WorldWideScience

Sample records for degenerate oligonucleotide primers

  1. SINGLE CELL DEGENERATE OLIGONUCLEOTIDE PRIMER-PCR AND COMPARATIVE GENOMIC HYBRIDIZATION WITH MODIFIED CONTROL REFERENCE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For investigating the possibility of applying degenerate oligonucleotide primer PCR (DOP-PCR) and comparative genomic hybridization (CGH) technique to analyses of genomic genetics in a single cell, the whole genomic DNA of a single cell with XX, XY, XO, XXY, +13 or +21 was amplified by DOP-PCR. Single cell DOP-PCR CGHs with conventional and modified control references, the genomic DNA and a single cell DOP-PCR product from normal male, were carried out respectively. The results showed that the average profile of the fluorescence intensity ratio in CGH with the genomic DNA as reference fluctuates much and that the standard deviation in about 30% haploid is beyond the normal limits. False positive hyper-representation was found to exist in X chromosome while trisomy 13 and 21 were not detected. However, the distributions of the mean and the standard deviation of the ratio in the CGH with DOP-PCR product as reference were quite acceptable. The copy number changes of chromosome X,Y,13 and 21 were revealed. Those results suggested that there is unrandom unequal amplification in a single cell DOP-PCR. Using a single DOP-PCR product as reference can decrease its influence on CGH. Single cell DOP-PCR-CGH and its application in the genetic analyses of preimplantation embryo or fetal cell in maternal blood may be possible.

  2. Degenerate primer design for highly variable genomes.

    Science.gov (United States)

    Li, Kelvin; Shrivastava, Susmita; Stockwell, Timothy B

    2015-01-01

    The application of degenerate PCR primers towards target amplification and sequencing is a useful technique when a population of organisms under investigation is evolving rapidly, or is highly diverse. Degenerate bases in these primers are specified with ambiguity codes that represent alternative nucleotide configurations. Degenerate PCR primers allow the simultaneous amplification of a heterogeneous population by providing a mixture of PCR primers each of which anneal to an alternative genotype found in the isolated sample. However, as the number of degenerate bases specified in a pair of primers rises, the likelihood of amplifying unwanted alternative products also increases. These alternative products may confound downstream data analyses if their levels begin to obfuscate the desired PCR products. This chapter describes a set of computational methodologies that may be used to minimize the degeneracy of designed primers, while still maximizing the proportion of genotypes assayed in the targeted population.

  3. Generation of polymerase chain reaction-specific probes for library screening using single degenerate primers.

    Science.gov (United States)

    Hommes, N G; Arp, D J; Sayavedra-Soto, L A

    1995-03-01

    Degenerate oligonucleotide primers were made to peptide sequences from hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea. The primers were used singly in PCR reactions to amplify portions of the gene for HAO from genomic DNA. Southern hybridizations using fragments amplified with each primer showed that they labeled the same genomic DNA fragments. The PCR-amplified fragments were successfully used to screen a gene library for clones containing the HAO gene. The method of isolating genes by PCR with single primers has general utility.

  4. DNA sequencing by synthesis with degenerate primers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n+1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.

  5. CEMAsuite: open source degenerate PCR primer design.

    Science.gov (United States)

    Lane, Courtney E; Hulgan, Daniel; O'Quinn, Kelly; Benton, Michael G

    2015-11-15

    The codon-equivalent multiple alignment suite begins conservational analysis for polymerase chain reaction primer design at the protein level, allowing the user to design consensus primers capable of detecting homologous coding sequences even when low-to-moderate sequence information is available. This package also condenses the wealth of information associated with multiple sequence alignments and presents them in an intuitive manner, allowing the user to quickly and effectively address degenerate primer design considerations. https://sourceforge.net/projects/cemasuite/. benton@lsu.edu or cemasuite@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Oligonucleotide primers for targeted amplification of single-copy nuclear genes in apocritan Hymenoptera.

    Directory of Open Access Journals (Sweden)

    Gerrit Hartig

    Full Text Available BACKGROUND: Published nucleotide sequence data from the mega-diverse insect order Hymenoptera (sawflies, bees, wasps, and ants are taxonomically scattered and still inadequate for reconstructing a well-supported phylogenetic tree for the order. The analysis of comprehensive multiple gene data sets obtained via targeted PCR could provide a cost-effective solution to this problem. However, oligonucleotide primers for PCR amplification of nuclear genes across a wide range of hymenopteran species are still scarce. FINDINGS: Here we present a suite of degenerate oligonucleotide primer pairs for PCR amplification of 154 single-copy nuclear protein-coding genes from Hymenoptera. These primers were inferred from genome sequence data from nine Hymenoptera (seven species of ants, the honeybee, and the parasitoid wasp Nasonia vitripennis. We empirically tested a randomly chosen subset of these primer pairs for amplifying target genes from six Hymenoptera, representing the families Chrysididae, Crabronidae, Gasteruptiidae, Leucospidae, Pompilidae, and Stephanidae. Based on our results, we estimate that these primers are suitable for studying a large number of nuclear genes across a wide range of apocritan Hymenoptera (i.e., all hymenopterans with a wasp-waist and of aculeate Hymenoptera in particular (i.e., apocritan wasps with stingers. CONCLUSIONS: The amplified nucleotide sequences are (a with high probability from single-copy genes, (b easily generated at low financial costs, especially when compared to phylogenomic approaches, (c easily sequenced by means of an additionally provided set of sequencing primers, and (d suitable to address a wide range of phylogenetic questions and to aid rapid species identification via barcoding, as many amplicons contain both exonic and fast-evolving intronic nucleotides.

  7. Effect of oligonucleotide primers in determining viral variability within hosts

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2004-12-01

    Full Text Available Abstract Background Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. Results To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient. Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Conclusions Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  8. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether there are also TaqMan/Luminex probe matches within predicted amplicons.

  9. A degenerate pair of primers for simultaneous detection of four alpha- and betanecroviruses.

    Science.gov (United States)

    Varanda, C M R; Cardoso, J M S; Oliveira, M D M; Oliveira, S; Clara, M I E; Félix, M R F

    2014-11-01

    The high infection levels due to Olive latent virus 1 (OLV-1), Olive mild mosaic virus (OMMV) (alphanecrovirus) and Tobacco necrosis virus D (TNV-D) (betanecrovirus) in Portuguese olive orchards prompted us to develop a rapid PCR-based assay for the simultaneous detection of these viruses aimed at the sanitary selection and marketing of plant material in compliance with European Union regulations. A pair of degenerate oligonucleotide primers, parRdRp5' and parCoat3' was designed based on conserved regions located in the RNA-dependent RNA polymerase (RdRp) and coat protein (CP) genes of these viruses and one other alphanecrovirus, Tobacco necrosis virus A. Its use in RT-PCR assays generated a product of ca. 2000 bp for the 4 viral species tested. These primers were compared with virus specific primers in multiplex RT-PCR, and identical results were obtained. Its application to dsRNA extracted from 54 olive field growing trees originated the expected ca. 2000 bp amplicon in 17 trees. The virus identity was determined by sequencing the cloned RT-PCR products. No TNV-A was found. The RT-PCR assay using the degenerate primers described in this study were shown to be reliable in detecting any of the above-mentioned alpha- and betanecroviruses, and it is as sensitive as that which uses virus specific primers in multiplex assays. Therefore, this assay is well suited for the rapid screen of virus-free plant material in selection and improvement crop programmes. Additionally, it has the potential to reveal virus diversity and the presence of new viruses, provided the RT-PCR generated amplicon is further sequenced.

  10. 共有序列简并杂合寡核苷酸引物聚合酶链反应在呼吸道副黏病毒科病毒诊断中的应用%Consensus-degenerate hybrid oligonucleotide primer polymerase chain reaction-A powerful technique for the identification of Paramyxoviridae in clinical specimens

    Institute of Scientific and Technical Information of China (English)

    赵百慧; 张泓; 张曦; 王春; 沈佳仁; 俞雪莲; 高烨; 滕峥; 朱兆奎; 储维; 宋黎黎

    2013-01-01

    The present paper aims to compare the sensitivity, specificity and accordance rate of consensus-degenerate hybrid oligonucleotide primer polymerase chain reaction (CODEHOP PCR) technique and commercial kit in diagnosis of paramyxovirus infection in clinical specimens and to further evaluate the value of CODEHOP PCR assay in detection of known and novel respiratory viruses . A total of 572 specimens from lower respiratory tract were collected from Children' Hospital of Shanghai inpatients with acute respiratory infections during 2011. These specimens were analyzed by CODEHOP PCR and commercial RV12 kit for the detection of paramyxoviruses, including known parainfluenza virus type 1 (PIV-1), PIV-2 , PIV-3, respiratory syncytial virus A (RSVA) , RSVB , human metapneumovirus (HMPV) and novel viruses . The results showed that 102 out of 572 specimens (19 .76% ) were detected positive by the RV12 kit, and 113 were detected positive by CODEHOP PCR . The accordance rate of the two methods was 85.39% . CODEHOP PCR is more sensitive than RV12 kit in detecting RSVA infection in cell culture . The study suggests that CODEHOP PCR is a powerful technique for the identification of paramyxoviruses in clinical specimens . It can be optimized by combining with some new techniques , and is worthy of application in the future.%采用共有序列简并杂合寡核苷酸引物聚合酶链反应(CODEHOP PCR)体系和商品化RV12试剂盒对急性呼吸道感染患儿下呼吸道标本中的副黏病毒科病毒进行检测,比较CODEHOP PCR与RV12试剂盒检测结果的符合率和敏感度,观察CODEHOP PCR在临床呼吸道标本中对副黏病毒诊断的应用价值,进一步探讨具备检测已知呼吸道病毒和未知新病毒特点的CODEHOP PCR在呼吸道疾病谱和未知潜在呼吸道病毒诊断中的推广价值.采集2011年上海市儿童医院因急性呼吸道感染住院的患儿下呼吸道标本572份,分别采用2种方法

  11. PTPan--overcoming memory limitations in oligonucleotide string matching for primer/probe design.

    Science.gov (United States)

    Eissler, Tilo; Hodges, Christopher P; Meier, Harald

    2011-10-15

    Nucleic acid diagnostics has high demands for non-heuristic exact and approximate oligonucleotide string matching concerning in silico primer/probe design in huge nucleic acid sequence collections. Unfortunately, public sequence repositories grow much faster than computer hardware performance and main memory capacity do. This growth imposes severe problems on existing oligonucleotide primer/probe design applications necessitating new approaches based on space-efficient indexing structures. We developed PTPan (spoken Peter Pan, 'PT' is for Position Tree, the earlier name of suffix trees), a space-efficient indexing structure for approximate oligonucleotide string matching in nucleic acid sequence data. Based on suffix trees, it combines partitioning, truncation and a new suffix tree stream compression to deal with large amounts of aligned and unaligned data. PTPan operates efficiently in main memory and on secondary storage, balancing between memory consumption and runtime during construction and application. Based on PTPan, applications supporting similarity search and primer/probe design have been implemented, namely FindFamily, ProbeMatch and ProbeDesign. All three use a weighted Levenshtein distance metric for approximative queries to find and rate matches with indels as well as substitutions. We integrated PTPan in the worldwide used software package ARB to demonstrate usability and performance. Comparing PTPan and the original ARB index for the very large ssu-rRNA database SILVA, we recognized a shorter construction time, extended functionality and dramatically reduced memory requirements at the price of expanded, but very reasonable query times. PTPan enables indexing of huge nucleic acid sequence collections at reasonable application response times. Not being limited by main memory, PTPan constitutes a major advancement regarding rapid oligonucleotide string matching in primer/probe design now and in the future facing the enormous growth of molecular

  12. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  13. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing.

    Science.gov (United States)

    Li, Kelvin; Shrivastava, Susmita; Brownley, Anushka; Katzel, Dan; Bera, Jayati; Nguyen, Anh Thu; Thovarai, Vishal; Halpin, Rebecca; Stockwell, Timothy B

    2012-11-06

    In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute's (JCVI) high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus sequence that encapsulates the allelic variation of the targeted

  14. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil.

    Science.gov (United States)

    Bergkemper, Fabian; Kublik, Susanne; Lang, Friederike; Krüger, Jaane; Vestergaard, Gisle; Schloter, Michael; Schulz, Stefanie

    2016-06-01

    Phosphorus (P) is of central importance for cellular life but likewise a limiting macronutrient in numerous environments. Certainly microorganisms have proven their ability to increase the phosphorus bioavailability by mineralization of organic-P and solubilization of inorganic-P. On the other hand they efficiently take up P and compete with other biota for phosphorus. However the actual microbial community that is associated to the turnover of this crucial macronutrient in different ecosystems remains largely anonymous especially taking effects of seasonality and spatial heterogeneity into account. In this study seven oligonucleotide primers are presented which target genes coding for microbial acid and alkaline phosphatases (phoN, phoD), phytases (appA), phosphonatases (phnX) as well as the quinoprotein glucose dehydrogenase (gcd) and different P transporters (pitA, pstS). Illumina amplicon sequencing of soil genomic DNA underlined the high rate of primer specificity towards the respective target gene which usually ranged between 98% and 100% (phoN: 87%). As expected the primers amplified genes from a broad diversity of distinct microorganisms. Using DNA from a beech dominated forest soil, the highest microbial diversity was detected for the alkaline phosphatase (phoD) gene which was amplified from 15 distinct phyla respectively 81 families. Noteworthy the primers also allowed amplification of phoD from 6 fungal orders. The genes coding for acid phosphatase (phoN) and the quinoprotein glucose dehydrogenase (gcd) were amplified from 20 respectively 17 different microbial orders. In comparison the phytase and phosphonatase (appA, phnX) primers covered 13 bacterial orders from 2 different phyla respectively. Although the amplified microbial diversity was apparently limited both primers reliably detected all orders that contributed to the P turnover in the investigated soil as revealed by a previous metagenomic approach. Genes that code for microbial P transporter

  15. Quantitative PCR measurements of the effects of introducing inosines into primers provides guidelines for improved degenerate primer design.

    Science.gov (United States)

    Zheng, Linda; Gibbs, Mark J; Rodoni, Brendan C

    2008-11-01

    Polymerase chain reaction (PCR) is used to detect groups of viruses with the use of group-specific degenerate primers. Inosine residues are sometimes used in the primers to match variable positions within the complementary target sequences, but there is little data on their effects on cDNA synthesis and amplification. A quantitative reverse-transcription PCR was used to measure the rate of amplification with primers containing inosine residues substituted at different positions and in increasing numbers. Experiments were conducted using standard quantities of cloned DNA copied from Potato virus Y genomic RNA and RNA (cRNA) transcribed from the cloned DNA. Single inosine residues had no affect on the amplification rate in the forward primer, except at one position close to the 3' terminus. Conversely, single inosine residues significantly reduced the amplification rate when placed at three out of four positions in the reverse primer. Four or five inosine substitutions could be tolerated with some decline in rates, but amplification often failed from cRNA templates with primers containing larger numbers of inosines. Greater declines in the rate of amplification were observed with RNA templates, suggesting that reverse transcription suffers more than PCR amplification when inosine is included in the reverse primer.

  16. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  17. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  18. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    Directory of Open Access Journals (Sweden)

    Shea N. Gardner

    2014-01-01

    Full Text Available Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.

  19. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones.

    Science.gov (United States)

    Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis

    2015-01-01

    Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements.

  20. Design and implementation of degenerate microsatellite primers for the mammalian clade.

    Directory of Open Access Journals (Sweden)

    Emmanuel Buschiazzo

    Full Text Available Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1 identify conserved microsatellite loci from a multiple genome alignments, (2 design degenerate primer pairs, with (3 a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ~1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120-160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced.

  1. probeBase--an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016.

    Science.gov (United States)

    Greuter, Daniel; Loy, Alexander; Horn, Matthias; Rattei, Thomas

    2016-01-04

    probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase.

  2. Study of HIV-2 primer-template initiation complex using antisense oligonucleotides

    DEFF Research Database (Denmark)

    Boulmé, F; Freund, F; Gryaznov, S;

    2000-01-01

    HIV-2 reverse transcription is initiated by the retroviral DNA polymerase (reverse transcriptase) from a cellular tRNALys3 partially annealed to the primer binding site in the 5'-region of viral RNA. The HIV-2 genome has two A-rich regions upstream of the primer binding site. In contrast to HIV-1...

  3. Degenerate PCR primer design for the specific identification of rhinovirus C.

    Science.gov (United States)

    Nam, Young Ran; Lee, Uk; Choi, Han Seok; Lee, Kyoung Jin; Kim, Nari; Jang, Yong Ju; Joo, Chul Hyun

    2015-03-01

    Human rhinovirus (HRV)-A and -B is a common cause of upper respiratory tract infections. Recently, a third species, HRV-C, was categorized based on molecular typing studies. The results showed that the HRV-C genome had diverged from that of HRV-A and -B. Despite its late identification, increasing evidence suggests that HRV-C causes more severe pathogenic infections than HRV-A or -B; however, a large amount of epidemiological data is required to confirm this association in different clinical settings. Consequently, a simple and rapid method for identifying HRV-C is required to expedite such epidemiological studies. Here, two degenerate primer sets (HEV and HRVC) were designed based on bioinformatic analyses. The HEV set targeting the fifth IRES domain sequence within the 5'-UTR, which is highly conserved among enteroviruses, was designed to detect all enteroviruses, whereas the HRVC set, which targeted the VP2 coding region, was designed to detect HRV-C alone. Both primer sets were tested against a panel of standard enteroviruses and clinical lavage samples. HEV detected all enteroviruses tested whereas HRVC was specific for HRV-C. Although the primer design strategy was confirmed with a limited number of samples, extensive tests are required to be applied in clinical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. GPUDePiCt: A Parallel Implementation of a Clustering Algorithm for Computing Degenerate Primers on Graphics Processing Units.

    Science.gov (United States)

    Cickovski, Trevor; Flor, Tiffany; Irving-Sachs, Galen; Novikov, Philip; Parda, James; Narasimhan, Giri

    2015-01-01

    In order to make multiple copies of a target sequence in the laboratory, the technique of Polymerase Chain Reaction (PCR) requires the design of "primers", which are short fragments of nucleotides complementary to the flanking regions of the target sequence. If the same primer is to amplify multiple closely related target sequences, then it is necessary to make the primers "degenerate", which would allow it to hybridize to target sequences with a limited amount of variability that may have been caused by mutations. However, the PCR technique can only allow a limited amount of degeneracy, and therefore the design of degenerate primers requires the identification of reasonably well-conserved regions in the input sequences. We take an existing algorithm for designing degenerate primers that is based on clustering and parallelize it in a web-accessible software package GPUDePiCt, using a shared memory model and the computing power of Graphics Processing Units (GPUs). We test our implementation on large sets of aligned sequences from the human genome and show a multi-fold speedup for clustering using our hybrid GPU/CPU implementation over a pure CPU approach for these sequences, which consist of more than 7,500 nucleotides. We also demonstrate that this speedup is consistent over larger numbers and longer lengths of aligned sequences.

  5. The tetramethylammonium chloride method for screening of cDNA libraries using highly degenerate oligonucleotides obtained by backtranslation of amino-acid sequences

    DEFF Research Database (Denmark)

    Honoré, B; Madsen, Peder; Leffers, H

    1993-01-01

    We describe a method for screening of cDNA libraries with highly degenerate oligonucleotides using tetramethylammonium chloride (TMAC). This method is a convenient alternative to using probes generated by the polymerase chain reaction (PCR), especially when these cannot easily be made. Nylon filt...

  6. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies.

    Science.gov (United States)

    Hugerth, Luisa W; Wefer, Hugo A; Lundin, Sverker; Jakobsson, Hedvig E; Lindberg, Mathilda; Rodin, Sandra; Engstrand, Lars; Andersson, Anders F

    2014-08-01

    The taxonomic composition of a microbial community can be deduced by analyzing its rRNA gene content by, e.g., high-throughput DNA sequencing or DNA chips. Such methods typically are based on PCR amplification of rRNA gene sequences using broad-taxonomic-range PCR primers. In these analyses, the use of optimal primers is crucial for achieving an unbiased representation of community composition. Here, we present the computer program DegePrime that, for each position of a multiple sequence alignment, finds a degenerate oligomer of as high coverage as possible and outputs its coverage among taxonomic divisions. We show that our novel heuristic, which we call weighted randomized combination, performs better than previously described algorithms for solving the maximum coverage degenerate primer design problem. We previously used DegePrime to design a broad-taxonomic-range primer pair that targets the bacterial V3-V4 region (341F-805R) (D. P. Herlemann, M. Labrenz, K. Jurgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson, ISME J. 5:1571-1579, 2011, http://dx.doi.org/10.1038/ismej.2011.41), and here we use the program to significantly increase the coverage of a primer pair (515F-806R) widely used for Illumina-based surveys of bacterial and archaeal diversity. By comparison with shotgun metagenomics, we show that the primers give an accurate representation of microbial diversity in natural samples. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Methods for detection and differentiation of existing and new crinivirus species through multiplex and degenerate primer RT-PCR.

    Science.gov (United States)

    Wintermantel, William M; Hladky, Laura L

    2010-12-01

    A method was developed for rapid identification and differentiation of both known and novel crinivirus species involving both multiplex and degenerate reverse transcription-polymerase chain reaction (RT-PCR). The multiplex method can discriminate among known criniviruses infecting vegetable and small fruit crops, and rapidly identify viruses associated with disease symptoms, as well as identification of mixed crinivirus infections. Four host groups for multiplex detection of criniviruses were selected based on the types of crops where specific criniviruses would be expected to occur. Each detection group contained three to four crop-specific primers designed to the same region of the gene encoding the highly conserved RNA-dependent RNA polymerase gene (RdRp) of criniviruses for rapid, single-reaction determination of which crinivirus(es) may be infecting a plant. Degenerate reverse primers used for RT and in PCR were designed to amplify all members of each host group, and were coupled with species-specific forward primers resulting in four separate single-reaction cocktails for detection of most criniviruses sequenced to date, whether present in single or mixed virus infections. Additional viruses can be added to multiplex detection by adjustment of primer concentration for balanced detection of target viruses. In order to identify unknown putative criniviruses or those for which sequence information is not yet available, a genus-wide, universal degenerate primer set was developed. These primers also targeted the crinivirus RdRp gene, and amplify a wide range of crinivirus sequences. Both detection systems can be used with most RNA extraction methods, and with RT-PCR reagents common in most laboratories.

  8. Application of hierarchical oligonucleotide primer extension (HOPE) to assess relative abundances of ammonia- and nitrite-oxidizing bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2017-04-04

    Background: Establishing an optimal proportion of nitrifying microbial populations, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), complete nitrite oxidizers (comammox) and ammonia-oxidizing archaea (AOA), is important for ensuring the efficiency of nitrification in water treatment systems. Hierarchical oligonucleotide primer extension (HOPE), previously developed to rapidly quantify relative abundances of specific microbial groups of interest, was applied in this study to track the abundances of the important nitrifying bacterial populations. Results: The method was tested against biomass obtained from a laboratory-scale biofilm-based trickling reactor, and the findings were validated against those obtained by 16S rRNA gene-based amplicon sequencing. Our findings indicated a good correlation between the relative abundance of nitrifying bacterial populations obtained using both HOPE and amplicon sequencing. HOPE showed a significant increase in the relative abundance of AOB, specifically Nitrosomonas, with increasing ammonium content and shock loading (p < 0.001). In contrast, Nitrosospira remained stable in its relative abundance against the total community throughout the operational phases. There was a corresponding significant decrease in the relative abundance of NOB, specifically Nitrospira and those affiliated to comammox, during the shock loading. Based on the relative abundance of AOB and NOB (including commamox) obtained from HOPE, it was determined that the optimal ratio of AOB against NOB ranged from 0.2 to 2.5 during stable reactor performance. Conclusions: Overall, the HOPE method was developed and validated against 16S rRNA gene-based amplicon sequencing for the purpose of performing simultaneous monitoring of relative abundance of nitrifying populations. Quantitative measurements of these nitrifying populations obtained via HOPE would be indicative of reactor performance and nitrification functionality.

  9. AMPLIFICATION OF AZOSPIRILLUM SP. JG3 GLPD GENE FRAGMENT USING DEGENERATE PRIMERS GENERATED BY WEB-BASED TOOLS

    Directory of Open Access Journals (Sweden)

    Stalis Norma Ethica

    2013-12-01

    Full Text Available Primaclade and In Silico web-based tools were used as a strategy to obtain the correct-size PCR amplicon targeting a fragment of gene encoding glycerol-3-phosphate dehydrogenase (glpD of Azospirillum sp. JG3. The bacterial strains are soil, Gram-negative PGPR (Plant-Growth Promoting Rhizobacteria isolated from an agricultural land in Purwokerto, Central Java, Indonesia, which have ability to produce several commercial enzymes. The aim is to obtain a pair of reliable degenerate primers from a limited number of glpD sequences from other Azospirilla retrieved in GenBank using bioinformatics approach. We demonstrated degenerate primer design that led to successful PCR amplification corresponding to the targeted DNA fragment. Homology analysis showed that the obtained DNA fragment is 61% and 99% similar to sn-glycerol-3-phosphate dehydrogenase genes of Azospirillum brasilense and Stenotrophomonas maltophili respectively.

  10. CODEHOP PCR and CODEHOP PCR primer design.

    Science.gov (United States)

    Staheli, Jeannette P; Boyce, Richard; Kovarik, Dina; Rose, Timothy M

    2011-01-01

    While PCR primer design for the amplification of known sequences is usually quite straightforward, the design, and successful application of primers aimed at the detection of as yet unknown genes is often not. The search for genes that are presumed to be distantly related to a known gene sequence, such as homologous genes in different species, paralogs in the same genome, or novel pathogens in diverse hosts, often turns into the proverbial search for the needle in the haystack. PCR-based methods commonly used to address this issue involve the use of either consensus primers or degenerate primers, both of which have significant shortcomings regarding sensitivity and specificity. We have developed a novel primer design approach that diminishes these shortcomings and instead takes advantage of the strengths of both consensus and degenerate primer designs, by combining the two concepts into a Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) approach. CODEHOP PCR primers contain a relatively short degenerate 3' core and a 5' nondegenerate clamp. The 3' degenerate core consists of a pool of primers containing all possible codons for a 3-4 aminoacid motif that is highly conserved in multiply aligned sequences from known members of a protein family. Each primer in the pool also contains a single 5' nondegenerate nucleotide sequence derived from a codon consensus across the aligned aminoacid sequences flanking the conserved motif. During the initial PCR amplification cycles, the degenerate core is responsible for specific binding to sequences encoding the conserved aminoacid motif. The longer consensus clamp region serves to stabilize the primer and allows the participation of all primers in the pool in the efficient amplification of products during later PCR cycles. We have developed an interactive web site and algorithm (iCODEHOP) for designing CODEHOP PCR primers from multiply aligned protein sequences, which is freely available online. Here, we describe the

  11. [Development of specific and degenerated primers to CesA genes encoding flax (Linum usitatissimum L.) cellulose synthase].

    Science.gov (United States)

    Grushetskaia, Z E; Lemesh, V A; Khotyleva, L V

    2010-01-01

    Cellulose synthase catalytic subunit genes, CesA, have been discovered in several higher plant species, and it has been shown that the CesA gene family has multiple members. HVR2 fragment of these genes determine the class specificity of the CESA protein and its participation in the primary or secondary cell wall synthesis. The aim of this study was development of specific and degenerated primers to flax CesA gene fragments leading to obtaining the class specific HVR2 region of the gene. Two pairs of specific primers to the certain fragments of CesA-1 and CesA-6 genes and one pair of degenerated primers to HVR2 region of all flax CesA genes were developed basing on comparison of six CesA EST sequences of flax and full cDNA sequences of Arabidopsis, poplar, maize and cotton plants, obtained from GenBank. After amplification of flax cDNA, the bands of expected size were detected (201 and 300 b.p. for the CesA-1 and CesA-6, and 600 b.p. for the HVR2 region of CesA respectively). The developed markers can be used for cloning and sequencing of flax CesA genes, identifying their number in flax genome, tissue and stage specificity.

  12. De-MetaST-BLAST: a tool for the validation of degenerate primer sets and data mining of publicly available metagenomes.

    Directory of Open Access Journals (Sweden)

    Christopher A Gulvik

    Full Text Available Development and use of primer sets to amplify nucleic acid sequences of interest is fundamental to studies spanning many life science disciplines. As such, the validation of primer sets is essential. Several computer programs have been created to aid in the initial selection of primer sequences that may or may not require multiple nucleotide combinations (i.e., degeneracies. Conversely, validation of primer specificity has remained largely unchanged for several decades, and there are currently few available programs that allows for an evaluation of primers containing degenerate nucleotide bases. To alleviate this gap, we developed the program De-MetaST that performs an in silico amplification using user defined nucleotide sequence dataset(s and primer sequences that may contain degenerate bases. The program returns an output file that contains the in silico amplicons. When De-MetaST is paired with NCBI's BLAST (De-MetaST-BLAST, the program also returns the top 10 nr NCBI database hits for each recovered in silico amplicon. While the original motivation for development of this search tool was degenerate primer validation using the wealth of nucleotide sequences available in environmental metagenome and metatranscriptome databases, this search tool has potential utility in many data mining applications.

  13. An experimentally validated panel of subfamily-specific oligonucleotide primers (V alpha 1-w29/V beta 1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction.

