amplifier (OPA) pumped by a Nd:YAG slab laser with rectangular beam distribution. To improve the conversion efficiency of OPA, we used an approximate uniform pump beam, which helped most of the pump area maintain the optimal intensity to reduce the back conversion effect. The uniform pump distribution without any peak intensity also reduced the damage chances of the nonlinear crystal of PPMgOLN and increased its pump power capability in power-scaling operations. To make sufficient usage of the narrow and small interface of PPMgOLN, we chose a rectangular pump shape whose size was adjusted to match the maximum effective interface of PPMgOLN. The idler laser of 3.82 μm from an optical parametric oscillator (OPO) was powerscaled in the following OPA system. We used two 1.064 μm lasers to pump the OPO and OPA separately. The pulsewidth adjustment and pulse synchronization of the 1 μm pump laser and 3.82 μm seed laser were realized by changing the parameters of the two acoustic-optical Q-switches in the two pump lasers. With the input pump power of 293.4 W, the amplified 3.82 μm laser power was 40.3 W deducting the injected seed laser power of 2.9 W from OPO. The corresponding conversion efficiency from the pump to the idler was 13.7% for the PPMgOLN OPA.

  10. Paranode Abnormalities and Oxidative Stress in Optic Nerve Vulnerable to Secondary Degeneration: Modulation by 670 nm Light Treatment.

    Directory of Open Access Journals (Sweden)

    Charis R Szymanski

    Full Text Available Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.

  11. Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator......We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator...

  12. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  13. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.

    Science.gov (United States)

    Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine

    2016-05-16

    A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).

  14. Parametric amplification in MoS2drum resonator.

    Science.gov (United States)

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  15. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  16. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  17. Polarization quantum properties in a type-II optical parametric oscillator below threshold

    International Nuclear Information System (INIS)

    Zambrini, Roberta; Miguel, Maxi San; Gatti, Alessandra; Lugiato, Luigi

    2003-01-01

    We study the far-field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type-II optical parametric oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial Einstein-Podolsky-Rosen entanglement in quadrature-polarization components. For the far-field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric, intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far-field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing

  18. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser.

    Science.gov (United States)

    Abitan, Haim; Buchhave, Preben

    2003-11-20

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser.

  19. Efficient conversion from 1 to 2 microm by a KTP-based ring optical parametric oscillator.

    Science.gov (United States)

    Arisholm, G; Lippert, E; Rustad, G; Stenersen, K

    2002-08-01

    Conversion of Q -switched 1.064-microm Nd:YAG laser pulses to the 2-2.2-mu; m region with 46% efficiency is demonstrated with a KTP-based type 2 phase-matched optical parametric oscillator (OPO) with two pairs of walk-off compensating crystals in a ring resonator. With 10 mJ of pump energy, we obtain 2.5 mJ at the 2.06-microm signal and 2.1 mJ at the 2.2-microm idler, with a beam quality of M(2) approximately 1.4 . With a ZnGeP(2) -based OPO pumped by the signal from the KTP OPO we achieved 14% conversion efficiency from 1.064microm to the 3-5-microm range.

  20. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while......A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  1. Theoretical and simulation analysis of the fiber optical parametric amplifier (FOPA) with cascaded structure

    Science.gov (United States)

    Gao, Jie; Cao, Yongsheng; Chen, Fushen; Sun, Bao; Hu, Zhefeng

    2012-02-01

    A novel scheme is proposed to obviously improve the amplified gain, gain flatness and bandwidth characteristics of FOPA by applying a cascaded fiber structure. The basic structure of the cascaded fiber optical parametric amplifier (CFOPA) is introduced. Then, the expression of signals pass gain characteristic is obtained by utilizing a set of coupled equations. The gain, bandwidth and gain flatness characteristics of the CFOPA with the different parameters of DCF, such as fiber length l/, dispersion slope dD//dλ, and so on, are theoretical analyzed and optimized. Furthermore, simulation analysis is applied to verify the theoretical results by using Optisystem 7.0 software. Although, there are a few deviations between the simulation and the theoretical results, the simulation results effectively demonstrate the validity and feasibility of the theoretical analysis.

  2. Design and analysis of all-optical switches based on fiber parametric devices

    Science.gov (United States)

    Ma, Jing; Jiang, Chun

    2008-05-01

    We propose a novel 2 × 2 wavelength-convertible optical switch based on dual-pump fiber parametric devices: one is driven by linearly parallel pumps, and the other one by perpendicular pumps. Theoretical analysis is made on the polarization effects on the switching performance of the two devices. The result predicts that two incident signals which are positioned symmetrically with respect to one pump can be switched independently, with judicious combinations of the relative pump-signal polarization states. Simulations performed in OptiSystem show that the scheme can achieve crosstalk-free packet switching with acceptable extinction ratios for both signals. Besides, future applications of this novel scheme in high-speed switching nodes are discussed.

  3. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    International Nuclear Information System (INIS)

    Wang He-Lin; Yang Ai-Jun; Leng Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an Öffner stretcher is further broadened to above 200ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an output energy of 2mJ is achieved at a repetition rate of 10Hz. (fundamental areas of phenomenology (including applications))

  4. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Prandolini, M J; Riedel, R; Schulz, M; Hage, A; Höppner, H; Tavella, F

    2014-01-27

    A conceptual design of a high power, ultrabroadband optical parametric chirped-pulse amplifier (OPCPA) was carried out comparing nonlinear crystals (LBO and BBO) for 810 nm centered, sub-7.0 fs pulses with energies above 1 mJ. These amplifiers are only possible with a parallel development of kilowatt-level OPCPA-pump amplifiers. It is therefore important to know good strategies to use the available OPCPA-pump energy efficiently. Numerical simulations, including self- and cross-phase modulation, were used to investigate the critical parameters to achieve sufficient spectral and spatial quality. At high output powers, thermal absorption in the nonlinear crystals starts to degrade the output beam quality. Strategies to minimize thermal effects and limits to the maximum average power are discussed.

  5. Optimized design of six-wave fiber optical parametric amplifiers by using a genetic algorithm.

    Science.gov (United States)

    Li, Peipei; Zhu, Hongna; Taccheo, Stefano; Gao, Xiaorong; Wang, Zeyong

    2017-05-20

    A governing equation of the six-wave fiber optical parametric amplifier (FOPA) for the power and phase difference evolution of the six interacting waves is deduced. To optimize the gain of the six-wave FOPA, a multivariate stochastic optimization algorithm, i.e., the genetic algorithm (GA), is applied. The effect of pump depletion on the gain characteristic of the six-wave FOPA is emphasized and the effect of the fiber length, the wavelength, and the power of two pumps on bandwidth, flatness, and magnitude of the gain spectrum has also been studied. A broader and flatter six-wave FOPA gain is obtained by adopting optimum design parameters, which theoretically provide a uniform gain of 65 dB with 0.3 dB uniformity over a 110 nm bandwidth for the six-wave FOPA.

  6. Laser Gyroscope Based on Synchronously Pumped Bidirectional Fiber Optical Parametric Oscillator

    Science.gov (United States)

    Noble, Jeffrey

    This master thesis presents an experimental design of a laser gyroscope based on a stabilized fiber optical parametric oscillator frequency comb and the results of testing of the proposed design. Before going into the experimental details, a background for different types of gyroscopes is discussed. This new laser gyroscope design is made up of only polarization maintaining (PM) fiber and PM fiber components. By using only fiber and fiber components, we were able to minimize size, weight, and alignment issues that are typical in bulk optical designs for OPO's and gyroscopes. The fiber-based OPO produces counter propagating ultrafast pulses that overlap only twice in the cavity, resulting in a beatnote signal when combined outside of the laser cavity. A mode-locked laser is used as a pump source so the lock-in effect (or deadband region) is avoided for the experiment. The drift of this beatnote signal represents the rotation sensitivity of the experimental setup. Issues seen in past iterations, such as stability of mode-locked pump source and beatnote drift overtime due to environmental variables, have been reduced in this experiment. This has been done by comprising the entire pump source of PM components, and by placing the entire setup in an insulating box to minimize acoustic and temperature fluctuations. By creating a frequency comb and locking the laser gyroscope to an optical clock, this experiment can be used for very precise rotation sensing in comparison to other gyro designs currently available.

  7. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source.

    Science.gov (United States)

    Aadhi, A; Sharma, Varun; Singh, R P; Samanta, G K

    2017-09-15

    We report on a high-power, continuous-wave source of optical vortices tunable in the mid-infrared (mid-IR) wavelength range. Using the orbital angular momentum (OAM) conservation of the parametric processes and the threshold conditions of the cavity modes of the singly resonant optical parametric oscillator (SRO), we have transferred the OAM of the pump beam at the near-infrared wavelength to the idler beam tunable in the mid-IR. Pumped with a vortex beam of order l p =1 at 1064 nm, the SRO, configured in a four curved mirror-based ring cavity with a 50 mm long MgO-doped periodically poled LiNbO 3 crystal, produces an idler beam with an output power in excess of 2 W in a vortex spatial profile with the order l i =1, tunable across 2217-3574 nm and corresponding signal beam in Gaussian intensity distribution across 1515-2046 nm. For pump vortices of the order l p =1 and 2, and a power of 22 W, the SRO produces idler vortices of the same order as that of the pump beam with a maximum power of 5.23 and 2.3 W, corresponding to near-IR to mid-IR vortex conversion efficiency of 23.8% and 10.4%, respectively. The idler vortex beam has a spectral width, and a passive rms power stability of 101 MHz and 4.9% over 2 h, respectively.

  8. Intracavity KTiOAsO4 optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser

    Science.gov (United States)

    Lan, W. X.; Wang, Q. P.; Liu, Z. J.; Zhang, X. Y.; Wan, X. B.; Bai, F.; Shen, H. B.; Lv, G. P.; Jin, G. F.; Tao, X. T.; Sun, Y. X.

    2012-04-01

    A KTiOAsO4 (KTA) intracavity optical parametric oscillator (IOPO) is achieved within a diode end-pumped acousto-optically Q-switched Nd:YAG laser. With a 25-mm-long X-cut KTA crystal, efficient parametric conversions to signal (1535 nm) and idler (3467 nm) waves are realized. At an incident diode power of 14.9 W, the highest output power of 1.83 W including 1.37 W of signal and 0.46 W of idler radiations are obtained at a repetition rate of 40 kHz, corresponding to a total optical-to-optical conversion efficiency of 12.3%. Rate equations model are used to simulate this system, and the theoretical results agree with the experimental ones.

  9. Factors predicting optic nerve axonal degeneration after methanol-induced acute optic neuropathy: a 2-year prospective study in 54 patients

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Nurieva, O.; Kotíková, K.; Urban, P.; Navrátil, Tomáš; Pelclová, D.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 251-261 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : methanol optic neuropathy * visual evoked potentials * axonal degeneration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.282, year: 2016

  10. Midinfrared optical parametric oscillator based on the wide-bandgap BaGa4S7 nonlinear crystal.

    Science.gov (United States)

    Tyazhev, Aleksey; Kolker, Dmitri; Marchev, Georgi; Badikov, Valeriy; Badikov, Dmitrii; Shevyrdyaeva, Galina; Panyutin, Vladimir; Petrov, Valentin

    2012-10-01

    The orthorhombic biaxial crystal BaGa(4)S(7) has been employed in a 1064 nm pumped optical parametric oscillator generating 217 μm and average power of ~50 mW at 100 Hz. Notwithstanding the relatively low nonlinearity, ~3 times above threshold operation has been achieved at pump intensities more than 5 times below the crystal surface damage limit.

  11. Selective trace gas detection of complex molecules with a continuous wave optical parametric oscillator using a planar jet expansion

    NARCIS (Netherlands)

    Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Verbraak, H.; Linnartz, H.

    2007-01-01

    The authors present a trace gas detection method for complex molecules using continuous cavity ring-down spectroscopy in combination with a continuous wave optical parametric oscillator (tunability wavelength: 2.8-4.8 mu m; power: 1 W) sampling a supersonic planar jet expansion (nozzle dimension: 3

  12. Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection

    NARCIS (Netherlands)

    Ngai, A.K.Y.; Persijn, S.T.; Basum, G. von; Harren, F.J.M.

    2006-01-01

    We present a high-power (2.75 W), broadly tunable (2.75-3.83 mu m) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm(-1) per

  13. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  14. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  15. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  16. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  17. Design of a multi-petawatt optical parametric chirped pulse amplifier for the iodine laser ASTERIX IV

    Czech Academy of Sciences Publication Activity Database

    Matousek, P.; Rus, Bedřich; Ross, I. N.

    2000-01-01

    Roč. 36, č. 2 (2000), s. 158-163 ISSN 0018-9197 R&D Projects: GA MŠk LN00A100; GA AV ČR IAA1010014 Grant - others:HPRI(XE) CT-1999-00053 Institutional research plan: CEZ:AV0Z1010921 Keywords : iodine laser * nonlinear crystals * optical parametric amlification petawatt lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.000, year: 2000

  18. MACULAR ATROPHY FINDINGS BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY COMPARED WITH FUNDUS AUTOFLUORESCENCE IN TREATED EXUDATIVE AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Takasago, Yukari; Shiragami, Chieko; Kobayashi, Mamoru; Osaka, Rie; Ono, Aoi; Yamashita, Ayana; Tsujikawa, Akitaka; Hirooka, Kazuyuki

    2017-11-28

    To compare the areas of choriocapillaris (CC) nonperfusion and macular atrophy (MA) in treated exudative age-related macular degeneration. This was a prospective, observational, cross-sectional study. Forty-four eyes exhibiting MA (42 patients with age-related macular degeneration), with a dry macula, underwent fundus autofluorescence and optical coherence tomography angiography. The area of MA detected by fundus autofluorescence and CC nonperfusion detected by optical coherence tomography angiography was measured using image analysis software. The rates of concordance between the MA and CC nonperfusion areas were calculated. We qualitatively and quantitatively compared the areas of MA and CC nonperfusion in age-related macular degeneration eyes. The mean areas of MA and CC nonperfusion were 5.95 ± 4.50 mm and 10.66 ± 7.05 mm, respectively (paired t-test, P age-related macular degeneration.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  19. Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-07

    We present results on direct mode-locking of a doubly-resonant optical parametric oscillator (DRO) using an electro-optic phase modulator with low resonant frequency of 80 MHz as the single mode-locking element. Pumped by a cw laser at 532 nm and based on MgO:sPPLT as the nonlinear material, the DRO generates 533 ps pulses at 80 MHz and 471 ps pulses at 160 MHz. Stable train of mode-locked pulses is obtained at a modulation depth of 1.83 radians when the modulation frequency is precisely tuned and the cavity length is carefully adjusted. The effects of frequency detuning, modulation depth, input laser pump power, crystal temperature and position of modulator inside the cavity, on pulse duration and repetition rate have been studied. Operating at degeneracy, under mode-locked condition, the signal-idler spectrum exhibits a bandwidth of ~31 nm, and the spectrum has been investigated for different phase-matching temperatures. Mode-locked operation has been confirmed by second-harmonic-generation of the DRO output in a β-BaB₂O₄ crystal, where a 4 times enhancement in green power is observed compared to cw operation.

  20. The value of optical coherence tomography in diagnosis and therapy of age-related degeneration

    International Nuclear Information System (INIS)

    Krebs, I.; Binder, S.; Stolba, U.; Krepler, K.; Glittenberg, C.; Zeiler, F.

    2007-01-01

    The ophthalmologic departments are confronted by the necessity of an increasing number of Fluorescein Angiograms (FA). It should be examined in which cases the FA might be replaced by the Optical Coherence Tomography (OCT). FA and OCT examinations were retrospectively evaluated concerning composition, size and activity of the lesion. Unselected cases with age-related macular degeneration (AMD) who underwent FA within 1 month were retrospectively examined, prior examinations of these patients were also evaluated. According to the results of the FA the patients were assigned to different subgroups. 150 FA and OCT examinations of 50 patients were included. In 12 eyes with non exsudative AMD there was a 100 % consistency of the diagnosis. In 68 examinations of 42 eyes with occult exsudative AMD the consistency concerning lesion composition was 78%, differences were noted in the presence of retinal angiomatous proliferation, minimal classic parts, the presence of fibrosis. The evaluation of the activity showed differences of less than two steps in 97 %. In 24 examinations of 16 eyes treated with antiangiogenetic substances the activity of a lesion was judged to be equal in 75%. In 96 % the indication for re-treatment was identical in both examinations. Both examinations FA and OCT were necessary to evaluate a case concerning composition and activity of a lesion. Measurement of the greatest diameter of the lesion was not possible with the OCT except in predominantly classic lesions. In cases treated with antiangiogenetic substances OCT alone provided enough information to decide whether re-treatment is necessary. (author) [de

  1. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration

    Science.gov (United States)

    Rosenfeld, Philip J.

    2016-01-01

    Purpose To explain the pivotal role optical coherence tomography (OCT) imaging had in the development of antiangiogenic therapies for the treatment of neovascular age-related macular degeneration (nvAMD). Methods A historical literature review was combined with personal perspectives from the introduction of OCT imaging and the early clinical use of vascular endothelial growth factor (VEGF) inhibitors. Results At the time that OCT emerged, the gold standard for imaging of nvAMD was fluorescein angiography (FA), a time-consuming, dye-based, invasive technique that provided en face images of the retina and was used to characterize leakage, perfusion status, and the types of macular neovascularization (MNV). In comparison, OCT imaging was a fast, safe, noninvasive technique that complemented FA imaging by providing cross-sectional images of the macula. OCT was able to visualize and quantify the macular fluid that was associated with the presence of excess VEGF, which was identified by intraretinal fluid, subretinal fluid, and fluid under the retinal pigment epithelium (RPE). Clinicians quickly appreciated the benefits of OCT imaging for following macular fluid after anti-VEGF therapy. By observing the qualitative and quantitative changes in macular fluid depicted by OCT imaging, clinicians were empowered to compare anti-VEGF drugs and move from fixed-dosing regimens to patient-specific dosing strategies requiring fewer injections. Conclusions Optical coherence tomography imaging was adopted as a VEGF-meter, a method to detect excess VEGF, and evolved to become the gold standard imaging strategy for diagnosing nvAMD, assessing treatment responses to anti-VEGF drugs, deciding when to re-treat, and evaluating disease progression. PMID:27409464

  2. Remote Optical Imagery of Obscured Objects in Low-Visibility Environments Using Parametric Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Bliss, D.E.; Cameron, S.M.; Hamil, R.A.

    1998-10-14

    The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud

  3. DYNAMISM OF DOT SUBRETINAL DRUSENOID DEPOSITS IN AGE-RELATED MACULAR DEGENERATION DEMONSTRATED WITH ADAPTIVE OPTICS IMAGING.

    Science.gov (United States)

    Zhang, Yuhua; Wang, Xiaolin; Godara, Pooja; Zhang, Tianjiao; Clark, Mark E; Witherspoon, C Douglas; Spaide, Richard F; Owsley, Cynthia; Curcio, Christine A

    2018-01-01

    To investigate the natural history of dot subretinal drusenoid deposits (SDD) in age-related macular degeneration, using high-resolution adaptive optics scanning laser ophthalmoscopy. Six eyes of four patients with intermediate age-related macular degeneration were studied at baseline and 1 year later. Individual dot SDD within the central 30° retina were examined with adaptive optics scanning laser ophthalmoscopy and optical coherence tomography. A total of 269 solitary SDD were identified at baseline. Over 12.25 ± 1.18 months, all 35 Stage 1 SDD progressed to advanced stages. Eighteen (60%) Stage 2 lesions progressed to Stage 3 and 12 (40%) remained at Stage 2. Of 204 Stage 3 SDD, 12 (6.4%) disappeared and the rest remained. Twelve new SDD were identified, including 6 (50%) at Stage 1, 2 (16.7%) at Stage 2, and 4 (33.3%) at Stage 3. The mean percentage of the retina affected by dot SDD, measured by the adaptive optics scanning laser ophthalmoscopy, increased in 5/6 eyes (from 2.31% to 5.08% in the most changed eye) and decreased slightly in 1/6 eye (from 10.67% to 10.54%). Dynamism, the absolute value of the areas affected by new and regressed lesions, ranged from 0.7% to 9.3%. Adaptive optics scanning laser ophthalmoscopy reveals that dot SDD, like drusen, are dynamic.

  4. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  5. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  6. Antiresonant ring output-coupled continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Esteban-Martin, A; Ebrahim-Zadeh, M

    2012-08-13

    We demonstrate the successful deployment of an antiresonant ring (ARR) interferometer for the attainment of optimum output coupling in a continuous-wave (cw) optical parametric oscillator (OPO). The cw OPO, configured as a singly-resonant oscillator (SRO), is based on a 50-mm-long MgO:PPLN crystal and pumped by cw Ytterbium-fiber laser at 1064 nm, with the ARR interferometer integrated into one arm of the standing-wave cavity. By fine adjustment of the ARR transmission, a continuously variable signal output coupling from 0.8% to 7.3% has been achieved, providing optimum output coupling for signal and optimum power extraction for the idler, at different input pumping levels. The experimental results are compared with theoretical calculations for conventional output-coupled cw SRO, and the study shows that by reducing the insertion loss of the ARR elements, the performance of the ARR-coupled cw SRO can be further enhanced. We also show that the use of the ARR does not lead to any degradation in the cw SRO output beam quality. The proof-of-principle demonstration confirms the effectiveness of the technique for continuous, in situ, and fine control of output coupling in cw OPOs to achieve maximum output power at any arbitrary pumping level above threshold.

  7. Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm.

    Science.gov (United States)

    Samanta, G K; Kumar, S Chaitanya; Das, Ritwick; Ebrahim-Zadeh, M

    2009-08-01

    We report a high-power, cw, singly resonant optical parametric oscillator (SRO) using a simple, compact fiber pump laser architecture in the green. The SRO, based on MgO:sPPLT, is pumped by 9.6 W of single-frequency cw radiation at 532 nm obtained by single-pass second-harmonic generation (SHG) of a 30 W Yb fiber laser, also in MgO:sPPLT. Using two identical crystals of 30 mm length for SHG and SRO, we generate cw idler powers of up to 2 W over 855-1408 nm, with a peak-to-peak power stability <11.7% over 40 min, in a TEM(00) spatial mode with M(2)<1.26. Using finite output coupling of the resonant wave, we extract 800 mW of signal power with peak-to-peak power stability <10.7% over 40 min, and a frequency stability <75 MHz over 15 min. The signal and idler output have TEM(00) beam profile with M(2)<1.52 across the tuning range.

  8. Frequency-locked, injection-seeded, pulsed narrowband optical parametric generator.

    Science.gov (United States)

    Reichardt, Thomas A; Bambha, Ray P; Kulp, Thomas J; Schmitt, Randal L

    2003-06-20

    A frequency-locked, injection-seeded, pulsed optical parametric generator (OPG) has been developed for short-range infrared differential absorption lidar (DIAL) applications. The periodically poled lithium niobate OPG is pumped by a passively Q-switched Nd:YAG microlaser and is seeded by a distributed feedback (DFB) diode laser. The OPG is designed for DIAL measurement of a narrow R-branch transition of methane at 3.2704 microm. The output of the OPG is a two-pulse sequence with a 100-micros temporal separation between the pulses, where the first pulse is absorbed by methane and the second pulse is not absorbed. The first pulse is actively locked to the methane absorption feature by use of the derivative of the transmission spectrum through a reference cell. Although the device was not optimized for output power, the 3.27-microm OPG output energies of the first and second pulses are 5.5 and 5.9 microJ, respectively, producing 21 mW when operated at 1818 Hz.