    Science.gov (United States)

    Genevée, C; Diu, A; Nierat, J; Caignard, A; Dietrich, P Y; Ferradini, L; Roman-Roman, S; Triebel, F; Hercend, T

    1992-05-01

    We report here the characterization of a series of T cell receptor (TcR) V alpha or V beta subfamily-specific oligonucleotide primers. Criteria that have guided the design of each oligonucleotide include appropriate thermodynamic parameters as well as differential base-pairing scores with related and unrelated target sequences. The specificity of the oligonucleotides for each V alpha or V beta subfamily was tested by polymerase chain reaction (PCR) on both a series of TcR encoding plasmid DNA and clonal T cell populations. Unexpected cross-reactivities were observed with plasmid cDNA sequences corresponding to unrelated subfamily gene segments. This led to the synthesis of additional series of oligonucleotides to obtain a relevant panel. A series of V alpha 1-w29/V beta 1-w24 TcR subfamily-specific oligonucleotides was eventually selected which generates little, if any, cross-reactivity. The use of C alpha or C beta primers for the amplification of internal positive control templates (i.e. C beta for the V alpha series and C alpha for the V beta series) has been tested in PCR performed with cDNA derived from peripheral blood lymphocytes; it was shown not to alter the amplification of the V subfamily-specific DNA fragments. This panel of oligonucleotides will be helpful in the study of TcRV gene segment usage and, thus, may lead to a better characterization of T cell responses in physiological and pathological situations.

  14. A Mutagenesis Assay for Reporter Gene Screening Using Partially Degenerate Oligonucleotides of the Tandems NNT and NNC

    Directory of Open Access Journals (Sweden)

    Huifen Xu

    2015-01-01

    Full Text Available Not all proteins are tolerable to mutations. Whether a specific protein can be a mutable target is of importance in the biotechnology and pharmaceutical industry. This study reported a novel mutagenesis assay using tandem NNT and NNC oligonucleotides to test the mutability of a candidate gene. These two tandem oligonucleotides avoid the risk of forming nonsense mutations and render flexibility of truncating or expanding the insertion size. As a reporter gene, ZeoR (zeocin resistance gene was confirmed to have a high tolerance for mutagenesis by this new assay.

  15. RT-PCR for detecting five distinct Tospovirus species using degenerate primers and dsRNA template.

    Science.gov (United States)

    Okuda, M; Hanada, K

    2001-08-01

    RT-PCR procedures for detection of multiple species of tospovirus from plant tissues were investigated. Downstream primers were designated from the 3' untranslated sequences of the S RNA. An upstream primer was designated from the degenerated sequences of the nucleocapsid protein. Approximately 450 bp DNA fragments were detected when Tomato spotted wilt virus (TSWV)- or Impatiens necrotic spot virus (INSV)- infected tissues were examined. Approximately 350 bp DNA fragments were detected when Watermelon silver mottle virus (WSMoV)- or Melon yellow spot virus (MYSV)-infected tissues were examined. Template RNA was extracted using CF 11 cellulose powder, and nonspecific amplification became unnoticeable when double-stranded RNA was used. The amplified fragments of WSMoV were differentiated from those of MYSV by AluI or TaqI digestion. The amplified fragments of TSWV were differentiated from those of INSV by DraI or HindIII digestion. An alstroemeria plant that was infected with an unidentified tospovirus was also examined, and a 350 bp fragment that was 97% identical to Iris yellow spot virus was detected. This method, therefore, detected at least five distinct Tospovirus species.

  16. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis

    Directory of Open Access Journals (Sweden)

    Lipkin Alexey

    2007-05-01

    Full Text Available Abstract Background the use of specific but partially degenerate primers for nucleic acid hybridisations and PCRs amplification of known or unknown gene families was first reported well over a decade ago and the technique has been used widely since then. Results here we report a novel and successful selection strategy for the design of hybrid partially degenerate primers for use with RT-PCR and RACE-PCR for the identification of unknown gene families. The technique (named PaBaLiS has proven very effective as it allowed us to identify and clone a large group of mRNAs encoding neurotoxin-like polypeptide pools from the venom of Agelena orientalis species of spider. Our approach differs radically from the generally accepted CODEHOP principle first reported in 1998. Most importantly, our method has proven very efficient by performing better than an independently generated high throughput EST cloning programme. Our method yielded nearly 130 non-identical sequences from Agelena orientalis, whilst the EST cloning technique yielded only 48 non-identical sequences from 2100 clones obtained from the same Agelena material. In addition to the primer design approach reported here, which is almost universally applicable to any PCR cloning application, our results also indicate that venom of Agelena orientalis spider contains a much larger family of related toxin-like sequences than previously thought. Conclusion with upwards of 100,000 species of spider thought to exist, and a propensity for producing diverse peptide pools, many more peptides of pharmacological importance await discovery. We envisage that some of these peptides and their recombinant derivatives will provide a new range of tools for neuroscience research and could also facilitate the development of a new generation of analgesic drugs and insecticides.

  17. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients.

    Science.gov (United States)

    Sata, Hiroshi; Shibayama, Hirohiko; Maeda, Ikuhiro; Habuchi, Yoko; Nakatani, Eiji; Fukushima, Kentaro; Fujita, Jiro; Ezoe, Sachiko; Tadokoro, Seiji; Maeda, Tetsuo; Mizuki, Masao; Kosugi, Satoru; Nakagawa, Masashi; Ueda, Shuji; Iida, Masato; Tokumine, Yukihiro; Azenishi, Yasuhiko; Mitsui, Hideki; Oritani, Kenji; Kanakura, Yuzuru

    2015-05-01

    Quantitative polymerase chain reaction (PCR) with patient-specific, allele-specific oligonucleotide (ASO) primers for individual immunoglobulin H VDJ region (ASO-PCR) amplification was performed using several sources of clinical material, including mRNA from peripheral blood cells (PBMNCs), whole bone marrow cells (BMMNCs), and the CD20+ CD38- B-cell population in bone marrow, as well as cell-free DNA from the sera of patients with multiple myeloma (MM). We designed the ASO primers and produced sufficient PCR fragments to evaluate tumor burden in 20 of 30 bone marrow samples at diagnosis. Polymerase chain reaction amplification efficiency depended on primer sequences because the production of ASO-PCR fragments did not correlate with serum M-protein levels. However, the ASO-PCR levels in BMMNCs showed statistically significant correlations with those in PBMNCs and CD20+ CD38- B-cells. The good association between the BMMNC and PBMNC data indicated that PBMNCs could be a suitable source for monitoring minimal residual disease (MRD). In the case of cell-free DNA, ASO-PCR levels showed a unique pattern and remained high even after treatment. Because the sequence information for each ASO-PCR product was identical to the original, the cell-free DNA might also be useful for evaluating MRD. Moreover, the ASO-PCR products were clearly detected in 17 of 22 mRNA samples from CD20+ CD38- populations, suggesting that MM clones might exist in relatively earlier stages of B cells than in plasma cells. Thus, ASO-PCR analysis using various clinical materials is useful for detecting MRD in MM patients as well as for clarifying MM pathogenesis. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  18. Real-time polymerase chain reaction for detection of encapsulated Haemophilus influenzae using degenerate primers to target the capsule transport gene bexA.

    Science.gov (United States)

    Law, Dennis K S; Tsang, Raymond S W

    2013-05-01

    A real-time polymerase chain reaction assay that uses degenerate primers and a dual-labelled probe was developed to detect the bexA gene of Haemophilus influenzae, including those belonging to non-b serotypes as well as clonal division II strains. This assay is sensitive and specific, detecting 20 copies of the gene, but negative with a variety of bacteria associated with meningitis and bacteremia or septicemia.

  19. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant-Associated Fungi.

    Science.gov (United States)

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-09-29

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3' end of the primer-binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant-associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant-associated fungi.

  20. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens.

    Directory of Open Access Journals (Sweden)

    Laura Audrey Hug

    2013-11-01

    Full Text Available Reductive dehalogenases are the critical enzymes for anaerobic organohalide respiration, a microbial metabolic process that has been harnessed for bioremediation efforts to resolve chlorinated solvent contamination in groundwater and is implicated in the global halogen cycle. Reductive dehalogenase sequence diversity is informative for the dechlorination potential of the site or enrichment culture. A suite of degenerate PCR primers targeting a comprehensive curated set of reductive dehalogenase genes was designed and applied to twelve DNA samples extracted from contaminated and pristine sites, as well as six enrichment cultures capable of reducing chlorinated compounds to non-toxic end-products. The amplified gene products from four environmental sites and two enrichment cultures were sequenced using Illumina HiSeq, and the reductive dehalogenase complement of each sample determined. The results indicate that the diversity of the reductive dehalogenase gene family is much deeper than is currently accounted for: one-third of the translated proteins have less than 70% pairwise amino acid identity to database sequences. Approximately 60% of the sequenced reductive dehalogenase genes were broadly distributed, being identified in four or more samples, and often in previously sequenced genomes as well. In contrast, 17% of the sequenced reductive dehalogenases were unique, present in only a single sample and bearing less than 90% pairwise amino acid identity to any previously identified proteins. Many of the broadly distributed reductive dehalogenases are uncharacterized in terms of their substrate specificity, making these intriguing targets for further biochemical experimentation. Finally, comparison of samples from a contaminated site and an enrichment culture derived from the same site eight years prior allowed examination of the effect of the enrichment process.

  1. 利用抑制性 PCR 提高兼并引物扩增效率及特异性%Enhance the Amplification Efficiency and Specificity of Degenerate Primers wi th Suppression PCR

    Institute of Scientific and Technical Information of China (English)

    朱晓静; 戴忠敏

    2015-01-01

    To enhance the specificity and efficiency of degenerate primer PCR , the design of degenerate primer was improved ,adaptor sequences were added to the degenerate primer to prolong it .And a DNA fragment of a novel polyketide synthase gene was obtained by this method ,which indicates that suppression PCR can be used to enhance the amplification efficiency and specificity of the degenerate primer .%为提高兼并引物PCR的特异性和扩增效率,改进了兼并引物的设计,在兼并引物上加入接头序列,使其延长,并利用该方法成功获得了一个新的聚酮类合成酶的基因片段,表明抑制性 PCR能够提高兼并引物扩增的效率及特异性。

  2. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes.

    Science.gov (United States)

    Bakal, Tomas; Goo, Kian-Sim; Najmanova, Lucie; Plhackova, Kamila; Kadlcik, Stanislav; Ulanova, Dana

    2015-11-01

    In the biosynthesis of diverse natural bioactive products the adenylation domains (ADs) of nonribosomal peptide synthetases select specific precursors from the cellular pool and activate them for further incorporation into the scaffold of the final compound. Therefore, the drug discovery programs employing PCR-based screening studies of microbial collections or metagenomic libraries often use AD-coding genes as markers of relevant biosynthetic gene clusters. However, due to significant sequence diversity of ADs, the conventional approach using only one primer pair in a single screening experiment could be insufficient for maximal coverage of AD abundance. In this study, the widely used primer pair A3F/A7R was compared with the newly designed aa194F/aa413R one by 454 pyrosequencing of two sets of actinomycete strains from highly dissimilar environments: subseafloor sediments and forest soil. Individually, none of the primer pairs was able to cover the overall diversity of ADs. However, due to slightly shifted specificity of the primer pairs, the total number and diversity of identified ADs were noticeably extended when both primer pairs were used in a single assay. Additionally, the efficiency of AD detection by different primer combinations was confirmed on the model of Salinispora tropica genomic DNA of known sequence.

  3. 简并寡核苷酸引物PCR技术的建立及其检测灵敏度分析%Degenerate Oligonucleotide Primed-PCR Technology Establishment and Its Sensitivity Test Analysis

    Institute of Scientific and Technical Information of China (English)

    邓建强; 刘宝琴; 蔡继峰; 李文慧; 龙仁; 侯一平

    2012-01-01

    目的 建立基于简并寡核苷酸引物PCR(degenerate oligonucleotide primed-PCR,DOP-PCR)的全基因组检测体系,并对其可靠性、灵敏度进行研究.方法 通过荧光标记STR复合扩增毛细管电泳检测系统,对DOP-PCR扩增产物进行检测,获得DOP-PCR检测体系的灵敏度、可靠性. 结果 成功建立了可靠的DOP-PCR检测体系,经过DOP-PCR预处理再进行STR分型检验,其检测灵敏度可达到5个细胞量(相当于30pg).结论 本研究建立的DOP-PCR技术可靠且可提高法医学微量检材的检测灵敏度.%Objective To establish a whole genome amplification testing system based on degenerate oligonu-cleotide primed-PCR(DOP-PCR) and to explore its reliability and sensitivity. Methods DOP-PCR amplified production was detected by fluorescent labeled multiplex STR amplification and capillary electrophore-sis detection system to determine reliability and sensitivity of DOP-PCR system. Results DOP-PCR system was successfully established and the detection sensitivity reached 5 cells (30pg) by pretreatment of DOP-PCR and then detection of STR genotyping. Conclusion The system established in this study is reliable and more testing sensitive for forensic trace evidence.

  4. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes.

    Science.gov (United States)

    Mori, Hiroshi; Maruyama, Fumito; Kato, Hiromi; Toyoda, Atsushi; Dozono, Ayumi; Ohtsubo, Yoshiyuki; Nagata, Yuji; Fujiyama, Asao; Tsuda, Masataka; Kurokawa, Ken

    2014-01-01

    The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.

  5. Cloning of hog1 gene fragment from Dunalilla salina using CODEHOP-designed degenerate primers%用CODEHOP设计简并引物克隆杜氏盐藻hog1基因片段

    Institute of Scientific and Technical Information of China (English)

    王传胜; 蒋彦

    2012-01-01

    根据NCBI上已经报道的hog1序列,利用简并引物在线设计工具CODEHOP设计出两对简并引物,通过巢式PCR扩增,得到一段大小为635 bp的基因片段,将其克隆到T载体上并测序,将测得的序列在NCBI的Blast搜索发现,其与已报道的其他一些物种的hog1基因有同源性.用CODEHOP程序化设计简并引物可信性强,阳性率高.该基因的成功克隆为研究杜氏盐藻的HOG信号途径奠定了基础.%According to the published sequence of hogl from NCBI database, we designed the degenerate primers of hogl using CODEHOP software. Using these degenerate primers, a partial hogl cDNA of 635bp was amplified from Dunalilla salina and cloned into T vector. Sequence analysis showed that the cloned hogl shares high sequence identity to those of hogl from other species. The results indicated that the degenerate primers designed by the CODEHOP could be used to amplify specific gene fragment. Clo ning of hogl gene fragment would be helpful to further characterize the HOG signaling pathway of Dunalilla salina.

  6. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation

    Directory of Open Access Journals (Sweden)

    Radulfus WN Slijkerman

    2016-01-01

    Full Text Available Usher syndrome (USH is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G was reported in 2012, leading to the insertion of a pseudoexon (PE40 into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.

  7. Comparison of Gene Amplification Effect under Three Methods of PCR Based on Degenerate Primers%基于兼并引物的 PCR 扩增特定基因的效果比较

    Institute of Scientific and Technical Information of China (English)

    李志强; 何德; 李翠新

    2015-01-01

    Three PCR methods(conventional PCR, touchdown PCR, nested PCR) were used to amplify the DNA topoisomeraseⅡfragments of Pleurotus ostreatus and P.eryngii var ferulae with degenerate prim-ers,which were designed with the gene sequences of DNA topoisomerase Ⅱfrom NCBI.Their PCR sensi-tivity and specificity were compared .The result showed that the sensitivity and specificity of nested PCR were highest , and its sensitivity was 100 fold higher than conventional PCR , which indicated that the nested PCR was more suitable for PCR amplification under degenerate primers .This study will have some guidance significance to obtain the specific gene through degenerate primers .%根据NCBI上的DNA拓扑异构酶Ⅱ基因序列设计兼并引物,采用常规PCR、降落PCR、巢式PCR三种方法扩增糙皮侧耳和阿魏侧耳的拓扑异构酶Ⅱ部分基因序列,比较三种方法扩增效果的特异性、灵敏度。结果表明,巢式PCR的灵敏度和特异性都优于常规PCR和降落PCR,并且巢式PCR的灵敏度是常规PCR灵敏度的100倍以上,更加适合兼并引物扩增。这对利用兼并引物获取特异基因具有指导意义。

  8. Assembly of Designed Oligonucleotides: a useful tool in synthetic biology for creating high-quality combinatorial DNA libraries.

    Science.gov (United States)

    Acevedo-Rocha, Carlos G; Reetz, Manfred T

    2014-01-01

    The method dubbed Assembly of Designed Oligonucleotides (ADO) is a powerful tool in synthetic biology to create combinatorial DNA libraries for gene, protein, metabolic, and genome engineering. In directed evolution of proteins, ADO benefits from using reduced amino acid alphabets for saturation mutagenesis and/or DNA shuffling, but all 20 canonical amino acids can be also used as building blocks. ADO is performed in a two-step reaction. The first involves a primer-free, polymerase cycling assembly or overlap extension PCR step using carefully designed overlapping oligonucleotides. The second step is a PCR amplification using the outer primers, resulting in a high-quality and bias-free double-stranded DNA library that can be assembled with other gene fragments and/or cloned into a suitable plasmid subsequently. The protocol can be performed in a few hours. In theory, neither the length of the DNA library nor the number of DNA changes has any limits. Furthermore, with the costs of synthetic DNA dropping every year, after an initial investment is made in the oligonucleotides, these can be exchanged for alternative ones with different sequences at any point in the process, fully exploiting the potential of creating highly diverse combinatorial libraries. In the example chosen here, we show the construction of a high-quality combinatorial ADO library targeting sixteen different codons simultaneously with nonredundant degenerate codons encoding various reduced alphabets of four amino acids along the heme region of the monooxygenase P450-BM3.

  9. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems.

    Science.gov (United States)

    Varizhuk, Anna M; Kaluzhny, Dmitry N; Novikov, Roman A; Chizhov, Alexandr O; Smirnov, Igor P; Chuvilin, Andrey N; Tatarinova, Olga N; Fisunov, Gleb Y; Pozmogova, Galina E; Florentiev, Vladimir L

    2013-06-21

    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.

  10. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  11. Mechanism of antisense oligonucleotide interaction with natural RNAs.

    Science.gov (United States)

    Serikov, R; Petyuk, V; Vorobijev, Y; Koval, V; Fedorova, O; Vlassov, V; Zenkova, M

    2011-08-01

    Oligonucleotides find several numbers of applications: as diagnostic probes, RT and PCR primers and antisense agents due to their ability of forming specific interactions with complementary nucleotide sequences within nucleic acids. These interactions are strongly affected by accessibility of the target sequence in the RNA structure. In the present work the mechanism of invasion of RNA structure by oligonucleotide was investigated using a model system: yeast tRNA(Phe) and oligonucleotides complementary to the 3'-part of this molecule. Kinetics of interaction of oligonucleotides with in vitro transcript of yeast tRNAPhe was studied using stopped-flow technique with fluorescence quenching detection, 5'-DABCYL labeled oligonucleotide was hybridized with 3'-fluorescein labeled tRNA(Phe). The results evidence for a four-step invasion process of the oligonucleotide-RNA complex formation. The process is initiated by formation of transition complexes with nucleotides in the T-loop and ACCA sequence. This complex formation is followed by RNA unfolding and formation of an extended heteroduplex with the oligonucleotide via strand displacement process. Computer modeling of oligonucleotide-tRNA(Phe) interaction revealed potential factors that could favor transition complexes formation and confirmed the proposed mechanism, showing the oligonucleotide to be a molecular "wedge". Our data evidence that oligonucleotide invasion into structured RNA is initiated by loop-single strand interactions, similar to the initial step of the antisense RNA-RNA interactions. The obtained results can be used for choosing efficient oligonucleotide probes.

  12. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  13. SBE primer : multiplexing minisequencing-based genotyping

    Energy Technology Data Exchange (ETDEWEB)

    Kaderali, L. (Lars); Deshpande, A. (Alina); Uribe-Romeo, F. J. (Francisco J.); Schliep, A.; Torney, D. C. (David C.)

    2002-01-01

    Single-nucleotide polymorphism (SNP) analysis is a powerful tool for mapping and diagnosing disease-related alleles. Most of the known genetic diseases are caused by point mutations, and a growing number of SNPs will be routinely analyzed to diagnose genetic disorders. Mutation analysis by polymerase mediated single-base primer extension (minisequencing) can be massively parallelized using for example DNA microchips or flow cytometry with microspheres as solid support. By adding a unique oligonucleotide tag to the 5-inch end of the minisequencing primer and attaching the complementary anti-tag to the array or bead surface, the assay can be 'demultiplexed'. However, such high-throughput scoring of SNPs requires a high level of primer multiplexing in order to analyze multiple loci in one assay, thus enabling inexpensive and fast polymorphism scoring. Primers can be chosen from either the plus or the minus strand, and primers used in the same experiment must not bind to one another. To genotype a given number of polymorphic sites, the question is which primer to use for each SNP, and which primers to group into the same experiment. Furthermore, a crosshybridization-free tag/anti-tag code is required in order to sort the extended primers to the corresponding microspheres or chip spots. These problems pose challenging algorithmic questions. We present a computer program lo automate the design process for the assay. Oligonucleotide primers for the reaction are automatically selected by the software, a unique DNA tag/anti-tag system is generated, and the pairing of primers and DNA-Tags is automatically done in a way to avoid any crossreactivity. We report first results on a 45-plex genotyping assay, indicating that minisequencing can be adapted to be a powerful tool for high-throughput, massively parallel genotyping.

  14. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Khassenov, Bekbolat; Ramankulov, Yerlan; Samuilova, Olga; Ivanov, Konstantin I

    2017-07-01

    Polymerase chain reaction (PCR) is one of the most important laboratory techniques used in molecular biology, genetics and molecular diagnostics. The success of a PCR-based method largely depends on the correct nucleic acid sequence analysis in silico prior to a wet-bench experiment. Here, we report the development of an online Java-based software for virtual PCR on linear or circular DNA templates and multiple primer or probe search from large or small databases. Primer or probe sensitivity and specificity are predicted by searching a database to find sequences with an optimal number of mismatches, similarity and stability. The software determines primer location, orientation, efficiency of binding and calculates primer melting temperatures for standard and degenerate oligonucleotides. The software is suitable for batch file processing, which is essential for automation when working with large amounts of data. The online Java software is available for download at http://primerdigital.com/tools/pcr.html. Accession numbers for the sequences resulting from this study: EU140956 EU177767 EU867815 EU882730 FJ975775-FJ975780 HM481419 HM481420 KC686837-KC686839 KM262797. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    Science.gov (United States)

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  16. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    Science.gov (United States)

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  17. The delivery of therapeutic oligonucleotides.

    Science.gov (United States)

    Juliano, Rudolph L

    2016-08-19

    The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology. © The Author 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Antisense oligonucleotides in cancer.

    Science.gov (United States)

    Castanotto, Daniela; Stein, Cy A

    2014-11-01

    Over the past several dozen years, regardless of the substantial effort directed toward developing rational oligonucleotide strategies to silence gene expression, antisense oligonucleotide-based cancer therapy has not been successful. This review focuses on the most likely reasons for this lack of success, and on the barriers that still need to be overcome to make a clinical cancer treatment reality out of the promise of antisense therapy. Considerable progress has been made in the design and delivery of nucleic acid fragments. Chemical modifications have considerably improved oligonucleotide absorption, distribution and metabolism while at the same time reducing toxicity. Nevertheless, the delivery and the cellular uptake of these molecules are still not adequate to provide the desired therapeutic outcome. Recent therapeutic interventional phase III trials of antisense oligodeoxyribonucleotides for a cancer indication will be discussed, in addition to those studies that markedly improve the scientific understanding of the properties of these molecules. We still do not have a marketed antisense oligonucleotide for a cancer indication. This is because critical aspects of the cellular, tumor pharmacology and delivery properties of these agents are still not well understood.

  19. RATMAC PRIMER

    Energy Technology Data Exchange (ETDEWEB)

    Munn, R. J.; Stewart, J. M.; Norden, A. P.; Pagoaga, M. Katherine

    1980-10-01

    The language RATMAC is a direct descendant of one of the most successful structured FORTRAN languages, rational FORTRAN, RATFOR. RATMAC has all of the characteristics of RATFOR, but is augmented by a powerful recursive macro processor which is extremely useful in generating transportable FORTRAN programs. A macro is a collection of programming steps which are associated with a keyword. This keyword uniquely identifies the macro, and whenever it appears in a RATMAC program it is replaced by the collection of steps. This primer covers the language's control and decision structures, macros, file inclusion, symbolic constants, and error messages.

  20. High-frequency Oligonucleotides in Watermelon Expressed Sequenced Tag-unigenes Are Useful in Producing Polymorphic Polymerase Chain Reaction Markers among Watermelon Genotypes

    Science.gov (United States)

    In this study, we report a simple procedure for developing gene targeted primers, named high-frequency gene sequence (HFGS) primers, based on oligonucleotides that exist in high frequency in watermelon expressed sequence tag (EST)-unigenes. These HFGS primers were constructed by first screening for...

  1. A novel catechol-based universal support for oligonucleotide synthesis.

    Science.gov (United States)

    Anderson, Keith M; Jaquinod, Laurent; Jensen, Michael A; Ngo, Nam; Davis, Ronald W

    2007-12-21

    A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.

  2. Oligonucleotides that Exist in High Frequency in EST-unigenes are Useful in Producing Polymorphism among Watermelon Genotypes

    Science.gov (United States)

    In this study, we report a simple procedure for developing and using a new type of polymerase chain reaction (PCR) primers, named ‘high frequency oligonucleotides - targeting active genes (HFO-TAG)’. The HFO-TAG primers are constructed by first using a “practical extraction and report language (Per...

  3. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    Science.gov (United States)

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye.

  4. Two generic PCR primer sets for the detection of members of the genus Torradovirus

    NARCIS (Netherlands)

    Verbeek, M.; Tang, J.; Ward, L.

    2012-01-01

    Two degenerate primer pairs were designed for the universal detection of members of the genus Torradovirus. Primer pair Torrado-1F/Torrado-1R was designed based on the RNA-dependent RNA polymerase region located in RNA1 and primer pair Torrado-2F/Torrado-2R based on a region overlapping the two firs

  5. Development of TRAP primers for Ricinus communis L.

    Science.gov (United States)

    Simões, K S; Silva, S A; Machado, E L; Brasileiro, H S

    2017-04-13

    The objective of this article was to develop TRAP (target region amplification polymorphism) primers for castor bean, with the goal of making functional markers available for genetic studies about the species. To do this, oligonucleotides were designed based on ESTs, obtained from the NCBI (National Center for Biotechnology Information) databank, which code enzymes involved in metabolic routes of fatty acid synthesis, ricin synthesis, and resistance to castor bean pathogens. The forward primers were designed with the help of the Primer3 software and, for the reverse, six arbitrary primers were used. To standardize the amplification reactions, the following criteria were used to select the primers: sizes between 18 and 20 bp, guanine/cytosine (GC) in the range of 40 to 60%, and average annealing temperature between 55° and 62°C. The design quality of the primers was verified using the Net Primer application. Fifty-six primers were designed, which had an average GC percentage of 53.2%. A total of 336 combinations were obtained using the 56 fixed and 6 arbitrary primers. Based on polymerase chain reaction, 330 combinations (89%) presented good amplification patterns for the genomic DNA of castor bean. The size of the fragments amplified varied between 50 and 2072 bp. The TRAP primers designed and validated in this study are the first for castor bean and represent a significant increase in the molecular markers for this species.

  6. Single-primer fluorescent sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, J.L.; Morgan, C.A.; Middendorf, L.R.; Grone, D.L.; Brumbaugh, J.A.

    1987-05-01

    Modified linker arm oligonucleotides complementary to standard M13 priming sites were synthesized, labelled with either one, two, or three fluoresceins, and purified by reverse-phase HPLC. When used as primers in standard dideoxy M13 sequencing with /sup 32/P-dNTPs, normal autoradiographic patterns were obtained. To eliminate the radioactivity, direct on-line fluorescence detection was achieved by the use of a scanning 10 mW Argon laser emitting 488 nm light. Fluorescent bands were detected directly in standard 0.2 or 0.35 mm thick polyacrylamide gels at a distance of 24 cm from the loading wells by a photomultiplier tube filtered at 520 nm. Horizontal and temporal location of each band was displayed by computer as a band in real time, providing visual appearance similar to normal 4-lane autoradiograms. Using a single primer labelled with two fluoresceins, sequences of between 500 and 600 bases have been read in a single loading with better than 98% accuracy; up to 400 bases can be read reproducibly with no errors. More than 50 sequences have been determined by this method. This approach requires only 1-2 ug of cloned template, and produces continuous sequence data at about one band per minute.

  7. Radiolabeled oligonucleotides for antisense imaging

    Science.gov (United States)

    Iyer, Arun K; He, Jiang

    2011-01-01

    Oligonucleotides radiolabeled with isotopes emitting γ-rays (for SPECT imaging) or positrons (for PET imaging) can be useful for targeting messenger RNA (mRNA) thereby serving as non-invasive imaging tools for detection of gene expression in vivo (antisense imaging). Radiolabeled oligonucleotides may also be used for monitoring their in vivo fate, thereby helping us better understand the barriers to its delivery for antisense targeting. These developments have led to a new area of molecular imaging and targeting, utilizing radiolabeled antisense oligonucleotides. However, the success of antisense imaging relies heavily on overcoming the barriers for its targeted delivery in vivo. Furthermore, the low ability of the radiolabeled antisense oligonucleotide to subsequently internalize into the cell and hybridize with its target mRNA poses additional challenges in realizing its potentials. This review covers the advances in the antisense imaging probe development for PET and SPECT, with an emphasis on radiolabeling strategies, stability, delivery and in vivo targeting. PMID:21822406

  8. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  9. GENOMEMASKER package for designing unique genomic PCR primers

    Directory of Open Access Journals (Sweden)

    Kaplinski Lauris

    2006-03-01

    Full Text Available Abstract Background The design of oligonucleotides and PCR primers for studying large genomes is complicated by the redundancy of sequences. The eukaryotic genomes are particularly difficult to study due to abundant repeats. The speed of most existing primer evaluation programs is not sufficient for large-scale experiments. Results In order to improve the efficiency and success rate of automatic primer/oligo design, we created a novel method which allows rapid masking of repeats in large sequence files, for example in eukaryotic genomes. It also allows the detection of all alternative binding sites of PCR primers and the prediction of PCR products. The new method was implemented in a collection of efficient programs, the GENOMEMASKER package. The performance of the programs was compared to other similar programs. We also modified the PRIMER3 program, to be able to design primers from lowercase-masked sequences. Conclusion The GENOMEMASKER package is able to mask the entire human genome for non-unique primers within 6 hours and find locations of all binding sites for 10 000 designed primer pairs within 10 minutes. Additionally, it predicts all alternative PCR products from large genomes for given primer pairs.