  9. Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings.

    Science.gov (United States)

    Phillips, C R; Mayer, B W; Gallmann, L; Fejer, M M; Keller, U

    2014-04-21

    Chirped quasi-phase-matching (QPM) gratings offer efficient, ultra-broadband optical parametric chirped pulse amplification (OPCPA) in the mid-infrared as well as other spectral regions. Only recently, however, has this potential begun to be realized [1]. In this paper, we study the design of chirped QPM-based OPCPA in detail, revealing several important constraints which must be accounted for in order to obtain broad-band, high-quality amplification. We determine these constraints in terms of the underlying saturated nonlinear processes, and explain how they were met when designing our mid-IR OPCPA system. The issues considered include gain and saturation based on the basic three-wave mixing equations; suppression of unwanted non-collinear gain-guided modes; minimizing and characterizing nonlinear losses associated with random duty cycle errors in the QPM grating; avoiding coincidentally-phase-matched nonlinear processes; and controlling the temporal/spectral characteristics of the saturated nonlinear interaction in order to maintain the chirped-pulse structure required for OPCPA. The issues considered place constraints both on the QPM devices as well as the OPCPA system. The resulting experimental guidelines are detailed. Our results represent the first comprehensive discussion of chirped QPM devices operated in strongly nonlinear regimes, and provide a roadmap for advancing and experimentally implementing OPCPA systems based on these devices.

  10. Patterns of Retinal Ganglion Cell Damage in Neurodegenerative Disorders: Parvocellular vs Magnocellular Degeneration in Optical Coherence Tomography Studies

    Directory of Open Access Journals (Sweden)

    Chiara La Morgia

    2017-12-01

    Full Text Available Many neurodegenerative disorders, such as Parkinson’s disease (PD and Alzheimer’s disease (AD, are characterized by loss of retinal ganglion cells (RGCs as part of the neurodegenerative process. Optical coherence tomography (OCT studies demonstrated variable degree of optic atrophy in these diseases. However, the pattern of degenerative changes affecting the optic nerve (ON can be different. In particular, neurodegeneration is more evident for magnocellular RGCs in AD and multiple system atrophy with a pattern resembling glaucoma. Conversely, in PD and Huntington’s disease, the parvocellular RGCs are more vulnerable. This latter pattern closely resembles that of mitochondrial optic neuropathies, possibly pointing to similar pathogenic mechanisms. In this review, the currently available evidences on OCT findings in these neurodegenerative disorders are summarized with particular emphasis on the different pattern of RGC loss. The ON degeneration could become a validated biomarker of the disease, which may turn useful to follow natural history and possibly assess therapeutic efficacy.

  11. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  12. The effects of immune protein CD3ζ development and degeneration of retinal neurons after optic nerve injury.

    Directory of Open Access Journals (Sweden)

    Tao He

    Full Text Available Major histocompatibility complex (MHC class I molecules and their receptors play fundamental roles in neuronal death during diseases. T-cell receptors (TCR function as MHCI receptor on T-cells and both MHCI and a key component of TCR, CD3ζ, are expressed by mouse retinal ganglion cells (RGCs and displaced amacrine cells. Mutation of these molecules compromises the development of RGCs. We investigated whether CD3ζ regulates the development and degeneration of amacrine cells after RGC death. Surprisingly, mutation of CD3ζ not only impairs the proper development of amacrine cells expressing CD3ζ but also those not expressing CD3ζ. In contrast to effects of MHCI and its receptor, PirB, on other neurons, mutation of CD3ζ has no effect on RGC death and starburst amacrine cells degeneration after optic nerve crush. Thus, unlike MHCI and PirB, CD3ζ regulates the development of RGCs and amacrine cells but not their degeneration after optic nerve crush.

  13. Amplification of DWDM channels at 1.28 Tb/s in a bidirectional fiber optical parametric amplifier.

    Science.gov (United States)

    Lei, Gordon K P; Marhic, Michel E

    2014-04-07

    We experimentally demonstrate amplification of 1.28 Tb/s DWDM channels using a bidirectional fiber optical parametric amplifier. The amplifier can provide more than 13 dB on-off gain on all 32 DWDM channels. Error-free operation has been achieved for all data streams, with an average power penalty of 2.5 dB compared with conventional unidirectional configuration.

  14. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator.

    Science.gov (United States)

    Lippert, Espen; Fonnum, Helge; Arisholm, Gunnar; Stenersen, Knut

    2010-12-06

    We report on a ZnGeP(2)-based optical parametric oscillator (OPO) with 22 W of output power in the 3-5 µm range and a beam quality factor M(2) ≈1.4. The OPO uses a novel V-shaped 3-mirror ring resonator that allows two passes of the beams through the same nonlinear crystal. The pump is a 39 W hybrid Tm:fiber laser/Ho:YAG laser.

  15. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  16. 730-nm optical parametric conversion from near- to short-wave infrared band

    DEFF Research Database (Denmark)

    Boggio, J.M.C.; Windmiller, J.R.; Knutzen, M.

    2008-01-01

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling sin...... single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.......A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling...

  17. Watery and dark axons in Wallerian degeneration of the opossum's optic nerve: different patterns of cytoskeletal breakdown?

    Directory of Open Access Journals (Sweden)

    MARCELO S. NARCISO

    2001-06-01

    Full Text Available In this paper we report a qualitative morphological analysis of Wallerian degeneration in a marsupial. Right optic nerves of opossums Didelphis marsupialis were crushed with a fine forceps and after 24, 48, 72, 96 and 168 hours the animals were anaesthetized and perfused with fixative. The optic nerves were immersed in fixative and processed for routine transmission electron microscopy. Among the early alterations typical of axonal degeneration, we observed nerve fibers with focal degeneration of the axoplasmic cytoskeleton, watery degeneration and dark degeneration, the latter being prevalent at 168 hours after crush. Our results point to a gradual disintegration of the axoplasmic cytoskeleton, opposed to the previous view of an "all-or-nothing'' process (Griffin et al 1995. We also report that, due to an unknown mechanism, fibers show either a dark or watery pattern of axonal degeneration, as observed in axon profiles. We also observed fibers undergoing early myelin breakdown in the absence of axonal alterations.Neste trabalho, relatamos uma análise morfológica qualitativa da degeneração Walleriana em um marsupial. Os nervos ópticos direito de gambás da espécie Didelphis marsupialis foram esmagados com uma pinça fina. Após 24, 48, 72, 96 e 168 horas, os animais foram anestesiados e perfundidos com fixador. A seguir, os nervos foram imersos em fixador e processados para microscopia eletrônica de rotina. Entre as alterações precoces típicas da degeneração, observamos fibras nervosas com degeneração focal do citoesqueleto axoplasmático, degeneração aquosa e degeneração escura, com o último tipo prevalente às 168 horas após esmagamento. Nossos resultados indicam uma desintegração gradual do citoesqueleto axoplasmático, oposta à prévia visão de um processo "tudo-ou-nada''. Relatamos também que, devido a um mecanismo desconhecido, as fibras mostram ou um padrão aquoso ou um padrão escuro de degeneração axonal

  18. An optimized device for UF6 laser isotopic photochemistry using an optical parametric oscillator and a down converter

    International Nuclear Information System (INIS)

    Kupecek, P.; Weulersse, J.M.; Isnard, P.; Alexandre, M.; Clerc, M.

    1983-01-01

    We developped a tunable coherent source near 16 μm for selective photochemistry studies on UF 6 . The device uses a YAG:Nd 3+ pumped lithium niobate optical parametric oscillator coupled with a cadmium selenide frequency down converter. The components and physical parameters have been optimized leading to an overall optical conversion efficiency of about 6.10 -3 , that is a quantum yield of 0.1. The main characteristics such as beam quality and spectral width have been measured, the last one beeing 60 mK at 16 μm, for 1.5mJ pulses [fr

  19. Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation

    Science.gov (United States)

    Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice

    2010-01-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites

  20. Parametric Phase-sensitive and Phase-insensitive All-optical Signal Processing on Multiple Nonlinear Platforms - Invited talk

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana

    -optical signal processing. In this presentation, we will review our recent results on the demonstration of all-optical para- metric signal processing using dierent nonlinear platforms, including highly nonlinear optical bers (HNLFs), silicon nanowires, and periodically-poled lithium niobate (PPLN) waveguides......Parametric processes in materials presenting a second- or third-order nonlinearity have been widely used to demonstrate a wide range of all-optical signal processing functionalities, including amplication, wavelength conversion, regeneration, sampling, switching, modulation format conver- sion....... In particu- lar, we will show how phase-sensitive processes can be engineered to demonstrate phase-quadrature separation, which we have recently demonstrated in HNLFs [1] and PPLN waveguides [2]. Silicon nanowires are particularly attractive for signal processing thanks to their compact size, CMOS...

  1. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  2. 730-nm optical parametric conversion from near- to short-wave infrared band.

    Science.gov (United States)

    Chavez Boggio, J M; Windmiller, J R; Knutzen, M; Jiang, R; Bres, C; Alic, N; Stossel, B; Rottwitt, K; Radic, S

    2008-04-14

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.

  3. Optical coherence tomography for the assessment of pericardium covered stents for the treatment of degenerated saphenous vein grafts.

    Science.gov (United States)

    Tyczynski, Pawel; Kukreja, Neville; van Geuns, Robert-Jan; Wykrzykowska, Joanna J; Sheppard, Mary N; Di Mario, Carlo

    2010-05-01

    Pre- and post-interventional optical coherence tomography (OCT) assessment of degenerated saphenous vein grafts (SVG) treated with implantation of pericardium covered stents. Percutaneous treatment of SVG represents one of the major challenges of current percutaneous coronary interventions (PCI). Artificial membrane-covered stents have failed to show additional benefit over conventional stents. Six cases of PCI of de novo lesions in degenerated SVGs were successfully treated with a novel pericardium covered stent (PCS). Successful deployment was achieved in all cases. Large emboli were retrieved in a distal filter in one case with a long degenerated lesion. Pre- and postinterventional OCT was performed to assess the lesion characteristics and vessel diameter before stenting and the pericardium layer integrity, strut apposition and presence of plaque prolapse after stenting. In order to better understand the OCT images, three PCS of different diameters were deployed in silicone tubes of 700 microm thickness wall with inner tube diameter matching the stent diameter. OCT was repeated after spreading a thin layer of gel inside the tube, mimicking the toothpaste-like plaque observed in SVG. In vivo and in vitro OCT images excluded the presence of plaque prolapse in all but one case and detected a characteristic pattern with bulging of the pericardium between struts, possibly due to trapping of soft intraluminal plaque (or gel) behind the pericardial layer. These cases offer insight into the mechanism of protection against distal embolisation, elucidated by the appearance of these stents after deployment in vivo and in vitro.

  4. Qualitative and quantitative assessment of cartilage degeneration using full-field optical coherence tomography ex vivo.

    Science.gov (United States)

    Pailhé, R; Mounier, A; Boisson, B; Rouchy, R C; Voros, S; Chipon, E; Boudry, I; Medici, M; Hughes, C; Moreau-Gaudry, A

    2018-02-01

    The purpose of this study was to investigate the ability of full-field optical coherence tomography (FFOCT) to qualitatively and quantitatively evaluate cartilage degeneration using the qualitative evaluation of histology sections as the reference. Thirty-three human knee cartilage samples of variable degeneration were included in the study. A closely matching histology and FFOCT image was acquired for each sample. The cartilage degeneration was qualitatively evaluated by assigning a grade to each histology and FFOCT image. The relevance of the performed grading was assessed by calculating the intra- and inter-observer reproducibility and calculating the concordance between the histology and FFOCT grades. A near-automatic algorithm was developed to quantitatively characterize the cartilage surface in each image. The correlation between the quantitative results and the reference qualitative histology was calculated. An almost perfect agreement was achieved for both the intra- and inter-reproducibility of the histology and FFOCT qualitative grading (κ ≥ 0.91). A high and statistically significant level of agreement was measured between the histology and FFOCT grades (W = 0.95, P quantitative results and the reference qualitative histology grades (ρ ≥ 0.75, P qualitative and quantitative assessment of human cartilage as the reference gold standard - histology. This study constitutes the first promising results towards developing a new diagnostic tool in the field of osteoarthritis. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  6. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  7. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  8. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  9. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    Science.gov (United States)

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  10. An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region.

    Science.gov (United States)

    Zhang, Lei; Yang, Sigang; Li, Pengxiao; Wang, Xiaojian; Gou, Doudou; Chen, Wei; Luo, Wenyong; Chen, Hongwei; Chen, Minghua; Xie, Shizhong

    2013-10-21

    We report the experimental demonstration of a fully fiber-integrated picosecond optical parametric oscillator. The gain is provided by a 50-meters homemade photonic crystal fiber in the ring cavity. A time-dispersion-tuned technique is used to allow the oscillator to select the oscillating wavelength adaptively and synchronize with the pump pulse train. The output wavelength of the oscillator can be continuously tuned from 988 to 1046 nm and from 1085 to 1151 nm by adjusting the pump wavelength and the time-dispersion-tuned technique simultaneously.

  11. Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm.

    Science.gov (United States)

    Siltanen, Mikael; Vainio, Markku; Halonen, Lauri

    2010-06-21

    We report a continuous-wave singly resonant optical parametric oscillator pumped by a widely tunable titanium-doped sapphire ring laser. It produces up to 0.8 W of mid-infrared power. The wavelength can be tuned in a few seconds from 2.5 to 3.5 microm or from 3.4 to 4.4 microm and scanned up to 40 GHz without mode-hops by only changing the pump beam wavelength. Spectroscopic capability is demonstrated by measuring parts of the photoacoustic absorption spectrum of NH(3) near 3196 cm(-1).

  12. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating.

    Science.gov (United States)

    Zeil, Peter; Thilmann, Nicky; Pasiskevicius, Valdas; Laurell, Fredrik

    2014-12-01

    A continuous-wave singly-resonant optical parametric oscillator (SRO) with an optimum extraction efficiency, that can be adjusted independent of the pump power, is demonstrated. The scheme employs a variable-reflectivity volume Bragg grating (VBG) as the output coupler of a ring cavity, omitting any additional intra-cavity elements. In this configuration, we obtained a 75%-efficient SRO with a combined signal (19 W @ 1.55 µm) and idler (11 W @ 3.4 µm) output power of 30 W.

  13. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator.

    Science.gov (United States)

    Lamour, Tobias P; Reid, Derryck T

    2011-08-29

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  14. Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser

    International Nuclear Information System (INIS)

    Gou Dou-Dou; Yang Si-Gang; Zhang Lei; Wang Xiao-Jian; Chen Hong-Wei; Chen Ming-Hua; Xie Shi-Zhong; Chen Wei; Luo Wen-Yong

    2014-01-01

    We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 nm, eight samples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimentally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator.

    Science.gov (United States)

    Miller, Joseph D; Engel, Sascha R; Meyer, Terrence R; Seeger, Thomas; Leipertz, Alfred

    2011-10-01

    We report on high-speed CH planar laser-induced fluorescence (PLIF) imaging in turbulent diffusion flames using a multimode-pumped optical parametric oscillator (OPO). The OPO is pumped by the third-harmonic output of a multimode Nd:YAG cluster for direct signal excitation in the A-X (0,0) band of the CH radical. The lasing threshold, conversion efficiency, and linewidth are shown to depend on the number of pump passes in the ring cavity of the OPO. Single-shot CH PLIF images are acquired at 10 kHz with excitation energy up to 6 mJ/pulse at 431.1 nm. Signal-to-noise ratios of ~25-35 are the highest yet reported for high-speed CH PLIF. © 2011 Optical Society of America

  16. Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

    Science.gov (United States)

    Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong

    2018-03-01

    A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

  17. Broadly tunable, beta-barium-borate-based, pulsed optical parametric oscillators and their potential applications in medicine

    Science.gov (United States)

    Sobey, Mark S.; Clark, Jim; Johnson, Bertram C.

    1995-05-01

    With the recent availability of Beta Barium Borate (BBO) crystals in useful sizes at acceptable market prices, the promise of Optical Parametric Oscillators (OPOs) becoming practical tunable systems is finally being realized. Wavelength coverage from such systems extends from 420 nm to over 2400 nm when pumped in the UV. For medical applications their usage will be limited in the near term to low repetition rates (suitable for selective absorption applications in medicine such as colored tattoo removal or treating vascular lesions. For such high energy devices peak powers necessitate the use of articulating arms for beam delivery. For high repetition rate systems, energy outputs will be in the range of 100 to 500 (mu) J at kHz frequencies (up to 1 W average power). Peak powers are low enough that fiber optic delivery is possible. These systems may find selective absorption applications in ophthalmology.

  18. Optical parametric oscillator lidar for the gas constituents sensing in the spectral range of 3-4 μm

    Science.gov (United States)

    Kharchenko, O. V.; Romanovskii, O. A.; Sadovnikov, S. A.; Yakovlev, S. V.

    2017-10-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using Ophir PE25-C and PE10-C piezoelectric sensors for the DIAL gas analysis of the atmosphere is shown. Echoes of the broadband lidar in the above ranges are experimentally detected.

  19. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  20. Characteristics of infrared pulses generated by optical parametric oscillator from LiNbO sub 3 crystal

    CERN Document Server

    Park, S Y; Kim, D S; Rhee, B K; Park, S H

    2000-01-01

    The optical parametric oscillation (OPO) characteristics of LiNbO sub 3 , which is normally pumped by using the 1.064-mu m laser output from a nanosecond Nd:YAG laser, were investigated. A 5-cm-long LiNbO sub 3 crystal was cut at theta=47 .deg. , and the OPO cavity was formed by using two plain mirrors. The output coupler reflectivity in the 1.40 - 1.60 mu m range was 80.0%, and the back mirror had a reflectivity of 99.5% in the 1.45 - 1.55 mu m range. At a cavity length of 7 cm and a pump pulse energy of 156 mJ (1.7 times above threshold), the optical parametric oscillator generated nanosecond pulses (signal 1.6 mu m and idler 3.18 mu m) up to 16mJ. The change in the output energy was studied as the cavity length was varied from 7 cm to 16 cm at a fixed pump pulse energy of 145 mJ. We also measured the OPO output energy as a function of the reflectivity of the output coupler.

  1. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    Science.gov (United States)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  2. Compact, single-frequency, doubly resonant optical parametric oscillator pumped in an achromatic phase-adapted double-pass geometry.

    Science.gov (United States)

    Hardy, B; Berrou, A; Guilbaud, S; Raybaut, M; Godard, A; Lefebvre, M

    2011-03-01

    We report on a nested-cavity, doubly resonant optical parametric oscillator (NesCOPO) architecture for widely tunable, mid-IR, single-frequency generation. By use of an achromatic phase-adapted double-pass pumping scheme, this new, low-threshold, semimonolithic architecture only requires two free-standing cavity mirrors and a nonlinear crystal with a mirror coating deposited on its input facet while the other facet is antireflection coated. It is thus as simple and compact as any basic linear optical parametric oscillator cavity, is easily tunable, and displays low sensitivity to mechanical vibrations. Using a high-repetition-rate (4.8 kHz) microlaser as the pump source of the NesCOPO, we demonstrate a compact source that provides pulsed, stable single-frequency output over a wide spectral range (3.8-4.3 μm) with a high peak power (up to 50 W), which are properties well suited for practical gas sensing applications.

  3. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  4. Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications

    Directory of Open Access Journals (Sweden)

    Anna G. Ciriolo

    2017-03-01

    Full Text Available Over the last few decades, the investigation of ultrafast phenomena occurring in atoms, molecules and solid-state systems under a strong-field regime of light-matter interaction has attracted great attention. The increasing request for a suitable optical technology is significantly boosting the development of powerful ultrafast laser sources. In this framework, Optical Parametric Amplification (OPA is currently becoming a leading solution for applications in high-power ultra-broadband light burst generation. The main advantage provided by the OPA scheme consists of the possibility of exploring spectral ranges that are inaccessible by other laser technologies, as the InfraRed (IR window. In this paper, we will give an overview on recent progress in the development of high-power few-optical-cycle parametric amplifiers in the near-IR and in the mid-IR spectral domain. In particular, the design of the most advanced OPA implementations is provided, containing a discussion on the key technical aspects. In addition, a review on their application to the study of strong-field ultrafast physical processes is reported.

  5. Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2011-01-01

    Roč. 13, č. 4 (2011), 044016:1-9 ISSN 2040-8978 R&D Projects: GA MŠk(CZ) LC06007; GA MŠk OC08034; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers * optical lattice * optical force * evanescent wave Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.573, year: 2011

  6. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Baumann, Bernhard; Gotzinger, Erich; Pircher, Michael; Sattmann, Harald; Schuutze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K

    2010-01-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  7. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Ott, Johan Raunkjær; Rottwitt, Karsten

    2011-01-01

    This paper solves the four coupled equations describing non-degenerate four-wave mixing, with the focus on amplifying a signal in a fiber optical parametric amplifier (FOPA). Based on the full analytic solution, a simple approximate solution describing the gain is developed. The advantage of this...... gain spectrum with a bandwidth in the 100-nm range, centered on the zero-dispersion wavelength. When running the FOPA in depletion, this range can be slightly increased. © 2011 Optical Society of America....

  8. Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration.

    Science.gov (United States)

    Plaas, Mario; Seppa, Kadri; Reimets, Riin; Jagomäe, Toomas; Toots, Maarja; Koppel, Tuuliki; Vallisoo, Tuuli; Nigul, Mait; Heinla, Indrek; Meier, Riho; Kaasik, Allen; Piirsoo, Andres; Hickey, Miriam A; Terasmaa, Anton; Vasar, Eero

    2017-08-31

    Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.

  9. Delayed treatment of secondary degeneration following acute optic nerve transection using a combination of ion channel inhibitors

    Directory of Open Access Journals (Sweden)

    Nathanael J Yates

    2017-01-01

    Full Text Available Studies have shown that a combined application of several ion channel inhibitors immediately after central nervous system injury can inhibit secondary degeneration. However, for clinical use, it is necessary to determine how long after injury the combined treatment of several ion channel inhibitors can be delayed and efficacy maintained. In this study, we delivered Ca2+ entry-inhibiting P2X7 receptor antagonist oxidized-ATP and AMPA receptor antagonist YM872 to the optic nerve injury site via an iPRECIO@ pump immediately, 6 hours, 24 hours and 7 days after partial optic nerve transection surgery. In addition, all of the ion channel inhibitor treated rats were administered with calcium channel antagonist lomerizine hydrochloride. It is important to note that as a result of implantation of the particular pumps required for programmable delivery of therapeutics directly to the injury site, seromas occurred in a significant proportion of animals, indicating infection around the pumps in these animals. Improvements in visual function were observed only when treatment was delayed by 6 hours; phosphorylated Tau was reduced when treatment was delayed by 24 hours or 7 days. Improvements in structure of node/paranode of Ranvier and reductions in oxidative stress indicators were also only observed when treatment was delayed for 6 hours, 24 hours, or 7 days. Benefits of ion channel inhibitors were only observed with time-delayed treatment, suggesting that delayed therapy of Ca2+ ion channel inhibitors produces better neuroprotective effects on secondary degeneration, at least in the presence of seromas.

  10. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  11. Quantitative evaluation of standard deviations of group velocity dispersion in optical fibre using parametric amplification

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Svane, Ask Sebastian; Lund-Hansen, Toke

    2014-01-01

    A numerical model for parametric amplifiers, which include stochastic variations of the group velocity dispersion (GVD), is presented. The impact on the gain is investigated, both with respect to the magnitude of the variations and by the effect caused by changing the wavelength of the pump. It i....... It is demonstrated that the described model is able to predict the experimental results and thereby provide a quantitative evaluation of the standard deviation of the GVD. For the investigated fibre, a standard deviation of 0.01 ps/(nm km) was found....

  12. Simultaneous measurement of patterns in the signal and idler near and far fields from a confocal optical parametrical oscillator with applications in quantum optics

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Tidemand-Lichtenberg, Peter; Buchhave, Preben

    2005-01-01

    We present the results of an experimental investigation of multimode intensity patterns from an optical parametric oscillator operating above threshold and show that it oscillates in 10-15 transverse modes strongly coupled through the nonlinear crystal, which makes this setup useful for future in...... also show that the oscillator can be stabilized by optical feedback, indicating a possible route for controlling the generated intensity patterns....... investigation of quantum correlations in the transverse plane. We describe the experimental setup for simultaneous measurements of signal and idler near- and far-field patterns and analyze the effects of various experimental complications such as walk-off and thermal index changes on the generated patterns. We...

  13. Fluorescent angiography and optical coherence tomography with angiography of the ocular fundus in patients with "the wet" form of an age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Virsta A.M.

    2017-06-01

    Full Text Available Purpose: to investigate the informative value of fluorescent angiography (FA and optical coherence tomography with fundus angiography (angio-OCT in the diagnosis of "wet" form of age-related macular degeneration (AMD. Material and methods. The present study included 20 patients (20 eyes diagnosed with degeneration of macula and posterior pole of the eye, the "wet" form (late stage age-related macular degeneration, AREDS category 4. The study used machines: optical coherence tomography, Spectralis HRA+OCT (Heidelberg Engeneering, Germany, optical со- herence tomography-angiography CIRRUS HD-OCT MODEL 5000 (Carl Zeiss, Germany. Results. When conducting the FA, in 11 patients found the ill-defined zone of small leakage of dye in 7 patients revealed a clearly defined area of hyperfluorescence in the early phase, and marked leakage of dye in the late phase, 2 patients — uncertain indices. In connection with the received data questionable PHAGE in 11 patients, all were held angio-OCT, to clarify the localization of choroidal neovascularization (CNV. When performing angio-OCT in 11 patients revealed that "wet" form of AMD with occult choroidal neovascularization. In 7 patients there had been discovered classic CNV in 2 patients combined. Conclusion. Angio-OCT gives a clearer picture about the presence of a choroidal neovascular membrane that plays a significant role in determining the course of treatment of patients with wet age-related macular degeneration.

  14. First observation of E{sub 2} coherent phonon modes in CdS using a noncollinear optical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Daisuke; Kunugita, Hideyuki; Ema, Kazuhiro, E-mail: daisuk-s@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 (Japan)

    2009-11-15

    We report the first observation of E{sub 2} coherent phonon modes in CdS using a noncollinear optical parametric amplifier. We studied the intensity, temperature and excitation energy dependences of the high- and low-frequency E{sub 2} modes. We obtain that generation mechanism under non- and near resonant regions is impulsive stimulated Raman scattering (ISRS) and E{sub 2} modes are barely affected by Froehlich interaction. As temperature increases, E{sub 2} modes are affected by anharmonic effect. The observed phonon lifetime of the low- and high-E{sub 2} modes in CdS is 243 {+-} 37 and 11.4 {+-} 0.4 ps, respectively, at 83 K. From fitting, we can estimate the lifetime of the high-E{sub 2} mode at the low-temperature limit to be 49.3 ps.

  15. First observation of E2 coherent phonon modes in CdS using a noncollinear optical parametric amplifier

    Science.gov (United States)

    Suzuki, Daisuke; Kunugita, Hideyuki; Ema, Kazuhiro

    2009-11-01

    We report the first observation of E2 coherent phonon modes in CdS using a noncollinear optical parametric amplifier. We studied the intensity, temperature and excitation energy dependences of the high- and low-frequency E2 modes. We obtain that generation mechanism under non- and near resonant regions is impulsive stimulated Raman scattering (ISRS) and E2 modes are barely affected by Fröhlich interaction. As temperature increases, E2 modes are affected by anharmonic effect. The observed phonon lifetime of the low- and high-E2 modes in CdS is 243 ± 37 and 11.4 ± 0.4 ps, respectively, at 83 K. From fitting, we can estimate the lifetime of the high-E2 mode at the low-temperature limit to be 49.3 ps.

  16. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  17. Investigation on the quantum-to-classical transition by optical parametric amplification: Generation and detection of multiphoton quantum superposition

    Science.gov (United States)

    De Martini, Francesco; Sciarrino, Fabio

    2015-02-01

    We review an extended research carried out on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. The described scheme is based on a nonlinear process, the quantum injected optical parametric amplification, that transforms the quantum coherence of a single particle state, i.e. a Micro-qubit, into a Macro-qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS demonstration was carried out experimentally at room temperature with M ≥104. This result elicited an extended study on quantum cloning, quantum amplification and quantum decoherence. The MQS interference patterns for large M were revealed in the experiment and the bipartite Micro-Macro entanglement was also demonstrated for a limited number of generated particles. At last, the perspectives opened by this new method are considered in the view of further studies on quantum foundations and quantum measurement.

  18. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  19. Numerical investigations of signal-spectrum shaping based on conformal profile theory in optical parametric chirped pulse amplification

    Science.gov (United States)

    Li, Wenqi; Yu, Lianghong; Peng, Chun; Liang, Xiaoyan

    2017-11-01

    We proposed a theoretical description and numerical model of signal-spectrum shaping based on conformal profile theory and the three-dimensional coupling wave equations for improving the performance of optical parametric chirped pulse amplification (OPCPA). Using our model, we executed quantitative simulations of signal-spectrum shaping and compared the differences of spatiotemporal amplification characteristics between a shaped signal-spectrum and Gaussian signal-spectrum of an OPCPA based on LiB3O5 near 800 nm. By comparison, we found that the conversion efficiency from pump to signal can be dramatically boosted via signal-spectrum shaping. Meanwhile the amplified-spectrum profile, as well as the Fourier-limited pulse, can be improved significantly. We also found that the spatial spot profiles, for injecting a shaped signal or a Gaussian signal in OPCPA, are nearly the same before the saturation regime and at the maximum conversion efficiency or output energy.

  20. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator.

    Science.gov (United States)

    Lassen, Mikael; Lamard, Laurent; Feng, Yuyang; Peremans, Andre; Petersen, Jan C

    2016-09-01

    A trace-gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite-element simulations and is experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator. The sensor is used for spectroscopic measurements on methane in the 3.1-3.5 μm wavelength region with a resolution bandwidth of 1  cm-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at the optimum integration time for the QEPAS sensor is 32 ppbv at 190 s, and that the background noise is due solely to the thermal noise of the QTF.

  1. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    International Nuclear Information System (INIS)

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-01-01

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed

  2. EN FACE VERSUS 12-LINE RADIAL OPTICAL COHERENCE TOMOGRAPHY SCAN PATTERNS FOR DETECTION OF MACULAR FLUID IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Adam, Murtaza K; Shahlaee, Abtin; Samara, Wasim A; Maguire, Joseph I; Ho, Allen C; Hsu, Jason

    2017-08-14

    To compare fluid detection of autosegmented en face to 12-line radial spectral domain optical coherence tomography scan patterns in neovascular age-related macular degeneration. Retrospective observational case series. Sixty-seven patients (94 eyes) with neovascular age-related macular degeneration underwent autosegmented en face optical coherence tomography (with associated 304-line raster scan) and 12-line radial scan patterns. Sensitivity and specificity of fluid detection for en face scan and 12-line radial scans were determined by combining radial and 304-line raster scans as a gold standard. Two hundred and fifty-eight en face and 12-line radial spectral domain optical coherence tomography scans were interpreted. Seventy-five scans (58.1%) had fluid, whereas 54 scans (41.9%) did not. En face scan pattern fluid detection sensitivity and specificity was 89.3% and 61.1%, respectively. Twelve-line radial scan pattern fluid detection sensitivity and specificity was 97.3% and 100%, respectively. The difference in fluid detection between scan patterns was statistically significant (P = 0.01). Decreased central macular thickness was associated with false-positive (P = 0.035) and false-negative (P = 0.01) fluid detection on en face scans. En face optical coherence tomography alone is not as sensitive or specific as the 12-line radial scan pattern in detecting fluid in neovascular age-related macular degeneration. En face scans should be corroborated with other optical coherence tomography protocols to guide clinical decision making.

  3. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  4. Optical parametric generation by a simultaneously Q-switched mode-locked single-oscillator thulium-doped fiber laser in orientation-patterned gallium arsenide.

    Science.gov (United States)

    Donelan, Brenda; Kneis, Christian; Scurria, Giuseppe; Cadier, Benoît; Robin, Thierry; Lallier, Eric; Grisard, Arnaud; Gérard, Bruno; Eichhorn, Marc; Kieleck, Christelle

    2016-11-01

    Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.

  5. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...

  6. Influence of age-related macular degeneration on macular thickness measurement made with fourier-domain optical coherence tomography.

    Science.gov (United States)

    Garas, Anita; Papp, András; Holló, Gábor

    2013-03-01

    To evaluate the influence of age-related macular degeneration (AMD) on macular thickness measurement made with Fourier-domain optical coherence tomography (RTVue-OCT) to detect glaucoma. : One nonglaucomatous eye of 79 white persons was imaged. This comprised 25 healthy eyes, 19 eyes with early/intermediate AMD (geographic atrophy excluded), 16 eyes with subfoveal choroidal neovascularization (CNV), and 19 CNV eyes after intravitreal antiangiogenic treatment [CNV-antivascular endothelial growth factor (VEGF)]. Compared with the age-matched controls, no difference in any nerve fiber layer and optic disc parameter was seen for any AMD group. No macular retinal segmentation error was detected in the control group. Localized inner retinal image segmentation errors topographically related to AMD were detected in 8 eyes with drusen (42.1%), all 16 CNV eyes (100%) and 17 eyes in the CNV-anti-VEGF group (89.5%; χ test, P0.05). In contrast, all pattern-based ganglion cell complex (GCC) parameters were significantly higher (more abnormal) in the CNV and CNV-anti-VEGF group than in the control eyes (Mann-Whitney test, Bonferroni correction, P<0.001). For GCC focal loss volume, the only pattern-based parameter classified by the software, the frequency of "borderline" and "outside normal limits" classifications was significantly greater in each AMD group than in the control group (χ test, Bonferroni correction, P ≤0.03). In nonglaucomatous eyes, AMD significantly influences the pattern-based inner macular thickness parameters of the RTVue optical coherence tomograph and the software-provided classification of GCC focal loss volume, for detection of glaucoma.

  7. Exploring spin-orbit coupling in a non-degenerate optical lattice clock

    Science.gov (United States)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Rey, Ana Maria

    2015-05-01

    Optical lattice clocks have progressed in recent years to become not only precise timekeepers, but also sensitive probes of many-body physics. We consider a 1D optical lattice clock in which the wavelength of the laser that interrogates the clock transition is comparable to the optical lattice spacing. This light-matter coupling imprints a spatially dependent phase on the atomic internal state superposition, and this phase can be interpreted as a spin-orbit coupling. We show that this spin-orbit coupling manifests itself in Ramsey spectroscopy as an s-wave density shift in otherwise identically prepared fermions, even at temperatures significantly larger than the tunneling. Further, we show that Rabi spectroscopy can be mapped to a Hofstadter model on a two-leg ladder with chiral eigenstates. Using a modified Rabi procedure, we show how to extract momentum-resolved signatures of chirality solely by spectroscopic means. The effects of finite temperature, gaussian transverse confinement, and non-separability between transverse and axial degrees of freedom are discussed. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI, NDSEG, and NRC.

  8. Parametric excitation of a SiN membrane via piezoelectricity

    Science.gov (United States)

    Wu, Shuhui; Sheng, Jiteng; Zhang, Xiaotian; Wu, Yuelong; Wu, Haibin

    2018-01-01

    We develop a stoichiometric silicon nitride (SiN) membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ˜3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.

  9. Parametric excitation of a SiN membrane via piezoelectricity

    Directory of Open Access Journals (Sweden)

    Shuhui Wu

    2018-01-01

    Full Text Available We develop a stoichiometric silicon nitride (SiN membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ∼3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.

  10. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS BLOOD FLOW IN CHOROIDAL NEOVASCULAR MEMBRANE IN REMISSION PHASE OF NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Ichiyama, Yusuke; Sawada, Tomoko; Ito, Yuka; Kakinoki, Masashi; Ohji, Masahito

    2017-04-01

    The aim of the study was to investigate blood flow in choroidal neovascular membrane in remission phase of neovascular age-related macular degeneration using optical coherence tomography (OCT) angiography. OCT angiography was obtained in eyes with remission phase of neovascular age-related macular degeneration after treatments, defined as no exudative change (such as macular edema, subretinal fluid, and subretinal hemorrhage) observed in eyes without any treatment for neovascular age-related macular degeneration within the previous 6 months. Irregular blood flows shown in the segmentation of outer retina detected by OCT angiography were considered as blood flows in choroidal neovascular membrane. The vascular area and vessel density were obtained from OCT angiography images. Twenty eyes of 20 patients were included in this analysis. The blood flows in choroidal neovascular membrane were observed in all eyes (100%) using OCT angiography. The mean vascular area was 3.81 ± 3.41 mm and the mean vessel density of lesion was 28.9 ± 8.2%. The vessel density was significantly correlated with best-corrected visual acuity and duration of remission (best-corrected visual acuity: P = 0.008, r = -0.576; duration of remission: P = 0.017, r = -0.525, respectively). Optical coherence tomography angiography revealed that blood flows in choroidal neovascular membrane remained in eyes with clinically inactive neovascular age-related macular degeneration.

  11. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...

  12. Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2009-01-01

    to demonstrate amplitude regeneration of a distorted RZ-DPSK signal in a gain-saturated FOPA. An optical signal-to-noise ratio penalty of 3.5 dB after amplitude distortion is shown to be reduced to 0.2 dB after the FOPA, thus clearly demonstrating the regenerative nature of saturated FOPAs for RZ-DPSK modulation....

  13. Retinal degeneration in progressive supranuclear palsy measured by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Stemplewitz, Birthe; Kromer, Robert; Vettorazzi, Eik; Hidding, Ute; Frings, Andreas; Buhmann, Carsten

    2017-07-13

    This cross-sectional study compared the retinal morphology between patients with progressive supranuclear palsy (PSP) and healthy controls. (The retinal nerve fiber layer (RNFL) around the optic disc and the retina in the macular area of 22 PSP patients and 151 controls were investigated by spectral domain optical coherence tomography (SD-OCT). Additionally, the RNFL and the nerve fiber index (NFI) were measured by scanning laser polarimetry (SLP). Results of RNFL measurements with SD-OCT and SLP were compared to assess diagnostic discriminatory power. Applying OCT, PSP patients showed a smaller RNFL thickness in the inferior nasal and inferior temporal areas. The macular volume and the thickness of the majority of macular sectors were reduced compared to controls. SLP data showed a thinner RNFL thickness and an increase in the NFI in PSP patients. Sensitivity and specificity to discriminate PSP patients from controls were higher applying SLP than SD-OCT. Retinal changes did not correlate with disease duration or severity in any OCT or SLP measurement. PSP seems to be associated with reduced thickness and volume of the macula and reduction of the RNFL, independent of disease duration or severity. Retinal imaging with SD-OCT and SLP might become an additional tool in PSP diagnosis.

  14. 20 dB net-gain polarization-insensitive fiber optical parametric amplifier with >2 THz bandwidth.

    Science.gov (United States)

    Stephens, M F C; Gordienko, V; Doran, N J

    2017-05-01

    A black-box polarization insensitive fiber optical parametric amplifier (PI-FOPA) is characterized for the first time using a commercial 127 Gb/s polarization-division multiplexed PDM-QPSK transponder within a multiplex of twenty-two equivalent DWDM signals across a 2.3 THz bandwidth portion of the C-band. The PI-FOPA employs a recently demonstrated diversity loop arrangement comprising two lengths of highly nonlinear fiber (HNLF) with the parametric pump being removed after the first HNLF in both directions about the loop. This arrangement is named the Half-Pass Loop FOPA or HPL-FOPA. In total, a record equivalent 2.3 Tb/s of data is amplified within the HPL-FOPA for three different pump power regimes producing net-gains of 10 dB, 15 dB and 20 dB (averaged over all signals). For the latter two regimes, the gain bandwidth is observed to extend considerably beyond the C-band, illustrating the potential for this design to amplify signals over bandwidths commensurate with the EDFA and beyond. Under the 15 dB gain condition, the average OSNR penalty to achieve 10-3 bit error rate for all twenty three signals was found to be 0.5 ± 0.3 dB. Worst case penalty was 0.8 ± 0.3 dB, verifying the use of the architecture for polarization insensitive operation. The growth of four-wave mixing signal-signal crosstalk is additionally characterized and found to be gain independent for a fixed output power per signal. A simple effective length model is developed which predicts this behavior and suggests a new configuration for significantly reduced crosstalk.

  15. Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals.

    Science.gov (United States)

    Gao, Mingyi; Kurumida, Junya; Namiki, Shu

    2011-11-07

    For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

  16. Parametric diagram

    DEFF Research Database (Denmark)

    Hermund, Anders

    2010-01-01

    This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples.......This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples....

  17. Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Divoký, Martin; Turčičová, Hana; Straka, Petr

    2013-01-01

    Roč. 31, č. 2 (2013), s. 211-218 ISSN 0263-0346 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528; GA MŠk LN00A100 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : VULCAN petawatt * system * prospects * facility * program Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.701, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid =8950936

  18. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  19. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    International Nuclear Information System (INIS)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X

    2012-01-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ 1.7+0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ∼25 and ∼100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  20. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  1. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  2. Tunable few-cycle pulses from a dual-chirped optical parametric amplifier pumped by broadband laser

    Science.gov (United States)

    Hong, Zuofei; Zhang, Qingbin; Rezvani, S. Ali; Lan, Pengfei; Lu, Peixiang

    2018-01-01

    We propose a dual-chirped optical parametric amplification (DC-OPA) scheme pumped by a broadband laser pulse. The pump pulse is spectrally broadened in a multi-plate system before amplifying the chirped seed in a BBO crystal. The system performance and phase-matching mechanism with different pump bandwidths are investigated thoroughly. It is found that the broadened pump bandwidth benefits the system most effectively when the pump and seed pulses are oppositely chirped. The idler bandwidth is nearly tripled in the broadband pumped system, supporting a transform-limited (TL) duration of 8.4 fs (∼1.3 cycles), meanwhile the energy bandwidth product of the idler is 72.6% higher. Furthermore, the idler wavelength is tunable between 1700 nm and 2050 nm, with sub-1.5-cycle TL duration and over 14% conversion efficiency. The proposed scheme provides a suitable approach for the generation of few-cycle pulses varying from near-infrared to mid-infrared regions.

  3. Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements

    Science.gov (United States)

    Sjöholm, Johan; Kristensson, Elias; Richter, Mattias; Aldén, Marcus; Göritz, Guido; Knebel, Kai

    2009-02-01

    The feasibility of pumping an optical parametric oscillator (OPO) with an ultra-high repetition rate multi:YAG laser system, producing a burst of up to eight high-energy pulses, has been investigated. For this investigation an OPO with a bandwidth around 5 cm-1, together with a frequency doubling crystal, was selected. In some laser-induced fluorescence measurements the large linewidth from the OPO can be advantageous as several lines can be excited simultaneously avoiding the saturation effects of individual lines. The energy output from the OPO as a function of pulse separation was measured down to pulse separations of 400 ns and was found to be completely independent of the pulse separation. The efficiency of the OPO unit, when optimized for single-pulse operation, was measured to be around 25% for all pulses, giving over 80 mJ at 585 nm output when pumped with ~350 mJ at 355 nm. This is similar to the specified efficiency for the OPO. The system was found to give a slightly lower efficiency when double pulsing the Nd:YAG lasers. This is attributed to a somewhat elongated pulse length from the Nd:YAG lasers giving a lower pump energy density. The system was applied for measuring high-speed planar laser-induced fluorescence images of OH radicals in a Bunsen burner.

  4. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    Science.gov (United States)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  5. Long-term Progression of Type 1 Neovascularization in Age-related Macular Degeneration Using Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Xu, David; Dávila, Juan Pablo; Rahimi, Mansour; Rebhun, Carl B; Alibhai, A Yasin; Waheed, Nadia K; Sarraf, David

    2018-03-01

    To analyze the long-term growth patterns of type 1 neovascularization (NV) in eyes with age-related macular degeneration (AMD) receiving anti-vascular endothelial growth factor (VEGF) therapy. Retrospective cohort study. Patients were enrolled from 2 eye centers and underwent optical coherence tomography angiography (OCTA) imaging with follow-up greater than 1 year. Choroidal neovascularization (CNV) was manually segmented on OCTA images and compared between time points. CNV growth was subdivided into 3 categories based on OCTA area measurement: CNV doubling, modest growth of less than 50%, and shrinkage. These growth rates were correlated with OCTA morphologic features. Forty-one eyes were analyzed. Mean CNV area was 1.60 ± 1.84 mm 2 at baseline and 1.80 ± 1.84 mm 2 at 1 year. Thirty-three eyes (80%) displayed an increase in CNV area at 1 year with a mean increase of 0.20 ± 0.38 mm 2 (P = .001). Eleven eyes (27%) underwent CNV doubling, 19 eyes (46%) illustrated modest growth, and 6 (15%) showed shrinkage. Anatomic features including a capillary fringe (odds ratio [OR] = 5.3, P = .036) and immature lesion morphology (OR = 4.2, P = .015) were significantly associated with CNV doubling. CNV growth occurred in 3 predominant patterns: "symmetric" growth, "asymmetric" growth, and "finger-like projections," which reflected the orientation of expansion of CNV. "Symmetric" and "asymmetric" growth together correlated with greater frequency of CNV doubling (OR = 15, P = .0048). OCTA provides noninvasive measurement of the area of neovascular lesions in AMD. Sustained growth of type 1 NV can be identified in the majority of lesions (80%) that display characteristic patterns of progression despite ongoing anti-VEGF therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Optical Coherence Tomography Predictors of Risk for Progression to Non-Neovascular Atrophic Age-Related Macular Degeneration.