  10. MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling

    Directory of Open Access Journals (Sweden)

    Kitchen James L

    2012-11-01

    Full Text Available Abstract Background Next generation sequencing technologies often require numerous primer designs that require good target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR algorithm. Results After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively. Conclusions MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR outperformed the other primer-design programs in our study in terms of cost per covered base.

  11. MCMC-ODPR: primer design optimization using Markov Chain Monte Carlo sampling.

    Science.gov (United States)

    Kitchen, James L; Moore, Jonathan D; Palmer, Sarah A; Allaby, Robin G

    2012-11-05

    Next generation sequencing technologies often require numerous primer designs that require good target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm. After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively. MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR outperformed the other primer-design programs in our study in terms of cost per covered base.

  12. Use of self-quenched, fluorogenic LUX primers for gene expression profiling.

    Science.gov (United States)

    Kusser, Wolfgang

    2006-01-01

    Application of a real-time detection system based on a novel primer design in gene expression profiling is described. In this system, called LUX (Light Upon eXtension), the generation of signal is based on a single fluorescent dye molecule that is attached to an oligonucleotide close to the 3'-end. A primer design software is available that identifies LUX primer pairs based on a set of rules for optimum signal development. The use of LUX fluorogenic primers to determine the expression patterns of various transcripts during differentiation in the P-19 mouse neuronal model is described.

  13. nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays

    Directory of Open Access Journals (Sweden)

    Kibbe Warren A

    2007-05-01

    Full Text Available Abstract Background Oligonucleotide probes that are sequence identical may have different identifiers between manufacturers and even between different versions of the same company's microarray; and sometimes the same identifier is reused and represents a completely different oligonucleotide, resulting in ambiguity and potentially mis-identification of the genes hybridizing to that probe. Results We have devised a unique, non-degenerate encoding scheme that can be used as a universal representation to identify an oligonucleotide across manufacturers. We have named the encoded representation 'nuID', for nucleotide universal identifier. Inspired by the fact that the raw sequence of the oligonucleotide is the true definition of identity for a probe, the encoding algorithm uniquely and non-degenerately transforms the sequence itself into a compact identifier (a lossless compression. In addition, we added a redundancy check (checksum to validate the integrity of the identifier. These two steps, encoding plus checksum, result in an nuID, which is a unique, non-degenerate, permanent, robust and efficient representation of the probe sequence. For commercial applications that require the sequence identity to be confidential, we have an encryption schema for nuID. We demonstrate the utility of nuIDs for the annotation of Illumina microarrays, and we believe it has universal applicability as a source-independent naming convention for oligomers. Reviewers This article was reviewed by Itai Yanai, Rong Chen (nominated by Mark Gerstein, and Gregory Schuler (nominated by David Lipman.

  14. Sequence-specific "gene signatures" can be obtained by PCR with single specific primers at low stringency.

    OpenAIRE

    Pena, S D; Barreto, G.; Vago, A. R.; De Marco, L; Reinach,F. C.; Dias Neto, E; Simpson, A J

    1994-01-01

    Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites wi...

  15. Molecular Mechanisms of Antisense Oligonucleotides.

    Science.gov (United States)

    Crooke, Stanley T

    2017-04-01

    In 1987, when I became interested in the notion of antisense technology, I returned to my roots in RNA biochemistry and began work to understand how oligonucleotides behave in biological systems. Since 1989, my research has focused primarily on this topic, although I have been involved in most areas of research in antisense technology. I believe that the art of excellent science is to frame large important questions that are perhaps not immediately answerable with existing knowledge and methods, and then conceive a long-term (multiyear) research strategy that begins by answering the most pressing answerable questions on the path to the long-term goals. Then, a step-by-step research pathway that will address the strategic questions posed must be implemented, adjusting the plan as new things are learned. This is the approach we have taken at Ionis. Obviously, to create antisense technology, we have had to address a wide array of strategic questions, for example, the medicinal chemistry of oligonucleotides, manufacturing and analytical methods, pharmacokinetics and toxicology, as well as questions about the molecular pharmacology of antisense oligonucleotides (ASOs). Each of these endeavors has consumed nearly three decades of scientific effort, is still very much a work-in-progress, and has resulted in hundreds of publications. As a recipient of the Lifetime Achievement Award 2016 granted by the Oligonucleotide Therapeutic Society, in this note, my goal is to summarize the contributions of my group to the efforts to understand the molecular mechanisms of ASOs.

  16. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  17. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    Science.gov (United States)

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  18. DNA sequencing technology, walking with modular primers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, L.

    1996-12-31

    The success of the Human Genome Project depends on the development of adequate technology for rapid and inexpensive DNA sequencing, which will also benefit biomedical research in general. The authors are working on DNA technologies that eliminate primer synthesis, the main bottleneck in sequencing by primer walking. They have developed modular primers that are assembled from three 5-mer, 6-mer or 7-mer modules selected from a presynthesized library of as few as 1,000 oligonucleotides ({double_bond}4, {double_bond}5, {double_bond}7). The three modules anneal contiguously at the selected template site and prime there uniquely, even though each is not unique for the most part when used alone. This technique is expected to speed up primer walking 30 to 50 fold, and reduce the sequencing cost by a factor of 5 to 15. Time and expensive will be saved on primer synthesis itself and even more so due to closed-loop automation of primer walking, made possible by the instant availability of primers. Apart from saving time and cost, closed-loop automation would also minimize the errors and complications associated with human intervention between the walks. The author has also developed two additional approaches to primer-library based sequencing. One involves a branched structure of modular primers which has a distinctly different mechanism of achieving priming specificity. The other introduces the concept of ``Differential Extension with Nucleotide Subsets`` as an approach increasing priming specificity, priming strength and allowing cycle sequencing. These approaches are expected to be more robust than the original version of the modular primer technique.

  19. Sheath liquid effects in capillary high-performance liquid chromatography-electrospray mass spectrometry of oligonucleotides.

    Science.gov (United States)

    Huber, C G; Krajete, A

    2000-02-18

    Fused-silica capillary columns of 200 microm inner diameter were packed with micropellicular, octadecylated, 2.3 microm poly(styrene-divinylbenzene) particles and applied to the separation of oligonucleotides by ion-pair reversed-phase high-performance liquid chromatography. Oligonucleotides were eluted at 50 degrees C with gradients of 3-13% acetonitrile in 50 mM triethylammonium bicarbonate. Addition of sheath liquid to the column effluent allowed the detection of oligonucleotides by electrospray ionization mass spectrometry using full-scan data acquisition with a detectability comparable to that obtained with UV detection. The signal-to-noise ratios with different sheath liquids increased in the order isopropanololigonucleotides longer than 20 nucleotide units whereas no significant effect was observed with shorter oligonucleotides. Organic acids and bases in the sheath liquid generally deteriorated the signal-to-noise ratios in the chromatograms and mass spectra mainly because of increased background noise. Only a few charge states were observed in the mass spectra of oligonucleotides because of charge state reduction due to the presence of carbonic acid in the eluent. With triethylammonium hydrogencarbonate as chromatographic eluent and acetonitrile as sheath liquid, very few cation adducts of oligonucleotides were observed in the mass spectra. However, the presence of small amounts of monopotassium adducts enabled the calculation of the charge state of multiply charged ions. With acetonitrile as sheath liquid, 710 amol of a 16-mer oligonucleotide were detected using selected ion monitoring data acquisition with a signal-to-noise ratio of 3:1. Finally, capillary ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was

  20. [Hepatolenticular degeneration].

    Science.gov (United States)

    Zudenigo, D; Relja, M

    1990-01-01

    Hepatolenticular degeneration (Wilson's disease) is a hereditary disease in which metabolic disorder of copper leads to its accumulation in the liver, brain, cornea and kidneys with consequent pathologic changes in those organs. Hereditary mechanism of the disease is autosomal recessive with prevalence of 30-100 per 1,000,000 inhabitants. Etiology of this disease is not yet explained. There are two hypotheses. The first one is that it is the disorder of ceruloplasmine metabolism caused by insufficient synthesis of normal ceruloplasmine, or synthesis of functionally abnormal ceruloplasmine. The second one is: the block of copper biliar excretion which is the consequence of the liver lysosomes functional defect. Pathogenetic mechanism of disease is firstly long-term accumulation of copper in the liver, and later, when the liver depo is full, its releasing in circulation and accumulation in the brain, cornea, kidneys and bones, which causes adequate pathologic changes. Toxic activity of copper is the consequence of its activity on enzymes, particularly on those with -SH group. There are two basic clinical forms of the disease: liver disease or neurologic disease. Before puberty the liver damage is more frequent, while in adolescents and young adults neurologic form of the disease is usual. The liver disease is nonspecific and characterized by symptoms of cirrhosis and chronic aggressive hepatitis. The only specificity is hemolytic anemia which, in combination with previous symptoms, is important for diagnosis of the disease. Neurologic symptoms are the most frequent consequence of pathologic changes in the basal ganglia. In our patients the most frequent symptoms were tremor (63%); dysarthria, choreoathetosis and rigor (38%); ataxia and mental disorders (31%); dysphagia and dystonia (12%), diplopia, hypersalivation, nystagmus and Babinski's sign (6%). Among pathologic changes in other tissues and organs the most important is the finding of Kayser-Fleischer ring in the

  1. Cloning of Thymidine Kinase Gene of Duck Plague Virus Using Degenerate PCR

    Institute of Scientific and Technical Information of China (English)

    HAN Xian-jie; WANG Jun-wei

    2005-01-01

    The DNA of duck plague virus (DPV) thymidine kinase (TK) gene was cloned and sequenced from a vaccine virus in the study. Degenerate oligonucleotide primers for the consensus site of herpesvirus UL24, TK, and glycoprotein H(gH) gene were used in the polymerase chain reaction (PCR) to amplify DNA product with 3 741-base-pairs (bp) in size. DNA sequence analysis revealed a 1 077-base-pairs (bp) open reading frame (ORF) encoding a 358 amino acid polypeptide homologous to herpesvirus TK proteins. The predicted TK protein shared 31.2, 41.3, 35.7, 37.4, and 28.4% identity with herpes simplex virus typel, equine herpesvirus type 4, Marek's disease virus 2, herpesvirus turkey, and infectious laryngotracheitis virus, respectively. Comparison of the amino acid sequences of other herpesvirus TK proteins showed that these proteins were not conserved on the whole, otherwise the portion of the TK proteins corresponding to the nucleotide binding domain and the nucleoside binding site were highly conserved among herpesvirus. Comparison with the amino acid sequences of the conserved nucleotide and nucleoside binding domains of other eleven herpesvirus TK proteins to the predicted DPV peptide confirmed its identity as the DPV TK protein.

  2. Chemoselective Coupling Preserves the Substrate Integrity of Surface-Immobilized Oligonucleotides for Emulsion PCR-Based Gene Library Construction.

    Science.gov (United States)

    Malone, Marie L; Cavett, Valerie J; Paegel, Brian M

    2017-01-09

    Combinatorial bead libraries figure prominently in next-generation sequencing and are also important tools for in vitro evolution. The most common methodology for generating such bead libraries, emulsion PCR (emPCR), enzymatically extends bead-immobilized oligonucleotide PCR primers in emulsion droplets containing a single progenitor library member. Primers are almost always immobilized on beads via noncovalent biotin-streptavidin binding. Here, we describe covalent bead functionalization with primers (∼10(6) primers/2.8-μm-diameter bead) via either azide-alkyne click chemistry or Michael addition. The primers are viable polymerase substrates (4-7% bead-immobilized enzymatic extension product yield from one thermal cycle). Carbodiimide-activated carboxylic acid beads only react with oligonucleotides under conditions that promote nonspecific interactions (low salt, low pH, no detergent), comparably immobilizing primers on beads, but yielding no detectable enzymatic extension product. Click-functionalized beads perform satisfactorily in emPCR of a site-saturation mutagenesis library, generating monoclonal templated beads (10(4)-10(5) copies/bead, 1.4-kb amplicons). This simpler, chemical approach to primer immobilization may spur more economical library preparation for high-throughput sequencing and enable more complex surface elaboration for in vitro evolution.

  3. Wet Macular Degeneration

    Science.gov (United States)

    ... macular degeneration Overview By Mayo Clinic Staff Wet macular degeneration is a chronic eye disease that causes blurred vision or a blind spot in your visual field. It's generally caused by abnormal blood vessels that leak fluid or blood into ... macular degeneration is one of two types of age-related ...

  4. Detection of epidermal growth factor receptor gene mutation in non-small cell lung cancer by allelespecific oligonucleotide-PCR and bi-loop probe specific primer quantitative PCR%等位基因特异性寡核苷酸和双环探针特异引物荧光聚合酶链反应检测非小细胞肺癌表皮生长因子受体基因突变

    Institute of Scientific and Technical Information of China (English)

    邓磊; 李甘地; 卢铀; 唐源; 林静; 陆小军; 薛建新; 王立帅; 周麟; 邹艳; 应斌武

    2012-01-01

    Objective To compare the detection sensitivity of epidermal growth factor receptor (EGFR) mutations between allele specific oligonucleotide PCR(ASO-PCR) and bi-loop probe and specific primer quantitative PCR (BPSP-qPCR).Methods A total of 96 non-small cell lung cancer specimens were selected from West China Hospital from September 2009 to December 2010.ASO-PCR was developed to detect the presence of classical EGFR mutations.A total 39 available specimens were also tested by BPSP- qPCR.Results EGFR mutation detection rate was 30.2% (26/96) by ASO-PCR.The mutation rate was higher in female than in male patients[45.5% (20/44) vs.17.3% (9/52),P =0.003],non-smokers than smokers[ 44.1% (26/59) vs.8.1% (3/37),P < 0.001 ] and adenocarcinomas than other subtypes of lung cancer [ 37.0% ( 27/73 ) vs.8.7% (2/23),P =0.01 ].Among mutation negative cases by ASO-PCR,BPSP-qPCR increased the rate of detection of 19-del and L858R mutation by 10.3% (4/39) inadenocarcinomas and non-smoking subset.Overall,the mutation detection rate of BPSP-qPCR was higher than that of ASO-PCR [66.7% (26/39) vs.41.0% (16/39),P=0.02].Conclusion BPSP-qPCR has a better detection sensitivity than that of ASO-PCR.%目的 分析比较等位基因特异性寡核苷酸聚合酶链反应( ASO -PCR)和双环探针特异引物荧光PCR (BPSP-qPCR)的表皮生长因子受体(EGFR)基因突变检测敏感性.方法 收集2009年9月至2010年12月在四川大学华西医院病理科留存非小细胞肺癌标本96例,行ASO-PCR检测EGFR突变,其中39例再行BPSP-qPCR检测.结果 ASO-PCR测得突变率为30.2% (29/96).其中女性高于男性[45.5% (20/44)比17.3% (9/52),P=0.003],不吸烟者高于吸烟者[44.1% (26/59)比8.1% (3/37),P<0.001],腺癌高于非腺癌[37.0% (27/73)比8.7% (2/23),P=0.01].ASO-PCR检测阴性标本中,具有腺癌和不吸烟特征,BPSP-qPCR检测19-del和L.858R阳性的检出率可提高10.3% (4/39),BPSP-qPCR检

  5. Comparative assessment of 5' A/T-rich overhang sequences with optimal and sub-optimal primers to increase PCR yields and sensitivity.

    Science.gov (United States)

    Arif, M; Ochoa-Corona, F M

    2013-09-01

    Efficient PCR amplifications require precisely designed and optimized oligonucleotide primers, components, and cycling conditions. Despite recent software development and reaction improvement, primer design can still be enhanced. The aims of this research are to understand (1) the effect on PCR efficiency and DNA yields of primer thermodynamics parameters, and (2) the incorporation of 5' A/T-rich overhanging sequences (flaps) during primer design. Two primer sets, one optimal (ΔG = 0) and one sub-optimal (ΔG = 0.9), were designed using web interface software Primer3, BLASTn, and mFold to target a movement protein gene of Tobacco mosaic virus. The optimal primer set amplifies a product of 195 bp and supports higher PCR sensitivity and yields compared to the sub-optimal primer set, which amplifies a product of 192 bp. Greater fluorescence was obtained using optimal primers compared to that with sub-optimal primers. Primers designed with sub-optimal thermodynamics can be substantially improved by adding 5' flaps. Results indicate that even if the performance of some primers can be improved substantially by 5' flap addition, not all primers will be similarly improved. Optimal 5' flap sequences are dependent on the primer sequences, and alter the primer's T m value. The manipulation of this feature may enhance primer's efficiency to increase the PCR sensitivity and DNA yield.

  6. A sensitive method to detect the hepatitis B virus mutations by using solid phase PCR on oligonucleotide array

    Institute of Scientific and Technical Information of China (English)

    YAN QIN LU; JIN XIANG HAN; ZHONG LIN SHEN; CHUAN XI WANG

    2006-01-01

    A sensitive method based on solid phase PCR on oligonucleotide array was established to detect two point mutations 1896G-A and 1901G-A in hepatitis B virus (HBV) DNA, in which 6 probes including these two point mutations were immobilized on modified glass slides through 5' terminal linker,while the 3' terminal was made to be free. The mutated loci were designed to locate on the last nucleotides of 3' terminal respectively, and the positive control probes lacked the last nucleotide of 3' terminal in comparison with the probes used for detection. Probes fixed on oligonucleotide array were also the solid phase amplification primers. One pair of liquid primers was used to amplify the short template product from whole HBV DNA. Using target DNA as template, the solid primers were extended under the action of Taq DNA polymerase and incorporated with Cy-3dCTP as marker. During the thermal cycling reaction,probes served as solid phase amplification primers and amplification products bound to the oligonucleotide array, which could be visualized by incorporation with fluorescent dyes. After amplification, the oligonucleotide array was washed, performed with laser scanning, and then used for quantitative analysis to obtain the information for mutations. The hybridization results were compared with DNA sequencing. It was demonstrated that in case of sample A, the ratios of fluorescence intensities in wide type and in the muin these two loci. These results correlated to those obtained from DNA sequencing analysis in which the fluorescence intensity ratios in wide type and in the mutated types of 1996G-A and 1901D-A mutations in using solid phase PCR based on oligonucleotide array appears to be a sensitive and promising way to detect mutations with low-density.

  7. China Energy Primer

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  8. Simultaneous detection and subtyping of porcine endogenous retroviruses proviral DNA using the dual priming oligonucleotide system.

    Science.gov (United States)

    Moon, Hyoung Joon; Park, Seong Jun; Kim, Hye Kwon; Ann, Soo Kyung; Rho, Semi; Keum, Hyun Ok; Park, Bong Kyun

    2010-09-01

    The purpose of this study was to develop a multiplex PCR that can detect porcine endogenous retrovirus (PERV) proviral genes (pol, envA, envB, envC) and porcine mitochondrial DNA, using a dual priming oligonucleotide (DPO) system. The primer specifically detected the PERV proviral genes pol, envA, envB, envC, and porcine mitochondrial DNA only in samples of pig origin. The sensitivity of the primer was demonstrated by simultaneous amplification of all 5 target genes in as little as 10 pg of pig DNA containing PERV proviral genes and mitochondrial DNA. The multiplex PCR, when applied to field samples, simultaneously and successfully amplified PERV proviral genes from liver, blood and hair root samples. Thus, the multiplex PCR developed in the current study using DPO-based primers is a rapid, sensitive and specific assay for the detection and subtyping of PERV proviral genes.

  9. An SAT® Validity Primer

    Science.gov (United States)

    Shaw, Emily J.

    2015-01-01

    This primer should provide the reader with a deeper understanding of the concept of test validity and will present the recent available validity evidence on the relationship between SAT® scores and important college outcomes. In addition, the content examined on the SAT will be discussed as well as the fundamental attention paid to the fairness of…

  10. PriFi - Using a Multiple Alignment of Related Sequences to Find Primers for  Amplification of Homologs

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Schauser, Leif; Madsen, Lene Heegaard

    2005-01-01

    phylogenetically related species and outputs a list of possibly degenerate primer pairs fulfilling a number of criteria, such that the primers have a maximal probability of amplifying orthologous sequences in other phylogenetically related species. Operating on a genome-wide scale, PriFi automates the first steps...

  11. Adaptive resolution simulation of oligonucleotides

    Science.gov (United States)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  12. The Chemistry and Biology of Oligonucleotide Conjugates

    Science.gov (United States)

    Juliano, R.L.; Ming, Xin; Nakagawa, Osamu

    2012-01-01

    CONSPECTUS Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing they can interact with messenger mRNA or pre-mRNA targets with high selectivity and thus offer the possibility of precise manipulation of gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, with many candidates already in clinical trials. However, a major impediment to the maturation of oligonucleotide-based therapeutics is the fact that these relatively large and usually highly charged molecules have great difficulty crossing cellular membranes and thus in penetrating to their sites of action in the cytosol or nucleus. In this Account we first summarize some basic aspects of the biology of antisense and siRNA oligonucleotides and then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Our emphasis will be on the pharmacological ramifications of oligonucleotide conjugates rather than the details of conjugation chemistry. One important approach has been conjugation with ligands designed to bind to particular receptors and thus provide specificity to the interaction of cells with oligonucleotides. Another approach has been to couple antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Both of these approaches have enjoyed some success. However, there remains much to be learned before oligonucleotide conjugates can find an important place in human therapeutics. PMID:22353142

  13. EasyExonPrimer: automated primer design for exon sequences.

    Science.gov (United States)

    Wu, Xiaolin; Munroe, David J

    2006-01-01

    EasyExonPrimer is a web-based software that automates the design of PCR primers to amplify exon sequences from genomic DNA. EasyExonPrimer is written in Perl and uses Primer3 to design PCR primers based on the genome builds and annotation databases available at the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). It masks repeats and known single nucleotide polymorphism (SNP) sites in the genome and designs standardised primers using optimised conditions. Users can input genes by RefSeq mRNA ID, gene name or keyword. The primer design is optimised for large-scale resequencing of exons. For exons larger than 1 kb, the user has the option of breaking the exon sequence down into overlapping smaller fragments. All primer pairs are then verified using the In-Silico PCR software to test for uniqueness in the genome. We have designed >1000 pairs of primers for 90 genes; 95% of the primer pairs successfully amplified exon sequences under standard PCR conditions without requiring further optimisation. EasyExonPrimer is available from http://129.43.22.27/~primer/. The source code is also available upon request. Xiaolin Wu (forestwu@mail.nih.gov).

  14. Universal primers that amplify RNA from all three flavivirus subgroups

    Directory of Open Access Journals (Sweden)

    Barnard Ross T

    2008-01-01

    Full Text Available Abstract Background Species within the Flavivirus genus pose public health problems around the world. Increasing cases of Dengue and Japanese encephalitis virus in Asia, frequent outbreaks of Yellow fever virus in Africa and South America, and the ongoing spread of West Nile virus throughout the Americas, show the geographical burden of flavivirus diseases. Flavivirus infections are often indistinct from and confused with other febrile illnesses. Here we review the specificity of published primers, and describe a new universal primer pair that can detect a wide range of flaviviruses, including viruses from each of the recognised subgroups. Results Bioinformatic analysis of 257 published full-length Flavivirus genomes revealed conserved regions not previously targeted by primers. Two degenerate primers, Flav100F and Flav200R were designed from these regions and used to generate an 800 base pair cDNA product. The region amplified encoded part of the methyltransferase and most of the RNA-dependent-RNA-polymerase (NS5 coding sequence. One-step RT-PCR testing was successful using standard conditions with RNA from over 60 different flavivirus strains representing about 50 species. The cDNA from each virus isolate was sequenced then used in phylogenetic analyses and database searches to confirm the identity of the template RNA. Conclusion Comprehensive testing has revealed the broad specificity of these primers. We briefly discuss the advantages and uses of these universal primers.

  15. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    Directory of Open Access Journals (Sweden)

    Yusuf E Murgha

    Full Text Available Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  16. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    Science.gov (United States)

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  17. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  18. Lead Free Electric Primer

    Science.gov (United States)

    2011-10-06

    comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...D-1 4 ACRONYMS AB Acetylene Black ADN Ammonium dinitramide Al Aluminum ATK...electrical conductivity of the MIC material used in the primer mix significantly changed over a relatively short interval of time. The initiation of MIC

  19. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  20. Degenerate Euler zeta function

    OpenAIRE

    Kim, Taekyun

    2015-01-01

    Recently, T. Kim considered Euler zeta function which interpolates Euler polynomials at negative integer (see [3]). In this paper, we study degenerate Euler zeta function which is holomorphic function on complex s-plane associated with degenerate Euler polynomials at negative integers.

  1. Injection site reactions after subcutaneous oligonucleotide therapy

    NARCIS (Netherlands)

    van Meer, L. (Leonie); M. Moerland (Matthijs); Gallagher, J. (Jolie); M.B.A. van Doorn (Martijn); E.P. Prens (Errol); A.F. Cohen; Rissmann, R. (Robert); J. Burggraaf (Jacobus)

    2016-01-01

    textabstractOligonucleotides (ONs) are short fragments of nucleic acids, currently being investigated as therapeutic agents. When administered subcutaneously (sc), ONs cause a specific local reaction originating around the injection site, such as erythema, itching, discomfort and pain, including

  2. Computer selection of oligonucleotide probes from amino acid sequences for use in gene library screening.

    Science.gov (United States)

    Yang, J H; Ye, J H; Wallace, D C

    1984-01-11

    We present a computer program, FINPROBE, which utilizes known amino acid sequence data to deduce minimum redundancy oligonucleotide probes for use in screening cDNA or genomic libraries or in primer extension. The user enters the amino acid sequence of interest, the desired probe length, the number of probes sought, and the constraints on oligonucleotide synthesis. The computer generates a table of possible probes listed in increasing order of redundancy and provides the location of each probe in the protein and mRNA coding sequence. Activation of a next function provides the amino acid and mRNA sequences of each probe of interest as well as the complementary sequence and the minimum dissociation temperature of the probe. A final routine prints out the amino acid sequence of the protein in parallel with the mRNA sequence listing all possible codons for each amino acid.

  3. Detecting Lesch-Nyhan syndrome by solid phase primer extension

    Energy Technology Data Exchange (ETDEWEB)

    Shumaker, J.M.; Caskey, C.T. [Baylor College of Medicine, Houston, TX (United States); Metspalu, A.

    1994-09-01

    A mutation detection method based upon the wild type human HPRT sequence is presented for identification of Lesch Nyhan syndrome. The technique consists of performing a biotinlyated PCR amplification of the region of interest, followed by isolation and purification of single stranded template using magnetic separation. Allele-specific primers are annealed adjacent to the potential mutation site on the template. A terminal fluorescent deoxynucleotide addition is performed with a DNA template-dependent polymerase to distinguish between the mutant and wild-type sequence. The products are purified from unincorporated ddNTPs, eluted and finally analyzed on an ABI 373 to identify the mutation. The length of an extension primer is used as a position signature for mutations. The fidelity of nucleotide incorporation provides an excellent signal-to-noise ratio for the detection of nine HPRT mutations within eight cell lines. This method should detect all types of mutations except for repeated sequences that are longer than the primers. Moreover, the method is being extended to a solid support assay, whereby the extension primers are attached to a two-dimensional glass surface. Following extension, the solid support is analyzed for radioactive incorporation. We have shown the sequence determination of a five base region of a wild-type sequence and two different HPRT mutations. As more dense oligonucleotide arrays are produced, this method could be extended to sequence the complete coding region of HPRT.

  4. Abridged adapter primers increase the target scope of Hi-Plex.

    Science.gov (United States)

    Nguyen-Dumont, Tú; Hammet, Fleur; Mahmoodi, Maryam; Pope, Bernard J; Giles, Graham G; Hopper, John L; Southey, Melissa C; Park, Daniel J

    2015-01-01

    Previously, we reported Hi-Plex, an amplicon-based method for targeted massively parallel sequencing capable of generating 60 amplicons simultaneously. In further experiments, however, we found our approach did not scale to higher amplicon numbers. Here, we report a modification to the original Hi-Plex protocol that includes the use of abridged adapter oligonucleotides as universal primers (bridge primers) in the initial PCR mixture. Full-length adapter primers (indexing primers) are included only during latter stages of thermal cycling with concomitant application of elevated annealing temperatures. Using this approach, we demonstrate the application of Hi-Plex across a broad range of amplicon numbers (16-plex, 62-plex, 250-plex, and 1003-plex) while preserving the low amount (25 ng) of input DNA required.