    Science.gov (United States)

    Sleiman, Karim; Veerappan, Malini; Winter, Katrina P; McCall, Michelle N; Yiu, Glenn; Farsiu, Sina; Chew, Emily Y; Clemons, Traci; Toth, Cynthia A

    2017-12-01

    Appearance of geographic atrophy (GA) on color photography (CP) is preceded by specific features on spectral-domain optical coherence tomography (SD OCT). We aimed to build SD OCT-based risk assessment models for 5-year new onset of GA and central GA on CP. Prospective, longitudinal study. Age-Related Eye Disease Study 2 Ancillary SD OCT study participants with age-related macular degeneration (AMD) with bilateral large drusen or noncentral GA and at least 1 eye without advanced disease (n = 317). For 1 eye per participant, qualitative and quantitative SD OCT variables were derived from standardized grading and semiautomated segmentation, respectively, at baseline. Up to 7 years later, annual outcomes were extracted and analyzed to fit multivariate logistic regression models and build a risk calculator. New onset of CP-visible GA and central GA. Over a follow-up median of 4.0 years and among 292 AMD eyes (without advanced disease at baseline) with complete outcome data, 46 (15.8%) developed central GA. Among 265 eyes without any GA on baseline CP, 70 (26.4%) developed CP-visible GA. Final multivariate models were adjusted for age. In the model for GA, the independent predicting SD OCT factors (P segment loss, RPE drusen complex volume, and RPE drusen complex abnormal thinning volume. For central GA, the factors (P segmentation, drusen characteristics, and retinal pathology-for progression to CP-visible GA over up to 5 years. This calculator may simplify SD OCT grading and with future validation has a promising role as a clinical prognostic tool. Copyright © 2017 American Academy of Ophthalmology. All rights reserved.

  7. Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Simon K. Law

    2017-12-01

    Full Text Available Purpose: To evaluate the relationship between the peripapillary retinal nerve fiber layer (RNFL measurements with Spectral-domain Optical Coherence Tomography (OCT and Age-related macular degeneration (AMD. Methods: Patients >60 years of age without glaucoma or record of intraocular pressure >21 mmHg and no systemic or intraocular diseases or treatment or surgical intervention that affected the RNFL underwent OCT measurement of the RNFL. The severity of AMD was staged with the Clinical Age-Related Maculopathy Staging System. The relationship between RNFL measurements and AMD stages of one eye per patient was analyzed. Results: Eighty-six eyes (46 patients with AMD and no glaucoma or other exclusion criteria received OCT RNFL measurements. Nine eyes (10.5% were excluded because of distorted peripapillary anatomy from exudative AMD (7 eyes or failure of the RNFL segmentation algorithm (2 eyes. Mean age ± S.D. of the 43 patients analyzed was 81.2 ± 7.3 years. The mean stage ± S.D. of AMD of the 77 eyes was 3.77 ± 1.05. Higher stages of AMD were statistically significantly associated with lower average RNFL and inferior sector RNFL (p = 0.049, 0 0015, respectively. The association of inferior sector RNFL and AMD stage remained statistically significant after adjusting for age. Conclusions: Spectral domain OCT is generally useful in measuring the peripapillary RNFL in eyes with different stages of AMD. Higher stage of AMD is associated with thinner peripapillary RNFL, which may masquerade as early glaucomatous damage.

  8. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells.

    Science.gov (United States)

    Mesentier-Louro, Louise A; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-05

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75 NTR , TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75 NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75 NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  9. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  10. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  11. Striatonigral Degeneration

    Science.gov (United States)

    ... See More About Research The NINDS supports and conducts research on disorders of the brain and nervous system such as striatonigral degeneration. This research ... Publications Definition Striatonigral ...

  12. Study and realisation of a miniature optical parametric oscillator; Etude et realisation d`un oscillateur parametrique optique miniature

    Energy Technology Data Exchange (ETDEWEB)

    Fulop, L.

    1998-10-09

    We used micro-chip lasers developed in LETI to pump a miniature Optical Parametric Oscillator (OPO). The micro-chip lasers can be fabricated at very low cost, using collective fabrication processes. The micro-chip lasers we used are Nd:YAG lasers, passively Q-switched by a Cr{sup 4+}:YAG saturable absorber. They are pumped with 1 W standard laser diodes and emit pulses which characteristics are a few {mu}J energies and several kHz repetition rates. The main problem in pumping an OPO with such a micro-chip laser is to reach its oscillation threshold. We are calculated this threshold and showed that it will be impossible to pump an extra-cavity OPO with a micro-chip laser. We first worked with an extra-cavity OPO based on the non-critical-phase-matching conversion 1.064 {mu}m{yields}1.572 {mu}m + 3.293 {mu}m in a KTP crystal, pumped with a mJ energy laser. In spite of good results (low thresholds of 200 {mu}J) and as we have calculated, it was not be possible to pump such an OPO with our micro-chip lasers (10{mu}J maximum energies). We developed an intracavity micro-chip OPO (with the OPO inside the laser cavity). In this configuration, the OPO benefits from the intracavity laser intensity to reach the oscillation threshold. The micro-chip OPO emits about 10 ns pulses at 1.572 {mu}m with a few {mu}J energy at several kHz repetition rate. To our knowledge, we realised the first micro-chip-OPO using a 1 W standard diode pumped, passively Q-switched micro-chip laser. In order to improve the performances of the intracavity micro-chip-OPO, we developed a software for numerical modelling its operation. (author) 80 refs.

  13. Optical Coherence Tomography Monitoring Strategies for A-VEGF-Treated Age-Related Macular Degeneration: An Evidence-Based Analysis.

    Science.gov (United States)

    Pron, G

    2014-01-01

    New anti-angiogenesis pharmacotherapies have dramatically altered treatment of age-related macular degeneration (AMD), the leading cause of blindness in older adults. Monthly intraocular injections however, are extremely burdensome to ophthalmologists, patients, and their families. Repeated injections also increase risks of complications or adverse events. Although the pharmacokinetics of anti-vascular endothelial growth factor (A-VEGF) drugs are fairly well known, an individuals' AMD presentation and their pharmacodynamics or response to the drug has been shown to be extremely variable. Therefore treating everyone on the same fixed or standard regimen has potential for undertreating or overtreating patients, and drug costs are not trivial. To review monitoring strategies and to evaluate the role of optical coherence tomography (OCT) in guiding management of A-VEGF-treated neovascular AMD (n-AMD) patients. Systematic reviews of biographic databases for studies published between 2008 and February 2013 involving A-VEGF-treated n-AMD patients monitored in longitudinal follow-up. Studies were grouped according to varying treatments, monitoring schedules, and re-treatment protocols reported for n-AMD patients treated with A-VEGF. Several outcomes were evaluated across strategies including visual acuity (VA), retinal anatomy, re-treatment criteria and frequencies of clinical follow-up, OCT imaging investigations, and intravitreal injections. Results were summarized qualitatively, as heterogeneity in study objectives and methods precluded formal meta-analysis. A systematic review identified 18 randomized controlled trials (RCTs) and 20 observational studies involving A-VEGF treatment employing various monitoring and as-needed (PRN) re-treatment protocols. Several maintenance strategies were unsuccessful, resulting in lower VA gains and stabilization than monthly injections in A-VEGF-treated n-AMD. These included fixed quarterly treatment; fixed quarterly monitoring and

  14. Optical Coherence Tomography Monitoring Strategies for A-VEGF—Treated Age-Related Macular Degeneration: An Evidence-Based Analysis

    Science.gov (United States)

    Pron, G

    2014-01-01

    Background New anti-angiogenesis pharmacotherapies have dramatically altered treatment of age-related macular degeneration (AMD), the leading cause of blindness in older adults. Monthly intraocular injections however, are extremely burdensome to ophthalmologists, patients, and their families. Repeated injections also increase risks of complications or adverse events. Although the pharmacokinetics of anti–vascular endothelial growth factor (A-VEGF) drugs are fairly well known, an individuals’ AMD presentation and their pharmacodynamics or response to the drug has been shown to be extremely variable. Therefore treating everyone on the same fixed or standard regimen has potential for undertreating or overtreating patients, and drug costs are not trivial. Objectives To review monitoring strategies and to evaluate the role of optical coherence tomography (OCT) in guiding management of A-VEGF–treated neovascular AMD (n-AMD) patients. Data Sources Systematic reviews of biographic databases for studies published between 2008 and February 2013 involving A-VEGF–treated n-AMD patients monitored in longitudinal follow-up. Review Methods Studies were grouped according to varying treatments, monitoring schedules, and re-treatment protocols reported for n-AMD patients treated with A-VEGF. Several outcomes were evaluated across strategies including visual acuity (VA), retinal anatomy, re-treatment criteria and frequencies of clinical follow-up, OCT imaging investigations, and intravitreal injections. Results were summarized qualitatively, as heterogeneity in study objectives and methods precluded formal meta-analysis. Results A systematic review identified 18 randomized controlled trials (RCTs) and 20 observational studies involving A-VEGF treatment employing various monitoring and as-needed (PRN) re-treatment protocols. Several maintenance strategies were unsuccessful, resulting in lower VA gains and stabilization than monthly injections in A-VEGF–treated n-AMD. These

  15. Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography

    Science.gov (United States)

    Farsiu, Sina; Chiu, Stephanie J.; O'Connell, Rachelle V.; Folgar, Francisco A.; Yuan, Eric; Izatt, Joseph A.; Toth, Cynthia A.

    2013-01-01

    Objective To define quantitative indicators for the presence of intermediate age-related macular degeneration (AMD) via spectral-domain optical coherence tomography (SD-OCT) imaging of older adults. Design Evaluation of diagnostic test and technology. Participants and Controls One eye from 115 elderly subjects without AMD and 269 subjects with intermediate AMD from the Age-Related Eye Disease Study 2 (AREDS2) Ancillary SD-OCT Study. Methods We semiautomatically delineated the retinal pigment epithelium (RPE) and RPE drusen complex (RPEDC, the axial distance from the apex of the drusen and RPE layer to Bruch's membrane) and total retina (TR, the axial distance between the inner limiting and Bruch's membranes) boundaries. We registered and averaged the thickness maps from control subjects to generate a map of “normal” non-AMD thickness. We considered RPEDC thicknesses larger or smaller than 3 standard deviations from the mean as abnormal, indicating drusen or geographic atrophy (GA), respectively. We measured TR volumes, RPEDC volumes, and abnormal RPEDC thickening and thinning volumes for each subject. By using different combinations of these 4 disease indicators, we designed 5 automated classifiers for the presence of AMD on the basis of the generalized linear model regression framework. We trained and evaluated the performance of these classifiers using the leave-one-out method. Main Outcome Measures The range and topographic distribution of the RPEDC and TR thicknesses in a 5-mm diameter cylinder centered at the fovea. Results The most efficient method for separating AMD and control eyes required all 4 disease indicators. The area under the curve (AUC) of the receiver operating characteristic (ROC) for this classifier was >0.99. Overall neurosensory retinal thickening in eyes with AMD versus control eyes in our study contrasts with previous smaller studies. Conclusions We identified and validated efficient biometrics to distinguish AMD from normal eyes by

  16. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.

    Science.gov (United States)

    Treder, Maximilian; Lauermann, Jost Lennart; Eter, Nicole

    2018-02-01

    Our purpose was to use deep learning for the automated detection of age-related macular degeneration (AMD) in spectral domain optical coherence tomography (SD-OCT). A total of 1112 cross-section SD-OCT images of patients with exudative AMD and a healthy control group were used for this study. In the first step, an open-source multi-layer deep convolutional neural network (DCNN), which was pretrained with 1.2 million images from ImageNet, was trained and validated with 1012 cross-section SD-OCT scans (AMD: 701; healthy: 311). During this procedure training accuracy, validation accuracy and cross-entropy were computed. The open-source deep learning framework TensorFlow™ (Google Inc., Mountain View, CA, USA) was used to accelerate the deep learning process. In the last step, a created DCNN classifier, using the information of the above mentioned deep learning process, was tested in detecting 100 untrained cross-section SD-OCT images (AMD: 50; healthy: 50). Therefore, an AMD testing score was computed: 0.98 or higher was presumed for AMD. After an iteration of 500 training steps, the training accuracy and validation accuracies were 100%, and the cross-entropy was 0.005. The average AMD scores were 0.997 ± 0.003 in the AMD testing group and 0.9203 ± 0.085 in the healthy comparison group. The difference between the two groups was highly significant (p < 0.001). With a deep learning-based approach using TensorFlow™, it is possible to detect AMD in SD-OCT with high sensitivity and specificity. With more image data, an expansion of this classifier for other macular diseases or further details in AMD is possible, suggesting an application for this model as a support in clinical decisions. Another possible future application would involve the individual prediction of the progress and success of therapy for different diseases by automatically detecting hidden image information.

  17. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  18. Efficient high-energy pulse generation from a diode-side-pumped passively Q-switched Nd:YAG laser and application for optical parametric oscillator

    International Nuclear Information System (INIS)

    Huang, Y P; Huang, Y J; Cho, C Y

    2014-01-01

    We employ a convex–concave resonator to develop a high-pulse-energy diode-side-pumped passively Q-switched Nd:YAG laser with high extraction efficiency. At a diode pump energy of 227 mJ, the output laser pulse reaches 30 mJ with a pulse width of 6 ns at a repetition rate of 20 Hz. The optical-to-optical conversion efficiency is up to 13.2%. Based on the developed Nd:YAG laser oscillator, we further employ a monolithic KTP crystal to perform the optical parametric oscillator (OPO). With the 1064 nm input energy of 30 mJ, the OPO energy at 1573 nm is found to be 13.3 mJ, corresponding to an OPO conversion efficiency as high as 44.3%. (letters)

  19. Wide-band and fast wavelength-swept optical parametric oscillator with a photonic crystal fiber based on dispersion tuning technology at 1 μm

    Science.gov (United States)

    Chen, Jin; Yang, Sigang; Guo, Qiang; Chen, Hongwei; Chen, Minghua; Xie, Shizhong

    2016-03-01

    A wavelength-swept fiber optical parametric oscillator (FOPO) based on dispersion tuning technology at wavelength around 1 μm is demonstrated. A continuous wave single-longitudinal-mode ytterbium doped fiber laser with a line-width of 0.05 nm is modulated through a LiNbO3 Mach-Zehnder modulator to be a pulsed source with variable repetition rate. The pulsed source is amplified with a two-stage ytterbium doped fiber amplifier (YDFA) to a mediate power and a high power YDFA to peak power higher than 40 W. And a homemade 50-m photonic crystal fiber (PCF) which provides the optical parametric gain is pumped by the pulsed source. The optical modulator is driven by a frequency-swept electrical clock signal with frequency ranges from 107.24 MHz to 107.31 MHz. Thus the FOPO generates a wavelength-swept light source with a range of 80 nm centered at 1065.10 nm. Through careful customizing the sweeping rate of the driving clock signal, the sweeping rate of the parametric oscillator can be up to 10 kHz, which is limited by currently used electrical sweeping source. The generated pulses train are with pulse width of about 110 ps. For the electrical scan is used instead of the traditional mechanical scanning method in conventional wavelength-swept sources, it performs better stability under prolonged operation. The wavelength-swept FOPO is potential to be applied in OCT systems for its good stability and advantaged wavelength band.

  20. Hepatocerebral degeneration

    Science.gov (United States)

    Hepatocerebral degeneration is a brain disorder that occurs in people with liver damage. ... This condition may occur in any case of acquired liver failure, ... can damage brain tissue. Specific areas of the brain, such as ...

  1. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  2. Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6  μm.

    Science.gov (United States)

    Smolski, V O; Vasilyev, S; Schunemann, P G; Mirov, S B; Vodopyanov, K L

    2015-06-15

    Using a subharmonic optical parametric oscillator (OPO) based on orientation-patterned GaAs, we produced a broadband instantaneous output that spans 3.6-5.6 μm at 50-dB level (4.4-5.2 μm at 3 dB level), has 110 mW of average power, and is suitable for producing wideband-frequency combs in the mid-infrared. The OPO was synchronously pumped by a compact Kerr-lens mode-locked femtosecond Cr:ZnS oscillator with the central wavelength 2.38 μm and pulse repetition frequency 175 MHz.

  3. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    Science.gov (United States)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  4. Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength.

    Science.gov (United States)

    Maji, Partha Sona; Chaudhuri, Partha Roy

    2015-04-10

    In this work, we explore the fiber optical parametric amplifiers (FOPAs) gain and bandwidth spectra of near-zero ultra-flattened photonic crystal fibers (PCFs) around the communication wavelength. The parametric gain and spectral bandwidth have been explored for all the three zero-dispersion wavelengths (ZDWs) of the near-zero ultra-flat fiber. Our numerical analysis establishes a dispersion profile with D=0±0.35  ps/nm/km for a bandwidth of 440 nm around the communication wavelength to fully exploit the four-wave mixing effect with three ZDWs for broadband applications. It has been observed that the broader gain spectrum of FOPAs can be achieved with the near-zero and ultra-flattened dispersion curve with proper tuning of the pumping condition. A broader bandwidth with sufficient peak gain value has been achieved with small negative anomalous dispersion (β2≤0) and positive value of fourth-order dispersion parameter (+ve  β4) around the pumping wavelength. Wider bandwidth of the parametric amplifier has been observed around the second ZDW with a negative slope of the dispersion curve. A total bandwidth ≈520  nm could be achieved with the ultra-flat dispersion nature of the optimized PCF. The design methodology of achieving wider gain by tuning the pumping wavelength for favorable higher-order dispersion parameters would be very useful for future dispersion engineered devices.

  5. Development of suspended core soft glass fibers for far-detuned parametric conversion

    Science.gov (United States)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  6. Efficient high-pulse-energy eye-safe laser generated by an intracavity Nd:YLF/KTP optical parametric oscillator: role of thermally induced polarization switching

    International Nuclear Information System (INIS)

    Huang, Y J; Tang, C Y; Huang, Y P; Cho, C Y; Su, K W; Chen, Y F

    2012-01-01

    A high-pulse-energy eye-safe laser at 1552 nm is effectually generated by an intracavity Nd:YLF/KTP optical parametric oscillator (OPO) with the help of the thermally induced polarization switching. The polarization characteristics of the c-cut Nd:YLF laser at 1053 nm in the continuous-wave (CW) and Q-switched operation are comprehensively investigated. We experimentally verify the thermally induced birefringence can lead to a polarization switching between the mutually orthogonal components of the fundamental pulses. Consequently, an efficient intracavity nonlinear frequency conversion can be achieved in an optically isotropic laser crystal without any additional polarization control. With this finding, the pulse energy and peak power of the compact Nd:YLF/KTP eye-safe laser under an incident pump power of 12.7 W and a pulse repetition rate of 5 kHz are up to 306 μJ and 4 kW, respectively

  7. Optimizing the performance of non-collinear optical parametric chirped pulse amplification via multi-pass structure based on two geometry configurations.

    Science.gov (United States)

    Li, Wenqi; Peng, Chun; Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2017-11-27

    We propose a method for multi-pass non-collinear optical parametric chirped pulse amplification (MNOPCPA) based on two geometries, tangent phase-matching (TPM) and Poynting vector walk-off compensation (PVWC), which optimize the performance of optical parametric chirped pulse amplification (OPCPA). A feasible design scheme is also presented for use in implementing this approach. Employing this design, we construct and perform a numerical simulation, showing that back-conversion from the signal and idler to the pump can be inhibited, and that the conversion efficiency can be boosted dramatically, approaching the theoretical limit of ~64%, when amplification is nearly saturated at full bandwidth. In the MNOPCPA scheme, the output signal has a wider spectrum and a corresponding shorter Fourier-limited pulse duration with the pump being continuously depleted. A barycenter shift of the signal spot results from a spatial walk-off effect due to the pump, which can be offset and corrected well. To the best of our knowledge, this is the first demonstration of a multi-pass non-collinear OPCPA method employed the scheme of regenerative amplification.

  8. Optical Coherence Tomography Updates on Clinical and Technical Developments. Age-Related Macular Degeneration: Drusen and Geographic Atrophy

    Science.gov (United States)

    Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Holz, Frank G.

    Age-related macular degeneration (AMD) is a complex disease with both genetic and environmental factors influencing its development. With the advent of high-resolution OCT imaging, the characterization of drusen in AMD has become possible. The in vivo morphologic characteristics imaged with SD-OCT may represent distinct subclasses of drusen variants, may relate closely to ultrastructural drusen elements identified in donor eyes, and may be useful imaging biomarkers for disease severity or risk of progression [Khanifar et al. Ophthalmology 115(11):1883-1890, 2008].

  9. Comparison of spectral-domain and time-domain optical coherence tomography in the detection of neovascular age-related macular degeneration activity.

    Science.gov (United States)

    Major, James C; Wykoff, Charles C; Mariani, Angeline F; Chen, Eric; Croft, Daniel E; Brown, David M

    2014-01-01

    To compare the sensitivity of commonly used time-domain (TD-OCT) and spectral-domain optical coherence tomography platforms and scanning modalities in the management of neovascular age-related macular degeneration in a population with a high prevalence of exudative disease activity. Fifty consecutive patients within the prospective SAVE (Super-dose Anti-Vascular Endothelial growth factor) trial, which analyzed the utility of 2.0 mg intravitreal ranibizumab for the treatment of recalcitrant neovascular age-related macular degeneration, were enrolled in a comparison trial of 3 different optical coherence tomography (OCT) platforms. Stratus TD-OCT radial scan (Carl Zeiss Meditec, Inc) was compared with 3 Heidelberg Spectralis Heidelberg Retinal Angiograph+OCT (Heidelberg Engineering) acquisition settings (radial, 7-line raster, volumetric) and 2 Cirrus high definition (HD)-OCT (Carl Zeiss Meditec, Inc) acquisition settings (5-line raster, volumetric). Using every imaging platform and acquisition setting, evidence of exudative disease activity was positively identified in 163 of 191 patient visits (85.3%). Intraretinal cysts were identified in 83 of 191 visits (43.5%), and subretinal fluid was identified in 116 of 191 visits (60.7%). Of these positive visits, the Stratus TD-OCT radial scanning technology demonstrated a significantly lower rate of detection (71.8%) when compared with the Spectralis HRA+OCT spectral domain scanning modalities (radial 87.1%, P raster 92.0%, P raster 81.6%, P = 0.001; volumetric 92.0%, P imaging modality demonstrated a diagnostic advantage for detecting subretinal fluid versus intraretinal cysts (e.g., Cirrus volume detected 86.7% of intraretinal cysts and 88.8% of subretinal fluid, P = 0.33). In this neovascular age-related macular degeneration patient population, spectral-domain ocular coherence tomography was a superior diagnostic tool when compared with TD-OCT, with each spectral domain platform and acquisition setting identifying

  10. Spectral-domain Optical Coherence Tomography Retinal and Choroidal Thickness Metric Repeatability in Age-related Macular Degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2016-01-01

    PURPOSE: To determine the intrasession repeatability of spectral-domain OCT (SDOCT)-derived macular retinal and choroidal metrics in patients with neovascular age-related macular degeneration (nAMD) in the Distance of Choroid Study (DOCS). DESIGN: Validity and reliability analysis. METHODS......: Enrolled patients underwent repeated SDOCT imaging using the Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany). A single technician certified for clinical trials took 3 macular volume scans. Retinal thicknesses were calculated for each of the 9 Early Treatment Diabetic Retinopathy Study (ETDRS...... was 34.7 μm (95% CI 33.7-35.7 μm). CONCLUSIONS: This study suggests that a change of greater than 31 μm in Spectralis SDOCT-derived retinal thickness measurement of the central macular subfield and 35 μm in subfoveal choroidal thickness is necessary to detect true clinical change associated with disease...

  11. Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4.