  5. Math primer for engineers

    CERN Document Server

    Cryer, CW

    2014-01-01

    Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formula

  6. The R primer

    CERN Document Server

    Ekstrom, Claus Thorn

    2011-01-01

    Newcomers to R are often intimidated by the command-line interface, the vast number of functions and packages, or the processes of importing data and performing a simple statistical analysis. The R Primer provides a collection of concise examples and solutions to R problems frequently encountered by new users of this statistical software.Rather than explore the many options available for every command as well as the ever-increasing number of packages, the book focuses on the basics of data preparation and analysis and gives examples that can be used as a starting point. The numerous examples i

  7. El primer virreinato americano

    Directory of Open Access Journals (Sweden)

    Cassá, Roberto

    2006-12-01

    Full Text Available This article explores the government of viceroy Christopher Columbus in the American territories. We return to the first Spanish settlement in Santo Domingo and the contradictions inherent to this expansionist proyect. The contradictions were part of the logic of the absolutist state and Columbus’ reaction against the controls imposed by the monarchs. Secondly, we look into the dificulties that the Admiral encountered to develop a mercantilist model. In this context, we examine the rationale behind the first government of the Indies and the features that defined the new West Indian society.

    El artículo trata sobre el gobierno de Cristóbal Colón en tierras americanas. Retomamos el tema del primer emplazamiento español en Santo Domingo y las contradicciones que tuvo aquel proyecto debido a la lógica del estado absolutista, a la ambición desmedida del descubridor y a su reacción ante los controles que desde un principio impusieron los monarcas. En un segundo momento analizamos las dificultades que encontró el Almirante para desarrollar un modelo mercantilista acorde a sus ideas y a los acuerdos a que llegó con la Corona. En ese contexto analizamos la lógica del primer gobierno colombinista en las Indias y los rasgos que definieron la nueva sociedad antillana.

  8. Short G-rich oligonucleotides as a potential therapeutic for Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Parekh-Olmedo Hetal

    2006-10-01

    Full Text Available Abstract Background Huntington's Disease (HD is an inherited autosomal dominant genetic disorder in which neuronal tissue degenerates. The pathogenesis of the disease appears to center on the development of protein aggregates that arise initially from the misfolding of the mutant HD protein. Mutant huntingtin (Htt is produced by HD genes that contain an increased number of glutamine codons within the first exon and this expansion leads to the production of a protein that misfolds. Recent studies suggest that mutant Htt can nucleate protein aggregation and interfere with a multitude of normal cellular functions. Results As such, efforts to find a therapy for HD have focused on agents that disrupt or block the mutant Htt aggregation pathway. Here, we report that short guanosine monotonic oligonucleotides capable of adopting a G-quartet structure, are effective inhibitors of aggregation. By utilizing a biochemical/immunoblotting assay as an initial screen, we identified a 20-mer, all G-oligonucleotide (HDG as an active molecule. Subsequent testing in a cell-based assay revealed that HDG was an effective inhibitor of aggregation of a fusion protein, comprised of a mutant Htt fragment and green fluorescent protein (eGFP. Taken together, our results suggest that a monotonic G-oligonucleotide, capable of adopting a G-quartet conformation is an effective inhibitor of aggregation. This oligonucleotide can also enable cell survival in PC12 cells overexpressing a mutant Htt fragment fusion gene. Conclusion Single-stranded DNA oligonucleotides capable of forming stable G-quartets can inhibit aggregation of the mutant Htt fragment protein. This activity maybe an important part of the pathogenecity of Huntington's Disease. Our results reveal a new class of agents that could be developed as a therapeutic approach for Huntington's Disease.

  9. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Directory of Open Access Journals (Sweden)

    Yasumasa Kimura

    Full Text Available Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  10. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Science.gov (United States)

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  11. An oligonucleotide hybridization approach to DNA sequencing.

    Science.gov (United States)

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  12. Noncontinuously binding loop-out primers for avoiding problematic DNA sequences in PCR and sanger sequencing.

    Science.gov (United States)

    Sumner, Kelli; Swensen, Jeffrey J; Procter, Melinda; Jama, Mohamed; Wooderchak-Donahue, Whitney; Lewis, Tracey; Fong, Michael; Hubley, Lindsey; Schwarz, Monica; Ha, Youna; Paul, Eleri; Brulotte, Benjamin; Lyon, Elaine; Bayrak-Toydemir, Pinar; Mao, Rong; Pont-Kingdon, Genevieve; Best, D Hunter

    2014-09-01

    We present a method in which noncontinuously binding (loop-out) primers are used to exclude regions of DNA that typically interfere with PCR amplification and/or analysis by Sanger sequencing. Several scenarios were tested using this design principle, including M13-tagged PCR primers, non-M13-tagged PCR primers, and sequencing primers. With this technique, a single oligonucleotide is designed in two segments that flank, but do not include, a short region of problematic DNA sequence. During PCR amplification or sequencing, the problematic region is looped-out from the primer binding site, where it does not interfere with the reaction. Using this method, we successfully excluded regions of up to 46 nucleotides. Loop-out primers were longer than traditional primers (27 to 40 nucleotides) and had higher melting temperatures. This method allows the use of a standardized PCR protocol throughout an assay, keeps the number of PCRs to a minimum, reduces the chance for laboratory error, and, above all, does not interrupt the clinical laboratory workflow.

  13. Neuraminidase subtyping of avian influenza viruses with PrimerHunter-designed primers and quadruplicate primer pools.

    Science.gov (United States)

    Huang, Yanyan; Khan, Mazhar I; Khan, Mazhar; Măndoiu, Ion; Măndoiu, Ion I

    2013-01-01

    We have previously developed a software package called PrimerHunter to design primers for PCR-based virus subtyping. In this study, 9 pairs of primers were designed with PrimerHunter and successfully used to differentiate the 9 neuraminidase (NA) genes of avian influenza viruses (AIVs) in multiple PCR-based assays. Furthermore, primer pools were designed and successfully used to decrease the number of reactions needed for NA subtyping from 9 to 4. The quadruplicate primer-pool method is cost-saving, and was shown to be suitable for the NA subtyping of both cultured AIVs and uncultured AIV swab samples. The primers selected for this study showed excellent sensitivity and specificity in NA subtyping by RT-PCR, SYBR green-based Real-time PCR and Real-time RT-PCR methods. AIV RNA of 2 to 200 copies (varied by NA subtypes) could be detected by these reactions. No unspecific amplification was displayed when detecting RNAs of other avian infectious viruses such as Infectious bronchitis virus, Infectious bursal disease virus and Newcastle disease virus. In summary, this study introduced several sensitive and specific PCR-based assays for NA subtyping of AIVs and also validated again the effectiveness of the PrimerHunter tool for the design of subtyping primers.

  14. Explanatory chapter: PCR primer design.

    Science.gov (United States)

    Álvarez-Fernández, Rubén

    2013-01-01

    This chapter is intended as a guide on polymerase chain reaction (PCR) primer design (for information on PCR, see General PCR and Explanatory Chapter: Troubleshooting PCR). In the next section, general guidelines will be provided, followed by a discussion on primer design for specific applications. A list of recommended software tools is shown at the end. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Degenerate Density Perturbation Theory

    CERN Document Server

    Palenik, Mark C

    2016-01-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of $N_d$ degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X$\\alpha$ exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first through third-order energies as a function of $\\alpha$, with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  16. Degenerate density perturbation theory

    Science.gov (United States)

    Palenik, Mark C.; Dunlap, Brett I.

    2016-09-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  17. Kinetic Hairpin Oligonucleotide Blockers for Selective Amplification of Rare Mutations

    Science.gov (United States)

    Jia, Yanwei; Sanchez, J. Aquiles; Wangh, Lawrence J.

    2014-01-01

    Detection of rare mutant alleles in an excess of wild type alleles is increasingly important in cancer diagnosis. Several methods for selective amplification of a mutant allele via the polymerase chain reaction (PCR) have been reported, but each of these methods has its own limitations. A common problem is that Taq DNA polymerase errors early during amplification generate false positive mutations which also accumulate exponentially. In this paper, we described a novel method using hairpin oligonucleotide blockers that can selectively inhibit the amplification of wild type DNA during LATE-PCR amplification. LATE-PCR generates double-stranded DNA exponentially followed by linear amplification of single-stranded DNA. The efficiency of the blocker is optimized by adjusting the LATE-PCR temperature cycling profile. We also demonstrate that it is possible to minimize false positive signals caused by Taq DNA polymerase errors by using a mismatched excess primer plus a modified PCR profile to preferentially enrich for mutant target sequences prior to the start of the exponential phase of LATE-PCR amplification. In combination these procedures permit amplification of specific KRAS mutations in the presence of more than 10,000 fold excess of wild type DNA without false positive signals. PMID:25082368

  18. Vortices as degenerate metrics

    CERN Document Server

    Baptista, J M

    2012-01-01

    We note that the Bogomolny equation for abelian vortices is precisely the condition for invariance of the Hermitian-Einstein equation under a degenerate conformal transformation. This leads to a natural interpretation of vortices as degenerate hermitian metrics that satisfy a certain curvature equation. Using this viewpoint, we rephrase standard results about vortices and make some new observations. We note the existence of a conceptually simple, non-linear rule for superposing vortex solutions, and we describe the natural behaviour of the L^2-metric on the moduli space upon certain restrictions.

  19. Methidium intercalator inserted into synthetic oligonucleotides.

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, E. N.; Smirnov, I. P.; Haff, L. A.; Tishchenko, E. I.; Mirzabekov, A. D.; Florentiev, V. L.; Center for Mechanistic Biology and Biotechnology; Engelhardt Inst. of Molecular Biology; PerSeptive BioSystems Inc.

    1996-01-01

    A new methidium intercalator phosphoramidite has been synthesized. Methidium incorporation into an oligonucleotide during the synthesis was confirmed by UV and MALDI TOF MS data. UV melting experiments showed enhanced stability of a duplex, containing internal methidium. Methidium phosphoramidite has been synthesized and used for insertion of intercalator into the deoxyoligonucleotides.

  20. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.

  1. Chemosensitization by antisense oligonucleotides targeting MDM2.

    Science.gov (United States)

    Bianco, Roberto; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-02-01

    The MDM2 oncogene is overexpressed in many human cancers, including sarcomas, certain hematologic malignancies, and breast, colon and prostate cancers. The p53-MDM2 interaction pathway has been suggested as a novel target for cancer therapy. To that end, several strategies have been explored, including the use of small polypeptides targeted to the MDM2-p53 binding domain, anti-MDM2 antisense oligonucleotides, and natural agents. Different generations of anti-human-MDM2 oligonucleotides have been tested in in vitro and in vivo human cancer models, revealing specific inhibition of MDM2 expression and significant antitumor activity. Use of antisense oligos potentiated the effects of growth inhibition, p53 activation and p21 induction by several chemotherapeutic agents. Increased therapeutic effectiveness of chemotherapeutic drugs in human cancer cell lines carrying p53 mutations or deletions have shown the ability of MDM2 inhibitors to act as chemosensitizers in various types of tumors through both p53-dependent and p53-independent mechanisms. Inhibiting MDM2 appears to also have a role in radiation therapy for human cancer, regardless of p53 status, providing a rationale for the development of a new class of radiosensitizers. Moreover, MDM2 antisense oligonucleotides potentiate the effect of epidermal growth factor receptor (EGFR) inhibitors by affecting in vitro and in vivo proliferation, apoptosis and protein expression in hormone-refractory and hormone-dependent human prostate cancer cells. These data support the development, among other MDM2 inhibitors, of anti-MDM2 antisense oligonucleotides as a novel class of anticancer agents, and suggest a potentially relevant role for the oligonucleotides when integrated with conventional treatments and/or other signaling inhibitors in novel therapeutic strategies.

  2. Kraepelin and degeneration theory.

    Science.gov (United States)

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  3. X-82 to Treat Age-related Macular Degeneration

    Science.gov (United States)

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  4. BatchPrimer3: a high throughput web application for PCR and sequencing primer design.

    Science.gov (United States)

    You, Frank M; Huo, Naxin; Gu, Yong Qiang; Luo, Ming-Cheng; Ma, Yaqin; Hane, Dave; Lazo, Gerard R; Dvorak, Jan; Anderson, Olin D

    2008-05-29

    Microsatellite (simple sequence repeat - SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories. BatchPrimer3 is a

  5. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets.

    Science.gov (United States)

    Brodin, Johanna; Krishnamoorthy, Mohan; Athreya, Gayathri; Fischer, Will; Hraber, Peter; Gleasner, Cheryl; Green, Lance; Korber, Bette; Leitner, Thomas

    2013-08-21

    Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples.

  6. Design Considerations for Array CGH to OligonucleotideArrays

    Energy Technology Data Exchange (ETDEWEB)

    Baldocchi, R.A.; Glynne, R.J.; Chin, K.; Kowbel, D.; Collins, C.; Mack, D.H.; Gray, J.W.

    2005-03-04

    Background: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. Methods: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. Results: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. Conclusion: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.

  7. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata.

    Science.gov (United States)

    Hoareau, T B; Boissin, E

    2010-11-01

    Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.

  8. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  9. Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.

    Science.gov (United States)

    Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2011-11-04

    A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antisense oligonucleotides in therapy for neurodegenerative disorders.

    Science.gov (United States)

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2015-06-29

    Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation. Copyright © 2015. Published by Elsevier B.V.

  11. Application of Locked Nucleic Acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures.

    Science.gov (United States)

    Ikenaga, Makoto; Sakai, Masao

    2014-09-17

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide-PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3' end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide-PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.

  12. Laenderyggens degeneration og radiologi

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig

    2006-01-01

    Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...

  13. Quantum degenerate systems

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)

    2012-10-15

    A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.

  14. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection

    Science.gov (United States)

    Tsao, Shih-Ming; Lai, Ji-Ching; Horng, Horng-Er; Liu, Tu-Chen; Hong, Chin-Yih

    2017-04-01

    Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5‧ and 3‧ termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.

  15. Electrochemical study of hepta–oligonucleotides

    Directory of Open Access Journals (Sweden)

    Zdenka Balcarova

    2010-12-01

    Full Text Available The study deals with the description and characterization of twohepta–oligonucleotides (DNA and RNA forming special structures.We studied their electrochemical behaviour by means of cyclicvoltammetry (CV and elimination voltammetry with linear scan(EVLS in combination with adsorptive stripping (AdS technique.Differences in electrochemical behaviour of hepta–deoxyribonucleotide and its RNA analog were discussed with regardto their different structures in solutions and their melting points.

  16. Abundant oligonucleotides common to most bacteria.

    Directory of Open Access Journals (Sweden)

    Colin F Davenport

    Full Text Available BACKGROUND: Bacteria show a bias in their genomic oligonucleotide composition far beyond that dictated by G+C content. Patterns of over- and underrepresented oligonucleotides carry a phylogenetic signal and are thus diagnostic for individual species. Patterns of short oligomers have been investigated by multiple groups in large numbers of bacteria genomes. However, global distributions of the most highly overrepresented mid-sized oligomers have not been assessed across all prokaryotes to date. We surveyed overrepresented mid-length oligomers across all prokaryotes and normalised for base composition and embedded oligomers using zero and second order Markov models. PRINCIPAL FINDINGS: Here we report a presumably ancient set of oligomers conserved and overrepresented in nearly all branches of prokaryotic life, including Archaea. These oligomers are either adenine rich homopurines with one to three guanine nucleosides, or homopyridimines with one to four cytosine nucleosides. They do not show a consistent preference for coding or non-coding regions or aggregate in any coding frame, implying a role in DNA structure and as polypeptide binding sites. Structural parameters indicate these oligonucleotides to be an extreme and rigid form of B-DNA prone to forming triple stranded helices under common physiological conditions. Moreover, the narrow minor grooves of these structures are recognised by DNA binding and nucleoid associated proteins such as HU. CONCLUSION: Homopurine and homopyrimidine oligomers exhibit distinct and unusual structural features and are present at high copy number in nearly all prokaryotic lineages. This fact suggests a non-neutral role of these oligonucleotides for bacterial genome organization that has been maintained throughout evolution.

  17. Synthesis and hybridization properties of inverse oligonucleotides.

    OpenAIRE

    Marangoni, M.; Van Aerschot, Arthur; Augustijns, Patrick; Rozenski, Jef; Herdewijn , Piet

    1997-01-01

    The synthesis of adenine and thymine cyclopentylethyl nucleosides is presented. This novel constrained monomeric building block is very difficult to incorporate into oligonucleotides. It was introduced in 13mer oligodeoxynucleotide sequences at a single position using H-phosphonate chemistry. Phosphoramidite chemistry completely failed in this particular case. The H-phosphonate building blocks were obtained starting from the corresponding phosphoramidites. Stability of duplexes with RNA and D...

  18. Cataracts and macular degeneration.

    Science.gov (United States)

    Shoch, D

    1979-09-01

    The intraocular lens restores general vision and some degree of independence and mobility to patients with dense cataracts and macular degeneration. The patient, however, must be repeatedly warned that fine central vision, particularly reading, will not be possible after the surgery. An aphakic spectacle leaves such patients a narrow band of vision when superimposed over the macular lesion, and contact lenses are too small for the patient to manage insertion without help.

  19. A Tandem Oligonucleotide Approach for SNP-Selective RNA Degradation Using Modified Antisense Oligonucleotides.

    Science.gov (United States)

    Magner, Dorota; Biala, Ewa; Lisowiec-Wachnicka, Jolanta; Kierzek, Elzbieta; Kierzek, Ryszard

    2015-01-01

    Antisense oligonucleotides have been studied for many years as a tool for gene silencing. One of the most difficult cases of selective RNA silencing involves the alleles of single nucleotide polymorphisms, in which the allele sequence is differentiated by a single nucleotide. A new approach to improve the performance of allele selectivity for antisense oligonucleotides is proposed. It is based on the simultaneous application of two oligonucleotides. One is complementary to the mutated form of the targeted RNA and is able to activate RNase H to cleave the RNA. The other oligonucleotide, which is complementary to the wild type allele of the targeted RNA, is able to inhibit RNase H cleavage. Five types of SNPs, C/G, G/C, G/A, A/G, and C/U, were analyzed within the sequence context of genes associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, ALS (Amyotrophic Lateral Sclerosis), and Machado-Joseph disease. For most analyzed cases, the application of the tandem approach increased allele-selective RNA degradation 1.5-15 fold relative to the use of a single antisense oligonucleotide. The presented study proves that differentiation between single substitution is highly dependent on the nature of the SNP and surrounding nucleotides. These variables are crucial for determining the proper length of the inhibitor antisense oligonucleotide. In the tandem approach, the comparison of thermodynamic stability of the favorable duplexes WT RNA-inhibitor and Mut RNA-gapmer with the other possible duplexes allows for the evaluation of chances for the allele-selective degradation of RNA. A larger difference in thermodynamic stability between favorable duplexes and those that could possibly form, usually results in the better allele selectivity of RNA degradation.

  20. Geometric phases for non-degenerate and degenerate mixed states

    CERN Document Server

    Singh, K; Basu, K; Chen, J L; Du Jiang Feng

    2003-01-01

    This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-abelian character, we provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the non-degenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit examples of the geometric phases for both the non-degenerate as well as degenerate mixed states.

  1. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation.

    Directory of Open Access Journals (Sweden)

    Andrea Fuso

    Full Text Available Discordant results obtained in bisulfite assays using MethPrimers (PCR primers designed using MethPrimer software or assuming that non-CpGs cytosines are non methylated versus primers insensitive to cytosine methylation lead us to hypothesize a technical bias. We therefore used the two kinds of primers to study different experimental models and methylation statuses. We demonstrated that MethPrimers negatively select hypermethylated DNA sequences in the PCR step of the bisulfite assay, resulting in CpG methylation underestimation and non-CpG methylation masking, failing to evidence differential methylation statuses. We also describe the characteristics of "Methylation-Insensitive Primers" (MIPs, having degenerated bases (G/A to cope with the uncertain C/U conversion. As CpG and non-CpG DNA methylation patterns are largely variable depending on the species, developmental stage, tissue and cell type, a variable extent of the bias is expected. The more the methylome is methylated, the greater is the extent of the bias, with a prevalent effect of non-CpG methylation. These findings suggest a revision of several DNA methylation patterns so far documented and also point out the necessity of applying unbiased analyses to the increasing number of epigenomic studies.

  2. Template-Directed Ligation of Peptides to Oligonucleotides

    Science.gov (United States)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  3. 基于DPO引物的多重PCR在检测单增李斯特菌中的应用%Multiplex PCR for Detection of Listeria monocytogenes with DPO Primers

    Institute of Scientific and Technical Information of China (English)

    刘纯真; 王云龙; 景建洲

    2011-01-01

    Dual priming oligonucleotide(DPO) primers of three genes, hly, prfA and iap, of Listeria monocytogenes were applied for the detection of L. Monocytogenes by multiplex polymerase chain reaction (PCR), and compared with 3 pairs of regular primers. The results showed that DPO primers had high specificity compared with conventional PCR primers, could detect L. Monocytogenes accurately and quickly.%根据单增李斯特菌(Listeria monocytogenes)的hly、prfA和iap基因设计了3对常规引物和DPO(Dual priming oligonucleotide)引物,采用多重PCR的方法,建立了单增李斯特菌的快速检测体系,并比较了常规引物和DPO引物的优劣,结果表明DPO引物的特异性强,能够快速准确地检测单增李斯特菌.

  4. Vygotsky on Education Primer. Peter Lang Primer. Volume 30

    Science.gov (United States)

    Lake, Robert

    2012-01-01

    The "Vygotsky on Education Primer" serves as an introduction to the life and work of the Russian psychologist Lev Vygotsky. Even though he died almost eighty years ago, his life's work remains both relevant and significant to the field of education today. This book examines Vygotsky's emphasis on the role of cultural and historical context in…

  5. Vygotsky on Education Primer. Peter Lang Primer. Volume 30

    Science.gov (United States)

    Lake, Robert

    2012-01-01

    The "Vygotsky on Education Primer" serves as an introduction to the life and work of the Russian psychologist Lev Vygotsky. Even though he died almost eighty years ago, his life's work remains both relevant and significant to the field of education today. This book examines Vygotsky's emphasis on the role of cultural and historical context in…

  6. Guanine-tethered antisense oligonucleotides as synthetic riboregulators.

    Science.gov (United States)

    Hagihara, Masaki

    2014-01-01

    Regulation of gene expression by short oligonucleotides (antisense oligonucleotides), which can modulate RNA structures and inhibit subsequent associations with the translation machinery, is a potential approach for gene therapy. This chapter describes an alternative antisense strategy using guanine-tethered antisense oligonucleotides (G-ASs) to introduce a DNA-RNA heteroquadruplex structure at a designated sequence on RNA targets. The feasibility of using G-ASs to modulate RNA conformation may allow control of RNA function by inducing biologically important quadruplex structures. This approach to manipulate quadruplex structures using G-ASs may expand the strategies for regulating RNA structures and the functions of short oligonucleotide riboregulators.

  7. Lipid Oligonucleotide Conjugates as Responsive Material

    Science.gov (United States)

    2012-09-28

    U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Amphiphiles, oligonucleotides, lipids...peer-reviewed journals: (c) Presentations 1. Philippe Barthélémy, « Hybrid Lipids for Biomedical Applications », Targeting and Triggering Basic Research ...Steadel C. ; Pierre, N. ; Barthélémy, P. : Oligonucléotides amphiphile : Journée Scientifique de l’IFR 66, Talence, le 2 décembre 2008, France 29. Taib

  8. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland…

  9. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  10. A Hearing Aid Primer 1

    Science.gov (United States)

    Yetter, Carol J.

    2009-01-01

    This hearing aid primer is designed to define the differences among the three levels of hearing instrument technology: conventional analog circuit technology (most basic), digitally programmable/analog circuit technology (moderately advanced), and fully digital technology (most advanced). Both moderate and advanced technologies mean that hearing…

  11. Alternative Teacher Compensation: A Primer

    Science.gov (United States)

    Koppich, Julia E.; Rigby, Jessica

    2009-01-01

    This policy primer is designed to provide base-line information about new forms of teacher pay that are emerging around the country, to support the local conversations and negotiations that will lead to the development of innovative compensation systems. It identifies reasons why teacher compensation is high on local, state, and federal policy…

  12. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  13. DNA Extraction and Primer Selection

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    Talk regarding pitfalls in DNA extraction and 16S amplicon primer choice when performing community analysis of complex microbial communities. The talk was a part of Workshop 2 "Principles, Potential, and Limitations of Novel Molecular Methods in Water Engineering; from Amplicon Sequencing to -omics...

  14. Nano-topographic evaluation of highly disordered fractal-like structures of immobilized oligonucleotides using AFM

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, P.D. [BioNanoEngineering Laboratory, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic. 4122 (Australia)]. E-mail: psawant@swin.edu.au; Nicolau, D.V. [BioNanoEngineering Laboratory, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic. 4122 (Australia)

    2006-07-25

    In a recent trend of micro- and nano-array technologies, polymers are gaining preference over traditional substrates such as glass, silicates, etc. as a model biosurface to immobilize biomolecules. In present paper, we compared model polymeric surfaces such as cyclo olefin copolymer (COC) and polycarbonate (PC), with traditional surfaces such as silicone-wafer and mica. We used a 2D fractal dimension method, i.e. the perimeter-area relationship (PAR) to study the immobilization of 26 base pair oligonucleotide primer on surfaces which are imaged by AFM. Results revealed that the efficiency of the vertical immobilization is in the following order: COC > PC > mica > Si-wafer which can be contributed to chemical and nano-topographical heterogeneity. This study is useful for in-depth understanding of fundamental issues such as effects of manufacturing parameters and evaluation of surface nanotopographies for the development of high-density biochips.

  15. Antisense Oligonucleotide Therapy in Diabetic Retinopathy

    Science.gov (United States)

    Hnik, Peter; Boyer, David S.; Grillone, Lisa R.; Clement, John G.; Henry, Scott P.; Green, Ellen A.

    2009-01-01

    Diabetic retinopathy is one of the leading causes of blindness in the United States and other parts of the world. Historically, laser photocoagulation and vitrectomy surgery have been used for the treatment of diabetic retinopathy, including diabetic macular edema. Both procedures have proven to be useful under certain conditions but have their limitations. New pathways and processes that promote diabetic retinopathy have been identified, and several new therapeutic approaches are under investigation. These new therapies may be beneficial in the treatment of diabetic retinopathy and include antivascular endothelial growth factor agents, corticosteroids, and therapies that may potentially target a number of additional diabetic retinopathy-related factors and processes, including antisense oligonucleotides. Second-generation antisense oligonucleotides, such as iCo-007, may offer a significant advantage in the treatment of diabetic retinopathy by downregulating the signal pathways of multiple growth factors that seem to play a critical role in the process of ocular angiogenesis and vascular leakage. Benefits of such molecules are expected to include the specificity of the kinase target and an extended half-life, resulting in less frequent intravitreal drug administration, resistance to molecule degradation, and a good safety profile. PMID:20144342

  16. Template switching between PNA and RNA oligonucleotides

    Science.gov (United States)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  17. An imputation approach for oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However, many CEL images may be blemished by noises from various sources, observed as "bright spots", "dark clouds", and "shadowy circles", etc. It is crucial that these image defects are correctly identified and properly processed. Existing approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based approach which does not require any biological replicate or between-array normalization. We further examine its performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is freely available upon request.

  18. An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization.

    Science.gov (United States)

    Cai, W W; Reneker, J; Chow, C W; Vaishnav, M; Bradley, A

    1998-12-15

    Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an "overgo" computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes.

  19. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, Niklas

    2011-01-01

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  20. Double Degenerate Stars

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-Lian; BAI Hua; ZHAO Lei

    2008-01-01

    Regardless of the formation mechanism, an exotic object, the double degenerate star (DDS), is introduced and investigated, which is composed of baryonic matter and some unknown fermion dark matter. Different from the simple white dwarfs (WDs), there is additional gravitational force provided by the unknown fermion component inside DDSs, which may strongly affect the structure and the stability of such kind of objects. Many possible and strange observational phenomena connecting with them are concisely discussed. Similar to the normal WD, this object can also experience thermonuclear explosion as type Ia supernova explosion when DDS's mass exceeds the maximum mass that can be supported by electron degeneracy pressure. However, since the total mass of baryonic matter can be much lower than that of WD at Chandrasekhar mass limit, the peak luminosity should be much dimmer than what we expect before, which may throw a slight shadow on the standard candle of SN Ia in the research of cosmology.

  1. Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Wernersson, Rasmus; Knudsen, Steen

    2003-01-01

    Optimal design of oligonucleotides for microarrays involves tedious and laborious work evaluating potential oligonucleotides relative to a series of parameters. The currently available tools for this purpose are limited in their flexibility and do not present the oligonucleotide designer with an ......Optimal design of oligonucleotides for microarrays involves tedious and laborious work evaluating potential oligonucleotides relative to a series of parameters. The currently available tools for this purpose are limited in their flexibility and do not present the oligonucleotide designer...

  2. Oligonucleotides Containing Aminated 2′-Amino-LNA Nucleotides

    DEFF Research Database (Denmark)

    Lou, Chenguang; Samuelsen, Simone V.; Christensen, Niels Johan

    2017-01-01

    Mono- and diaminated 2′-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested...... that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2′-amino-LNA monomers and the host oligonucleotide backbone....

  3. Voltage-gated calcium channel and antisense oligonucleotides thereto

    Science.gov (United States)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  4. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides.

    Science.gov (United States)

    Geary, Richard S; Norris, Daniel; Yu, Rosie; Bennett, C Frank

    2015-06-29

    Pharmacokinetic properties of oligonucleotides are largely driven by chemistry of the backbone and thus are sequence independent within a chemical class. Tissue bioavailability (% of administered dose) is assisted by plasma protein binding that limits glomerular filtration and ultimate urinary excretion of oligonucleotides. The substitution of one non-bridging oxygen with the more hydrophobic sulfur atom (phosphorothioate) increases both plasma stability and plasma protein binding and thus, ultimately, tissue bioavailability. Additional modifications of the sugar at the 2' position, increase RNA binding affinity and significantly increase potency, tissue half-life and prolong RNA inhibitory activity. Oligonucleotides modified in this manner consistently exhibit the highest tissue bioavailability (>90%). Systemic biodistribution is broad, and organs typically with highest concentrations are liver and kidney followed by bone marrow, adipocytes, and lymph nodes. Cell uptake is predominantly mediated by endocytosis. Both size and charge for most oligonucleotides prevents distribution across the blood brain barrier. However, modified single-strand oligonucleotides administered by intrathecal injection into the CSF distribute broadly in the CNS. The majority of intracellular oligonucleotide distribution following systemic or local administration occurs rapidly in just a few hours following administration and is facilitated by rapid endocytotic uptake mechanisms. Further understanding of the intracellular trafficking of oligonucleotides may provide further enhancements in design and ultimate potency of antisense oligonucleotides in the future. Copyright © 2015. Published by Elsevier B.V.

  5. Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides.

    Science.gov (United States)

    Latorre, Alfonso; Lorca, Romina; Zamora, Félix; Somoza, Álvaro

    2013-05-28

    DNA stabilized silver nanoclusters (AgNCs) are promising optical materials, whose fluorescence properties can be tuned by the selection of the DNA sequence employed. In this work we have used modified oligonucleotides in the preparation of AgNCs. The fluorescent intensity obtained was 60 times higher than that achieved with standard oligonucleotides.

  6. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    Science.gov (United States)

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  7. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    Science.gov (United States)

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  8. Facts about Age-Related Macular Degeneration

    Science.gov (United States)

    ... Degeneration (AMD) > Facts About Age-Related Macular Degeneration Facts About Age-Related Macular Degeneration This information was ... an Eye Care Professional Last Reviewed: September 2015 Fact Sheet Blurb The National Eye Institute (NEI) is ...

  9. El primer congreso constituyente mexicano

    OpenAIRE

    José Luis Soberanes Fernández

    2012-01-01

    En el presente trabajo se describe uno de los momentos más difíciles de la historia constitucional de México, por no decir el más difícil, que va desde la Consumación de la Independencia Nacional del 27 de septiembre de 1821 al 30 de noviembre de 1823 en que clausuró sus sesiones el Primer Congreso Constituyente. Fue cuando se erigió el Imperio de Iturbide y su ocaso, en consecuencia triunfó la república y se planteó seriamente el federalismo. Se eligió ese primer constituyente, se clausuró, ...

  10. Environmental Acceptable Medium Caliber Ammunition Percussion Primers

    Science.gov (United States)

    2008-05-01

    percussion primers typically consist of lead styphnate and antimony sulfide. Although highly effective, these heavy material compounds were identified under...Percussion primers, including those used in medium caliber ammunition, typically contain lead styphnate and antimony sulfide along with other constituents...Furthermore, current percussion primer compositions also contain barium nitrate. Although not negatively categorized by the Environmental Protection

  11. Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags.

    Science.gov (United States)

    Litovchick, Alexander; Clark, Matthew A; Keefe, Anthony D

    2014-01-01

    The affinity-mediated selection of large libraries of DNA-encoded small molecules is increasingly being used to initiate drug discovery programs. We present universal methods for the encoding of such libraries using the chemical ligation of oligonucleotides. These methods may be used to record the chemical history of individual library members during combinatorial synthesis processes. We demonstrate three different chemical ligation methods as examples of information recording processes (writing) for such libraries and two different cDNA-generation methods as examples of information retrieval processes (reading) from such libraries. The example writing methods include uncatalyzed and Cu(I)-catalyzed alkyne-azide cycloadditions and a novel photochemical thymidine-psoralen cycloaddition. The first reading method "relay primer-dependent bypass" utilizes a relay primer that hybridizes across a chemical ligation junction embedded in a fixed-sequence and is extended at its 3'-terminus prior to ligation to adjacent oligonucleotides. The second reading method "repeat-dependent bypass" utilizes chemical ligation junctions that are flanked by repeated sequences. The upstream repeat is copied prior to a rearrangement event during which the 3'-terminus of the cDNA hybridizes to the downstream repeat and polymerization continues. In principle these reading methods may be used with any ligation chemistry and offer universal strategies for the encoding (writing) and interpretation (reading) of DNA-encoded chemical libraries.

  12. Cellular uptake and trafficking of antisense oligonucleotides.

    Science.gov (United States)

    Crooke, Stanley T; Wang, Shiyu; Vickers, Timothy A; Shen, Wen; Liang, Xue-Hai

    2017-03-01

    Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.

  13. Conjugation of fluorescent proteins with DNA oligonucleotides.

    Science.gov (United States)

    Lapiene, Vidmantas; Kukolka, Florian; Kiko, Kathrin; Arndt, Andreas; Niemeyer, Christof M

    2010-05-19

    This work describes the synthesis of covalent ssDNA conjugates of six fluorescent proteins, ECFP, EGFP, E(2)GFP, mDsRed, Dronpa, and mCherry, which were cloned with an accessible C-terminal cystein residue to enable site-selective coupling using a heterobispecific cross-linker. The resulting conjugates revealed similar fluorescence emission intensity to the unconjugated proteins, and the functionality of the tethered oligonucleotide was proven by specific Watson-Crick base pairing to cDNA-modified gold nanoparticles. Fluorescence spectroscopy analysis indicated that the fluorescence of the FP is quenched by the gold particle, and the extent of quenching varied with the intrinsic spectroscopic properties of FP as well as with the configuration of surface attachment. Since this study demonstrates that biological fluorophores can be selectively incorporated into and optically coupled with nanoparticle-based devices, applications in DNA-based nanofabrication can be foreseen.

  14. Direct oligonucleotide-photosensitizer conjugates for photochemical delivery of antisense oligonucleotides.

    Science.gov (United States)

    Yuan, Ahu; Laing, Brian; Hu, Yiqiao; Ming, Xin

    2015-04-18

    Activation of photosensitizers in endosomes enables release of therapeutic macromolecules into the cytosol of the target cells for pharmacological actions. In this study, we demonstrate that direct conjugation of photosensitizers to oligonucleotides (ONs) allows spatial and temporal co-localization of the two modalities in the target cells, and thus leads to superior functional delivery of ONs. Further, light-activated delivery of an anticancer ON caused cancer cell killing via modulation of an oncogene and photodynamic therapy.

  15. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective

    Directory of Open Access Journals (Sweden)

    Stephanie A. Fernandes

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5–10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  16. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective.

    Science.gov (United States)

    Fernandes, Stephanie A; Douglas, Andrew G L; Varela, Miguel A; Wood, Matthew J A; Aoki, Yoshitsugu

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5-10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.

  17. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    Science.gov (United States)

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

  18. [Age related macular degeneration].

    Science.gov (United States)

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  19. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  20. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease.

    Science.gov (United States)

    Sardone, Valentina; Zhou, Haiyan; Muntoni, Francesco; Ferlini, Alessandra; Falzarano, Maria Sofia

    2017-04-05

    Neuromuscular disorders such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy are neurodegenerative genetic diseases characterized primarily by muscle weakness and wasting. Until recently there were no effective therapies for these conditions, but antisense oligonucleotides, a new class of synthetic single stranded molecules of nucleic acids, have demonstrated promising experimental results and are at different stages of regulatory approval. The antisense oligonucleotides can modulate the protein expression via targeting hnRNAs or mRNAs and inducing interference with splicing, mRNA degradation, or arrest of translation, finally, resulting in rescue or reduction of the target protein expression. Different classes of antisense oligonucleotides are being tested in several clinical trials, and limitations of their clinical efficacy and toxicity have been reported for some of these compounds, while more encouraging results have supported the development of others. New generation antisense oligonucleotides are also being tested in preclinical models together with specific delivery systems that could allow some of the limitations of current antisense oligonucleotides to be overcome, to improve the cell penetration, to achieve more robust target engagement, and hopefully also be associated with acceptable toxicity. This review article describes the chemical properties and molecular mechanisms of action of the antisense oligonucleotides and the therapeutic implications these compounds have in neuromuscular diseases. Current strategies and carrier systems available for the oligonucleotides delivery will be also described to provide an overview on the past, present and future of these appealing molecules.

  1. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    Science.gov (United States)

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  2. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  3. Antisense oligonucleotide induction of progerin in human myogenic cells.

    Directory of Open Access Journals (Sweden)

    Yue-Bei Luo

    Full Text Available We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA transcript in human myogenic cells. The progerin transcript (LMNA Δ150 lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS. HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model

  4. Detection and identification of enterohemorrhagic Escherichia coli O157:H7 and Vibrio cholerae O139 using oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Zhang Zheng

    2007-12-01

    Full Text Available Abstract Background The rapid and accurate detection and identification of the new subtype of the pathogens is crucial for diagnosis, treatment and control of the contagious disease outbreak. Here, in this study, an approach to detect and identify Escherichia coli O157:H7 and Vibrio cholerae O139 was established using oligonucleotide microarray. We coupled multiplex PCR with oligonucleotide microarray to construct an assay suitable for simultaneous identification of two subtypes of the pathogens. Results The stx1, stx2 gene and uidA gene having the specific mutant spot were chosen as the targets for Escherichia coli O157:H7, and meanwhile the ctxA, tcpA, and LPSgt gene for Vibrio cholerae O139. The oligonucleotide microarray was composed of eight probes including negative control and positive control from 16S rDNA gene. The six primers were designed to amplify target fragments in two triplex PCR, and then hybridized with oligonucleotide microarray. An internal control would be to run a PCR reaction in parallel. Multiplex PCR did not produce any non-specific amplicons when 149 related species or genera of standard bacteria were tested (100% specificity. In addition, Escherichia coli O157:H7 and Escherichia coli O157:non-H7, Vibrio cholerae O139 and Vibrio cholerae O1 had been discriminated respectively. Using recombinant plasmid and target pathogens, we were able to detect positive hybridization signals with 102 copies/μL and 103 cfu/mL per reaction. Conclusion The DNA microarray assay reported here could detect and identify Escherichia coli O157:H7 and Vibrio cholerae O139, and furthermore the subtype was distinguished. This assay was a specific and sensitive tool for simultaneous detection and identification of the new subtype of two pathogens causing diarrhea in human.

  5. Optical Characterization of Oligonucleotide DNA Influenced by Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Seyedeh Maryam Banihashemian

    2013-09-01

    Full Text Available UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA and cytosine-guanine 100 mer (CG-100 DNA indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.

  6. Degenerate pseudo-Riemannian metrics

    CERN Document Server

    Hervik, Sigbjorn; Yamamoto, Kei

    2014-01-01

    In this paper we study pseudo-Riemannian spaces with a degenerate curvature structure i.e. there exists a continuous family of metrics having identical polynomial curvature invariants. We approach this problem by utilising an idea coming from invariant theory. This involves the existence of a boost, the existence of this boost is assumed to extend to a neighbourhood. This approach proves to be very fruitful: It produces a class of metrics containing all known examples of degenerate metrics. To date, only Kundt and Walker metrics have been given, however, our study gives a plethora of examples showing that degenerate metrics extend beyond the Kundt and Walker examples. The approach also gives a useful criterion for a metric to be degenerate. Specifically, we use this to study the subclass of VSI and CSI metrics (i.e., spaces where polynomial curvature invariants are all vanishing or constants, respectively).

  7. Age-Related Macular Degeneration

    Science.gov (United States)

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  8. On the degenerate phase boundaries

    CERN Document Server

    Ma, Y; Kuang, Z; Ma, Yongge; Liang, Canbin; Kuang, Zhiquan

    1999-01-01

    The structure of the phase boundary between degenerate and non-degenerate regions in Ashtekar's gravity has been studied by Bengtsson and Jacobson who conjectured that the "phase boundary" should always be null. In this paper, we reformulate the reparametrization procedure in the mapping language and distinguish a phase boundary from its image. It is shown that the image has to be null, while the nullness of the phase boundary requries more suitable criterion.

  9. A primer of Lebesgue integration

    CERN Document Server

    Bear, H S

    2001-01-01

    The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study.Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.

  10. A primer of multivariate statistics

    CERN Document Server

    Harris, Richard J

    2014-01-01

    Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why

  11. Loop quantum geometry: a primer

    Energy Technology Data Exchange (ETDEWEB)

    Corichi, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)

    2005-01-15

    This is the written version of a lecture given at the 'VI Mexican School of Gravitation and Mathematical Physics' (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.

  12. A primer of special relativity

    CERN Document Server

    Sardesai, PL

    2004-01-01

    A Primer of Special Relativity1 is an unusually lucid introduction to the subject specifically written for Indian students. It is intended to give the beginner a firm grounding for a more advanced course in relativity. An entire chapter is devoted to applications of the theory to elucidate a large number of topics the students (B.Sc. Physics) come across in Modern Physics. Detailed and well-selected examples are used to illuminate aspects of the theory as well as to show techniques of application. A large number of Illustrative Examples enables the students to gain confidence to solve any problem in relativity normally expected of B.Sc. students.

  13. Loop Quantum Geometry: A primer

    OpenAIRE

    Corichi, Alejandro

    2005-01-01

    This is the written version of a lecture given at the ``VI Mexican School of Gravitation and Mathematical Physics" (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-expert...

  14. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Coulouris, George; Zaretskaya, Irena; Cutcutache, Ioana; Rozen, Steve; Madden, Thomas L

    2012-06-18

    Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. We describe a robust and fully implemented general purpose primer design tool that designs target-specific PCR

  15. UniPrimer: A Web-Based Primer Design Tool for Comparative Analyses of Primate Genomes

    Directory of Open Access Journals (Sweden)

    Nomin Batnyam

    2012-01-01

    Full Text Available Whole genome sequences of various primates have been released due to advanced DNA-sequencing technology. A combination of computational data mining and the polymerase chain reaction (PCR assay to validate the data is an excellent method for conducting comparative genomics. Thus, designing primers for PCR is an essential procedure for a comparative analysis of primate genomes. Here, we developed and introduced UniPrimer for use in those studies. UniPrimer is a web-based tool that designs PCR- and DNA-sequencing primers. It compares the sequences from six different primates (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque and designs primers on the conserved region across species. UniPrimer is linked to RepeatMasker, Primer3Plus, and OligoCalc softwares to produce primers with high accuracy and UCSC In-Silico PCR to confirm whether the designed primers work. To test the performance of UniPrimer, we designed primers on sample sequences using UniPrimer and manually designed primers for the same sequences. The comparison of the two processes showed that UniPrimer was more effective than manual work in terms of saving time and reducing errors.

  16. Wilson's disease (hepatolenticular degeneration).

    Science.gov (United States)

    Herron, B E

    1976-01-01

    Wilson's disease, or hepatolenticular degeneration, is a rare inherited disorder of copper metabolism which usually affects young people. Excess copper accumulates in the tissues, primarily in the liver, brain, and cornea. This copper deposition results in a wide range of hepatic and neurological symptoms, and may produce psychiatric illness. Hepatic involvement often occurs in childhood, while neurological deficits generally are detected at a later age. The disease is inherited in an autosomal recessive fashion. Ocular findings are of particular importance because the corneal copper deposition, forming the Kayser-Fleischer ring,is the only pathognomonic sign of the disease. The structure of the ring and the presence of copper have been well established. An anterior capsular deposition of copper in the lens results in a characteristic sunflower cataract in some of these patients. Other ocular abnormalities have been described but are much less common. The pathogenesis of the disease and the basic genetic defect remain obscure. It is clear that there is excess copper in the tissues, but the mechanism of its deposition is unknown. It is in some way associated with a failure to synthesize the serum copper protein ceruloplasmin normally. Another theory suggests that an abnormal protein with a high affinity for copper may bind the metal in the tissues. The diagnosis may be suggested by the clinical manifestations and confirmed by the presence of a Kayser-Fleischer ring. In the absence of these findings biochemical determinations are necessary. The most important of these are the serum ceruloplasmin, the urinary copper, and the hepatic copper concentration on biopsy. Treatment consists in the administration of the copper chelating agent, penicillamine, and the avoidance of a high copper intake. This usually results in marked clinical improvement if irreversible tissue damage has not occurred. Maintenance therapy for life is necessary in order to continue the negative

  17. 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs.

    Science.gov (United States)

    Hurek, T; Burggraf, S; Woese, C R; Reinhold-Hurek, B

    1993-11-01

    Phylogenetic analyses after reverse transcriptase sequencing of 16S rRNA of nitrogen-fixing, grass-associated Azoarcus strains confirmed their affiliation to the beta subdivision of the Proteobacteria. Strains representing three different species formed a phylogenetically coherent unit related to Rhodocyclus purpureus, with actual percent similarities among the three sequences ranging from 93.1 to 97.3%. Within variable regions V2 and V5, we found stretches of sequences considerably conserved within the genus Azoarcus but differing from most other gram-negative bacteria, with the specificity being enhanced when different regions were combined. Genus-specific primers selected from both regions amplified fragments from all but one Azoarcus species in polymerase chain reactions (PCR) but not from any reference strain tested. Primers of lesser specificity generated fragments from members of all five Azoarcus species as well as from some reference strains. Those unspecific amplifications could be differentiated by oligonucleotide hybridization, detecting only fragments generated from Azoarcus strains except strain 6a3, which represents the same group which could not be detected by genus-specific PCR. Thus we propose the application of PCR amplification with 16S rRNA-targeted, genus-specific primers in combination with hybridization of a 16S rRNA-targeted oligonucleotide to PCR-generated fragments as diagnostic tests; this allows an initial screening for presence of members of the genus Azoarcus.

  18. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.

    Science.gov (United States)

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-15

    A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  20. Oligonucleotide and Long Polymeric DNA Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E; Mariella Jr., R P; Christian, A T; Gardner, S N; Williams, J M

    2003-11-24

    This report summarizes the work done at Lawrence Livermore National Laboratory for the Oligonucleotide and Long Polymeric DNA Encoding project, part of the Microelectronic Bioprocesses Program at DARPA. The goal of the project was to develop a process by which long (circa 10,000 base-pair) synthetic DNA molecules could be synthesized in a timely and economic manner. During construction of the long molecule, errors in DNA sequence occur during hybridization and/or the subsequent enzymatic process. The work done on this project has resulted in a novel synthesis scheme that we call the parallel pyramid synthesis protocol, the development of a suit of computational tools to minimize and quantify errors in the synthesized DNA sequence, and experimental proof of this technique. The modeling consists of three interrelated modules: the bioinformatics code which determines the specifics of parallel pyramid synthesis for a given chain of long DNA, the thermodynamics code which tracks the products of DNA hybridization and polymerase extension during the later steps in the process, and the kinetics model which examines the temporal and spatial processes during one thermocycle. Most importantly, we conducted the first successful syntheses of a gene using small starting oligomers (tetramers). The synthesized sequence, 813 base pairs long, contained a 725 base pair gene, modified green fluorescent protein (mGFP), which has been shown to be a functional gene by cloning into cells and observing its green fluorescent product.

  1. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Directory of Open Access Journals (Sweden)

    Weizhong Tang

    Full Text Available To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA, (dC, (dG and (dT to silver staining could be ranged as (dA > (dG > (dC > (dT from high to low. It was unexpected that oligo (dT was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt. The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  2. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria.

    Science.gov (United States)

    Meinhardt, Kelley A; Bertagnolli, Anthony; Pannu, Manmeet W; Strand, Stuart E; Brown, Sally L; Stahl, David A

    2015-04-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.

  3. In silico PCR primer designing and validation.

    Science.gov (United States)

    Kumar, Anil; Chordia, Nikita

    2015-01-01

    Polymerase chain reaction (PCR) is an enzymatic reaction whose efficiency and sensitivity largely depend on the efficiency of the primers that are used for the amplification of a concerned gene/DNA fragment. Selective amplification of nucleic acid molecules initially present in minute quantities provides a powerful tool for analyzing nucleic acids. In silico method helps in designing primers. There are various programs available for PCR primer design. Here we described designing of primers using web-based tools like "Primer3" and "Web Primer". For designing the primer, DNA template sequence is required that can be taken from any of the available sequence databases, e.g., RefSeq database. The in silico validation can be carried out using BLAST tool and Gene Runner software, which check their efficiency and specificity. Thereafter, the primers designed in silico can be validated in the wet lab. After that, these validated primers can be synthesized for use in the amplification of concerned gene/DNA fragment.

  4. Targeting of single stranded oligonucleotides through metal-induced cyclization of short complementary strands : Targeting of single stranded oligonucleotides

    OpenAIRE

    Freville, Fabrice; Richard, Tristan; Bathany, Katell; Moreau, Serge

    2006-01-01

    International audience; A new strategy to cyclize a short synthetic oligonucleotide on a DNA or a RNA target strand is described. This one relies on a metal-mediated cyclization of short synthetic oligonucleotides conjugated with two chelating 2,2':6',2”-terpyridine moieties at their 3' and 5' ends. Cyclization following metal addition (Zn2+, Fe2+) was demonstrated using UV monitored thermal denaturation experiments, mass spectrometry analysis and gel shift assays. NMR experiments were used t...

  5. A Practical Primer on Geostatistics

    Science.gov (United States)

    Olea, Ricardo A.

    2009-01-01

    significant methodological implications. HISTORICAL REMARKS As a discipline, geostatistics was firmly established in the 1960s by the French engineer Georges Matheron, who was interested in the appraisal of ore reserves in mining. Geostatistics did not develop overnight. Like other disciplines, it has built on previous results, many of which were formulated with different objectives in various fields. PIONEERS Seminal ideas conceptually related to what today we call geostatistics or spatial statistics are found in the work of several pioneers, including: 1940s: A.N. Kolmogorov in turbulent flow and N. Wiener in stochastic processing; 1950s: D. Krige in mining; 1960s: B. Mathern in forestry and L.S. Gandin in meteorology CALCULATIONS Serious applications of geostatistics require the use of digital computers. Although for most geostatistical techniques rudimentary implementation from scratch is fairly straightforward, coding programs from scratch is recommended only as part of a practice that may help users to gain a better grasp of the formulations. SOFTWARE For professional work, the reader should employ software packages that have been thoroughly tested to handle any sampling scheme, that run as efficiently as possible, and that offer graphic capabilities for the analysis and display of results. This primer employs primarily the package Stanford Geomodeling Software (SGeMS) - recently developed at the Energy Resources Engineering Department at Stanford University - as a way to show how to obtain results practically. This applied side of the primer should not be interpreted as the notes being a manual for the use of SGeMS. The main objective of the primer is to help the reader gain an understanding of the fundamental concepts and tools in geostatistics. ORGANIZATION OF THE PRIMER The chapters of greatest importance are those covering kriging and simulation. All other materials are peripheral and are included for better comprehension of th

  6. A primer on quantum fluids

    CERN Document Server

    Barenghi, Carlo

    2016-01-01

    The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there will be some exercises. Detailed solutions can be made available to instructors upon request to the authors. .

  7. Application of Single—labelled Probe—primer in PCR Amplification to the Detection of Hepatitis B Virus DNA

    Institute of Scientific and Technical Information of China (English)

    KONG,De-Ming; SHEN,Han-Xi

    2003-01-01

    A new method based on the incorporation of a single-lablled probe-primer into polymerase chain reaction(PCR) for the detection of PCR-amplified DNA in a closed system is reported.The probeprimerc consists of a specific probe sequence on the 5''''''''-end and a primer sequence on the 3''''''''-end.A flurophore is located at the 5''''''''end.The primeR-quencher is an oligonucleotide,which is complementary to the probe sequence of probe-primer and labelled with a quencher at the 3''''''''-end.In the duplex formed by probe-primer and primer-quencher.the fluorophore and quencher are kept in close proximity to each other.Therefore the fluorescence is quenched.During PCR amplificatio,the specific probe sequence of probeprimer binds to its complement within the same strand of DNA,and is cleaved by Taq DNA polymerase,resulting in the restoration of fluorescence.This system has the same energy transfer mechanism as molecular beacons,and a good quenching effciency can be ensured.Following optimization of PCR conditions,this method was used to detect hepatitis b virus(HBV) dna in patient sera.This technology eliminates the risk of carry-over contamination,simplifies the amplification assay and opens up new possibilities for the real-time detection of the amplified DNA.

  8. Reversing Antisense Oligonucleotide Activity with a Sense Oligonucleotide Antidote: Proof of Concept Targeting Prothrombin.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Zhang, Hong; MacLeod, A Robert; Guo, Shuling; Monia, Brett P

    2015-12-01

    The tissue half-life of second-generation antisense oligonucleotide drugs (ASOs) is generally longer than traditional small molecule therapeutics. Thus, a strategy to reverse the activity of antisense drugs is warranted in certain settings. In this study, we describe a strategy employing the administration of a complementary sense oligonucleotide antidote (SOA). As a model system we have chosen to target the coagulation factor and antithrombotic drug target, prothrombin, to assess the feasibility of this approach. ASO targeting mouse prothrombin specifically suppressed >90% hepatic prothrombin mRNA levels and circulating prothrombin protein in mice. These effects were dose- and time-dependent, and as expected produced predictable increases in anticoagulation activity [prothrombin time/activated partial thromboplastin time (PT/aPTT)]. Treatment with prothrombin SOAs resulted in a dose-dependent reversal of ASO activity, as measured by a return in prothrombin mRNA levels and thrombin activity, and normalization of aPTT and PT. The antithrombotic activity of prothrombin ASOs was demonstrated in a FeCl3-induced thrombosis mouse model, and as predicted for this target, the doses required for antithrombotic activity were also associated with increased bleeding. Treatment with SOA was able to prevent prothrombin ASO-induced bleeding in a dose-dependent manner. These studies demonstrate for the first time the utility of SOAs to selectively and specifically reverse the intracellular effects of an antisense therapy.

  9. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes.

    Directory of Open Access Journals (Sweden)

    Sun Young Kim

    Full Text Available Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains.

  10. URPD: a specific product primer design tool.

    Science.gov (United States)

    Chuang, Li-Yeh; Cheng, Yu-Huei; Yang, Cheng-Hong

    2012-06-19

    Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.

  11. Antisense oligonucleotides for the treatment of dyslipidaemia.

    Science.gov (United States)

    Visser, Maartje E; Witztum, Joseph L; Stroes, Erik S G; Kastelein, John J P

    2012-06-01

    Antisense oligonucleotides (ASOs) are short synthetic analogues of natural nucleic acids designed to specifically bind to a target messenger RNA (mRNA) by Watson-Crick hybridization, inducing selective degradation of the mRNA or prohibiting translation of the selected mRNA into protein. Antisense technology has the ability to inhibit unique targets with high specificity and can be used to inhibit synthesis of a wide range of proteins that could influence lipoprotein levels and other targets. A number of different classes of antisense agents are under development. To date, mipomersen, a 2'-O-methoxyethyl phosphorothioate 20-mer ASO, is the most advanced ASO in clinical development. It is a second-generation ASO developed to inhibit the synthesis of apolipoprotein B (apoB)-100 in the liver. In Phase 3 clinical trials, mipomersen has been shown to significantly reduce plasma low-density lipoprotein cholesterol (LDL-c) as well as other atherogenic apoB containing lipoproteins such as lipoprotein (a) [Lp(a)] and small-dense LDL particles. Although concerns have been raised because of an increase in intrahepatic triglyceride content, preliminary data from long-term studies suggest that with continued treatment, liver fat levels tend to stabilize or decline. Further studies are needed to evaluate potential clinical relevance of these changes. Proprotein convertase subtilisin/kexin-9 (PCSK9) is another promising novel target for lowering LDL-c by ASOs. Both second-generation ASOs and ASOs using locked nucleic acid technology have been developed to inhibit PCSK9 and are under clinical development. Other targets currently being addressed include apoC-III and apo(a) or Lp(a). By directly inhibiting the synthesis of specific proteins, ASO technology offers a promising new approach to influence the metabolism of lipids and to control lipoprotein levels. Its application to a wide variety of potential targets can be expected if these agents prove to be clinically safe and

  12. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection.

    Science.gov (United States)

    O'Halloran, Damien M

    2016-02-08

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction.

  13. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    Science.gov (United States)

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  14. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  15. Electrostatic Discharge testing of propellants and primers

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R.B.

    1994-02-01

    This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.

  16. Polymerase chain reaction with nearby primers.

    Science.gov (United States)

    Garafutdinov, Ravil R; Galimova, Aizilya A; Sakhabutdinova, Assol R

    2017-02-01

    DNA analysis of biological specimens containing degraded nucleic acids such as mortal remains, archaeological artefacts, forensic samples etc. has gained more attention in recent years. DNA extracted from these samples is often inapplicable for conventional polymerase chain reaction (PCR), so for its amplification the nearby primers are commonly used. Here we report the data that clarify the features of PCR with nearby and abutting primers. We have shown that the proximity of primers leads to significant reduction of the reaction time and ensures the successful performance of DNA amplification even in the presence of PCR inhibitors. The PCR with abutting primers is usually characterized by the absence of nonspecific amplification products that causes extreme sensitivity with limit of detection on single copy level. The feasibility of PCR with abutting primers was demonstrated on species identification of 100 years old rotten wood. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A Phylogenetic Index for Cichlid Microsatellite Primers

    Directory of Open Access Journals (Sweden)

    Robert D. Kunkle

    2010-01-01

    Full Text Available Microsatellites abound in most organisms and have proven useful for a range of genetic and genomic studies. Once primers have been created, they can be applied to populations or taxa that have diverged from the source taxon. We use PCR amplification, in a 96-well format, to determine the presence and absence of 46 microsatellite loci in 13 cichlid species. At least one primer set amplified a product in each species tested, and some products were present in nearly all species. These results are compared to the known phylogenetic relationships among cichlids. While we do not address intraspecies variation, our results present a phylogenetic index for the success of microsatellite PCR primer product amplification, thus providing information regarding a collection of primers that are applicable to wide range of species. Through the use of such a uniform primer panel, the potential impact for cross species would be increased.