    Science.gov (United States)

    Jovanovic, Igor; Brown, Curtis G; Ebbers, Christopher A; Barty, C P J; Forget, Nicolas; Le Blanc, Catherine

    2005-05-01

    A new high-contrast, high-gain optical parametric chirped-pulse amplifier (OPCPA) architecture is demonstrated in periodically poled KTiOPO4 (PPKTP). This architecture overcomes parametric fluorescence contrast limitations of the OPCPA in periodically poled materials. The scheme is based on two passes of a single relay-imaged pump pulse and a free-propagating signal pulse through a 1.5 mm x 5 mm x 7.5 mm PPKTP crystal. The output energy of 1.2 mJ is generated at a center wavelength of 1053 nm by 24 mJ of pump energy. A prepulse contrast level of > 3 x 10(7) was measured with > 10(6) saturated gain in the amplifier. Amplified pulses were compressed to 200 fs. This simple and versatile concept requires only a modest pump energy from a commercial pump laser and represents a possible high-contrast front end for high-energy Nd:glass-based petawatt-class lasers.

  12. Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 μm

    International Nuclear Information System (INIS)

    Miao Jie-Guang; Pan Yu-Zhai; Qu Shi-Liang

    2012-01-01

    The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 μm driven by a small-scale diode-pumped Nd:YVO 4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57μm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized. (fundamental areas of phenomenology(including applications))

  13. Continuous-wave pump-enhanced optical parametric oscillator with ring resonator for wide and continuous tuning of single-frequency radiation.

    Science.gov (United States)

    Stothard, David; Lindsay, Ian; Dunn, Malcolm

    2004-02-09

    We demonstrate a PPLN based pump-enhanced, singly-resonant optical parametric oscillator configured in a traveling wave geometry and pumped by a Ti:sapphire laser. The inclusion of a low finesse etalon within the OPO cavity stabilizes the signal frequency, and rotation of the etalon allows this frequency to be systematically hopped from axial mode to nearest neighbor axial mode over the entire free spectral range of the etalon (83GHz). Tuning of the pump frequency allows the signal frequency to be smoothly tuned over a cavity free spectral range. More than 35mW of single frequency idler power was generated in the spectral range 2800-3000nm for 600mW pump power. The superiority of traveling wave over standing wave geometries in these regards is discussed.

  14. Contextual realization of the universal quantum cloning machine and of the universal-NOT gate by quantum-injected optical parametric amplification

    International Nuclear Information System (INIS)

    Pelliccia, D.; Schettini, V.; Sciarrino, F.; Sias, C.; De Martini, F.

    2003-01-01

    A simultaneous, contextual experimental demonstration of the two processes of cloning an input qubit vertical bar Ψ> and of flipping it into the orthogonal qubit vertical bar Ψ perpendicular> is reported. The adopted experimental apparatus, a quantum-injected optical parametric amplifier is transformed simultaneously into a universal optimal quantum cloning machine and into a universal-NOT quantum-information gate. The two processes, indeed forbidden in their exact form for fundamental quantum limitations, were found to be universal and optimal, i.e., the measured fidelity of both processes F<1 was found close to the limit values evaluated by quantum theory. A contextual theoretical and experimental investigation of these processes, which may represent the basic difference between the classical and the quantum worlds, can reveal in a unifying manner the detailed structure of quantum information. It may also enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics

  15. Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing.

    Science.gov (United States)

    Clément, Q; Melkonian, J-M; Dherbecourt, J-B; Raybaut, M; Grisard, A; Lallier, E; Gérard, B; Faure, B; Souhaité, G; Godard, A

    2015-06-15

    We demonstrate a nanosecond single-frequency nested cavity optical parametric oscillator (NesCOPO) based on orientation-patterned GaAs (OP-GaAs). Its low threshold energy of 10 μJ enables to pump it with a pulsed single-frequency Tm:YAP microlaser. Stable single-longitudinal-mode emission is obtained owing to Vernier spectral filtering provided by the dual-cavity doubly-resonant NesCOPO scheme. Crystal temperature tuning covers the 10.3-10.9 μm range with a quasi-phase-matching period of 72.6 μm. A first step toward the implementation of this device in a differential absorption lidar is demonstrated by carrying out short-range standoff detection of ammonia vapor around 10.4 μm. Owing to the single-frequency emission, interferences due to absorption by atmospheric water vapor can be discriminated from the analyte signal.

  16. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 μm) optical parametric oscillator

    Science.gov (United States)

    Todd, M. W.; Provencal, R. A.; Owano, T. G.; Paldus, B. A.; Kachanov, A.; Vodopyanov, K. L.; Hunter, M.; Coy, S. L.; Steinfeld, J. I.; Arnold, J. T.

    A novel instrument, based on cavity-ringdown spectroscopy (CRDS), has been developed for trace gas detection. The new instrument utilizes a widely tunable optical parametric oscillator (OPO), which incorporates a zinc-germanium-phosphide (ZGP) crystal that is pumped at 2.8 μm by a 25-Hz Er,Cr:YSGG laser. The resultant mid-IR beam profile is nearly Gaussian, with energies exceeding 200 μJ/pulse between 6 and 8 μm, corresponding to a quantum conversion efficiency of approximately 35%. Vapor-phase mid-infrared spectra of common explosives (TNT, TATP, RDX, PETN and Tetryl) were acquired using the CRDS technique. Parts-per-billion concentration levels were readily detected with no sample preconcentration. A collection/flash-heating sequence was implemented in order to enhance detection limits for ambient air sampling. Detection limits as low as 75 ppt for TNT are expected, with similar concentration levels for the other explosives.

  17. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    International Nuclear Information System (INIS)

    Chang, H L; Zhuang, W Z; Huang, W C; Huang, J Y; Huang, K F; Chen, Y F

    2011-01-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained

  18. Simultaneous intracavity optical parametric oscillation and stimulated Raman scattering pumped by a doubly passively Q-switched Nd:GGG laser

    Science.gov (United States)

    Chu, Hongwei; Zhao, Jia; Li, Yufei; Zhao, Shengzhi; Yang, Kejian; Li, Dechun; Li, Guiqiu; Li, Tao; Qiao, Wenchao

    2014-12-01

    By using a doubly passively Q-switched Nd:Gd3Ga5O12(Nd:GGG) laser with Cr4+:YAG and GaAs as saturable absorbers as pump laser, simultaneous intracavity optical parametric oscillation and stimulated Raman scattering based on a single X-cut KTiOPO4 (KTP) crystal have been realized. Under an incident diode pump power of 10.5 W, the output powers at the signal wave near 1,569 nm and the first Stokes emission near 1,094 nm were 218 and 72 mW, corresponding to the optical-to-optical conversion efficiencies of 2.08 and 0.69 %, respectively. The measured shortest pulse duration at the signal wave near 1,569 nm was 580 ps, generating a pulse peak power of 43.7 kW, while the minimum pulse duration at the first Stokes emission near 1,094 nm was 1.61 ns. By adjusting the tilt angle of the KTP crystal, up to the third Stokes scattering was also obtained.

  19. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  20. A general approach to optomechanical parametric instabilities

    International Nuclear Information System (INIS)

    Evans, M.; Barsotti, L.; Fritschel, P.

    2010-01-01

    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.

  1. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma.

    Directory of Open Access Journals (Sweden)

    Janey L Wiggs

    Full Text Available Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP less than 22 mmHg subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63-0.75], p = 1.86×10⁻¹⁸, and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21-1.43], p = 3.87×10⁻¹¹. In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50-0.67], p = 1.17×10⁻¹² and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53-0.72], p = 8.88×10⁻¹⁰. Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41-0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54-1.06], p = 0.021, suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009. These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for

  2. Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Science.gov (United States)

    Hauser, Michael A.; Kang, Jae H.; Allingham, R. Rand; Olson, Lana M.; Abdrabou, Wael; Fan, Bao J.; Wang, Dan Y.; Brodeur, Wendy; Budenz, Donald L.; Caprioli, Joseph; Crenshaw, Andrew; Crooks, Kristy; DelBono, Elizabeth; Doheny, Kimberly F.; Friedman, David S.; Gaasterland, Douglas; Gaasterland, Terry; Laurie, Cathy; Lee, Richard K.; Lichter, Paul R.; Loomis, Stephanie; Liu, Yutao; Medeiros, Felipe A.; McCarty, Cathy; Mirel, Daniel; Moroi, Sayoko E.; Musch, David C.; Realini, Anthony; Rozsa, Frank W.; Schuman, Joel S.; Scott, Kathleen; Singh, Kuldev; Stein, Joshua D.; Trager, Edward H.; VanVeldhuisen, Paul; Vollrath, Douglas; Wollstein, Gadi; Yoneyama, Sachiko; Zhang, Kang; Weinreb, Robert N.; Ernst, Jason; Kellis, Manolis; Masuda, Tomohiro; Zack, Don; Richards, Julia E.; Pericak-Vance, Margaret; Pasquale, Louis R.; Haines, Jonathan L.

    2012-01-01

    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple

  3. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    Science.gov (United States)

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  4. EFFECT OF INTRAVITREAL RANIBIZUMAB ON GANGLION CELL COMPLEX AND PERIPAPILLARY RETINAL NERVE FIBER LAYER IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco

    2017-07-01

    To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P retinal nerve fiber layer and ganglion cell complex thickness in 1-year follow-up. Choroidal thickness in papillomacular area and central macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.

  5. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    International Nuclear Information System (INIS)

    Arinilhaq; Widita, R

    2016-01-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis. (paper)

  6. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    Science.gov (United States)

    Arinilhaq; Widita, R.

    2016-03-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis.

  7. Optical Coherence Tomography-A New Diagnostic Tool to Evaluate Axonal Degeneration in Multiple Sclerosis: A Review

    Directory of Open Access Journals (Sweden)

    Nilüfer Kale

    2010-09-01

    Full Text Available Multiple sclerosis is an inflammatory demyelinating disorder of the central nervous system with a wide spectrum of clinical signs and symptoms. Multiple sclerosis lesions have a predilection for the optic nerves, periventricular white matter, brainstem, spinal cord, and cerebellum. The mechanisms responsible for multiple sclerosis are complex and heterogeneous across patients and disease stages. No specific markers exist for the definite diagnosis and prognosis of multiple sclerosis. The afferent visual pathway, which extends from the retina to the primary visual cortex including the optic nerve, is one of the most commonly affected sites in multiple sclerosis (94-99%. Pathology of affected optic nerves exhibits inflammation, demyelination, gliosis, axonal injury, and thinning of the retinal nerve fiber layer (RNFL. The RNFL is composed of unmyelinated axons, and measuring RNFL thickness is a viable method to monitor axonal loss reflecting disease progression. Optical coherence tomography is a noninvasive and reproducible tool in assessing the impact of multiple sclerosis on the thickness of the RNFL. Assessment of the afferent visual pathway using clinical, imaging and electrophysiological methods provides insights into the pathophysiology of multiple sclerosis and may also serve a prognostic role in multiple sclerosis

  8. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission...

  9. Early changes in macular optical coherence tomography parameters after Ranibizumab intravitreal injection in patients with exsudative age-related macular degeneration.

    Science.gov (United States)

    de Almeida, Nicole Antunes; de Souza, Osias Francisco

    2018-01-01

    Evaluation of the impact of different macular optical coherence parameters on visual acuity as early as 1 day after injection of ranibizumab in patients with subfoveal exsudative age-related macular degeneration. This was an interventional, non randomized, open label prospective study, where we evaluated 20 eyes of 20 patients affected by exudative age-related macular degeneration. These patients were treated with injections of ranibizumab between February 2013 and January 2015. The primary endpoint of this study was to evaluate the early changes in optical coherence tomography parameters (retinal thickness, central and total retinal volume) and impact on best-corrected visual acuity (BCVA) obtained by logarithm of minimum resolution using ETDRS protocol in patients treated with a single dose intravitreal injection of ranibizumab (0.5 mg/0.05 mL) during the first month of follow. The patients were evaluated on the first day, them at 7 and 30 days after the treatment. The National Eye Institute Visual Functioning Questionnaire was applied during the study period to assess early perception of ranibizumab injection effectiveness. The adverse events were monitored throughout the study. Central retinal thickness values at 1 (464.0 ± 97.8 µm), 7 (379.9 ± 107.8 µm) and 30 days (365.5 ± 95.1 µm) after ranibizumab injection showed a statically significant reduction when compared with baseline results ( P  = 0.01, P  = 0.001, P  = 0.001, respectively). Similar alterations were observed in central and total retinal volume, which were detected early on the first day of evaluation, after the measurement at baseline (central: 0.36 ± 0.07 vs. 0.40 ± 0.10 mm 3 , P  = 0.01; total: 9.62 ± 1.10 vs. 9.99 ± 2.56 mm 3 , P  = 0.002) and remained steady at 7 ( P  = 0.001, P  = 0.002, respectively) and 30 days ( P  = 0.001, P  = 0.004, respectively) with slight variations without losing their gains in these parameters. The best

  10. Schwinger-type parametrization of open string worldsheets

    Directory of Open Access Journals (Sweden)

    Sam Playle

    2017-03-01

    Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  11. Femtosecond optical parametric amplification in BBO and KTA driven by a Ti:sapphire laser for LIDT testing and diagnostic development

    Science.gov (United States)

    Meadows, Alexander R.; Cupal, Josef; Hříbek, Petr; Durák, Michal; Kramer, Daniel; Rus, Bedřich

    2017-05-01

    We present the design of a collinear femtosecond optical parametric amplification (OPA) system producing a tunable output at wavelengths between 1030 nm and 1080 nm from a Ti:Sapphire pump laser at a wavelength of 795 nm. Generation of a supercontinuum seed pulse is followed by one stage of amplification in Beta Barium Borate (BBO) and two stages of amplification in Potassium Titanyle Arsenate (KTA), resulting in a 225 μJ output pulse with a duration of 90 fs. The output of the system has been measured by self-referenced spectral interferometry to yield the complete spectrum and spectral phase of the pulse. When compared to KTP, the greater transparency of KTA in the spectral range from 3 - 4 μm allows for reduced idler absorption and enhanced gain from the OPA process when it is pumped by the fundamental frequency of a Ti:sapphire laser. In turn, the use of the Ti:sapphire fundamental at 795 nm as a pump improves the efficiency with which light can be converted to wavelengths between 1030 nm and 1080 nm and subsequently used to test components for Nd-based laser systems. This OPA system is operated at 1 kHz for diagnostic development and laser-induced damage threshold testing of optical components for the ELI-Beamlines project.

  12. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI

    International Nuclear Information System (INIS)

    Welsch, Goetz Hannes; Trattnig, Siegfried; Goed, Sabine; Stelzeneder, David; Paternostro-Sluga, Tatjana; Bohndorf, Klaus; Mamisch, Tallal Charles

    2011-01-01

    To assess, compare and correlate quantitative T2 and T2* relaxation time measurements of intervertebral discs (IVDs) in patients suffering from low back pain, with respect to the IVD degeneration as assessed by the morphological Pfirrmann Score. Special focus was on the spatial variation of T2 and T2* between the annulus fibrosus (AF) and the nucleus pulposus (NP). Thirty patients (mean age: 38.1 ± 9.1 years; 20 female, 10 male) suffering from low back pain were included. Morphological (sagittal T1-FSE, sagittal and axial T2-FSE) and biochemical (sagittal T2- and T2* mapping) MRI was performed at 3 Tesla covering IVDs L1-L2 to L5-S1. All IVDs were morphologically classified using the Pfirrmann score. Region-of-interest (ROI) analysis was performed on midsagittal T2 and T2* maps at five ROIs from anterior to posterior to obtain information on spatial variation between the AF and the NP. Statistical analysis-of-variance and Pearson correlation was performed. The spatial variation as an increase in T2 and T2* values from the AF to the NP was highest at Pfirmann grade I and declined at higher Pfirmann grades II-IV (p < 0.05). With increased IVD degeneration, T2 and T2* revealed a clear differences in the NP, whereas T2* was additionally able to depict changes in the posterior AF. Correlation between T2 and T2* showed a medium Pearson's correlation (0.210 to 0.356 [p < 0.001]). The clear differentiation of IVD degeneration and the possible quantification by means of T2 and fast T2* mapping may provide a new tool for follow-up therapy protocols in patients with low back pain. (orig.)

  13. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Goetz Hannes [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried; Goed, Sabine; Stelzeneder, David [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Paternostro-Sluga, Tatjana [Medical University of Vienna, Department of Physical Therapy, Vienna (Austria); Bohndorf, Klaus [Klinikum Augsburg, Department of Radiology, Augsburg (Germany); Mamisch, Tallal Charles [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); University of Berne, Department of Orthopedic Surgery, Berne (Switzerland)

    2011-05-15

    To assess, compare and correlate quantitative T2 and T2* relaxation time measurements of intervertebral discs (IVDs) in patients suffering from low back pain, with respect to the IVD degeneration as assessed by the morphological Pfirrmann Score. Special focus was on the spatial variation of T2 and T2* between the annulus fibrosus (AF) and the nucleus pulposus (NP). Thirty patients (mean age: 38.1 {+-} 9.1 years; 20 female, 10 male) suffering from low back pain were included. Morphological (sagittal T1-FSE, sagittal and axial T2-FSE) and biochemical (sagittal T2- and T2* mapping) MRI was performed at 3 Tesla covering IVDs L1-L2 to L5-S1. All IVDs were morphologically classified using the Pfirrmann score. Region-of-interest (ROI) analysis was performed on midsagittal T2 and T2* maps at five ROIs from anterior to posterior to obtain information on spatial variation between the AF and the NP. Statistical analysis-of-variance and Pearson correlation was performed. The spatial variation as an increase in T2 and T2* values from the AF to the NP was highest at Pfirmann grade I and declined at higher Pfirmann grades II-IV (p < 0.05). With increased IVD degeneration, T2 and T2* revealed a clear differences in the NP, whereas T2* was additionally able to depict changes in the posterior AF. Correlation between T2 and T2* showed a medium Pearson's correlation (0.210 to 0.356 [p < 0.001]). The clear differentiation of IVD degeneration and the possible quantification by means of T2 and fast T2* mapping may provide a new tool for follow-up therapy protocols in patients with low back pain. (orig.)

  14. Longitudinal Analysis of Drusen Volume in Intermediate Age-Related Macular Degeneration Using Two Spectral-Domain Optical Coherence Tomography Scan Patterns.

    Science.gov (United States)

    Thiele, Sarah; Nadal, Jennifer; Fleckenstein, Monika; Fang, Petra P; Pfau, Maximilian; Schmid, Matthias; Hua, Rui; Holz, Frank G; Schmitz-Valckenberg, Steffen

    2018-01-01

    To evaluate two different spectral-domain optical coherence tomography (SD-OCT) scan patterns in eyes with intermediate age-related macular degeneration (AMD) for the longitudinal assessment of drusen volume. The data of 38 eyes of 38 AMD patients (age 69.97 ± 6.08 years) were included. The longitudinal drusen volume over 4 years was analyzed by annual SD-OCT raster scanning (field size 20 × 15°). Two raster scan patterns (A/B) differed in the distance between neighboring B-scans (240 vs. 30 µm) and in the number of averaged frames (4 vs. 15). The mean drusen volume at baseline was 0.213 ± 0.100 mm3 (pattern A) and 0.219 ± 0.103 mm3 (pattern B) (p = 0.937). Linear mixed-effect models showed no significant difference for the change within 4 years for both pattern A (p = 0.8) and pattern B (p = 0.8). The results indicate that the performance of interpolation algorithms may be sufficient to balance for less dense raster scanning with regard to quantification of longitudinal drusen volume, which can be used as a surrogate marker for AMD progression in future clinical trials. © 2018 S. Karger AG, Basel.

  15. Subretinal hyper-reflective material seen on optical coherence tomography as a biomarker for disease monitoring in age-related macular degeneration

    Science.gov (United States)

    Lee, H. B.; Ong, B. B.; Katta, M.; Yvon, C.; Lu, L.; Zakri, R.; Patel, N.

    2018-03-01

    Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon's automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.

  16. Semiautomated segmentation and analysis of retinal layers in three-dimensional spectral-domain optical coherence tomography images of patients with atrophic age-related macular degeneration.

    Science.gov (United States)

    Hu, Zhihong; Shi, Yue; Nandanan, Kiran; Sadda, Srinivas R

    2017-01-01

    Historically, regular drusen and geographic atrophy (GA) have been recognized as the hallmarks of nonneovascular age-related macular degeneration (AMD). Recent imaging developments have revealed another distinct nonneovascular AMD phenotype, reticular pseudodrusen (RPD). We develop an approach to semiautomatically quantify retinal surfaces associated with various AMD lesions (i.e., regular drusen, RPD, and GA) in spectral domain (SD) optical coherence tomography (OCT) images. More specifically, a graph-based algorithm was used to segment multiple retinal layers in SD-OCT volumes. Varying surface feasibility constraints based on the presegmentation were applied on the double-surface graph search to refine the surface segmentation. The thicknesses of these layers and their correlation with retinal functional measurements, including microperimetry (MP) sensitivity and visual acuity (VA), were investigated. The photoreceptor outer segment layer demonstrated significant thinning with a reduction in MP sensitivity and VA score when atrophic AMD lesions were present. Regular drusen and RPD were separately segmented on SD-OCT images to allow their characteristics and distribution to be studied separately. The mean thickness of regular drusen was found to significantly correlate with the VA score. RPD appeared to be distributed evenly throughout the macula and regular drusen appeared to be more concentrated centrally.

  17. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration.

    Science.gov (United States)

    Schmidt-Erfurth, U; Klimscha, S; Waldstein, S M; Bogunović, H

    2017-01-01

    Optical coherence tomography (OCT) has become an established diagnostic technology in the clinical management of age-related macular degeneration (AMD). OCT is being used for primary diagnosis, evaluation of therapeutic efficacy, and long-term monitoring. Computer-based advances in image analysis provide complementary imaging tools such as OCT angiography, further novel automated analysis methods as well as feature detection and prediction of prognosis in disease and therapy by machine learning. In early AMD, pathognomonic features such as drusen, pseudodrusen, and abnormalities of the retinal pigment epithelium (RPE) can be imaged in a qualitative and quantitative way to identify early signs of disease activity and define the risk of progression. In advanced AMD, disease activity can be monitored clearly by qualitative and quantified analyses of fluid pooling, such as intraretinal cystoid fluid, subretinal fluid, and pigment epithelial detachment (PED). Moreover, machine learning methods detect a large spectrum of new biomarkers. Evaluation of treatment efficacy and definition of optimal therapeutic regimens are an important aim in managing neovascular AMD. In atrophic AMD hallmarked by geographic atrophy (GA), advanced spectral domain (SD)-OCT imaging largely replaces conventional fundus autofluorescence (FAF) as it adds insight into the condition of the neurosensory layers and associated alterations at the level of the RPE and choroid. Exploration of imaging features by computerized methods has just begun but has already opened relevant and reliable horizons for the optimal use of OCT imaging for individualized and population-based management of AMD-the leading retinal epidemic of modern times.

  18. Is Spectral-Domain Optical Coherence Tomography Essential for Flexible Treatment Regimens with Ranibizumab for Neovascular Age-Related Macular Degeneration?

    Directory of Open Access Journals (Sweden)

    Abdullah Ozkaya

    2013-01-01

    Full Text Available Purpose. To evaluate the ability of spectral-domain optical coherence tomography to detect subtle amounts of retinal fluid when the choroidal neovascularization is detected as inactive via time-domain optical coherence tomography and clinical examination in neovascular age-related macular degeneration (nAMD patients. Methods. Forty-nine eyes of 49 patients with nAMD after ranibizumab treatment were included in this cross-sectional, prospective study. All patients were imaged with TD-OCT and SD-OCT at the same visit one month after a ranibizumab injection. The presence of subretinal, intraretinal, and subretinal pigment epithelium fluid (subRPE in SD-OCT was evaluated; also mean central retinal thickness (CRT and the rate of vitreoretinal surface disorders detected via the two devices were evaluated. Results. The mean CRT via TD-OCT and SD-OCT was 218.1±51.3 and 325.7±78.8 microns. Sixteen patients (32.6% showed any kind of retinal fluid via SD-OCT. In detail, 8 patients (16.3% showed subretinal fluid, 10 patients (20.4% showed intraretinal fluid, and 3 patients (6.1% showed SubRPE fluid. The ability of detecting vitreoretinal surface disorders was comparable between the two devices, except vitreomacular traction. Conclusion. SD-OCT is essential for the nAMD patients who are on an as-needed treatment regimen with ranibizumab. Only TD-OCT and clinical examination may cause insufficient treatment in this group of patients.

  19. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all......-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled...

  20. Macular degeneration (image)

    Science.gov (United States)

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  1. American Macular Degeneration Foundation

    Science.gov (United States)

    ... Policy Disclaimer Contact Us Donate Store The American Macular Degeneration Foundation The American Macular Degeneration Foundation (AMDF) is ... Ed Asner Video Clip An Inspiring Her-story Macular Degeneration is the leading cause of vision loss, affecting ...

  2. Optical coherence tomography for the diagnosis, monitoring and guiding of treatment for neovascular age-related macular degeneration: a systematic review and economic evaluation.

    Science.gov (United States)

    Mowatt, Graham; Hernández, Rodolfo; Castillo, Mayret; Lois, Noemi; Elders, Andrew; Fraser, Cynthia; Aremu, Olatunde; Amoaku, Winfried; Burr, Jennifer; Lotery, Andrew; Ramsay, Craig; Azuara-Blanco, Augusto

    2014-12-01

    Age-related macular degeneration is the most common cause of sight impairment in the UK. In neovascular age-related macular degeneration (nAMD), vision worsens rapidly (over weeks) due to abnormal blood vessels developing that leak fluid and blood at the macula. To determine the optimal role of optical coherence tomography (OCT) in diagnosing people newly presenting with suspected nAMD and monitoring those previously diagnosed with the disease. Databases searched: MEDLINE (1946 to March 2013), MEDLINE In-Process & Other Non-Indexed Citations (March 2013), EMBASE (1988 to March 2013), Biosciences Information Service (1995 to March 2013), Science Citation Index (1995 to March 2013), The Cochrane Library (Issue 2 2013), Database of Abstracts of Reviews of Effects (inception to March 2013), Medion (inception to March 2013), Health Technology Assessment database (inception to March 2013). Types of studies: direct/indirect studies reporting diagnostic outcomes. time domain optical coherence tomography (TD-OCT) or spectral domain optical coherence tomography (SD-OCT). clinical evaluation, visual acuity, Amsler grid, colour fundus photographs, infrared reflectance, red-free images/blue reflectance, fundus autofluorescence imaging, indocyanine green angiography, preferential hyperacuity perimetry, microperimetry. Reference standard: fundus fluorescein angiography (FFA). Risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic curves. A Markov model was developed (65-year-old cohort, nAMD prevalence 70%), with nine strategies for diagnosis and/or monitoring, and cost-utility analysis conducted. NHS and Personal Social Services perspective was adopted. Costs (2011/12 prices) and quality-adjusted life-years (QALYs) were discounted (3.5%). Deterministic and probabilistic sensitivity analyses were performed. In pooled estimates of diagnostic studies

  3. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  4. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

    Science.gov (United States)

    Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.

    2014-01-01

    We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302

  5. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    Science.gov (United States)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  6. Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2.

    Science.gov (United States)

    O'Donnell, Callum F; Kumar, S Chaitanya; Zawilski, K T; Schunemann, P G; Ebrahim-Zadeh, M

    2018-04-01

    We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on type-I critical phase-matching in CdSiP 2 (CSP), pumped directly by a Ti:sapphire laser. Using angle-tuning in the CSP crystal, the OPO can be continuously tuned across 7306-8329 nm (1201-1369  cm -1 ) in the deep-IR. It delivers up to 18 mW of idler average power at 7306 nm and >7  mW beyond 8000 nm at 80.5 MHz repetition rate, with the spectra exhibiting bandwidths of >150  nm across the tuning range. Moreover, the signal is tunable across 1128-1150 nm in the near-infrared, providing up to 35 mW of average power in ∼266  fs pulses at 1150 nm. Both beams exhibit single-peak Gaussian distribution in TEM 00 spatial profile. With an equivalent spectral brightness of ∼5.6×10 20 photons s -1  mm -2  sr -1 0.1% BW -1 , this OPO represents a viable alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology, and medical diagnostics.

  7. Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity

    International Nuclear Information System (INIS)

    Huang, J Y; Zhuang, W Z; Huang, Y P; Huang, Y J; Su, K W; Chen, Y F

    2012-01-01

    We improve the performance of intracavity optical parametric oscillator (IOPO) pumped by a diode-pumped Q-switched Nd:YVO 4 /Cr 4+ :YAG laser. The IOPO cavity is formed independently by a monolithic KTP crystal that the mirrors are directly deposited on top of the nonlinear crystal. We study the performances of this IOPO cavity with different reflectivity of the output coupler at 1.5 μm (R s ) of 80 and 50%. The average power of 1.5 μm is up to 3.3 W at the maximum pump power of 16.8 W for both cases. The diode-to-signal conversion efficiency is up to 20%, which is the highest one for IOPOs to our best knowledge. At the maximum pump power, the pulse energies are 41 μJ with the pulse width of 3 ns at a pulse repetition rate (PRR) of 80 kHz for R s = 80% and 51 μJ with the pulse width of 1.2 ns at a PRR of 65 kHz for R s = 50%, respectively. The pulse amplitude fluctuations in standard deviation are 2.6% for R s = 80% and 4% for R s = 50%, respectively

  8. En-face optical coherence tomography in the diagnosis and management of age-related macular degeneration and polypoidal choroidal vasculopathy

    Directory of Open Access Journals (Sweden)

    Tiffany Lau

    2015-01-01

    Full Text Available Optical coherence tomography (OCT is a noninvasive imaging modality providing high-resolution images of the central retina that has completely transformed the field of ophthalmology. While traditional OCT has produced longitudinal cross-sectional images, advancements in data processing have led to the development of en-face OCT, which produces transverse images of retinal and choroidal layers at any specified depth. This offers additional benefit on top of longitudinal cross-sections because it provides an extensive overview of pathological structures in a single image. The aim of this review was to discuss the utility of en-face OCT in the diagnosis and management of age-related macular degeneration (AMD and polypoidal choroidal vasculopathy (PCV. En-face imaging of the inner segment/outer segment junction of retinal photoreceptors has been shown to be a useful indicator of visual acuity and a predictor of the extent of progression of geographic atrophy. En-face OCT has also enabled high-resolution analysis and quantification of pathological structures such as reticular pseudodrusen (RPD and choroidal neovascularization, which have the potential to become useful markers for disease monitoring. En-face Doppler OCT enables subtle changes in the choroidal vasculature to be detected in eyes with RPD and AMD, which has significantly advanced our understanding of their pathogenesis. En-face Doppler OCT has also been shown to be useful for detecting the polypoid lesions and branching vascular networks diagnostic of PCV. It may therefore serve as a noninvasive alternative to fluorescein and indocyanine green angiography for the diagnosis of PCV and other forms of the exudative macular disease.

  9. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  10. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  11. Parametrically disciplined operation of a vibratory gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  12. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  13. In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier.

    Science.gov (United States)

    Stephens, M F C; Tan, M; Gordienko, V; Harper, P; Doran, N J

    2017-10-02

    We demonstrate and characterize polarization-division multiplexed (PDM) DWDM data transmission for the first time in a range of systems incorporating a net-gain polarization-insensitive fiber optical parametric amplifier (PI-FOPA) for loss compensation. The PI-FOPA comprises a modified diversity-loop architecture to achieve 15dB net-gain, and up to 2.3THz (~18nm) bandwidth. Three representative systems are characterized using a 100Gb/s PDM-QPSK signal in conjunction with emulated DWDM neighbouring channels: (a) a 4x75km in-line fiber transmission system incorporating multiple EDFAs and a single PI-FOPA (b) N cascaded PI-FOPA amplification stages in an unlevelled Nx25km recirculating loop arrangement, with no EDFAs used within the loop signal path, and (c) M cascaded PI-FOPA amplification stages as part of an Mx75.6km gain-flattened recirculating loop system with the FOPA compensating for the transmission fiber loss, and EDFA compensation for loop switching and levelling loss. For the 4x75km in-line system (a), we transmit 45x50GHz-spaced signals ('equivalent' data-rate of 4.5Tb/s) with average OSNR penalty of 1.3dB over the band at 10 -3 BER. For the unlevelled 'FOPA-only' 25.2km cascaded system (b), we report a maximum of eight recirculations for all 10x100GHz-spaced signals, and five recirculations for 20x50GHz-spaced signals. For the 75.6km levelled system (c), we achieve eight recirculations for all 20x50GHz signals resulting in a total transmission distance of 604.8km.

  14. Absolute and estimated values of macular pigment optical density in young and aged Asian participants with or without age-related macular degeneration.

    Science.gov (United States)

    Ozawa, Yoko; Shigeno, Yuta; Nagai, Norihiro; Suzuki, Misa; Kurihara, Toshihide; Minami, Sakiko; Hirano, Eri; Shinoda, Hajime; Kobayashi, Saori; Tsubota, Kazuo

    2017-08-29

    Lutein and zeaxanthin are suggested micronutrient supplements to prevent the progression of age-related macular degeneration (AMD), a leading cause of blindness worldwide. To monitor the levels of lutein/zeaxanthin in the macula, macular pigment optical density (MPOD) is measured. A commercially available device (MPSII®, Elektron Technology, Switzerland), using technology based on heterochromatic flicker photometry, can measure both absolute and estimated values of MPOD. However, whether the estimated value is applicable to Asian individuals and/or AMD patients remains to be determined. The absolute and estimated values of MPOD were measured using the MPSII® device in 77 participants with a best-corrected visual acuity (BCVA) > 0.099 (logMAR score). The studied eyes included 17 young (20-29 years) healthy, 26 aged (>50 years) healthy, 18 aged and AMD-fellow, and 16 aged AMD eyes. The mean BCVA among the groups were not significantly different. Both absolute and estimated values were measurable in all eyes of young healthy group. However, absolute values were measurable in only 57.7%, 66.7%, and 43.8%, of the aged healthy, AMD-fellow, and AMD groups, respectively, and 56.7% of the eyes included in the 3 aged groups. In contrast, the estimated value was measurable in 84.6%, 88.9% and 93.8% of the groups, respectively, and 88.3% of eyes in the pooled aged group. The estimated value was correlated with absolute value in individuals from all groups by Spearman's correlation coefficient analyses (young healthy: R 2  = 0.885, P = 0.0001; aged healthy: R 2  = 0.765, P = 0.001; AMD-fellow: R 2  = 0.851, P = 0.0001; and AMD: R 2  = 0.860, P = 0.013). Using the estimated value, significantly lower MPOD values were found in aged AMD-related eyes, which included both AMD-fellow and AMD eyes, compared with aged healthy eyes by Student's t-test (P = 0.02). Absolute, in contrast to estimated, value was measurable in a limited number of aged participants

  15. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission.

    Science.gov (United States)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S; Jopson, R M; Gnauck, A H; Dinu, M; Xie, C; Winzer, P J

    2014-03-24

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled reach in a dispersion-managed transmission link. We further study the impact of polarization-mode dispersion on the performance gain brought by the phase-conjugated twin waves, showing a gain of ~3.8 dB in signal quality factors.

  16. THICKNESS OF THE MACULA, RETINAL NERVE FIBER LAYER, AND GANGLION CELL-INNER PLEXIFORM LAYER IN THE AGE-RELATED MACULAR DEGENERATION: The Repeatability Study of Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul

    2018-02-01

    To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.

  17. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement.

    Science.gov (United States)

    Nadal-Serrano, Jose M; Nadal-Serrano, Adolfo; Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts.

  18. Multiple Frequency Parametric Sonar

    Science.gov (United States)

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  19. Revisiting non-degenerate parametric down-conversion

    Indian Academy of Sciences (India)

    where gR(t) and gI(t) are the real and imaginary parts of g(t) defined as usual by g(t) = gR(t) + igI(t); g∗(t) = gR(t) − igI(t). (7d). The time evolution generator H(t) is seen to be equivalent to the Hamiltonian of a spin-1. 2 or a two-level system interacting with an external field [5,6] B(t). The interaction is characterized by the pump ...

  20. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  1. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  2. Degenerate Euler zeta function

    OpenAIRE

    Kim, Taekyun

    2015-01-01

    Recently, T. Kim considered Euler zeta function which interpolates Euler polynomials at negative integer (see [3]). In this paper, we study degenerate Euler zeta function which is holomorphic function on complex s-plane associated with degenerate Euler polynomials at negative integers.

  3. Downhill simplex algorithm based approach to holey fiber design for tunable fiber parametric wavelength converters.

    Science.gov (United States)

    Cui, Sheng; Liu, Deming; Yu, Shaohua; Huang, Benxiong; Ke, Changjian; Zhang, Minming; Liu, Chen

    2010-05-10

    We present a new approach to the design of the holey fibers that have ultra-high nonlinearity and dispersion properties optimized for tunable fiber parametric wavelength converters based on degenerated four wave mixing. This hybrid approach combines downhill simplex algorithms with four wave mixing modeling. Exploiting the relations between fiber properties and the converter's characteristics, this method is not only much faster than other methods proposed before but also enables an inverse design of the holey fibers according to the pre-set device characteristics, like conversion gain, tuning range, fiber length and pump power. We then investigate the sensitivity of these characteristics to the small variations in the fiber structural parameters and find adjusting the pump power can to some extent mitigate the impact of the fabrication errors. (c) 2010 Optical Society of America.

  4. Optical model parametrization between 10keV and 20MeV. Application to the spherical nuclei 89Y and 93Nb

    International Nuclear Information System (INIS)

    Lagrange, C.

    1975-01-01

    Fast neutron cross sections for 89 Y and 93 Nb were calculated in the energy range 10keV-20MeV with the spherical optical model. The optical potential parameters used were obtained from a comparison theory-experiment using strength functions, potential scattering radius, total cross sections and differential elastic scattering data [fr

  5. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  6. Optic Nerve Head Biomechanic and IOP Changes Before and After the Injection of Aflibercept for Neovascular Age-Related Macular Degeneration.

    Science.gov (United States)

    Rebolleda, Gema; Puerto, Beatriz; de Juan, Victoria; Gómez-Mariscal, Marta; Muñoz-Negrete, Francisco José; Casado, Alfonso

    2016-10-01

    We investigated the early effects of intravitreal aflibercept injection (IAI) on optic nerve head (ONH) morphology. All of the participants underwent applanation tonometry and enhanced depth imaging by spectral-domain optical coherence tomography immediately before injection, and within 5 and 30 minutes after IAI. Changes in the anterior lamina cribrosa surface depth, prelaminar tissue thickness (PTT), optic cup width, optic cup depth, and Bruch's membrane opening (BMO) were assessed. The study included 30 eyes of 30 subjects with a mean age of 77.4 ± 6.8 years (range, 65-89 years) following IAI (2 mg in 0.05 ml). Within 5 minutes after injection, the mean cup depth, mean cup width, and BMO were significantly increased (P = 0.013, P = 0.000, and P = 0.004, respectively), whereas the mean PTT was thinned (P = 0.009). These morphologic changes returned to near baseline values 30 minutes after injection. Cup widening and BMO expansion (P = 0.000; r, 0.668), as well as cup deepening and prelaminar thinning (P = 0.000; r, -0.838), were significantly correlated. The magnitude of cup deepening and prelaminar tissue thinning correlated with the IOP change in the opposite direction than expected (P = 0.039; r, -0.379 and P = 0.377; r, 0.040). A significant widening and deepening of the optic cup, BMO expansion, and prelaminar tissue thinning occurred following IAI for neovascular AMD. Eyes having greater optic disc cup deepening and prelaminar tissue condensation after IAI, associated with a lower IOP increase after injection, suggesting that ONH compliance might buffer the effect of additional intravitreal fluid injection on IOP values.

  7. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  8. Degenerate Gauss hypergeometric functions

    OpenAIRE

    Vidunas, Raimundas

    2004-01-01

    This is a study of terminating and ill-defined Gauss hypergeometric functions. Corresponding hypergeometric equations have a degenerate set of of 24 Kummer's solutions. We describe those solutions and relations between them.

  9. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  10. Surface spontaneous parametric down-conversion

    Czech Academy of Sciences Publication Activity Database

    Peřina ml., Jan; Lukš, A.; Haderka, Ondřej

    2009-01-01

    Roč. 103, č. 6 (2009), 063902/1-063902/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric down-conversion * surface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.328, year: 2009

  11. Phase space methods for degenerate quantum gases

    CERN Document Server

    Dalton, Bryan J; Barnett, Stephen M

    2015-01-01

    Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable...

  12. Parametrics in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2013-01-01

    by the “Twitter revolution” and other social media phenomena in recent years – may also form the basis of this approach, adding a different reach to it. While different parametric design tools have different strengths and weaknesses, the CityEngine software programme is dedicated to parametric simulation...

  13. Parametrization of translational surfaces

    OpenAIRE

    Perez-Diaz, Sonia; Shen, Liyong

    2014-01-01

    The algebraic translational surface is a typical modeling surface in computer aided design and architecture industry. In this paper, we give a necessary and sufficient condition for that algebraic surface having a standard parametric representation and our proof is constructive. If the given algebraic surface is translational, then we can compute a standard parametric representation for the surface.

  14. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    DEFF Research Database (Denmark)

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole

    1980-01-01

    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d......B) were obtained at 35 GHz in the singly degenerate mode. On the basis of the theory and experiments, a general procedure for optimizing junction parameters is discussed and illustrated by the specific design of a 100-GHz amplifier....

  15. Output features of optical parametric chirped pulse amplification in LiB3O5 near 800  nm at different phase-matching geometries.

    Science.gov (United States)

    Liu, Xiaodi; Xu, Lu; Liang, Xiaoyan

    2016-12-15

    We theoretically and experimentally investigated the output beam quality and wavefront distortion in four different phase-matching geometries in LBO-OPCPA at 800 nm: broadband noncollinear geometry, collinear geometry, pump-idler the Poynting vector collinear (Sp∥Si) geometry, and pump-signal Poynting vector collinear (Sp∥Ss) geometry. It was found that the output profile is closely related to the noncollinear angle between Poynting vectors of parametric waves. However, the wavefront evolution depends mainly on the angles between the wave vectors. Broadband noncollinear geometry has the largest spatial modulation and wavefront distortion. Good output beam quality can be achieved in collinear geometry with little wavefront distortion, but the bandwidth is only approximately 10 nm. The Sp∥Ss and Sp∥Si configurations result in a bandwidth of more than 20 nm with enhanced beam quality and small wavefront distortion. The two geometries have different output features wherein the former has a relatively lower modulation, and the latter shows smaller wavefront distortion.

  16. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... of a linear model are estimated as functions of some explanatory variable(s). Also, software for handling the estimation is presented. The software runs under S-PLUS and R and contains also a number of tools useful when doing model diagnostics or interpreting the results. Adaptive estimation is also...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...

  17. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    Science.gov (United States)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  18. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....

  19. parametric nonlinear quasivariational inequalities

    Directory of Open Access Journals (Sweden)

    Zeqing Liu

    2005-01-01

    uniqueness results and sensitivity analysis of solutions are also established for the system of generalized nonlinear parametric quasivariational inequalities and some convergence results of iterative sequence generated by the algorithm with errors are proved.

  20. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    if the system undergoing it could transform the large amplitude motion into, for example, energy. Therefore the development of control strategies to induce parametric resonance into a system can be as valuable as those which aim at stabilizing the resonant oscillations. By means of a mechanical equivalent......Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage...... the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  1. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  2. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  3. Kraepelin and degeneration theory.

    Science.gov (United States)

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  4. Transversal parametric oscillation and its external stability in photorefractive sillenite crystals

    DEFF Research Database (Denmark)

    Podivilov, E.V.; Pedersen, H.C.; Johansen, P.M.

    1998-01-01

    , an analytical solution for the stationary state of the parametric waves is obtained. We analyze the stationary states' stability both against small perturbations in amplitude and phase (internal stability) and against excitation of new secondary waves (external stability). It is shown that the stationary state...... of transversal parametric oscillation is stable within certain regions of external and internal parameters. This is opposed to the degenerate case (K/2 subharmonic generation), which is unstable....

  5. Parametric Powder Diffraction

    Science.gov (United States)

    David, William I. F.; Evans, John S. O.

    The rapidity with which powder diffraction data may be collected, not only at neutron and X-ray synchrotron facilities but also in the laboratory, means that the collection of a single diffraction pattern is now the exception rather than the rule. Many experiments involve the collection of hundreds and perhaps many thousands of datasets where a parameter such as temperature or pressure is varied or where time is the variable and life-cycle, synthesis or decomposition processes are monitored or three-dimensional space is scanned and the three-dimensional internal structure of an object is elucidated. In this paper, the origins of parametric diffraction are discussed and the techniques and challenges of parametric powder diffraction analysis are presented. The first parametric measurements were performed around 50 years ago with the development of a modified Guinier camera but it was the automation afforded by neutron diffraction combined with increases in computer speed and memory that established parametric diffraction on a strong footing initially at the ILL, Grenoble in France. The theoretical parameterisation of quantities such as lattice constants and atomic displacement parameters will be discussed and selected examples of parametric diffraction over the past 20 years will be reviewed that highlight the power of the technique.

  6. Parametric Amplification of a Superconducting Plasma Wave.

    Science.gov (United States)

    Rajasekaran, S; Casandruc, E; Laplace, Y; Nicoletti, D; Gu, G D; Clark, S R; Jaksch, D; Cavalleri, A

    2016-11-01

    Many applications in photonics require all-optical manipulation of plasma waves1, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves (JPWs)2,3, involving oscillatory tunneling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear4, and exhibit striking phenomena like cooperative emission of coherent terahertz radiation5,6, superconductor-metal oscillations7 and soliton formation8. We show here that terahertz JPWs can be parametrically amplified through the cubic tunneling nonlinearity in a cuprate superconductor. Parametric amplification is sensitive to the relative phase between pump and seed waves and may be optimized to achieve squeezing of the order parameter phase fluctuations9 or single terahertz-photon devices.

  7. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...