  18. Genetics Home Reference: age-related macular degeneration

    Science.gov (United States)

    ... Resources (3 links) BrightFocus Foundation: Macular Degeneration Treatment Macular Degeneration Partnership: Low Vision Rehabilitation Prevent Blindness America: Age-Related Macular Degeneration (AMD) ...

  19. A practical primer on geostatistics

    Science.gov (United States)

    Olea, Ricardo A.

    2009-01-01

    has significant methodological implications.Historical Remarks—As a discipline, geostatistics was firmly established in the 1960s by the French engineer Georges Matheron, who was interested in the appraisal of ore reserves in mining. Geostatistics did not develop overnight. Like other disciplines, it has built on previous results, many of which were formulated with different objectives in various fields.Pioneers—Seminal ideas conceptually related to what today we call geostatistics or spatial statistics are found in the work of several pioneers, including: 1940s: A.N. Kolmogorov in turbulent flow and N. Wiener in stochastic processing; 1950s: D. Krige in mining; 1960s: B. Mathern in forestry and L.S. Gandin in meteorologyCalculations—Serious applications of geostatistics require the use of digital computers. Although for most geostatistical techniques rudimentary implementation from scratch is fairly straightforward, coding programs from scratch is recommended only as part of a practice that may help users to gain a better grasp of the formulations.Software—For professional work, the reader should employ software packages that have been thoroughly tested to handle any sampling scheme, that run as efficiently as possible, and that offer graphic capabilities for the analysis and display of results. This primer employs primarily the package Stanford Geomodeling Software (SGeMS) - recently developed at the Energy Resources Engineering Department at Stanford University - as a way to show how to obtain results practically. This applied side of the primer should not be interpreted as the notes being a manual for the use of SGeMS. The main objective of the primer is to help the reader gain an understanding of the fundamental concepts and tools in geostatistics.Organization of the Primer—The chapters of greatest importance are those covering kriging and simulation. All other materials are peripheral and are included for better comprehension of these main

  20. PCR amplfication on a microarray of gel-immobilized oligonucleotides : detection of bacterial toxin- and drug-resistent genes and their mutations.

    Energy Technology Data Exchange (ETDEWEB)

    Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2000-10-01

    PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency, the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.

  1. KULTUR PRIMER FIBROBLAS: PENELITIAN PENDAHULUAN

    Directory of Open Access Journals (Sweden)

    Yuli Kurniawati

    2015-05-01

    Full Text Available AbstrakKultur sel fibroblas banyak digunakan untuk penelitian proses penyembuhan luka dan penuaankulit. Metode ini digunakan untuk melihat perkembangan sel, proliferasi kinetik seluler, sertabiosintesis komponen matriks ekstraseluler. Penelitian pendahuluan ini dilakukan untuk optimasiteknik laboratorium serta berbagai kendala yang didapatkan saat kultur fibroblas. Kultur primerfibroblas dibagi menjadi 2 jenis sampel yaitu sampel yang berasal dari embrio mencit usia 7,5–9,5 hari, dan kulit pasien keloid. Sampel dari embrio mencit dilakukan kultur primer denganmetode dissociated fibroblast. Sampel jaringan keloid dan kulit normal dikultur dengan metodeskin explant. Fibroblas yang berasal dari kultur primer embrio mencit tumbuh baik sehinggadapat dilakukan subkultur dan disimpan di dalam nitrogen cair suhu -198°C. Fibroblas yangberasal dari sampel keloid pertama tumbuh sesuai pola pertumbuhan fibroblas, namun padasampel kedua terdapat kontaminasi Paecilomyces sp. yang merupakan salah satu jenis jamurkontaminan. Sel fibroblas mudah untuk dikultur karena memiliki kemampuan tumbuh danmelekat yang tinggi serta regenerasi cepat, namun penelitian lebih lanjut untuk optimasi teknikkultur dan pencegahan kontaminasi masih dibutuhkan sehingga sel dapat tumbuh baik.AbstractFibroblast cell culture method has been used for wound healing and skin aging studies. Thismethod was used for cell development imaging study, celullar kinetic proliferation andextracelullar matrix component biosynthesis. This preeliminary study was done for laboratoricaltechnic optimation as well as problems appeared in fibroblast culture. Fibroblasts primary culturewas divided into 2 type of samples, from 7.5-9.5-day-mice embryo and keloid-patient skin.Primary culture with dissociated fibroblast method was done for mice embryo sample. Keloidtissue sample and normal skin were cultured with skin explant method. Fibroblasts that weretaken from mice embryo primary culture grew well

  2. Characteristic archaebacterial 16S rRNA oligonucleotides

    Science.gov (United States)

    McGill, T. J.; Jurka, J.; Sobieski, J. M.; Pickett, M. H.; Woese, C. R.; Fox, G. E.

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  3. fREDUCE: Detection of degenerate regulatory elements using correlation with expression

    Directory of Open Access Journals (Sweden)

    Li Hao

    2007-10-01

    Full Text Available Abstract Background The precision of transcriptional regulation is made possible by the specificity of physical interactions between transcription factors and their cognate binding sites on DNA. A major challenge is to decipher transcription factor binding sites from sequence and functional genomic data using computational means. While current methods can detect strong binding sites, they are less sensitive to degenerate motifs. Results We present fREDUCE, a computational method specialized for the detection of weak or degenerate binding motifs from gene expression or ChIP-chip data. fREDUCE is built upon the widely applied program REDUCE, which elicits motifs by global statistical correlation of motif counts with expression data. fREDUCE introduces several algorithmic refinements that allow efficient exhaustive searches of oligonucleotides with a specified number of degenerate IUPAC symbols. On yeast ChIP-chip benchmarks, fREDUCE correctly identified motifs and their degeneracies with accuracies greater than its predecessor REDUCE as well as other known motif-finding programs. We have also used fREDUCE to make novel motif predictions for transcription factors with poorly characterized binding sites. Conclusion We demonstrate that fREDUCE is a valuable tool for the prediction of degenerate transcription factor binding sites, especially from array datasets with weak signals that may elude other motif detection methods.

  4. Gribov ambiguity and degenerate systems

    CERN Document Server

    Canfora, Fabrizio; Salgado-Rebolledo, Patricio; Zanelli, Jorge

    2014-01-01

    The relation between Gribov ambiguity and degeneracies in the symplectic structure of physical systems is analyzed. It is shown that, in finite-dimensional systems, the presence of Gribov ambiguities in regular constrained systems (those where the constraints are functionally independent) always leads to a degenerate symplectic structure upon Dirac reduction. The implications for the Gribov-Zwanziger approach to QCD are discussed.

  5. PHUSER (Primer Help for USER): a novel tool for USER fusion primer design

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Hansen, Niels Bjørn; Bonde, Mads

    2011-01-01

    Uracil-Specific Exision Reagent (USER) fusion is a recently developed technique that allows for assembly of multiple DNA fragments in a few simple steps. However, designing primers for USER fusion is both tedious and time consuming. Here, we present the Primer Help for USER (PHUSER) software......, a novel tool for designing primers specifically for USER fusion and USER cloning applications. We also present proof-of-concept experimental validation of its functionality. PHUSER offers quick and easy design of PCR optimized primers ensuring directionally correct fusion of fragments into a plasmid...... containing a customizable USER cassette. Designing primers using PHUSER ensures that the primers have similar annealing temperature (Tm), which is essential for efficient PCR. PHUSER also avoids identical overhangs, thereby ensuring correct order of assembly of DNA fragments. All possible primers...

  6. Climate change primer for respirologists.

    Science.gov (United States)

    Takaro, Tim K; Henderson, Sarah B

    2015-01-01

    Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer-reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate-related effects. Additionally, large global health impacts in low-resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion.

  7. Investigations of oligonucleotide usage variance within and between prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J.; Skjerve, E.; Ussery, David

    2008-01-01

    Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage (trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di-to tetranucleotides). We wanted to assess the statistical information potential...... was that prokaryotic chromosomes can be described by hexanucleotide frequencies, suggesting that prokaryotic DNA is predominantly short range correlated, i. e., information in prokaryotic genomes is encoded in short oligonucleotides. Oligonucleotide usage varied more within AT-rich and host-associated genomes than...... in GC-rich and free-living genomes, and this variation was mainly located in non-coding regions. Bias (selectional pressure) in tetranucleotide usage correlated with GC content, and coding regions were more biased than non-coding regions. Non-coding regions were also found to be approximately 5.5% more...

  8. Delivery of RNAi-Based Oligonucleotides by Electropermeabilization

    Directory of Open Access Journals (Sweden)

    Muriel Golzio

    2013-04-01

    Full Text Available For more than a decade, understanding of RNA interference (RNAi has been a growing field of interest. The potent gene silencing ability that small oligonucleotides have offers new perspectives for cancer therapeutics. One of the present limits is that many biological barriers exist for their efficient delivery into target cells or tissues. Electropermeabilization (EP is one of the physical methods successfully used to transfer small oligonucleotides into cells or tissues. EP consists in the direct application of calibrated electric pulses to cells or tissues that transiently permeabilize the plasma membranes, allowing efficient in vitro and in vivo. cytoplasmic delivery of exogenous molecules. The present review reports on the type of therapeutic RNAi-based oligonucleotides that can be electrotransferred, the mechanism(s of their electrotransfer and the technical settings for pre-clinical purposes.

  9. Retro-1 Analogues Differentially Affect Oligonucleotide Delivery and Toxin Trafficking.

    Science.gov (United States)

    Yang, Bing; Ming, Xin; Abdelkafi, Hajer; Pons, Valerie; Michau, Aurelien; Gillet, Daniel; Cintrat, Jean-Christophe; Barbier, Julien; Juliano, Rudy

    2016-11-21

    Retro-1 is a small molecule that displays two important biological activities: First, it blocks the actions of certain toxins by altering their intracellular trafficking. Second, it enhances the activity of oligonucleotides by releasing them from entrapment in endosomes. This raises the question of whether the two actions involve the same cellular target. Herein we report the effects of several Retro-1 analogues on both toxins and oligonucleotides. We found analogues that affect toxins but not oligonucleotides and vice-versa, while Retro-1 is the only compound that affects both. This indicates that the molecular target(s) involved in the two processes are distinct. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    Science.gov (United States)

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  11. A thermodynamic approach to PCR primer design.

    Science.gov (United States)

    Mann, Tobias; Humbert, Richard; Dorschner, Michael; Stamatoyannopoulos, John; Noble, William Stafford

    2009-07-01

    We developed a primer design method, Pythia, in which state of the art DNA binding affinity computations are directly integrated into the primer design process. We use chemical reaction equilibrium analysis to integrate multiple binding energy calculations into a conservative measure of polymerase chain reaction (PCR) efficiency, and a precomputed index on genomic sequences to evaluate primer specificity. We show that Pythia can design primers with success rates comparable with those of current methods, but yields much higher coverage in difficult genomic regions. For example, in RepeatMasked sequences in the human genome, Pythia achieved a median coverage of 89% as compared with a median coverage of 51% for Primer3. For parameter settings yielding sensitivities of 81%, our method has a recall of 97%, compared with the Primer3 recall of 48%. Because our primer design approach is based on the chemistry of DNA interactions, it has fewer and more physically meaningful parameters than current methods, and is therefore easier to adjust to specific experimental requirements. Our software is freely available at http://pythia.sourceforge.net.

  12. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

    Directory of Open Access Journals (Sweden)

    Luisa W Hugerth

    Full Text Available High-throughput sequencing of ribosomal RNA gene (rDNA amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level. The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.

  13. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

    Science.gov (United States)

    Hugerth, Luisa W; Muller, Emilie E L; Hu, Yue O O; Lebrun, Laura A M; Roume, Hugo; Lundin, Daniel; Wilmes, Paul; Andersson, Anders F

    2014-01-01

    High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.

  14. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Wupeng Liao

    2017-01-01

    Full Text Available Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF. The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO, small interfering RNA (siRNA, and microRNA (miRNA are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  15. Oligonucleotide Therapy for Obstructive and Restrictive Respiratory Diseases.

    Science.gov (United States)

    Liao, Wupeng; Dong, Jinrui; Peh, Hong Yong; Tan, Lay Hong; Lim, Kah Suan; Li, Li; Wong, Wai-Shiu Fred

    2017-01-17

    Inhaled oligonucleotide is an emerging therapeutic modality for various common respiratory diseases, including obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD) and restrictive airway diseases like idiopathic pulmonary fibrosis (IPF). The advantage of direct accessibility for oligonucleotide molecules to the lung target sites, bypassing systemic administration, makes this therapeutic approach promising with minimized potential systemic side effects. Asthma, COPD, and IPF are common chronic respiratory diseases, characterized by persistent airway inflammation and dysregulated tissue repair and remodeling, although each individual disease has its unique etiology. Corticosteroids have been widely prescribed for the treatment of asthma, COPD, and IPF. However, the effectiveness of corticosteroids as an anti-inflammatory drug is limited by steroid resistance in severe asthma, the majority of COPD cases, and pulmonary fibrosis. There is an urgent medical need to develop target-specific drugs for the treatment of these respiratory conditions. Oligonucleotide therapies, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), and microRNA (miRNA) are now being evaluated both pre-clinically and clinically as potential therapeutics. The mechanisms of action of ASO and siRNA are highly target mRNA specific, ultimately leading to target protein knockdown. miRNA has both biomarker and therapeutic values, and its knockdown by a miRNA antagonist (antagomir) has a broader but potentially more non-specific biological outcome. This review will compile the current findings of oligonucleotide therapeutic targets, verified in various respiratory disease models and in clinical trials, and evaluate different chemical modification approaches to improve the stability and potency of oligonucleotides for the treatment of respiratory diseases.

  16. Primer on spontaneous heating and pyrophoricity

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

  17. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles

    DEFF Research Database (Denmark)

    Cogoi, S; Jakobsen, U; Pedersen, E B

    2016-01-01

    KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription...... factor essential for KRAS transcription. It is based on the use of palmitoyl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with lipid-modified G4-decoy oligonucleotides and a lipid-modified cell penetrating TAT peptide. The potency of the strategy in pancreatic cancer cells is demonstrated...

  18. Inhibition of microRNA with antisense oligonucleotides.

    Science.gov (United States)

    Esau, Christine C

    2008-01-01

    Antisense inhibition of microRNA (miRNA) function has been an important tool for uncovering miRNA biology. Chemical modification of anti-miRNA oligonucleotides (AMOs) is necessary to improve affinity for target miRNA, stabilize the AMO to nuclease degradation, and to promote tissue uptake for in vivo delivery. Here I summarize the work done to evaluate the effectiveness of various chemically modified AMOs for use in cultured cells and rodent models, and outline important issues to consider when inhibiting miRNAs with antisense oligonucleotides.

  19. Synthesis of Peptide-Oligonucleotide Conjugates Using a Heterobifunctional Crosslinker

    Science.gov (United States)

    Williams, Berea A.R.; Chaput, John C.

    2010-01-01

    Peptide-oligonucleotide conjugates (POCs) are molecular chimeras composed of a nucleic acid moiety covalently attached to a polypeptide moiety. POCs have been used in numerous applications from therapeutics to nanotechnology, and most recently as combinatorial agents in the assembly of bivalent protein affinity reagents. This unit describes the synthesis and purification of POC molecules using the heterobifunctional crosslinking reagent succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), which enables amine-modified oligonucleotides to become covalently linked to cysteine-modified polypeptides. This solution-based protocol consists of a two-step synthesis followed by a single purification step. PMID:20827717

  20. Chemical phosphorylation of deoxyribonucleosides and thermolytic DNA oligonucleotides.

    Science.gov (United States)

    Ausín, Cristina; Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L

    2006-10-01

    The phosphorylating reagent bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite is prepared in three steps from commercial methyl thioglycolate and diisopropylphosphoramidous dichloride. The phosphorylating reagent has been used successfully in the solid-phase synthesis of deoxyribonucleoside 5'-/3'-phosphate or -thiophosphate monoesters and oligonucleotide 5'-phosphate/-thiophosphate monoesters. Bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite has also been employed in the construction of a thermolytic dinucleotide prodrug model to evaluate the ability of the reagent to produce thermosentive oligonucleotide prodrugs under mild temperature conditions ( approximately 25 degrees C) for potential therapeutic applications.

  1. Versatile functionalization of nanoelectrodes by oligonucleotides via pyrrole electrochemistry.

    Science.gov (United States)

    Descamps, Emeline; Nguyen, Khoa; Bouchain-Gautier, Christelle; Filoramo, Arianna; Goux-Capes, Laurence; Goffman, Marcello; Bourgoin, Jean-Philippe; Mailley, Pascal; Livache, Thierry

    2010-11-15

    Surface modification at the nanometer scale is a challenge for the future of molecular electronics. In particular, the precise anchoring and electrical addressing of biological scaffolds such as complex DNA nanonetworks is of importance for generating bio-directed assemblies of nano-objects for nanocircuit purposes. Herein, we consider the individual modification of nanoelectrodes with different oligonucleotide sequences by an electrochemically driven co-polymerization process of pyrrole and modified oligonucleotide sequences bearing pyrrole monomers. We demonstrate that this one-step technique presents the advantages of simplicity, localization of surface modification, mechanical, biological and chemical stability of the coatings, and high lateral resolution.

  2. PRISE (PRImer SElector): software for designing sequence-selective PCR primers.

    Science.gov (United States)

    Fu, Qi; Ruegger, Paul; Bent, Elizabeth; Chrobak, Marek; Borneman, James

    2008-03-01

    This report presents PRImer Selector (PRISE), a new software package that implements several features that improve and streamline the design of sequence-selective PCR primers. The PRISE design process involves two main steps. In the first step, target and non-target DNA sequences are identified. In the second step, primers are designed to amplify target (but not non-target) sequences. One important feature of PRISE is that it automates the task of placing primer-template mismatches at the 3' end of the primers - a property that is crucial for sequence selectivity. Once a list of candidate primers has been produced, sorting tools in PRISE speed up the selection process by allowing a user to sort the primers by properties such as amplicon length, GC content and sequence selectivity. PRISE can be used to design primers with a range of specificities, targeting individual sequences as well as diverse assemblages of genes. PRISE also allows user-defined primers to be analyzed, enabling their properties to be examined in relation to target and non-target sequences. The utility of PRISE was demonstrated by using it to design sequence-selective PCR primers for an rRNA gene from the fungus Pochonia chlamydosporia.

  3. Anti sense and sensibility : renal and skin effects of (antisense) oligonucleotides

    NARCIS (Netherlands)

    Meer, van L.

    2017-01-01

    This thesis describes the clinical investigation of a novel treatment strategy for type 2 diabetes mellitus (t2dm) using an antisense oligonucleotide(aon)to inhibit the sglt2 receptor. Furthermore it describes skin effects of oligonucleotides

  4. Delivery of antisense oligonucleotides using cholesterol-modified sense dendrimers and cationic lipids

    NARCIS (Netherlands)

    Chaltin, Patrick; Margineanu, Anca; Marchand, Damien; Aerschot, Arthur Van; Rozenski, Jef; Schryver, Frans De; Herrmann, Andreas; Müllen, Klaus; Juliano, Rudolph; Fisher, Michael H.; Kang, Hyunmin; Feyter, Steven De; Herdewijn, Piet

    2005-01-01

    Cholesterol modified mono-, di-, and tetrameric oligonucleotides were synthesized and hybridized with antisense oligonucleotides to study their incorporation in cationic liposomes together with the influence of this dendrimeric delivery system on biological activity. Electrostatic interactions seem

  5. Spheroidal Degeneration of the Cornea

    Directory of Open Access Journals (Sweden)

    Erdem Dinç

    2011-08-01

    Full Text Available A thirty-one-year-old male patient presented with bilateral epiphora and stinging sensation in the cornea. Detailed history revealed that a bilateral corneal scraping had been made regarding the initial diagnosis of fungal keratitis. His bestcorrected visual acuities were 20/20 and 20/30 in right and left eyes, respectively. Biomicroscopy showed bilateral amber colored spherules in the anterior stroma of the central cornea. The diagnosis of spheroidal corneal degeneration was established and symptomatic therapy with artificial tear drops was prescribed. Ultraviolet light is widely accepted to be the main etiological factor in the pathogenesis of spheroidal degeneration. Because of difficulties in the early stages of the diagnostic process of the disease, incorrect diagnoses can be made with inappropriate interventions. (Turk J Ophthalmol 2011; 41: 264-6

  6. SolDB: A Database of Solanum lycopersicum and Solanum tuberosum Primers

    Directory of Open Access Journals (Sweden)

    Hassan Tariq

    2010-12-01

    Full Text Available SolDB is the Database of Solanaceae Family. It is an interactive, free online specialized database for Solanaceae family. Currently, it spans complete nucleotide sequences of expressed genes of Solanum lycopersicum and Solanum tuberosum along with their annotation. We have designed PCR oligonucleotide primer sequences for each gene, with their features and conditions given. This feature alone greatly facilitates researchers in PCR amplification of genes sequences, especially in cloning experiments. We also provided chloroplast genome section which gives access to fully sequenced plastid genomes and their annotations. Flexible database design, easy expandability, and easy retrieval of information are the main features of SolDB. The Database is publicly available at www.soldb.pakbiz.org.

  7. Quantitative Microbial Risk Assessment Tutorial - Primer

    Science.gov (United States)

    This document provides a Quantitative Microbial Risk Assessment (QMRA) primer that organizes QMRA tutorials. The tutorials describe functionality of a QMRA infrastructure, guide the user through software use and assessment options, provide step-by-step instructions for implementi...

  8. Menopause 101: A Primer for the Perimenopausal

    Science.gov (United States)

    ... in the News Press Room Assistance Society Overview Menopause 101: A primer for the perimenopausal The information ... about 2 years earlier. Common Body Changes at Menopause Each woman’s experience of menopause is different. Many ...

  9. Multiplexing Short Primers for Viral Family PCR

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N; Hiddessen, A L; Hara, C A; Williams, P L; Wagner, M; Colston, B W

    2008-06-26

    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.

  10. Radial keratotomy associated endothelial degeneration

    Directory of Open Access Journals (Sweden)

    Moshirfar M

    2012-02-01

    Full Text Available Majid Moshirfar, Andrew Ollerton, Rodmehr T Semnani, Maylon HsuJohn A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USAPurpose: To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK and varying degrees of endothelial degeneration.Methods: Retrospective case series were used.Results: Thirteen eyes (seven patients were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years, averaging 18.7 years (range: 11–33 years after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK in the other eye.Conclusions: RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.Keywords: radial keratotomy, RK, Descemet’s stripping automated endothelial keratoplasty, DSAEK, guttata, endothelial degeneration, Fuch’s dystrophy

  11. Degenerating the elliptic Schlesinger system

    Science.gov (United States)

    Aminov, G. A.; Artamonov, S. B.

    2013-01-01

    We study various ways of degenerating the Schlesinger system on the elliptic curve with R marked points. We construct a limit procedure based on an infinite shift of the elliptic curve parameter and on shifts of the marked points. We show that using this procedure allows obtaining a nonautonomous Hamiltonian system describing the Toda chain with additional spin sl(N, ℂ) degrees of freedom.

  12. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers.

    Science.gov (United States)

    Eisenhuth, Ralf; Richert, Clemens

    2009-01-02

    5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.

  13. Radial keratotomy associated endothelial degeneration.

    Science.gov (United States)

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Retrospective case series were used. Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38-72 years), averaging 18.7 years (range: 11-33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch's Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet's stripping automated endothelial keratoplasty (DSAEK) in the other eye. RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch's dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.

  14. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Patrick P. Lestienne

    2011-01-01

    Full Text Available Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G-rich Triple Helix Primers (THP bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.

  15. Montmorillonite, oligonucleotides, RNA and origin of life

    Science.gov (United States)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible

  16. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.

    Science.gov (United States)

    Lim, M C G; Zhong, Z W

    2009-10-01

    This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

  17. Folding Topology of a Short Coiled-Coil Peptide Structure Templated by an Oligonucleotide Triplex

    DEFF Research Database (Denmark)

    Lou, Chenguang; Christensen, Niels Johan; Martos Maldonado, Manuel Cristo

    2017-01-01

    by oligonucleotide duplex and triplex formation. POC synthesis was achieved by copper-free alkyne-azide cycloaddition between three oligonucleotides and a 23-mer peptide, which by itself exhibited multiple oligomeric states in solution. The oligonucleotide domain was designed to furnish a stable parallel triplex...

  18. ALIS-FLP: Amplified ligation selected fragment-length polymorphism method for microbial genotyping

    DEFF Research Database (Denmark)

    Brillowska-Dabrowska, A.; Wianecka, M.; Dabrowski, Slawomir

    2008-01-01

    in that only one specific restriction enzyme (TspRI) is used. The cohesive ends of the DNA fragments are ligated with two types of oligonucleotide. A long oligonucleotide containing the primer site and the specific 9 nt 3 prime end, which is complementary to specific 9 nt, cohesive 3 prime end of the Tsp......RI genomic DNA fragment, and a short, degenerated, oligonucleotide covering the remaining TspRI cohesive ends. Other cohesive ends are covered by a short degenerated oligonucleotide lacking the primer site. The ligation mixture is used as a template for amplification using a single primer corresponding...... to the 5 prime end of the long, specific oligonucleotide. The selection of TspRI digested genomic DNA fragments for amplification is achieved by sequence selective ligation of the specific long oligonucleotide carrying the primer site to both ends of the specific target fragment. This technique allows...

  19. Oligonucleotide-directed mutagenesis for precision gene editing.

    Science.gov (United States)

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  20. Differential oligonucleotide activity in cell culture versus mouse models.

    Science.gov (United States)

    Wickstrom, E; Tyson, F L

    1997-01-01

    The usual course of drug discovery begins with the demonstration of compound activity in cells and, usually, a lower level of activity in animals. Successive rounds of drug design may result in a compound with sufficient activity in animals to justify clinical trials. The basic endpoints of therapeutic oligonucleotide experiments include target antigen reduction, target messenger reduction and inhibition of transformed cell proliferation or viral replication. However, one should expect oligonucleotides to exhibit pleiotropic behaviour, as do all other drugs. In an animal oligonucleotides will necessarily bind to and dissociate from all macromolecules encountered in the blood, in tissues, on cell surfaces and within cellular compartments. Contrary to expectations, oligonucleotides designed to be complementary to certain transcripts have sometimes been found moderately effective in cell-free extracts, more effective in cell culture and most effective in animal models. If greater potency against standard endpoints is reported in mouse models than was observed in cell culture, critical examination must consider alternate modes of action in animals that may not apply in cell culture. This counterintuitive paradox will be examined, based on studies of Ha-ras expression in bladder cancer, Ki-ras expression in pancreatic cancer, erbB2 expression in ovarian cancer and c-myc expression in B cell lymphoma.

  1. Chromosome-specific painting in Cucumis species using bulked oligonucleotides

    Science.gov (United States)

    Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a sing...

  2. Splice-switching antisense oligonucleotides as therapeutic drugs

    National Research Council Canada - National Science Library

    Havens, Mallory A; Hastings, Michelle L

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA-RNA base-pairing or protein-RNA...

  3. Antithrombotic effect of antisense factor XI oligonucleotide treatment in primates.

    Science.gov (United States)

    Crosby, Jeffrey R; Marzec, Ulla; Revenko, Alexey S; Zhao, Chenguang; Gao, Dacao; Matafonov, Anton; Gailani, David; MacLeod, A Robert; Tucker, Erik I; Gruber, Andras; Hanson, Stephen R; Monia, Brett P

    2013-07-01

    During coagulation, factor IX (FIX) is activated by 2 distinct mechanisms mediated by the active proteases of either FVIIa or FXIa. Both coagulation factors may contribute to thrombosis; FXI, however, plays only a limited role in the arrest of bleeding. Therefore, therapeutic targeting of FXI may produce an antithrombotic effect with relatively low hemostatic risk. We have reported that reducing FXI levels with FXI antisense oligonucleotides produces antithrombotic activity in mice, and that administration of FXI antisense oligonucleotides to primates decreases circulating FXI levels and activity in a dose-dependent and time-dependent manner. Here, we evaluated the relationship between FXI plasma levels and thrombogenicity in an established baboon model of thrombosis and hemostasis. In previous studies with this model, antibody-induced inhibition of FXI produced potent antithrombotic effects. In the present article, antisense oligonucleotides-mediated reduction of FXI plasma levels by ≥ 50% resulted in a demonstrable and sustained antithrombotic effect without an increased risk of bleeding. These results indicate that reducing FXI levels using antisense oligonucleotides is a promising alternative to direct FXI inhibition, and that targeting FXI may be potentially safer than conventional antithrombotic therapies that can markedly impair primary hemostasis.

  4. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

    Science.gov (United States)

    Timofeev, E; Kochetkova, S V; Mirzabekov, A D; Florentiev, V L

    1996-01-01

    Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well. PMID:8774893

  5. LNA 5'-phosphoramidites for 5'→3'-oligonucleotide synthesis

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Kumar, Santhosh T.; Wengel, Jesper

    2010-01-01

    Hereby we report an efficient synthesis of LNA thymine and LNA 5-methylcytosine 5′-phosphoramidites, allowing incorporation of LNA thymine and LNA 5-methylcytosine into oligonucleotides synthesized in the 5′→3′ direction. Key steps include regioselective enzymatic benzoylation of the 5′-hydroxy...