  8. Reliability and reproducibility of spectral and time domain optical coherence tomography images before and after correction for patients with age-related macular degeneration [v2; ref status: indexed, http://f1000r.es/50m

    Directory of Open Access Journals (Sweden)

    Mohammad A. Sadiq

    2015-03-01

    Full Text Available Purpose: To evaluate the reproducibility and reliability of optical coherence tomography scans obtained using the time domain (TD-OCT StratusTM OCT, and the Spectral Domain (SD-OCT SpectralisTM and CirrusTM OCT devices before and after manual correction in eyes with either Neovascular (NV-AMD or Non-Neovascular (NNV-AMD age-related macular degeneration. Design: Prospective observational study. Methods: Setting: University-based retina practice. Patients: Thirty-six patients (50 eyes with NV-AMD or NNV-AMD. Procedure: OCT scans were taken simultaneously using one TD-OCT and two SD-OCT devices. Main Outcome Measures: Macular thickness measurements were assessed before and after correction of the algorithm by constructing Bland-Altman plots for agreement and calculating intraclass correlation coefficients (ICCs and coefficients of repeatability (COR to evaluate intraclass repeatability. Results: Spectralis had the highest number of images needing manual correction.  All machines had high ICCs, with Spectralis having the highest.  Also, Bland-Altman plots indicated that there was low agreement between Cirrus™ and Stratus™, Spectralis™ and Stratus™, while there was good agreement between the Cirrus™ and Spectralis™.  The CORs were lowest for SpectralisTM and similar and higher for CirrusTM and StratusTM.  Agreement, CORs, and ICCs generally improved after manual correction, but only minimally.  Conclusion: Agreement is low between devices, except between both SD-OCT machines.  Manual correction tends to improve results.

  9. PARAMETRIC DRAWINGS VS. AUTOLISP

    Directory of Open Access Journals (Sweden)

    PRUNĂ Liviu

    2015-06-01

    Full Text Available In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed by the drawing, in the idea to construct outlines or blocks which can be used in the projection process.

  10. PARAMETRIC DRAWINGS VS. AUTOLISP

    OpenAIRE

    PRUNĂ Liviu; SLONOVSCHI Andrei

    2015-01-01

    In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed...

  11. Adjacent segment degeneration

    OpenAIRE

    Birjandi, Alireza

    2012-01-01

    Abstract: Adjacent segment disease (ASD) is defined as degeneration that develops at mobile segments above or below a fused spinal segment and usually develops after spinal fusion or other back surgeries. Nearly 5 decades ago, the medical findings related to ASD were usually released in case reports as a relatively unusual complication of lumbar or lumbosacral fusions. Since the initial reports, ASD has been found to occur more often than the earlier predictions for its prospect incidence. It...

  12. Parametric Human Movements

    DEFF Research Database (Denmark)

    Herzog, Dennis

    with an investigation of PHMM training methods and structures to utilize the PHMM as a unified representation of parametric primitives, which is adequate for recognition and for synthesis. This is evaluated on a large motion data set. Main contributions of the thesis are the development and evaluation of approaches...

  13. Parametric modal transition systems

    DEFF Research Database (Denmark)

    Beneš, Nikola; Křetínský, Jan; Larsen, Kim Guldstrand

    2011-01-01

    in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcome many of the limitations and we investigate the computational complexity of modal refinement checking....

  14. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  15. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...

  16. Parametric instabilities in advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Gras, S; Zhao, C; Blair, D G; Ju, L

    2010-01-01

    As the LIGO interferometric gravitational wave detectors have finished gathering a large observational data set, an intense effort is underway to upgrade these observatories to improve their sensitivity by a factor of ∼10. High circulating power in the arm cavities is required, which leads to the possibility of parametric instability due to three-mode opto-acoustic resonant interactions between the carrier, transverse optical modes and acoustic modes. Here, we present detailed numerical analysis of parametric instability in a configuration that is similar to Advanced LIGO. After examining parametric instability for a single three-mode interaction in detail, we examine instability for the best and worst cases, as determined by the resonance condition of transverse modes in the power and signal recycling cavities. We find that, in the best case, the dual recycling detector is substantially less susceptible to instability than a single cavity, but its susceptibility is dependent on the signal recycling cavity design, and on tuning for narrow band operation. In all cases considered, the interferometer will experience parametric instability at full power operation, but the gain varies from 3 to 1000, and the number of unstable modes varies between 7 and 30 per test mass. The analysis focuses on understanding the detector complexity in relation to opto-acoustic interactions, on providing insights that can enable predictions of the detector response to transient disturbances, and of variations in thermal compensation conditions.

  17. Azimuthal spectrum after parametric down-convertion with radial degrees of freedom

    CSIR Research Space (South Africa)

    Zhang, Y

    2014-08-01

    Full Text Available Considering the quantum state produced in type I spontaneous parametric down-conversion with collinear, degenerate signal and idler beams, and a Gaussian pump, we show that the azimuthal Schmidt number in the Laguerre-Gaussian (LG) basis increases...

  18. Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone

    International Nuclear Information System (INIS)

    Schneeloch, James; Howell, John C

    2016-01-01

    As a tutorial to the spatial aspects of spontaneous parametric downconversion (SPDC), we present a detailed first-principles derivation of the transverse correlation width of photon pairs in degenerate collinear SPDC. This width defines the size of a biphoton birth zone, the region where the signal and idler photons are likely to be found when conditioning on the position of the destroyed pump photon. Along the way, we discuss the quantum-optical calculation of the amplitude for the SPDC process, as well as its simplified form for nearly collinear degenerate phase matching. Following this, we show how this biphoton amplitude can be approximated with a double-Gaussian wavefunction, and give a brief discussion of the measurement statistics (and subsequent convenience) of such double-Gaussian wavefunctions. Next, we use this approximation to get a simplified estimation of the transverse correlation width, and compare it to more accurate calculations as well as experimental results. We then conclude with a discussion of the concept of a biphoton birth zone, using it to develop intuition for the tradeoff between the first-order spatial coherence and bipohoton correlations in SPDC. (tutorial)

  19. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  20. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  1. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  2. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-03-23

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  3. Macromechanical Parametric Amplification

    DEFF Research Database (Denmark)

    Neumeyer, Stefan

    between the two peaks can be altered. The first experimental bistable amplified steady-state responses are also reported. The derived analytical models and experimental setups can readily be extended to investigate other factors. Some of the results are also applicable to the more general field of systems...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... covers superthreshold pumping and nonlinear effects. Superthresh-old pumping produces some useful characteristics. For instance, strong superthreshold pumping yields a high gain even though nonlinear effects tend to reduce it. In addition, a narrower excitation phase range is realized for which...

  4. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  5. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2014-01-01

    to a parametrization that is proportional to the natural parametrization which implies that the control points of the contour are uniformly distributed. We theoretically prove that this tangential diffusion term is bounded and therefore numerically stable. Several experiments were conducted and verified......Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...

  6. Meta-Parametric Design

    OpenAIRE

    Harding, John E.; Shepherd, Paul

    2017-01-01

    Parametric modelling software often maintains an explicit history of design development in the form of a graph. However, as the graph increases in complexity it quickly becomes inflexible and unsuitable for exploring a wide design space. By contrast, implicit low-level rule systems can offer wide design exploration due to their lack of structure, but often act as black boxes to human observers with only initial conditions and final designs cognisable. In response to these two extremes, the au...

  7. Optical Coherence Tomographic and Visual Results at Six Months after Transitioning to Aflibercept for Patients on Prior Ranibizumab or Bevacizumab Treatment for Exudative Age-Related Macular Degeneration (An American Ophthalmological Society Thesis)

    Science.gov (United States)

    Chan, Clement K.; Jain, Atul; Sadda, Srinivas; Varshney, Neeta

    2014-01-01

    Purpose: To study optical coherence tomographic (OCT) results and vision at 6 months after transition (post-Tx) from intravitreal bevacizumab and/or ranibizumab to aflibercept for treatment of neovascular age-related macular degeneration (nAMD). The null hypothesis was the lack of improvements in OCT metrics and vision outcome in study eyes at 6 months after transitioning from bevacizumab or ranibizumab to aflibercept. Methods: This retrospective study assessed 6 monthly OCT (Cirrus) data after transitioning to aflibercept for eyes on prior Legacy-ranibizumab, Legacy-bevacizumab, or mixed treatment for nAMD. Outcome measures were subretinal fluid (SRF), cystoid macular edema (CME), pigment epithelial detachment (PED) heights and volumes, central 1- and 3-mm subfield, Macular Volume, and best spectacle and pinhole visual acuity (VA). A single masked investigator performed all OCT measurements. Results: One hundred eighty-nine eyes in 172 patients in Legacy-bevacizumab (95 eyes), Legacy-ranibizumab (84 eyes), or Mixed Group(10 eyes) were switched to aflibercept and followed for 6 months. Significant post-Tx reductions were noted in SRF/CME heights and volumes (all P<.001). Similar findings were noted for PED heights (122.8 μm vs 79.4 μm) and PED volumes (all P<.001). Post-Tx VA was better (20/43 vs 20/51, P<.001). There were no differences between Legacy-bevacizumab and Legacy-ranibizumab groups in OCT and VA changes. Post-Tx VA, SRF/CME, and PED heights and volumes were improved for Nonresponders (suboptimal response to bevacizumab/ranibizumab) (P=.001 to <.001), but not Responders (good responses to same). The only adverse event was a retinal pigment epithelial tear in one eye. Conclusions: Significant improvements in vision and OCT metrics developed in Nonresponders but not in Responders. Post-Tx VA and OCT measures were similar for eyes on prior bevacizumab or ranibizumab. Post-Tx adverse events were uncommon. PMID:25646034

  8. Degenerate Fermi gas in a combined harmonic-lattice potential

    International Nuclear Information System (INIS)

    Blakie, P. B.; Bezett, A.; Buonsante, P.

    2007-01-01

    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices

  9. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  10. Optical parametric amplification beyond the slowly varying ...

    Indian Academy of Sciences (India)

    Here, the effect of the backward waves is equivalent to keeping the second spatial derivatives of the fields in the coupled-wave equations, as was originally shown by Shen ([1],. §3.3). The periodic behavior of the signal (idler) intensity distribution within the medium about the corresponding SVA distribution, resulted from the ...

  11. Treatment of dry age-related macular degeneration with dobesilate

    OpenAIRE

    Cuevas, P; Outeiriño, L A; Angulo, J; Giménez-Gallego, G

    2012-01-01

    The authors present anatomical and functional evidences of dry age-macular degeneration improvement, after intravitreal treatment with dobesilate. Main outcomes measures were normalisation of retinal structure and function, assessed by optical coherence tomography, fundus-monitored microperimetry, electrophysiology and visual acuity. The effect might be related to the normalisation of the outer retinal architecture.

  12. Treatment of dry age-related macular degeneration with dobesilate

    Science.gov (United States)

    Cuevas, P; Outeiriño, L A; Angulo, J; Giménez-Gallego, G

    2012-01-01

    The authors present anatomical and functional evidences of dry age-macular degeneration improvement, after intravitreal treatment with dobesilate. Main outcomes measures were normalisation of retinal structure and function, assessed by optical coherence tomography, fundus-monitored microperimetry, electrophysiology and visual acuity. The effect might be related to the normalisation of the outer retinal architecture. PMID:22729337

  13. Second order degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-08-01

    Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs

  14. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, Niklas

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  15. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, N.|info:eu-repo/dai/nl/314418059

    2011-01-01

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  16. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  17. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    Science.gov (United States)

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  18. Parametric Trace Slicing

    Science.gov (United States)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  19. Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models.

    Science.gov (United States)

    Wey, Andrew; Connett, John; Rudser, Kyle

    2015-07-01

    For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias-variance trade-off situation in that the sample size is not large enough to take advantage of the low bias of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction error. An extensive simulation study demonstrates that stacked survival models consistently perform well across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual candidate survival models. In addition, stacked survival models perform as well as or better than the model selected through cross-validation. Finally, stacked survival models are applied to a well-known German breast cancer study. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  1. The effect of a laser beam displacement on parametric oscillatory instabilities for Advanced LIGO

    International Nuclear Information System (INIS)

    Heinert, D.; Strigin, S.E.

    2011-01-01

    The arm cavities of real gravitational wave detectors can show small deviations like a tilt or a spatial shift between the cavity mirrors. These deviations lead to a separation of the optical mode centres with respect to the mirror's centre. In this Letter we perform the computation of parametric instable modes considering the described displacement. We further analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer for the case of a displaced arm cavity. Our results reveal an additional number of optical and elastic mode combinations due to a displacement that can give rise to the undesirable effect of parametric oscillatory instability. -- Highlights: → We analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer. → We perform the computation of parametric instable modes considering the mirror displacement. → Our results reveal an additional number of optical and elastic mode unstable combinations.

  2. [Lattice degeneration of the retina].

    Science.gov (United States)

    Boĭko, E V; Suetov, A A; Mal'tsev, D S

    2014-01-01

    Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.

  3. Classification rates: non‐parametric verses parametric models using ...

    African Journals Online (AJOL)

    The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary outcome compared. The results obtained showed that non‐parametric estimation gives a better prediction rate (classification ratio) for ...

  4. Use of parametric and non-parametric survival analysis techniques ...

    African Journals Online (AJOL)

    This paper presents parametric and non-parametric survival analysis procedures that can be used to compare acaricides. The effectiveness of Delta Tick Pour On and Delta Tick Spray in knocking down tsetse flies were determined. The two formulations were supplied by Chemplex. The comparison was based on data ...

  5. Degenerate asymptotic perturbation theory

    International Nuclear Information System (INIS)

    Hunziker, W.; Pillet, C.A.

    1983-01-01

    Asymptotic Rayleigh-Schroedinger perturbation theory for discrete eigenvalues is developed systematically in the general degenerate case. For this purpose we study the spectral properties of mxm - matrix functions A(kappa) of a complex variable kappa which have an asymptotic expansion ΣAsub(k)kappasup(k) as kappa->0. We show that asymptotic expansions for groups of eigenvalues and for the corresponding spectral projections of A(kappa) can be obtained from the set [Asub(k)] by analytic perturbation theory. Special attention is given to the case where A(kappa) is Borel-summable in some sector originating from kappa=0 with opening angle >π. Here we prove that the asymptotic series describe individual eigenvalues and eigenprojections of A(kappa) which are shown to be holomorphic in S near kappa=0 and Borel summable if Asub(k)sup(*)=Asub(k) for all k. We then fit these results into the scheme of Rayleigh-Schroedinger perturbation theory and we give some examples of asymptotic estimates for Schroedinger operators. (orig.)

  6. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  7. Computed tomography of Wallerian degeneration

    International Nuclear Information System (INIS)

    Uchino, Akira; Maeda, Fumihiko

    1986-01-01

    CT findings of wallerian degeneration of the pyramidal tract at the midbrain (atrophy of cerebral peduncle following cerebrovascular accident) were studied in 34 patients (44 CT scans) with old cerebrovascular accidents. Severe atrophy of cerebral peduncle was noted when the ipsilateral motor cortex was involved. However, when the posterior limb of the internal capsule was involved, atrophy of the ipsilateral cerebral peduncle was mild. In this series, the shortest interval between cerebrovascular accident and wallerian degeneration was 8 month. (author)

  8. Radiation parametric generation in non-linear crystals

    International Nuclear Information System (INIS)

    Pacheco, M.T.; Pereira, M.A.C.Q.

    1983-01-01

    A short historical development review is presented on the optical parametric oscillators. Analysis on behaviour of the simple resonant oscillators (SRO), double resonant oscillators (DRO) and ring resonant oscillators (RRO), in the plane wave pumping approximation is shown. Comparision between the three oscillators types is given. (Author) [pt

  9. Parametric binary dissection

    Science.gov (United States)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  10. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  11. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  12. Identification of Age-Related Macular Degeneration Using OCT Images

    Science.gov (United States)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  13. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    This paper addresses the problem of parametric model checking for weighted transition systems. We consider transition systems labelled with linear equations over a set of parameters and we use them to provide semantics for a parametric version of weighted CTL where the until and next operators...... are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...

  14. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  15. Non-parametric versus parametric methods in environmental sciences

    Directory of Open Access Journals (Sweden)

    Muhammad Riaz

    2017-06-01

    Full Text Available This current report intends to highlight the importance of considering background assumptions required for the analysis of real datasets in different disciplines. We will provide comparative discussion of parametric methods (that depends on distributional assumptions (like normality relative to non-parametric methods (that are free from many distributional assumptions. We have chosen a real dataset from environmental sciences (one of the application areas. The findings may be extended to the other disciplines following the same spirit.

  16. Parametrization of contrails in a comprehensive climate model

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Brinkop, S.; Sausen, R.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A contrail parametrization scheme for a general circulation model (GCM) is presented. Guidelines for its development were that it should be based on the thermodynamic theory of contrail formation and that it should be consistent with the cloud parametrization scheme of the GCM. Results of a six-year test integration indicate reasonable results concerning the spatial and temporal development of both contrail coverage and contrail optical properties. Hence, the scheme forms a promising basis for the quantitative estimation of the contrail climatic impact. (author) 9 refs.

  17. Frequency metrology in quantum degenerate helium

    Directory of Open Access Journals (Sweden)

    Vassen Wim

    2013-08-01

    Full Text Available We have measured the absolute frequency of the 1557-nm doubly forbidden transition between the two metastable states of helium, 2 3S1 (lifetime 8000 s and 2 1S0 (lifetime 20 ms, with 1 kHz precision. With an Einstein coefficient of 10−7 s−1 this is one of weakest optical transitions ever measured. The measurement was performed in a Bose-Einstein condensate of 4He* as well as in a Degenerate Fermi Gas of 3He*, trapped in a crossed dipole trap. From the isotope shift we deduced the nuclear charge radius difference between the α-particle and the helion. Our value differs by 4σ with a very recent result obtained on the 2 3S → 2 3P transition.

  18. Conjunctival intraepithelial neoplasia with corneal furrow degeneration

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2014-01-01

    Full Text Available A 68-year-old man presented with redness of left eye since six months. Examination revealed bilateral corneal furrow degeneration. Left eye lesion was suggestive of conjunctival squamous cell carcinoma, encroaching on to cornea. Anterior segment optical coherence tomography (AS-OCT confirmed peripheral corneal thinning. Fluorescein angiography confirmed intrinsic vascularity of lesion. Patient was managed with "no touch" surgical excision, dry keratectomy without alcohol, cryotherapy, and primary closure. Pathologic examination of removed tissue confirmed clinical diagnosis. Management of this particular case required modification of standard treatment protocol. Unlike the alcohol-assisted technique of tumor dissection described, ethyl alcohol was not used for risk of corneal perforation due to underlying peripheral corneal thinning. Likewise, topical steroids were withheld in the post-operative period. Three weeks post-operatively, left eye was healing well. Hence, per-operative usage of absolute alcohol and post-operative use of topical steroids may be best avoided in such eyes.

  19. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...

  20. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  1. Role of volume and surface spontaneous parametric down-conversion in the generation of photon pairs in layered media

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Peřina ml., Jan

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-13, č. článku 043828. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : surface spontaneous * parametric down-conversion * photon pairs * layered media Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  2. Self-designing parametric geometries

    OpenAIRE

    Sobester, Andras

    2015-01-01

    The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...

  3. Parametric Coding of Stereo Audio

    Directory of Open Access Journals (Sweden)

    Erik Schuijers

    2005-06-01

    Full Text Available Parametric-stereo coding is a technique to efficiently code a stereo audio signal as a monaural signal plus a small amount of parametric overhead to describe the stereo image. The stereo properties are analyzed, encoded, and reinstated in a decoder according to spatial psychoacoustical principles. The monaural signal can be encoded using any (conventional audio coder. Experiments show that the parameterized description of spatial properties enables a highly efficient, high-quality stereo audio representation.

  4. Summary of known linear and nonlinear optical properties of LiInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C.

    1994-02-24

    LiInS{sub 2} is a potentially useful crystal for cascaded parametric frequency conversion in the mid-IR. It is nearly noncritically phasematched for 1.064 {mu}m pumped, degenerate 2.12 {mu}m generation and 2 micron pumped generation of 3--5 {mu}m light. The nonlinear optical coefficients are 2{times} larger than those of KTP or KTA, while the transparency extends from 0.5--8 {mu}m. LiInS{sub 2} crystals are currently available in volumes up to 5 mm{sup 3}. This memo provides a brief summary of the current literature concerning the growth and linear and nonlinear optical properties of LiInS{sub 2}.

  5. Effect of second-order coupling on optical bistability in a hybrid optomechanical system

    Science.gov (United States)

    Asghari Nejad, Ali; Baghshahi, Hamid R.; Askari, Hassan R.

    2017-11-01

    We theoretically investigate an optomechanical system consisting of two coupled cavities, a bare optomechanical cavity and a traditional one. An optical parametric amplifier (OPA) is placed inside the traditional cavity. Optomechanical cavity has an oscillating mirror and a fixed one. In addition to the first order coupling between mechanical resonator of the system and the radiation pressure of optomechanical cavity, we consider a second order interaction between them. The evaluation of the system's behavior shows bistability in the mean photon number of optomechanical cavity. Our results show that, the second order coupling leads to degenerate solutions for the equation of mean photon number of optomechanical cavity. We see that the strength of SOC can change the domain of bistability region of optomechanical cavity. Also, properties of the field driving OPA have remarkable effects on the stability of optomechanical cavity. Moreover, we show that the domain of bistability region can be modified by changing of optical properties of the system.

  6. Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors

    Science.gov (United States)

    Ma, Y. B.; Liu, J.; Ma, Y. Q.; Zhao, C.; Ju, L.; Blair, D. G.; Zhu, Z. H.

    2017-07-01

    Three-mode parametric instability is a threat to attaining design power levels in advanced gravitational wave detectors. The first observation of three-mode parametric instability in a long optical cavity revealed that instabilities could be suppressed by time variation of the mirror radius of curvature. In this paper, we present three dimensional finite element analysis of this thermo-acousto-optics system to determine whether thermal modulation could provide sufficient instability suppression without degrading time averaged optical performance. It is shown that deformations due to the time averaged heating profile on the mirror surface can be compensated by rear surface heating of the test mass. Results show that a heating source with a modulation amplitude of 1 W at 0.01 Hz is sufficient to stabilize an acoustic mode with parametric gain up to 3. The parametric gain suppression factor is linearly proportional to the peak modulation power.

  7. Parametric design using IGRIP

    International Nuclear Information System (INIS)

    Baker, C.

    1994-10-01

    The Department of Energy's (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL's experience with the gantry robot service-providing mechanism

  8. Age-related macular degeneration

    DEFF Research Database (Denmark)

    la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst

    2002-01-01

    Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian...

  9. Age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wanjiku Mathenge

    2014-12-01

    Full Text Available Age-related macular degeneration (AMD is a disease of the retina that usually develops in people aged 60 years and older. It affects about 8.7% of the world’s population and is the leading cause of blindness among people aged 50 and older in industrialised countries.

  10. Age-Related Macular Degeneration.

    Science.gov (United States)

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MR imaging findings in subacute combined degeneration of the spinal cord: a case report

    International Nuclear Information System (INIS)

    Kim, Ki Jun; Lee, Jae Hee; Lee, Sung Yong; Chung, Sung Woo

    2000-01-01

    Vitamin B12 deficiency can cause neurologic complications in the spinal cord, brain, and optic and peripheral nerves. Subacute combined degeneration is a rare disease of demyelinating lesions of the spinal cord, affecting mainly the posterior and lateral columns of the thoracic cord. We report the MR imaging findings of a case of subacute combined degeneration of the spinal cord in a patient with vitamin B12 deficiency and mega loblastic anemia. (author)

  12. Degenerated differential pair with controllable transconductance

    NARCIS (Netherlands)

    Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram

    1998-01-01

    A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are

  13. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  14. Parametric functional principal component analysis.