  6. Design and evaluation of 16S rRNA sequence based oligonucleotide probes for the detection and quantification of Comamonas testosteroni in mixed microbial communities

    Directory of Open Access Journals (Sweden)

    Bathe Stephan

    2006-06-01

    Full Text Available Abstract Background The β-proteobacterial species Comamonas testosteroni is capable of biotransformation and also biodegradation of a range of chemical compounds and thus potentially useful in chemical manufacturing and bioremediation. The ability to detect and quantify members of this species in mixed microbial communities thus may be desirable. Results We have designed an oligonucleotide probe for use in fluorescent in situ hybridization (FISH and two pairs of PCR primers targeting a C. testosteroni subgroup. The FISH probe and one of the PCR primer pairs are suitable for quantification of C. testosteroni in mixed microbial communities using FISH followed by quantitative image analysis or real-time quantitative PCR, respectively. This has been shown by analysis of samples from an enrichment of activated sludge on testosterone resulting in an increase in abundance and finally isolation of C. testosteroni. Additionally, we have successfully used quantitative PCR to follow the C. testosteroni abundance during a laboratory scale wastewater bioaugmentation experiment. Conclusion The oligonucleotides presented here provide a useful tool to study C. testosteroni population dynamics in mixed microbial communities.

  7. VizPrimer: a web server for visualized PCR primer design based on known gene structure.

    Science.gov (United States)

    Zhou, Yang; Qu, Wubin; Lu, Yiming; Zhang, Yanchun; Wang, Xiaolei; Zhao, Dongsheng; Yang, Yi; Zhang, Chenggang

    2011-12-15

    The visualization of gene structure plays an important role in polymerase chain reaction (PCR) primer design, especially for eukaryotic genes with a number of splice variants that users need to distinguish between via PCR. Here, we describe a visualized web server for primer design named VizPrimer. It utilizes the new information technology (IT) tools, HTML5 to display gene structure and JavaScript to interact with the users. In VizPrimer, the users can focus their attention on the gene structure and primer design strategy, without wasting time calculating the exon positions of splice variants or manually configuring complicated parameters. In addition, VizPrimer is also suitable for the design of PCR primers for amplifying open reading frames and detecting single nucleotide polymorphisms (SNPs). VizPrimer is freely available at http://biocompute.bmi.ac.cn/CZlab/VizPrimer/. The web server supported browsers: Chrome (≥5.0), Firefox (≥3.0), Safari (≥4.0) and Opera (≥10.0). zhangcg@bmi.ac.cn; yangyi528@vip.sina.com.

  8. PHUSER (Primer Help for USER): a novel tool for USER fusion primer design.

    Science.gov (United States)

    Olsen, Lars Rønn; Hansen, Niels Bjørn; Bonde, Mads Tvillinggaard; Genee, Hans Jasper; Holm, Dorte Koefoed; Carlsen, Simon; Hansen, Bjarne Gram; Patil, Kiran Raosaheb; Mortensen, Uffe Hasbro; Wernersson, Rasmus

    2011-07-01

    Uracil-Specific Exision Reagent (USER) fusion is a recently developed technique that allows for assembly of multiple DNA fragments in a few simple steps. However, designing primers for USER fusion is both tedious and time consuming. Here, we present the Primer Help for USER (PHUSER) software, a novel tool for designing primers specifically for USER fusion and USER cloning applications. We also present proof-of-concept experimental validation of its functionality. PHUSER offers quick and easy design of PCR optimized primers ensuring directionally correct fusion of fragments into a plasmid containing a customizable USER cassette. Designing primers using PHUSER ensures that the primers have similar annealing temperature (T(m)), which is essential for efficient PCR. PHUSER also avoids identical overhangs, thereby ensuring correct order of assembly of DNA fragments. All possible primers are individually analysed in terms of GC content, presence of GC clamp at 3'-end, the risk of primer dimer formation, the risk of intra-primer complementarity (secondary structures) and the presence of polyN stretches. Furthermore, PHUSER offers the option to insert linkers between DNA fragments, as well as highly flexible cassette options. PHUSER is publicly available at http://www.cbs.dtu.dk/services/phuser/.

  9. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications.

    Science.gov (United States)

    Spinelli, Nicolas; Defrancq, Eric; Morvan, François

    2013-06-07

    Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.

  10. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  11. Beam shaping for laser initiated optical primers

    Science.gov (United States)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  12. RExPrimer: an integrated primer designing tool increases PCR effectiveness by avoiding 3' SNP-in-primer and mis-priming from structural variation.

    Science.gov (United States)

    Piriyapongsa, Jittima; Ngamphiw, Chumpol; Assawamakin, Anunchai; Wangkumhang, Pongsakorn; Suwannasri, Payiarat; Ruangrit, Uttapong; Agavatpanitch, Gallissara; Tongsima, Sissades

    2009-12-03

    Polymerase chain reaction (PCR) is very useful in many areas of molecular biology research. It is commonly observed that PCR success is critically dependent on design of an effective primer pair. Current tools for primer design do not adequately address the problem of PCR failure due to mis-priming on target-related sequences and structural variations in the genome. We have developed an integrated graphical web-based application for primer design, called RExPrimer, which was written in Python language. The software uses Primer3 as the primer designing core algorithm. Locally stored sequence information and genomic variant information were hosted on MySQLv5.0 and were incorporated into RExPrimer. RExPrimer provides many functionalities for improved PCR primer design. Several databases, namely annotated human SNP databases, insertion/deletion (indel) polymorphisms database, pseudogene database, and structural genomic variation databases were integrated into RExPrimer, enabling an effective without-leaving-the-website validation of the resulting primers. By incorporating these databases, the primers reported by RExPrimer avoid mis-priming to related sequences (e.g. pseudogene, segmental duplication) as well as possible PCR failure because of structural polymorphisms (SNP, indel, and copy number variation (CNV)). To prevent mismatching caused by unexpected SNPs in the designed primers, in particular the 3' end (SNP-in-Primer), several SNP databases covering the broad range of population-specific SNP information are utilized to report SNPs present in the primer sequences. Population-specific SNP information also helps customize primer design for a specific population. Furthermore, RExPrimer offers a graphical user-friendly interface through the use of scalable vector graphic image that intuitively presents resulting primers along with the corresponding gene structure. In this study, we demonstrated the program effectiveness in successfully generating primers for strong

  13. Specific primer design for the polymerase chain reaction.

    Science.gov (United States)

    Chuang, Li-Yeh; Cheng, Yu-Huei; Yang, Cheng-Hong

    2013-10-01

    The design of primers has a major impact on the success of PCR in relation to the specificity and yield of the amplified product. Here, we introduce the applications of PCR as well as the definition and characteristics for PCR primer design. Recent primer design tools based on Primer3, along with several computational intelligence-based primer design methods which have been applied in primer design, are also reviewed. In addition, characteristics of population-based methods used in primer design are discussed in detail.

  14. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  15. Regularized degenerate multi-solitons

    CERN Document Server

    Correa, Francisco

    2016-01-01

    We report complex PT-symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schroedinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Baecklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  16. Degenerate Neutrinos and CP Violation

    CERN Document Server

    Ioannisian, A N

    2003-01-01

    We have studied mixing and masses of three left handed Majorana neutrinos in the model, which assumes exactly degenerate neutrino masses at some "neutrino unification" scale. Such a simple theoretical ansatz naturally leads to quasidegenerate neutrinos. The neutrino mass splittings induced by renormalization effects. In the model we found that the parameters of the neutrino physics (neutrino mass spectrum, mixing angles and CP violation phases) are strongly intercorrelated to each other. From these correlations we got strong bounds on the parameters which could be checked in the oscillation experiments.

  17. Radiative seesaw and degenerate neutrinos

    CERN Document Server

    Bajc, B; Bajc, Borut; Senjanovic, Goran

    2005-01-01

    The radiative see-saw mechanism of Witten generates the right-handed neutrino masses in SO(10) with the spinorial 16_H Higgs field. We study here analytically the 2nd and 3rd generations for the minimal Yukawa structure containing 10_H and 120_H Higgs representations. In the approximation of small 2nd generation masses and gauge loop domination we find the following results : (1) b-tau unification, (2) natural coexistence between large theta_l and small theta_q, (3) degenerate neutrinos.

  18. Hepatotoxic Potential of Therapeutic Oligonucleotides Can Be Predicted from Their Sequence and Modification Pattern

    Science.gov (United States)

    Hagedorn, Peter H.; Yakimov, Victor; Ottosen, Søren; Kammler, Susanne; Nielsen, Niels F.; Høg, Anja M.; Hedtjärn, Maj; Meldgaard, Michael; Møller, Marianne R.; Ørum, Henrik; Koch, Troels

    2013-01-01

    Antisense oligonucleotides that recruit RNase H and thereby cleave complementary messenger RNAs are being developed as therapeutics. Dose-dependent hepatic changes associated with hepatocyte necrosis and increases in serum alanine-aminotransferase levels have been observed after treatment with certain oligonucleotides. Although general mechanisms for drug-induced hepatic injury are known, the characteristics of oligonucleotides that determine their hepatotoxic potential are not well understood. Here, we present a comprehensive analysis of the hepatotoxic potential of locked nucleic acid-modified oligonucleotides in mice. We developed a random forests classifier, in which oligonucleotides are regarded as being composed of dinucleotide units, which distinguished between 206 oligonucleotides with high and low hepatotoxic potential with 80% accuracy as estimated by out-of-bag validation. In a validation set, 17 out of 23 oligonucleotides were correctly predicted (74% accuracy). In isolation, some dinucleotide units increase, and others decrease, the hepatotoxic potential of the oligonucleotides within which they are found. However, a complex interplay between all parts of an oligonucleotide can influence the hepatotoxic potential. Using the classifier, we demonstrate how an oligonucleotide with otherwise high hepatotoxic potential can be efficiently redesigned to abate hepatotoxic potential. These insights establish analysis of sequence and modification patterns as a powerful tool in the preclinical discovery process for oligonucleotide-based medicines. PMID:23952551

  19. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides

    Science.gov (United States)

    Yang, B.; Ming, X.; Cao, C.; Laing, B.; Yuan, A.; Porter, M. A.; Hull-Ryde, E. A.; Maddry, J.; Suto, M.; Janzen, W. P.; Juliano, R. L.

    2015-01-01

    The therapeutic use of antisense and siRNA oligonucleotides has been constrained by the limited ability of these membrane-impermeable molecules to reach their intracellular sites of action. We sought to address this problem using small organic molecules to enhance the effects of oligonucleotides by modulating their intracellular trafficking and release from endosomes. A high-throughput screen of multiple small molecule libraries yielded several hits that markedly potentiated the actions of splice switching oligonucleotides in cell culture. These compounds also enhanced the effects of antisense and siRNA oligonucleotides. The hit compounds preferentially caused release of fluorescent oligonucleotides from late endosomes rather than other intracellular compartments. Studies in a transgenic mouse model indicated that these compounds could enhance the in vivo effects of a splice-switching oligonucleotide without causing significant toxicity. These observations suggest that selected small molecule enhancers may eventually be of value in oligonucleotide-based therapeutics. PMID:25662226

  20. Biophysical and RNA Interference Inhibitory Properties of Oligonucleotides Carrying Tetrathiafulvalene Groups at Terminal Positions

    Directory of Open Access Journals (Sweden)

    Sónia Pérez-Rentero

    2013-01-01

    Full Text Available Oligonucleotide conjugates carrying a single functionalized tetrathiafulvalene (TTF unit linked through a threoninol molecule to the 3′ or 5′ ends were synthesized together with their complementary oligonucleotides carrying a TTF, pyrene, or pentafluorophenyl group. TTF-oligonucleotide conjugates formed duplexes with higher thermal stability than the corresponding unmodified oligonucleotides and pyrene- and pentafluorophenyl-modified oligonucleotides. TTF-modified oligonucleotides are able to bind to citrate-stabilized gold nanoparticles (AuNPs and produce stable gold AuNPs functionalized with oligonucleotides. Finally, TTF-oligoribonucleotides have been synthesized to produce siRNA duplexes carrying TTF units. The presence of the TTF molecule is compatible with the RNA interference mechanism for gene inhibition.

  1. Cloning a novd catalase gene of Sporothrix schenckii with degenerate PCR and RACE%简并PCR结合RACE技术克隆申克孢子丝菌未知过氧化氢酶基因

    Institute of Scientific and Technical Information of China (English)

    王晓慧; 刘伟; 李若瑜

    2011-01-01

    Objective To isolate a novel catalase homologous gene from yeast-form Sporothrix schenckii and to make a designation. Methods Oligonucleotide primers were designed according to the conserved areas of the other 7 fungal catalase genes. Partial Sscat cDNA was amplified by PCR, and special primers were designed by RACE method to amplify the 3'cDNA and 5'cDNA. ResultsThe full-length Sscat cDNA sequence was 1 746 bp with an open reading frame of1 500 bp encoding 499 amino acids. The predicted molecular mass of Sscat was 56.07 kDa. The deduced amino acid sequence of Sscat showed 66.3% and 56.6% identity with those of Aspergillus oryzae and A. clavatus . An intron was identified within the 933-1 063 bp Sscat genomic DNA sequence ofS. schenckii. Conclusions Degenerate PCR combined with RACE is effective in searching and isolating novel genes of 5. schenckii.%目的 克隆孢子丝菌未知过氧化氢酶基因,命名为Sscat基因.方法 根据生物信息库中7种已知真菌过氧化氢酶氨基酸序列的高度保守区域设计简并引物,PCR扩增获得部分Sscat基因cDNA片段,随后应用RACE技术分别扩增其3’端和5’端未知序列.结果 Sscat基因cDNA序列全长1746 bp,其中包括5’端121 bp的非编码区、1500 bp的编码区和109 bp的3’端非编码区.该基因编码499个氨基酸,分子量为56.07 kDa,其氨基酸序列与其他真菌过氧化氢酶氨基酸高度同源,其中与米曲霉、黑曲霉同源性分别为66.3%和56.6%,Sscat基因为申克孢子丝菌过氧化氢酶cDNA.结论 简并PCR结合RACE技术成功克隆了孢子丝菌未知过氧化氢酶基因.

  2. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys.

    Science.gov (United States)

    Geller, J; Meyer, C; Parker, M; Hawk, H

    2013-09-01

    DNA barcoding is a powerful tool for species detection, identification and discovery. Metazoan DNA barcoding is primarily based upon a specific region of the cytochrome c oxidase subunit I gene that is PCR amplified by primers HCO2198 and LCO1490 ('Folmer primers') designed by Folmer et al. (Molecular Marine Biology and Biotechnology, 3, 1994, 294). Analysis of sequences published since 1994 has revealed mismatches in the Folmer primers to many metazoans. These sequences also show that an extremely high level of degeneracy would be necessary in updated Folmer primers to maintain broad taxonomic utility. In primers jgHCO2198 and jgLCO1490, we replaced most fully degenerated sites with inosine nucleotides that complement all four natural nucleotides and modified other sites to better match major marine invertebrate groups. The modified primers were used to amplify and sequence cytochrome c oxidase subunit I from 9105 specimens from Moorea, French Polynesia and San Francisco Bay, California, USA representing 23 phyla, 42 classes and 121 orders. The new primers, jgHCO2198 and jgLCO1490, are well suited for routine DNA barcoding, all-taxon surveys and metazoan metagenomics.

  3. Functionalization of magnetic gold/iron-oxide composite nanoparticles with oligonucleotides and magnetic separation of specific target

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Takuya [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: t-kinoshita@mit.eng.osaka-u.ac.jp; Seino, Satoshi [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mizukoshi, Yoshiteru [Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan); Nakagawa, Takashi [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2007-04-15

    Magnetic composite nanoparticles of gold and iron-oxide synthesized with gamma-rays or ultrasonics were functionalized with thiol-modified oligonucleotides. The amount of oligonucleotides bound to the functionalized nanoparticle probes via hybridization was quantified with fluorescently-labeled target oligonucleotides. Our composite nanoparticles magnetically separated the specific target oligonucleotides without the non-specific adsorption.

  4. Macular Degeneration Prevention and Risk Factors

    Science.gov (United States)

    ... Grant Terms & Conditions Patent & Intellectual Property Policy For Current Awardees FAQs Our Funding Philosophy ... Alzheimer’s Disease Research Macular Degeneration Research National Glaucoma Research ...

  5. [Pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  6. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  7. Structure of Degenerate Block Algebras

    Institute of Scientific and Technical Information of China (English)

    Linsheng Zhu; Daoji Meng

    2003-01-01

    Given a non-trivial torsion-free abelian group (A,+,0), a field F of characteristic 0, and a non-degenerate bi-additive skew-symmetric map φ :A × A → F, we define a Lie algebra ∑ = ∑(A, φ) over F with basis {ex | x ∈ A\\{0}}and Lie product [ex, ey] = φ(x, y)ex+y. We show that ∑ is endowed uniquely with a non-degenerate symmetric invariant bilinear form and the derivation algebra Der ∑ of ∑ is a complete Lie algebra. We describe the double extension D(∑, T) of ∑ by T, where T is spanned by the locally finite derivations of ∑, and determine the second cohomology group H2(D(∑,T),F) using anti-derivations related to the form on D(∑, T). Finally, we compute the second Leibniz cohomology groups HL2(∑, F) and HL2(D(∑, T), F).

  8. Evaluation of Different Primers for Detection of Brucella by Using PCR Method

    Science.gov (United States)

    Moulana, Zahra; Roushan, Mohammad Reza Hasanjani; Marashi, Seyed Mahmoud Amin

    2016-01-01

    Introduction Brucellosis is a worldwide zoonosis and a significant cause of loss of health in humans and animals. Traditionally, classic diagnosis is carried out by isolation of Brucella, which is time-consuming, technically challenging and potentially dangerous. The aim of this study was to expand a molecular test that would be used for the develop detection of Brucella in a single reaction with high sensitivity and specificity, by targeting IS711element. Methods This study was carried out from 2015 to 2016 at the Ayatolla Rohani hospital in Babol, Iran. The present study was designed to develop PCR assay, based on IS711 gene for rapid diagnosis of Brucella spp. and immediate detection of Brucella, with high sensitivity and specificity. Four pairs of oligo-nucleotide primers with sizes of 547, 403, 291 and 127bp respectively, were planned to exclusively amplify the targeted genes of Brucella species. Results Our results show that, five PCR primers set up, would be helpful in amplifying the DNAs from the genus Brucella with high specificity and sensitivity so it can be 12 fg, for Brucella species to provide a valuable tool for diagnosis. Conclusion This method can be more useful than serological and biochemical tests and in addition, this reduces the number of required tests more rapidly and economically. PMID:28070255

  9. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Directory of Open Access Journals (Sweden)

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  10. Microsatellite primers for fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Gertsch, P J; Boomsma, JJ

    2002-01-01

    developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants.......We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...

  11. Microsatellite Primers for Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen Fredsted, Palle; Gertsch, Pia J.; Boomsma, Jacobus Jan (Koos)

    2002-01-01

    developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants.......We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...

  12. Microsatellite Primers for Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen Fredsted, Palle; Gertsch, Pia J.; Boomsma, Jacobus Jan (Koos)

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  13. Microsatellite primers for fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Gertsch, P J; Boomsma, JJ

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  14. Fluorescence quenching of TMR by guanosine in oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter-and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of Ks=52.3 M-1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.

  15. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    Science.gov (United States)

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  16. Palladium-Catalyzed Modification of Unprotected Nucleosides, Nucleotides, and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Kevin H. Shaughnessy

    2015-05-01

    Full Text Available Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  17. One-oligonucleotide method for constructing vectors for RNA interference

    Institute of Scientific and Technical Information of China (English)

    Carlos Fabian FLORES-JASSO; Ines VELAZQUEZ-QUESADA; Carlos LANDA-SOLIS; Andres A GUTIERREZ; Luis VACA

    2005-01-01

    Aim: To develop an easy, fast, automated, and inexpensive method for constructing short-hairpin-RNA cassettes for RNAi studies. Methods: Using single oligonucleotides, a variety of DNA cassettes for RNAi vectors were constructed in only few minutes in an automated manner. The cassettes, targeting the eGFP,were cloned into plasmids driven by RNA polymerase Ⅲ promoter H 1. Then, the plasmids were transfected into HeLa cells that were later infected with a recombinant adenovirus encoding the eGFP gene. The level of eGFP fluorescence was evaluated by confocal imaging and flow cytometry. Results: The plasmids constructed with the DNA cassettes made by the one-oligonucleotide method inhibited eGFP with different potencies, ranging from 55% to 75%. Conclusion: By using the method reported here, it is possible to simultaneously construct hundreds of different DNA cassettes for RNAi experiments in an inexpensive, automated way. This method will facilitate functional genomics studies on mammalian cells.

  18. Typing of enteroviruses by use of microwell oligonucleotide arrays.

    Science.gov (United States)

    Susi, P; Hattara, L; Waris, M; Luoma-Aho, T; Siitari, H; Hyypiä, T; Saviranta, P

    2009-06-01

    We have developed a straightforward assay for the rapid typing of enteroviruses using oligonucleotide arrays in microtiter wells. The viral nucleic acids are concomitantly amplified and labeled during reverse transcription-PCR, and unpurified PCR products are used for hybridization. DNA strands are separated by alkaline denaturation, and hybridization is started by neutralization. The microarray hybridization reactions and the subsequent washes are performed in standard 96-well microtiter plates, which makes the method easily adaptable to high-throughput analysis. We describe here the assay principle and its potential in clinical laboratory use by correctly identifying 10 different enterovirus reference strains. Furthermore, we explore the detection of unknown sequence variants using serotype consensus oligonucleotide probes. With just two consensus probes for the coxsackievirus A9 (CVA9) serotype, we detected 23 out of 25 highly diverse CVA9 isolates. Overall, the assay involves several features aiming at ease of performance, robustness, and applicability to large-scale studies.

  19. Inhibition of HTLV-III by exogenous oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Goodchild, J.; Zamecnik, P.C.

    1989-02-21

    A method is described of detecting the presence of HTLV-III virus in a sample by demonstrating inhibition of replication of the virus in cells which are normally killed by the HTLV-III virus after the cells have been (a) combined with the sample and an oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication and capable of hybridizing with at least the highly conserved region, the highly conserved region of the HTLV-III genome being a nucleotide sequence present in the genomes of HTLV-III isolates and the oligonucleotide complementary to at least one highly conserved region of the HTLV-III genome necessary for HTLV-III replication being complementary to a region of the HTLV-III genome.

  20. Solid-phase synthesis of siRNA oligonucleotides.

    Science.gov (United States)

    Beaucage, Serge L

    2008-03-01

    Since the discovery of RNA interference (RNAi) as a means to silence the expression of specific genes, small interfering RNA (siRNA) oligonucleotides have been recognized as powerful tools for targeting therapeutically important mRNAs and eliciting their destruction. This discovery has created a high demand for synthetic oligoribonucleotides as potential therapeutics and has spurred a renaissance in the development of rapid, efficient methods for solid-phase RNA synthesis. The design and implementation of 2'-hydroxyl protecting groups that provide ribonucleoside phosphoramidites with coupling kinetics and coupling efficiencies comparable to those of deoxyribonucleoside phosphoramidites are key to the production of RNA oligonucleotides in sufficient quantity and purity for pharmaceutical applications. In this context, various siRNAs were chemically modified to identify the biophysical and biochemical parameters necessary for effective and stable RNAi-mediated gene-silencing activities.

  1. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  2. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides.

    Science.gov (United States)

    Graham, Mark J; Lee, Richard G; Brandt, Teresa A; Tai, Li-Jung; Fu, Wuxia; Peralta, Raechel; Yu, Rosie; Hurh, Eunju; Paz, Erika; McEvoy, Bradley W; Baker, Brenda F; Pham, Nguyen C; Digenio, Andres; Hughes, Steven G; Geary, Richard S; Witztum, Joseph L; Crooke, Rosanne M; Tsimikas, Sotirios

    2017-07-20

    Epidemiologic and genomewide association studies have linked loss-of-function variants in ANGPTL3, encoding angiopoietin-like 3, with low levels of plasma lipoproteins. We evaluated antisense oligonucleotides (ASOs) targeting Angptl3 messenger RNA (mRNA) for effects on plasma lipid levels, triglyceride clearance, liver triglyceride content, insulin sensitivity, and atherosclerosis in mice. Subsequently, 44 human participants (with triglyceride levels of either 90 to 150 mg per deciliter [1.0 to 1.7 mmol per liter] or >150 mg per deciliter, depending on the dose group) were randomly assigned to receive subcutaneous injections of placebo or an antisense oligonucleotide targeting ANGPTL3 mRNA in a single dose (20, 40, or 80 mg) or multiple doses (10, 20, 40, or 60 mg per week for 6 weeks). The main end points were safety, side-effect profile, pharmacokinetic and pharmacodynamic measures, and changes in levels of lipids and lipoproteins. The treated mice had dose-dependent reductions in levels of hepatic Angptl3 mRNA, Angptl3 protein, triglycerides, and low-density lipoprotein (LDL) cholesterol, as well as reductions in liver triglyceride content and atherosclerosis progression and increases in insulin sensitivity. After 6 weeks of treatment, persons in the multiple-dose groups had reductions in levels of ANGPTL3 protein (reductions of 46.6 to 84.5% from baseline, Pantisense oligonucleotide and three who received placebo reported dizziness or headache. There were no serious adverse events. Oligonucleotides targeting mouse Angptl3 retarded the progression of atherosclerosis and reduced levels of atherogenic lipoproteins in mice. Use of the same strategy to target human ANGPTL3 reduced levels of atherogenic lipoproteins in humans. (Funded by Ionis Pharmaceuticals; ClinicalTrials.gov number, NCT02709850 .).

  3. Voltammetric behaviour of oligonucleotide lipoplexes adsorbed onto glassy carbon electrodes

    OpenAIRE

    Piedade, J. A. P.; M. Mano; Lima, M. C. Pedroso de; Oretskaya, T S; Oliveira-Brett, A. M.

    2004-01-01

    The voltammetric behaviour of oligonucleotide lipoplexes (ODN-lipoplexes) prepared from short oligodeoxynucleotides (ODN), with different base compositions, and liposomes of the cationic lipid DOTAP, was studied by differential pulse voltammetry with a glassy carbon mini-electrode. It was found that the ODN base composition influences the ODN-lipoplex voltammetric response. Differential pulse voltammograms for ODN-lipoplexes of the ODN adenosine nucleotides present two different features when...

  4. Thermodynamic treatment of oligonucleotide duplex–simplex equilibria

    Science.gov (United States)

    Owczarzy, Richard; Dunietz, Isard; Behlke, Mark A.; Klotz, Irving M.; Walder, Joseph A.

    2003-01-01

    Thermodynamic formulations have been devised to obtain ΔG° values directly from spectroscopic data at a fixed common temperature in nucleic acid duplex–simplex melting curves. In addition, the dependence of melting on salt concentration has been expressed in terms of a stepwise stoichiometric representation, which leads to a specific equation for the partition of the added sodium ions between the different oligonucleotide forms. PMID:14657395

  5. Anti-tumor activity of splice-switching oligonucleotides

    OpenAIRE

    Bauman, John A; Li, Shyh-Dar; Yang, Angela; Huang, Leaf; Kole, Ryszard

    2010-01-01

    Alternative splicing has emerged as an important target for molecular therapies. Splice-switching oligonucleotides (SSOs) modulate alternative splicing by hybridizing to pre-mRNA sequences involved in splicing and blocking access to the transcript by splicing factors. Recently, the efficacy of SSOs has been established in various animal disease models; however, the application of SSOs against cancer targets has been hindered by poor in vivo delivery of antisense therapeutics to tumor cells. T...

  6. Triplex-forming oligonucleotide target sequences in the human genome

    OpenAIRE

    Goñi, J Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of th...

  7. Differentiation of regions with atypical oligonucleotide composition in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Reva Oleg N

    2005-10-01

    Full Text Available Abstract Background Complete sequencing of bacterial genomes has become a common technique of present day microbiology. Thereafter, data mining in the complete sequence is an essential step. New in silico methods are needed that rapidly identify the major features of genome organization and facilitate the prediction of the functional class of ORFs. We tested the usefulness of local oligonucleotide usage (OU patterns to recognize and differentiate types of atypical oligonucleotide composition in DNA sequences of bacterial genomes. Results A total of 163 bacterial genomes of eubacteria and archaea published in the NCBI database were analyzed. Local OU patterns exhibit substantial intrachromosomal variation in bacteria. Loci with alternative OU patterns were parts of horizontally acquired gene islands or ancient regions such as genes for ribosomal proteins and RNAs. OU statistical parameters, such as local pattern deviation (D, pattern skew (PS and OU variance (OUV enabled the detection and visualization of gene islands of different functional classes. Conclusion A set of approaches has been designed for the statistical analysis of nucleotide sequences of bacterial genomes. These methods are useful for the visualization and differentiation of regions with atypical oligonucleotide composition prior to or accompanying gene annotation.

  8. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    Science.gov (United States)

    Musumeci, Domenica; Riccardi, Claudia; Montesarchio, Daniela

    2015-09-22

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  9. Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

    Science.gov (United States)

    Linshiz, Gregory; Yehezkel, Tuval Ben; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2008-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.

  10. Particle-Based Microarrays of Oligonucleotides and Oligopeptides.

    Science.gov (United States)

    Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F

    2014-10-28

    In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  11. Particle-Based Microarrays of Oligonucleotides and Oligopeptides

    Directory of Open Access Journals (Sweden)

    Alexander Nesterov-Mueller

    2014-10-01

    Full Text Available In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  12. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    Science.gov (United States)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  13. THERAPEUTIC ANTISENSE OLIGONUCLEOTIDES AGAINST CANCER: HURDLING TO THE CLINIC

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Duarte Moreno

    2014-10-01

    Full Text Available Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen, oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  14. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing

    Science.gov (United States)

    Nishina, Kazutaka; Piao, Wenying; Yoshida-Tanaka, Kie; Sujino, Yumiko; Nishina, Tomoko; Yamamoto, Tsuyoshi; Nitta, Keiko; Yoshioka, Kotaro; Kuwahara, Hiroya; Yasuhara, Hidenori; Baba, Takeshi; Ono, Fumiko; Miyata, Kanjiro; Miyake, Koichi; Seth, Punit P.; Low, Audrey; Yoshida, Masayuki; Bennett, C. Frank; Kataoka, Kazunori; Mizusawa, Hidehiro; Obika, Satoshi; Yokota, Takanori

    2015-01-01

    Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field. PMID:26258894

  15. Ultrathin oligonucleotide layers for fluorescence-based DNA sensors

    Science.gov (United States)

    Furch, M.; Ueberfeld, J.; Hartmann, Andreas; Bock, Daniel; Seeger, Stefan

    1996-11-01

    Preliminary investigations into the design of an affinity sensor using evanescent wave technology concentrate upon the means of immobilization of the receptor molecules. In this work DNA served as the selective recognition element. The molecular principle of a sequence-selective biosensor for DNA is based on a sandwich-hybridization assay wherein the analyte, a single-stranded (ss)DNA, bound specifically to both an immobilized capture probe and a dye-labeled oligonucleotide in free solution. The efficiency of the capture array depends on the density of highly organized oligonucleotides on the waveguide surface and correlates therefore directly with the specificity and the sensitivity of the sensor. In the present approach using the Langmuir- Blodgett technique cinnamoylbutylether-cellulose monolayers were transferred onto optical fibers or planar waveguides. These films served as matrices for the immobilization of biotinylated oligonucleotides via streptavidin. For the first time streptavidin was immobilized by that manner. The specificity of the streptavidin layer or the following bounded nucleic acid molecules were controlled by an enzyme- linked immunosorbent assay (ELISA). Finally, this application has also shown to be suitable for the detection of Salmonella, which is an important pathogen associated with acute gastroenteritidis and food borne diseases.

  16. Targeting several CAG expansion diseases by a single antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Melvin M Evers

    Full Text Available To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2'-O-methyl phosphorothioate (CUGn triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG(7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.

  17. Characterization of self-assembled DNA concatemers from synthetic oligonucleotides

    Directory of Open Access Journals (Sweden)

    Lu Sun

    2014-08-01

    Full Text Available Studies of DNA–ligand interaction on a single molecule level provide opportunities to understand individual behavior of molecules. Construction of DNA molecules with repetitive copies of the same segments of sequences linked in series could be helpful for enhancing the interaction possibility for sequence-specific binding ligand to DNA. Here we report on the use of synthetic oligonucleotides to self-assembly into duplex DNA concatemeric molecules. Two strands of synthetic oligonucleotides used here were designed with 50-mer in length and the sequences are semi-complimentary so to hybridize spontaneously into concatemers of double stranded DNA. In order to optimize the length of the concatemers the oligonucleotides were incubated at different oligomer concentrations, ionic strengths and temperatures for different durations. Increasing the salt concentration to 200 mM NaCl was found to be the major optimizing factor because at this enhanced ionic strength the concatemers formed most quickly and the other parameters had no detectable effect. The size and shape of formed DNA concatemers were studied by gel electrophoresis in agarose, polyacrylamide gels and by AFM. Our results show that linear DNA constructs up to several hundred base pairs were formed and could be separated from a substantial fraction of non-linear constructs.

  18. QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR

    Directory of Open Access Journals (Sweden)

    Kwasniewski Miroslaw

    2008-11-01

    Full Text Available Abstract Background Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays. Results Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet http://www.quantprime.de/ or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total, while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96%. Conclusion QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.

  19. Primer design versus PCR bias in methylation independent PCR amplifications.

    Science.gov (United States)

    Wojdacz, Tomasz K; Borgbo, Tanni; Hansen, Lise Lotte

    2009-05-16

    Many protocols in methylation studies utilize one primer set to generate a PCR product from bisulfite modified template regardless of its methylation status (methylation independent amplification MIP). However, proportional amplification of methylated and unmethylated alleles is hard to achieve due to PCR bias favoring amplification of unmethylated relatively GC poor sequence. Two primer design systems have been proposed to overcome PCR bias in methylation independent amplifications. The first advises against including any CpG dinucleoteides into the primer sequence (CpG-free primers) and the second, recently published by us, is based on inclusion of a limited number of CpG sites into the primer sequence. Here we used the Methylation Sensitive High Resolution Melting (MS-HRM) technology to investigate the ability of primers designed according to both of the above mentioned primer design systems to proportionally amplify methylated and unmethylated templates. Ten "CpG-free" primer pairs and twenty primers containing limited number of CpGs were tested. In reconstruction experiments the "CpG-free" primers showed primer specific sensitivity and allowed us to detect methylation levels in the range from 5 to 50%. Whereas while using primers containing limited number of CpG sites we were able to consistently detect 1-0.1% methylation levels and effectively control PCR amplification bias. In conclusion, the primers with limited number of CpG sites are able to effectively reverse PCR bias and therefore detect methylated templates with significantly higher sensitivity than CpG free primers.

  20. A Primer on Policies for Jobs

    OpenAIRE

    Nallari, Raj; Griffith, Breda; Wang, Yidan; Andriamananjara, Soamiely; Derek H. C. Chen; Bhattacharya, Rwitwika

    2012-01-01

    A primer on policies for jobs is based on materials and input provided during the labor market courses conducted during the past 10 years. Its objective is to provide government policy makers, researchers, and labor market practitioners and other specialists with a practical guide on how to strengthen labor market institutions, especially in light of the global financial crisis. This prime...

  1. Environmentally Acceptable Medium Caliber Ammunition Percussion Primers

    Science.gov (United States)

    2007-10-31

    typically contain lead styphnate and antimony sulfide along with other constituents. Although highly effective, these heavy metal compounds have been...contain barium nitrate. Although not negatively categorized by the EPA itself, barium compounds are generally regarded as toxic and likewise should...contains the lead styphnate based FA956 composition2 which is a typical formulation of conventional military ammunition percussion primers. The

  2. Issues Primer. EEE708 Negotiated Study Program.

    Science.gov (United States)

    Jennings, Leonie

    This issues primer is structured around a series of 20 contemporary concerns in the changing world of work and training in Australia in the early 1990s. It is part of the study materials for the one-semester distance education unit, Negotiated Study Program, in the Open Campus Program at Deakin University (Australia). Information on each issue is…

  3. Internet Primer: Workshop Design and Objectives.

    Science.gov (United States)

    Laverty, Corinne Y. C.

    1996-01-01

    Outlines the design, objectives, and evaluation of an introductory Internet workshop offered with library instruction classes in an electronic classroom at Queens University (Kingston, Ontario, Canada). Presents teaching tips and frequently-asked questions. The Internet primer handouts are appended. (AEF)

  4. Genetic association studies in lumbar disc degeneration

    DEFF Research Database (Denmark)

    Eskola, Pasi J; Lemmelä, Susanna; Kjaer, Per

    2012-01-01

    Low back pain is associated with lumbar disc degeneration, which is mainly due to genetic predisposition. The objective of this study was to perform a systematic review to evaluate genetic association studies in lumbar disc degeneration as defined on magnetic resonance imaging (MRI) in humans....

  5. Degenerated differential pair with controllable transconductance

    NARCIS (Netherlands)

    Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram

    1998-01-01

    A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are interconne

  6. Regularized degenerate multi-solitons

    Science.gov (United States)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  7. Naturalness of nearly degenerate neutrinos

    CERN Document Server

    Casas, J A; Ibarra, Alejandro; Navarro, I

    1999-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Delta m^2_{sol} << Delta m^2_{atm} hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all the observations.

  8. Degenerate doping of metallic anodes

    Science.gov (United States)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  9. A study of oligonucleotide occurrence distributions in DNA coding segments.

    Science.gov (United States)

    Castrignanò, T; Colosimo, A; Morante, S; Parisi, V; Rossi, G C

    1997-02-21

    In this paper we present a general strategy designed to study the occurrence frequency distributions of oligonucleotides in DNA coding segments and to deal with the problem of detecting possible patterns of genomic compositional inhomogeneities and disuniformities. Identifying specific tendencies or peculiar deviations in the distributions of the effective occurrence frequencies of oligonucleotides, with respect to what can be a priori expected, is of the greatest importance in biology. Differences between expected and actual distributions may in fact suggest or confirm the existence of specific biological mechanisms related to them. Similarly, a marked deviation in the occurrence frequency of an oligonucleotide may suggest that it belongs to the class of so-called "DNA signal (target) sequences". The approach we have elaborated is innovative in various aspects. Firstly, the analysis of the genomic data is carried out in the light of the observation that the distribution of the four nucleotides along the coding regions of the genoma is biased by the existence of a well-defined "reading frame". Secondly, the "experimental" numbers found by counting the occurrences of the various oligonucleotide sequences are appropriately corrected for the many kinds of mistakes and redundancies present in the available genetic Data Bases. A methodologically significant further improvement of our approach over the existing searching strategies is represented by the fact that, in order to decide whether or not the (corrected) "experimental" value of the occurrence frequency of a given oligonucleotide is within statistical expectations, a measure of the strength of the selective pressure, having acted on it in the course of the evolution, is assigned to the sequence, in a way that takes into account both the value of the "experimental" occurrence frequency of the sequence and the magnitude of the probability that this number might be the result of statistical fluctuations. If the

  10. PrimerDesign-M: a multiple-alignment based multiple-primer design tool for walking across variable genomes.

    Science.gov (United States)

    Yoon, Hyejin; Leitner, Thomas

    2015-05-01

    Analyses of entire viral genomes or mtDNA requires comprehensive design of many primers across their genomes. Furthermore, simultaneous optimization of several DNA primer design criteria may improve overall experimental efficiency and downstream bioinformatic processing. To achieve these goals, we developed PrimerDesign-M. It includes several options for multiple-primer design, allowing researchers to efficiently design walking primers that cover long DNA targets, such as entire HIV-1 genomes, and that optimizes primers simultaneously informed by genetic diversity in multiple alignments and experimental design constraints given by the user. PrimerDesign-M can also design primers that include DNA barcodes and minimize primer dimerization. PrimerDesign-M finds optimal primers for highly variable DNA targets and facilitates design flexibility by suggesting alternative designs to adapt to experimental conditions. PrimerDesign-M is available as a webtool at http://www.hiv.lanl.gov/content/sequence/PRIMER_DESIGN/primer_design.html tkl@lanl.gov or seq-info@lanl.gov. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  11. A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method.

    Science.gov (United States)

    García, Liliana Torcoroma; Cristancho, Laura Maritza; Vera, Erika Patricia; Begambre, Oscar

    2015-10-01

    This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex- PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

  12. Comparison between Mt-DNA D-Loop and Cyt B primers for porcine DNA detection in meat products

    Science.gov (United States)

    Hamzah, Azhana; Mutalib, Sahilah Abd.; Babji, Abdul Salam

    2013-11-01

    This study was conducted to detect the presence of porcine DNA in meat products in the market using conventional polymerase chain reaction (PCR) and commercial PCR-southern hybridization analysis. Porcine DNA detection in meat products was tested due to some issues associated with the adulteration of food products in Malaysia. This is an important issue especially for Halal authentication which is required for some religious practices such as in Islam and Hinduisms. Many techniques have been developed for determining the Halal status of food products. In this paper, mt-DNA D-loop primer and cytochrome (cyt) b were used to detect the presence of porcine DNA in meat products. Positive and negative controls were always present for each batch of extraction. DNA of raw pork meat was used as a positive control while nucleus free water is used as negative control. A pair of oligonucleotide primer was used namely Pork1 and Pork2 which produced amplicon of 531 base pair (bp) in size. While, PCR-southern hybridization was conducted using primers readily supplied by commercial PCR-Southern hybridization and produced amplicon with 276 bp in size. In the present study, demonstrated that none of the samples were contaminated with porcine residuals but selected samples with pork meat were positive. The species-specific PCR amplification yielded excellent results for identification of pork derivatives in food products and it is a potentially reliable and suitable technique in routine food analysis for Halal certification.

  13. Primer design using Primer Express® for SYBR Green-based quantitative PCR.

    Science.gov (United States)

    Singh, Amarjeet; Pandey, Girdhar K

    2015-01-01

    To quantitate the gene expression, real-time RT-PCR or quantitative PCR (qPCR) is one of the most sensitive, reliable, and commonly used methods in molecular biology. The reliability and success of a real-time PCR assay depend on the optimal experiment design. Primers are the most important constituents of real-time PCR experiments such as in SYBR Green-based detection assays. Designing of an appropriate and specific primer pair is extremely crucial for correct estimation of transcript abundance of any gene in a given sample. Here, we are presenting a quick, easy, and reliable method for designing target-specific primers using Primer Express(®) software for real-time PCR (qPCR) experiments.

  14. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    Science.gov (United States)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  15. Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays

    Directory of Open Access Journals (Sweden)

    Khan Shehnaz

    2004-02-01

    Full Text Available Abstract Background Spotted 70-mer oligonucleotide arrays offer potentially greater specificity and an alternative to expensive cDNA library maintenance and amplification. Since microarray fabrication is a considerable source of data variance, we previously directly tagged cDNA probes with a third fluorophore for prehybridization quality control. Fluorescently modifying oligonucleotide sets is cost prohibitive, therefore, a co-spotted Staphylococcus aureus-specific fluorescein-labeled "tracking" oligonucleotide is described to monitor fabrication variables of a Mycobacterium tuberculosis oligonucleotide microarray. Results Significantly (p M. tuberculosis H37Rv and M. tuberculosis mprA. Linearity between the mean log Cy3/Cy5 ratios of genes differentially expressed from arrays either possessing or lacking the tracking oligonucleotide was observed (R2 = 0.90, p Conclusions This novel approach enables prehybridization array visualization for spotted oligonucleotide arrays and sets the stage for more sophisticated slide qualification and data filtering applications.

  16. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  17. Modulating anti-MicroRNA-21 activity and specificity using oligonucleotide derivatives and length optimization

    DEFF Research Database (Denmark)

    Munoz-Alarcon, Andres; Guterstam, Peter; Romero, Cristian

    2012-01-01

    but reduced specificity when incorporating locked nucleic acid monomers, whereas the opposite was observed when introducing unlocked nucleic acid monomers. Our data suggest that phosphorothioate anti-microRNA oligonucleotides yield a greater activity than their phosphodiester counterparts and that a moderate...... truncation of the anti-microRNA oligonucleotide improves specificity without significantly losing activity. These results provide useful insights for design of anti-microRNA oligonucleotides to achieve both high activity as well as efficient mismatch discrimination....

  18. Synthesis of triazole-nucleoside phosphoramidites and their use in solid-phase oligonucleotide synthesis.

    Science.gov (United States)

    Peel, Brandon J; Efthymiou, Tim C; Desaulniers, Jean-Paul

    2014-12-19

    Triazole-backbone oligonucleotides are macromolecules that have one or more triazole units that are acting as a backbone mimic. Triazoles within the backbone have been used within oligonucleotides for a variety of applications. This unit describes the preparation and synthesis of two triazole-nucleoside phosphoramidites [uracil-triazole-uracil (UtU) and cytosine-triazole-uracil (CtU)] based on a PNA-like scaffold, and their incorporation within oligonucleotides.

  19. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide wit......, to a method for preparing a labelled oligonucleotide, and to the use of the labelled oligonucleotide as hybridisation probe, in polymerase chain reactions (PCR), in nucleic acid sequencing, in cloning recombinant DNA and $i(in vitro) mutagenesis....

  20. Hemopoiesis-stimulating activity of immobilized oligonucleotides and hyaluronidase during cytostatic-induced myelosuppression.

    Science.gov (United States)

    Dygai, A M; Skurikhin, E G; Pershina, O V; Zhdanov, V V; Khmelevskaya, A M; Andreeva, T V; Poponina, A M; Zjuzkov, G N; Udut, E V; Khrichkova, T Ju; Simanina, E V; Miroshnichenko, L A; Stavrova, L A; Tchaikovsky, A S; Markova, T S; Gurto, R V; Brjushinina, O S; Slepichev, V A

    2011-03-01

    The hemopoiesis-stimulating effect of combined treatment with immobilized oligonucleotides and hyaluronidase preparations was studied during cytostatic-induced myelosuppression caused by cyclophosphamide administration. Immobilized hyaluronidase was shown to increase the efficiency of correction of changes in the erythroid and granulocytic hemopoietic stems with immobilized oligonucleotides. This potentiation of the effect of immobilized oligonucleotides by immobilized hyaluronidase was related to an increase in functional activity of committed hemopoietic precursors.

  1. PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR.

    Science.gov (United States)

    Lu, Jennifer; Johnston, Andrew; Berichon, Philippe; Ru, Ke-Lin; Korbie, Darren; Trau, Matt

    2017-01-24

    The analysis of DNA methylation at CpG dinucleotides has become a major research focus due to its regulatory role in numerous biological processes, but the requisite need for assays which amplify bisulfite-converted DNA represents a major bottleneck due to the unique design constraints imposed on bisulfite-PCR primers. Moreover, a review of the literature indicated no available software solutions which accommodated both high-throughput primer design, support for multiplex amplification assays, and primer-dimer prediction. In response, the tri-modular software package PrimerSuite was developed to support bisulfite multiplex PCR applications. This software was constructed to (i) design bisulfite primers against multiple regions simultaneously (PrimerSuite), (ii) screen for primer-primer dimerizing artefacts (PrimerDimer), and (iii) support multiplex PCR assays (PrimerPlex). Moreover, a major focus in the development of this software package was the emphasis on extensive empirical validation, and over 1300 unique primer pairs have been successfully designed and screened, with over 94% of them producing amplicons of the expected size, and an average mapping efficiency of 93% when screened using bisulfite multiplex resequencing. The potential use of the software in other bisulfite-based applications such as methylation-specific PCR is under consideration for future updates. This resource is freely available for use at PrimerSuite website (www.primer-suite.com).

  2. PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR

    Science.gov (United States)

    Lu, Jennifer; Johnston, Andrew; Berichon, Philippe; Ru, Ke-lin; Korbie, Darren; Trau, Matt

    2017-01-01

    The analysis of DNA methylation at CpG dinucleotides has become a major research focus due to its regulatory role in numerous biological processes, but the requisite need for assays which amplify bisulfite-converted DNA represents a major bottleneck due to the unique design constraints imposed on bisulfite-PCR primers. Moreover, a review of the literature indicated no available software solutions which accommodated both high-throughput primer design, support for multiplex amplification assays, and primer-dimer prediction. In response, the tri-modular software package PrimerSuite was developed to support bisulfite multiplex PCR applications. This software was constructed to (i) design bisulfite primers against multiple regions simultaneously (PrimerSuite), (ii) screen for primer-primer dimerizing artefacts (PrimerDimer), and (iii) support multiplex PCR assays (PrimerPlex). Moreover, a major focus in the development of this software package was the emphasis on extensive empirical validation, and over 1300 unique primer pairs have been successfully designed and screened, with over 94% of them producing amplicons of the expected size, and an average mapping efficiency of 93% when screened using bisulfite multiplex resequencing. The potential use of the software in other bisulfite-based applications such as methylation-specific PCR is under consideration for future updates. This resource is freely available for use at PrimerSuite website (www.primer-suite.com). PMID:28117430

  3. Efficient assembly of very short oligonucleotides using T4 DNA Ligase

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2010-11-01

    Full Text Available Abstract Background In principle, a pre-constructed library of all possible short oligonucleotides could be used to construct many distinct gene sequences. In order to assess the feasibility of such an approach, we characterized T4 DNA Ligase activity on short oligonucleotide substrates and defined conditions suitable for assembly of a plurality of oligonucleotides. Findings Ligation by T4 DNA Ligase was found to be dependent on the formation of a double stranded DNA duplex of at least five base pairs surrounding the site of ligation. However, ligations could be performed effectively with overhangs smaller than five base pairs and oligonucleotides as small as octamers, in the presence of a second, complementary oligonucleotide. We demonstrate the feasibility of simultaneous oligonucleotide phosphorylation and ligation and, as a proof of principle for DNA synthesis through the assembly of short oligonucleotides, we performed a hierarchical ligation procedure whereby octamers were combined to construct a target 128-bp segment of the beta-actin gene. Conclusions Oligonucleotides as short as 8 nucleotides can be efficiently assembled using T4 DNA Ligase. Thus, the construction of synthetic genes, without the need for custom oligonucleotide synthesis, appears feasible.

  4. Determination of optimal sites of antisense oligonucleotide cleavage within TNFα mRNA

    Science.gov (United States)

    Lloyd, B. H.; Giles, R. V.; Spiller, D. G.; Grzybowski, J.; Tidd, D. M.; Sibson, D. R.

    2001-01-01

    Antisense oligonucleotides provide a powerful tool in order to determine the consequences of the reduced expression of a selected target gene and may include target validation and therapeutic applications. Methods of predicting optimum antisense sites are not always effective. We have compared the efficacy of antisense oligonucleotides, which were selected in vitro using random combinatorial oligonucleotide libraries of differing length and complexity, upon putative target sites within TNFα mRNA. The relationship of specific target site accessibility and oligonucleotide efficacy with respect to these parameters proved to be complex. Modification of the length of the recognition sequence of the oligonucleotide library illustrated that independent target sites demonstrated a preference for antisense oligonucleotides of a defined and independent optimal length. The efficacy of antisense oligonucleotide sequences selected in vitro paralleled that observed in phorbol 12-myristate 13-acetate (PMA)-activated U937 cells. The application of methylphosphonate:phosphodiester chimaeric oligonucleotides to U937 cells reduced mRNA levels to up to 19.8% that of the untreated cell population. This approach provides a predictive means to profile any mRNA of known sequence with respect to the identification and optimisation of sites accessible to antisense oligonucleotide activity. PMID:11522838

  5. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microarrays of 20-base oligonucleotide with different concentrations are detected before and after hybridization by the oblique-incidence reflectivity difference (OI-RD) method. The experimental results prove that OI-RD is a label-free method which can not only distinguish the concentration difference of oligonucleotides before and after the hybridization but also detect the hybridization of short oligonucleotides. At present the OI-RD method can detect 0.39 μmol/L 20-base oligonucleotide or less. These results suggest that the OI-RD method is a promising and potential technique for label-free detection of biological microarrays.

  6. Modified gravitational instability of degenerate and non-degenerate dusty plasma

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana

    2016-09-01

    The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length L J = 1.3 × 10 5 cm and Jeans mass M J = 0.75 × 10 - 3 M⊙ and for non-degenerate laboratory plasma Jeans length L J = 6.86 × 10 16 cm and Jeans mass M J = 0.68 × 10 10 M⊙. The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

  7. A Monte Carlo algorithm for degenerate plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.

    2013-09-15

    A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.

  8. Horizon Supertranslation and Degenerate Black Hole Solution

    CERN Document Server

    Cai, Rong-Gen; Zhang, Yun-Long

    2016-01-01

    In this note we first review the degenerate vacua arising from the BMS symmetries. According to the discussion in [1] one can define BMS-analogous supertranslation and superrotation for spacetime with black hole in Gaussian null coordinates. In the leading and subleading orders of near horizon approximation, the infinitely degenerate black hole solutions are derived by considering Einstein equations with or without cosmological constant, and they are related to each other by the diffeomorphism generated by horizon supertranslation. Higher order results and degenerate Rindler horizon solutions also are given in appendices.

  9. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    Science.gov (United States)

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements... Epoxy Primers in order to afford a lower initial viscosity allowing for better application properties; lower VOC; and the incorporation of various

  10. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune;

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  11. Splice-switching antisense oligonucleotides as therapeutic drugs

    OpenAIRE

    Havens, Mallory A.; Hastings, Michelle L.

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipu...

  12. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence

    DEFF Research Database (Denmark)

    Taskova, Maria; Uhd, Jesper; Miotke, Laura

    2017-01-01

    followed by click assembly and analysis of the read sequence by various techniques. As we demonstrate in this paper, using our new approach, a viral RNA sequence can be detected in less than 2 h without the need for cDNA synthesis or any other enzymatic reactions and with a sensitivity of ... opportunities in transcriptome analysis, virology, and other fields. Herein, we report for the first time a "click" chemistry approach to oligonucleotide probe elongation as a novel approach to specifically detect a viral sequence. We hybridized a library of short, terminally labeled probes to Ebola virus RNA...

  13. Genetics and health communication: a primer.

    Science.gov (United States)

    Greenberg, Marisa S

    2015-01-01

    The progress of genetic knowledge has been swift and steadfast. As we move forward in the genomic era, post Human Genome Project, and continue to explore how one's genes interact with one's environment, it becomes increasingly important for all audiences to have a firm grasp of the vocabulary used in this health context. This primer is intended to be used as a reference and to introduce and/or make more clear concepts related to genetics to increase understanding.

  14. Status of NC Primer Demonstration & Transition

    Science.gov (United States)

    2014-11-20

    skid coating – Navy facilities- plan to assess as alternative to zinc -rich primers – General: internal funding in place through at least 2019 to...anodized aluminum, magnesium, high-strength steel with cadmium, aluminum and zinc - nickel , composites • Stress corrosion cracking and corrosion...this data, NAVAIR authorizes the use of PPG, Inc. – Deft 02-GN-084 over conversion coatings qualified to MIL-DTL-81706, Type I, Class 1A when used

  15. Genetics of frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Aswathy P

    2010-10-01

    Full Text Available Frontotemporal lobar degeneration (FTLD is a highly heterogenous group of progressive neurodegenerative disorders characterized by atrophy of prefrontal and anterior temporal cortices. Recently, the research in the field of FTLD has gained increased attention due to the clinical, neuropathological, and genetic heterogeneity and has increased our understanding of the disease pathogenesis. FTLD is a genetically complex disorder. It has a strong genetic basis and 50% of patients show a positive family history for FTLD. Linkage studies have revealed seven chromosomal loci and a number of genes including MAPT, PGRN, VCP, and CHMB-2B are associated with the disease. Neuropathologically, FTLD is classified into tauopathies and ubiquitinopathies. The vast majority of FTLD cases are characterized by pathological accumulation of tau or TDP-43 positive inclusions, each as an outcome of mutations in MAPT or PGRN, respectively. Identification of novel proteins involved in the pathophysiology of the disease, such as progranulin and TDP-43, may prove to be excellent biomarkers of disease progression and thereby lead to the development of better therapeutic options through pharmacogenomics. However, much more dissections into the causative pathways are needed to get a full picture of the etiology. Over the past decade, advances in research on the genetics of FTLD have revealed many pathogenic mutations leading to different clinical manifestations of the disease. This review discusses the current concepts and recent advances in our understanding of the genetics of FTLD.

  16. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  17. Vitelliform macular degeneration associated with mitochondrial myopathy.

    OpenAIRE

    Modi, G; Heckman, J M; Saffer, D

    1992-01-01

    A patient with mitochondrial myopathy is described. Examination of his fundus revealed bilateral vitelliform degeneration of the maculae. This lesion is a focal abnormality of the retinal pigment epithelium and may be a manifestation of the underlying mitochondrial disease.

  18. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  19. CRISPR Primer Designer:Design primers for knockout and chromosome imaging CRISPR-Cas system

    Institute of Scientific and Technical Information of China (English)

    Meng Yan; Shi-Rong Zhou; Hong-Wei Xue

    2015-01-01

    The clustered regularly interspaced short palin-dromic repeats (CRISPR)-associated system enables biologists to edit genomes precisely and provides a powerful tool for perturbing endogenous gene regulation, modulation of epigenetic markers, and genome architecture. However, there are concerns about the specificity of the system, especial y the usages of knocking out a gene. Previous designing tools either were mostly built-in websites or ran as command-line programs, and none of them ran local y and acquired a user-friendly interface. In addition, with the development of CRISPR-derived systems, such as chromosome imaging, there were stil no tools helping users to generate specific end-user spacers. We herein present CRISPR Primer Designer for researchers to design primers for CRISPR applications. The program has a user-friendly interface, can analyze the BLAST results by using multiple parameters, score for each candidate spacer, and generate the primers when using a certain plasmid. In addition, CRISPR Primer Designer runs local y and can be used to search spacer clusters, and exports primers for the CRISPR-Cas system-based chromosome imaging system.

  20. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system.

    Science.gov (United States)

    Yan, Meng; Zhou, Shi-Rong; Xue, Hong-Wei

    2015-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated system enables biologists to edit genomes precisely and provides a powerful tool for perturbing endogenous gene regulation, modulation of epigenetic markers, and genome architecture. However, there are concerns about the specificity of the system, especially the usages of knocking out a gene. Previous designing tools either were mostly built-in websites or ran as command-line programs, and none of them ran locally and acquired a user-friendly interface. In addition, with the development of CRISPR-derived systems, such as chromosome imaging, there were still no tools helping users to generate specific end-user spacers. We herein present CRISPR Primer Designer for researchers to design primers for CRISPR applications. The program has a user-friendly interface, can analyze the BLAST results by using multiple parameters, score for each candidate spacer, and generate the primers when using a certain plasmid. In addition, CRISPR Primer Designer runs locally and can be used to search spacer clusters, and exports primers for the CRISPR-Cas system-based chromosome imaging system. © 2014 Institute of Botany, Chinese Academy of Sciences.

  1. Degenerate second order mean field games systems

    OpenAIRE

    Tonon, Daniela; Cardaliaguet, Pierre; Graber, Philip,; Poretta, Alessio

    2014-01-01

    Parallel session; International audience; We consider degenerate second order mean field games systems with a local coupling. The starting point is the idea that mean field games systems can be understood as an optimality condition for optimal control of PDEs. Developing this strategy for the degenerate second order case, we discuss the existence and uniqueness of a weak solution as well as its stability (vanishing viscosity limit). Speaker: Daniela TONON

  2. The nature of apraxia in corticobasal degeneration.

    OpenAIRE

    Leiguarda, R; Lees, A J; Merello