    Science.gov (United States)

    Sang, Peijun; Wang, Liangliang; Cao, Jiguo

    2017-09-01

    Functional principal component analysis (FPCA) is a popular approach in functional data analysis to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). Most existing FPCA approaches use a set of flexible basis functions such as B-spline basis to represent the FPCs, and control the smoothness of the FPCs by adding roughness penalties. However, the flexible representations pose difficulties for users to understand and interpret the FPCs. In this article, we consider a variety of applications of FPCA and find that, in many situations, the shapes of top FPCs are simple enough to be approximated using simple parametric functions. We propose a parametric approach to estimate the top FPCs to enhance their interpretability for users. Our parametric approach can also circumvent the smoothing parameter selecting process in conventional nonparametric FPCA methods. In addition, our simulation study shows that the proposed parametric FPCA is more robust when outlier curves exist. The parametric FPCA method is demonstrated by analyzing several datasets from a variety of applications. © 2017, The International Biometric Society.

  15. Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat

    Directory of Open Access Journals (Sweden)

    De Sordi Nadia

    2009-05-01

    Full Text Available Abstract Background The neurotrophin nerve growth factor (NGF is produced by different cell types in the anterior and posterior eye, exerting a neuroprotective role in the adult life. The visual system is highly sensitive to NGF and the retina and optic nerve provides suitable subjects for the study of central nervous system degeneration. The model of bilateral carotid occlusion (two-vessel occlusion, 2VO is a well-established model for chronic brain hypoperfusion leading to brain capillary pathology, to retina and optic nerve degeneration. In order to study if a single intravitreal injection of NGF protects the retina and the optic nerve from degeneration during systemic circulatory diseases, we investigated morphological and molecular changes occurring in the retina and optic nerve of adult rats at different time-points (8, 30 and 75 days after bilateral carotid occlusion. Results We demonstrated that a single intravitreal injection of NGF (5 μg/3 μl performed 24 hours after 2VO ligation has a long-lasting protective effect on retina and optic nerve degeneration. NGF counteracts retinal ganglion cells degeneration by early affecting Bax/Bcl-2 balance- and c-jun- expression (at 8 days after 2VO. A single intravitreal NGF injection regulates the demyelination/remyelination balance after ischemic injury in the optic nerve toward remyelination (at 75 days after 2VO, as indicated by the MBP expression regulation, thus preventing optic nerve atrophy and ganglion cells degeneration. At 8 days, NGF does not modify 2VO-induced alteration in VEFG and related receptors mRNA expression. Conclusion The protective effect of exogenous NGF during this systemic circulatory disease seems to occur also by strengthening the effect of endogenous NGF, the synthesis of which is increased by vascular defect and also by the mechanical lesion associated with NGF or even vehicle intraocular delivery.

  16. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    Science.gov (United States)

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-03-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  17. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    Science.gov (United States)

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  18. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  19. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  20. Schroedinger cat states and optimum universal quantum cloning by entangled parametric amplification

    Science.gov (United States)

    De Martini, Francesco; Mussi, Valentina; Bovino, Fabio

    2000-05-01

    The new process of quantum-injection by a single-photon in a pure quantum superposition state into an optical parametric amplifier operating in entangled configuration is adopted to generate an all optical multiphoton Schroedinger-cat state which is largely detectable against the squeezed-vacuum noise. The invariance properties of the OPA interaction hamiltonian show that, under certain conditions, the device may act as a universal quantum cloning machine (UQCM) of the input qubits. Preliminary results here reported show the first experimental realization of such a device based on stimulated emission process in an optical parametric amplifier.

  1. Self-reported optometric practise patterns in age-related macular degeneration.

    Science.gov (United States)

    Ly, Angelica; Nivison-Smith, Lisa; Zangerl, Barbara; Assaad, Nagi; Kalloniatis, Michael

    2017-11-01

    The use of advanced imaging in clinical practice is emerging and the use of this technology by optometrists in assessing patients with age-related macular degeneration is of interest. Therefore, this study explored contemporary, self-reported patterns of practice regarding age-related macular degeneration diagnosis and management using a cross-sectional survey of optometrists in Australia and New Zealand. Practising optometrists were surveyed on four key areas, namely, demographics, clinical skills and experience, assessment and management of age-related macular degeneration. Questions pertaining to self-rated competency, knowledge and attitudes used a five-point Likert scale. Completed responses were received from 127 and 87 practising optometrists in Australia and New Zealand, respectively. Advanced imaging showed greater variation in service delivery than traditional techniques (such as slitlamp funduscopy) and trended toward optical coherence tomography, which was routinely performed in age-related macular degeneration by 49 per cent of respondents. Optical coherence tomography was also associated with higher self-rated competency, knowledge and perceived relevance to practice than other modalities. Most respondents (93 per cent) indicated that they regularly applied patient symptoms, case history, visual function results and signs from traditional testing, when queried about their management of patients with age-related macular degeneration. Over half (63 per cent) also considered advanced imaging, while 31 per cent additionally considered all of these as well as the disease stage and clinical guidelines. Contrary to the evidence base, 68 and 34 per cent rated nutritional supplements as highly relevant or relevant in early age-related macular degeneration and normal aging changes, respectively. These results highlight the emergence of multimodal and advanced imaging (especially optical coherence tomography) in the assessment of age-related macular degeneration

  2. Atom-resonant squeezed light from a tunable monolithic ppRKTP parametric amplifier.

    Science.gov (United States)

    Zielińska, Joanna A; Mitchell, Morgan W

    2018-02-15

    We demonstrate vacuum squeezing at the D 1 line of atomic rubidium (795 nm) with a tunable, doubly-resonant, monolithic subthreshold optical parametric oscillator in periodically-poled Rb-doped potassium titanyl phosphate (ppRKTP). The squeezing appears to be undiminished by a strong dispersive optical nonlinearity recently observed in this material.

  3. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  4. Light and inherited retinal degeneration

    OpenAIRE

    Paskowitz, D M; LaVail, M M; Duncan, J L

    2006-01-01

    Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...

  5. Dominant optic atrophy

    DEFF Research Database (Denmark)

    Lenaers, Guy; Hamel, Christian; Delettre, Cécile

    2012-01-01

    DEFINITION OF THE DISEASE: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) an......) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain....

  6. Parametric Processes for Generation and Low Noise Detection of Infrared Light

    DEFF Research Database (Denmark)

    Høgstedt, Lasse

    . The first chapter of the thesis introduces and motivates the work with frequency conversion, sketching the potential of the noise properties for upconversion based detection systems and the increased wavelength availability for parametric light sources. A selection of prior work is presented to give...... an overview of the focus in the field and to place the thesis in a general context. The second chapter introduces the basic concepts of nonlinear parametric interaction in the context of this work, where phasematching is a key factor in the work on both light sources and detection systems. Third chapter...... presents the work on infrared light sources. An optical parametric generator was constructed, and worked as an optical parametric amplifier for both a near- and a mid-infrared seed. The setups are analyzed spectrally and temporally, and discussed with respect to spectroscopic applications. It is concluded...

  7. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  8. Graphical functions in parametric space

    Science.gov (United States)

    Golz, Marcel; Panzer, Erik; Schnetz, Oliver

    2017-06-01

    Graphical functions are positive functions on the punctured complex plane C{\\setminus }{0,1} which arise in quantum field theory. We generalize a parametric integral representation for graphical functions due to Lam, Lebrun and Nakanishi, which implies the real analyticity of graphical functions. Moreover, we prove a formula that relates graphical functions of planar dual graphs.

  9. PARAMETRIC MODEL OF LUMBAR VERTEBRA

    Directory of Open Access Journals (Sweden)

    CAPPETTI Nicola

    2010-11-01

    Full Text Available The present work proposes the realization of a parametric/variational CAD model of a normotype lumbar vertebra, which could be used for improving the effectiveness of actual imaging techniques in informational augmentation of the orthopaedic and traumatological diagnosis. In addition it could be used for ergonomic static and dynamical analysis of the lumbar region and vertebral column.

  10. Parametric instabilities in magnetized plasmas

    International Nuclear Information System (INIS)

    Sanuki, H.; Schmidt, G.

    1976-02-01

    A theory is developed for parametric instabilities driven by a finite wavenumber general pump wave. This formalism is applied to describe lower hybrid decay into electromagnetic modes. A separate treatment is given for the all electrostatic wave case using the physically more transparent particle drift equations. In particular, the purely growing mode is studied

  11. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...

  12. Age related macular degeneration and visual disability.

    Science.gov (United States)

    Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro

    2011-02-01

    substantial benefit in people with age-related macular degeneration. Prescription filters are one of the most beneficial visual aids that people with macular degeneration. In principle, one aims both at reducing short-wavelength light to reduce glare and at identifying light with specific wavelengths (colours) preferred by the patient for viewing. In both instances, such interventions result in apparent improved contrast sensitivity and better visual acuity. Although specific tests are performed to determine the best colour, tint, lens material, and type of frame for the patient's need, no scientific protocol has been developed so far to assist in prescribing tinted or selective transmission lenses . Magnifying optical lenses are available in a wide range of dioptric powers and are made from materials that correct for weight (plastic), thickness (high index), spherical aberrations (aspherical), and variable light intensities (photochromatic). These lenses can be used as loose lenses, mounted on optical frames, or used with a wide variety of attachments. As the dioptric power of plus lenses increases, the viewing distance of the target decreases, hence their usefulness mainly for tasks requiring near resolution acuity, like reading. Magnification can also be achieved with the use of telescopic devices that are built of two or more plus and (or) minus (minifying) optical lenses. Normal resolution acuity levels can be achieved with these devices for all viewing distances. Therefore, all telescopic devices are useful only for stationary patient tasks that do not require mobility and orientation. Electronic magnification has the great advantage over plus lenses of producing an acuity reserve enabling reading skills for almost all levels of visual acuity. The additional benefit provided is preservation of binocularity, even at high levels of visual disparity between the two eyes. Vision rehabilitation can help patients to maximize their remaining vision and adapt to activities of

  13. Phase-matching-free parametric oscillators based on two dimensional semiconductors

    OpenAIRE

    Ciattoni, A.; Marini, A.; Rizza, C.; Conti, C.

    2017-01-01

    Optical parametric oscillators are widely-used pulsed and continuous-wave tunable sources for innumerable applications, as in quantum technologies, imaging and biophysics. A key drawback is material dispersion imposing the phase-matching condition that generally entails a complex setup design, thus hindering tunability and miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-resonators adopting monolayer transition-metal dichalcogenides as...

  14. Aircraft Trajectory Optimization Using Parametric Optimization Theory

    OpenAIRE

    Valenzuela Romero, Alfonso

    2012-01-01

    In this thesis, a study of the optimization of aircraft trajectories using parametric optimization theory is presented. To that end, an approach based on the use of predefined trajectory patterns and parametric optimization is proposed. The trajectory pat

  15. Bianchi surfaces: integrability in an arbitrary parametrization

    International Nuclear Information System (INIS)

    Nieszporski, Maciej; Sym, Antoni

    2009-01-01

    We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.

  16. Study of three-mode parametric instability

    International Nuclear Information System (INIS)

    Liang Fengchao; Zhao Chunnong; Gras, Slawomir; Ju Li; Blair, D G

    2010-01-01

    The effect of parametric instability in advanced interferometric gravitational wave detectors is a potential problem for their proper operation. Great efforts have been made to study the onset of parametric instabilities and to find ways to control them. Here we present an experimental design for studying parametric instability in a 72 m cavity with suspended high quality fused silica mirrors. With 5 W input power and 20 kW circulation power inside the cavity, it is predicted that parametric instability will occur. The resonant condition of parametric instability can be met by thermally tuning the radius of curvature of a test mass. We will present simulation results of parametric gains for different radii of curvature of a test mass. The simulation results will provide the basis for designing the thermal tuning and observation parametric instability experiments. This will provide a test bed for studying parametric instability and its control for next generation detectors.

  17. High average power parametric frequency conversion-new concepts and new pump sources

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S.P.; Webb, M.S.

    1994-03-01

    A number of applications, including long range remote sensing and antisensor technology, require high average power tunable radiation in several distinct spectral regions. Of the many issues which determine the deployability of optical parametric oscillators (OPOS) and related systems, efficiency and simplicity are among the most important. It is only recently that the advent of compact diode laser pumped solid state lasers has produced pump sources for parametric oscillators which can make compact, efficient, high average power tunable sources possible. In this paper we outline several different issues in parametric oscillator and pump laser development which are currently under study at Lawrence Livermore National Laboratory.

  18. On the problem of neutron spectroscopy of parametrically non-equilibrium quasiparticles in solids

    International Nuclear Information System (INIS)

    Vo Khong An'.

    1981-01-01

    A suitable for numerical estimations formula for coherent neutron inelastic scattering cross sections on the plasmon-phonon mixed modes of electron-phonon systems in the parametric resonance conditions is obtained from the analytical one presented in the previous work using some relations of the general parametric excitation theory. The cross sections of neutron scattering on the high-frequency plasmon-like and the low-frequency longitudinal optical phonon-like modes in InSb crystals are calculated as functions of the driving laser field intensity, which show an increase in values by about two orders of magnitude as the field intensity approaches the parametric excitation threshold

  19. Relationship between full-thickness macular hole and retinal break/lattice degeneration.

    Science.gov (United States)

    Zhang, Jinglin; Li, Yonghao; Zhao, Xiujuan; Cai, Yu; Yu, Xiling; Lu, Lin

    2015-12-01

    The purpose is to investigate the relationship between full-thickness macular hole (MH) and retinal break (RB) and/or lattice degeneration. Patients diagnosed as full-thickness MH and referred to Dr. Lin Lu from January 2009 to December 2013 were evaluated. All patients underwent general ophthalmologic examinations, fundus examination and optical coherence tomography (OCT). The RB and/or lattice degeneration were recorded. Totally 183 eyes of 167 patients were included. The sex ratio of men to women was 1:2.88. A total of 17 eyes were pseudophakic and 166 eyes were phakic. RB and/or lattice degeneration were found in 62 eyes (33.88%). The prevalence of RB and/or lattice degeneration was similar between men and women (P = 0.344 > 0.05). There was no statistical difference between the pseudophakic eyes and phakic eyes (P = 0.138 > 0.05). All of the RB and/or lattice degeneration were located near or anterior to the equator. The inferior quadrants and the vertical meridian were affected more often than the superior quadrants and the horizontal meridian. We identified a high incidence of RB/lattice degeneration in cases of full-thickness MH. Carefully examination of the peripheral retina and prophylactic treatment of RB and/or lattice degeneration are critical.

  20. Parametric tools in architecture: a comparative study

    OpenAIRE

    Hanna, R

    2012-01-01

    Parametric tools have recently increased in eminence in\\ud architectural practice with several claims made about their potential as a creative design iteration tool to enhance design decision making and problem solving. This paper carried out a survey of two types of architectural practices: one that predominantly uses non-parametric CAD tools and another that primarily employs parametric CAD. The results from the survey were analysed statistically. The findings show that parametric tools did...

  1. Neutrino emission spectra of collapsing degenerate stellar cores - Calculations by the Monte Carlo method

    International Nuclear Information System (INIS)

    Levitan, Iu.L.; Sobol, I.M.; Khlopov, M.Iu.; Chechetkin, V.M.

    1982-01-01

    The variation of the hard part of the neutrino emission spectra of collapsing degenerate stellar cores with matter having a small optical depth to neutrinos is analyzed. The interaction of neutrinos with the degenerate matter is determined by processes of neutrino scattering on nuclei (without a change in neutrino energy) and neutrino scattering on degenerate electrons, in which the neutrino energy can only decrease. The neutrino emission spectrum of a collapsing stellar core in the initial stage of the onset of opacity is calculated by the Monte Carlo method: using a central density of 10 trillion g/cu cm and, in the stage of deep collapse, for a central density of 60 trillion g/cu cm. In the latter case the calculation of the spectrum without allowance for effects of neutrino degeneration in the central part of the collapsing stellar core corresponds to the maximum possible suppression of the hard part of the neutrino emission spectrum

  2. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  3. Lattice degeneration of the retina.

    Science.gov (United States)

    Byer, N E

    1979-01-01

    Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.

  4. Age-related macular degeneration

    DEFF Research Database (Denmark)

    la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst

    2002-01-01

    Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian....... Smoking is probably also a risk factor. Preventive strategies using macular laser photocoagulation are under investigation, but their efficacy in preventing visual loss is as yet unproven. There is no treatment with proven efficacy for geographic atrophy. Optimal treatment for exudative AMD requires...

  5. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  6. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  7. Parametric decay of the curvaton

    International Nuclear Information System (INIS)

    Enqvist, K; Nurmi, S; Rigopoulos, G I

    2008-01-01

    We argue that the curvaton decay takes place most naturally by way of a broad parametric resonance. The mechanism is analogous to resonant inflaton decay but does not require any tuning of the curvaton coupling strength to other scalar fields. For low scale inflation and a correspondingly low mass scale for the curvaton, we speculate on observable consequences including the possibility of stochastic gravitational waves

  8. Parametric characterization of aggregation functions

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko; Kolesárová, A.

    2009-01-01

    Roč. 160, č. 6 (2009), s. 816-831 ISSN 0165-0114 R&D Projects: GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : Aggregation function * Conjunction measure * Disjunction measure * Global/local parametric characterization * Idempotency measure Subject RIV: BA - General Mathematics Impact factor: 2.138, year: 2009 http://library.utia.cas.cz/separaty/2009/E/mesiar-parametriccharacterizationofaggregationfunctions.pdf

  9. CERKL knockdown causes retinal degeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Marina Riera

    Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.

  10. Parametric Modeling for Fluid Systems

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  11. PHOTODYNAMIC THERAPY OF MACULAR DEGENERATION

    Directory of Open Access Journals (Sweden)

    Davorin Sevšek

    2004-05-01

    Full Text Available Background. University Eye Clinic in Ljubljana began to perform a photodynamic therapy (PDT in July 2002. Up to September 2003 there were 51 PDT interventions on 36 eyes. Almost half of the eyes had one or more reinterventions. PDT was used on 29 eyes with age related macular degeneration (AMD. Just before the treatment all of them had visual acuity (VA 6/60 or better and there were predominantly classical or classical choroidal neovascular (CNV membranes. Most VA did not changed significantly in follow-up visits but diameter of CNV membranes was obviously reduced. In macular degeneration due to pathologic myopia (MMD, photodynamic therapy was performed on 7 eyes with mainly occult CNV and VA was 12/60 or better. VA was mostly better in follow-up visits than before treatment with PDT.Conclusions. There were no serious complications during and after PDT interventions. Two patients had back pain during the infusion of Verteporfin but there was no need to stop the intervention.

  12. Age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Querques G

    2011-05-01

    Full Text Available Giuseppe Querques¹, Fernando Onofrio Avellis1,2, Lea Querques1,3, Francesco Bandello³, Eric H Souied¹ ¹Service d'Ophtalmologie, Centre Hospitalier Intercommunal Créteil, Université Paris-Est Créteil, Créteil, France; ²Parma Eye Clinic University Hospital, Università degli Studi di Parma, Parma, Italy; ³Department of Ophthalmology, Università Vita-Salute San Raffaele Milano, Milano, Italy Date of preparation: March 3, 2011 Conflict of interest: None declaredClinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD?Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches.Implementation: strategy of administration, safety of intravitreal injectionKeywords: age-related macular degeneration, antivascular endothelial growth factor, choroidal neovascularization, drusen, geographic atrophy

  13. Imaging of corticobasal degeneration syndrome

    International Nuclear Information System (INIS)

    Koyama, Masamichi; Yagishita, Akira; Nakata, Yasuhiro; Hayashi, Masaharu; Bandoh, Mitsuaki; Mizutani, Toshio

    2007-01-01

    Diagnosing corticobasal degeneration is often difficult on the basis of clinical symptoms and radiological images. We aimed to clarify the imaging findings of corticobasal degeneration syndrome (CBDS). Included in the study were 16 patients (8 men, 8 women, 46-75 years old) with clinically diagnosed CBDS. We evaluated the patients' symptoms and signs, and MR and single-photon emission CT (SPECT) imaging findings. All the patients had cerebral atrophy. Asymmetric cerebral atrophy was observed in 13 patients (81%) predominantly contralateral to the side clinically more affected. Atrophy in the cerebral peduncle was observed in seven patients. FLAIR images showed hyperintensity in the subcortical white matter in the frontoparietal lobes in the clinically more affected side in 14 patients, and in the rolandic region in 13 patients. Asymmetric hypoperfusion in the frontoparietal lobes on SPECT images was observed in all of the patients, and in the basal ganglia in 11 patients. CBDS might be unique in showing hyperintensity in the subcortical white matter in the rolandic region on FLAIR images with asymmetric atrophy predominantly contralateral to the side clinically more severely affected. Asymmetric atrophy in the cerebral peduncle without signal abnormalities was also characteristic of CBDS. Atrophy in the midbrain tegmentum was also seen in patients with CBDS. (orig.)

  14. Rescuing axons from degeneration does not affect retinal ganglion cell death

    Directory of Open Access Journals (Sweden)

    S. de Lima

    2016-01-01

    Full Text Available After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD, an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18 treated with an exogenous calpain inhibitor (20 mM administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05 and an increase in the number of preserved fibers (P<0.05 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.

  15. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nebelung, Sven [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Institute of Anatomy and Cell Biology, RWTH, Aachen (Germany); Brill, Nicolai [Fraunhofer Institute for Production Technology, Aachen (Germany); Tingart, Markus; Jahr, Holger [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Pufe, Thomas [Institute of Anatomy and Cell Biology, RWTH, Aachen (Germany); Kuhl, Christiane; Truhn, Daniel [Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Aachen (Germany)

    2016-04-15

    To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index) and attenuation (OAI, optical attenuation index). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging. (orig.)

  16. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison

    Science.gov (United States)

    Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, Jan G. P. W.; Camps-Valls, Gustau; Moreno, José

    2015-10-01

    Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), collected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combinations for several two-band and three-band index formulations and a linear regression fitting function have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was an optimized three-band combination according to (ρ560 -ρ1610 -ρ2190) / (ρ560 +ρ1610 +ρ2190) with a 10-fold cross-validation RCV2 of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image. With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been evaluated. This methodological family has the advantage of making use of the full optical spectrum as well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with variational heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a RCV2 of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table (LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost function is Pearson's χ -square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its validation went fast

  17. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.

    2010-01-01

    Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead...... to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....

  18. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  19. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold.

    Science.gov (United States)

    Ballarini, D; Sanvitto, D; Amo, A; Viña, L; Wouters, M; Carusotto, I; Lemaitre, A; Bloch, J

    2009-02-06

    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the optical parametric oscillator threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following appearance of a soft Goldstone mode in the spectrum.

  20. Inflammatory profiles in canine intervertebral disc degeneration

    NARCIS (Netherlands)

    Willems, Nicole; Tellegen, Anna R; Bergknut, Niklas; Creemers, Laura B; Wolfswinkel, Jeannette; Freudigmann, Christian; Benz, Karin; Grinwis, Guy C M; Tryfonidou, Marianna A; Meij, Björn P

    2016-01-01

    BACKGROUND: Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene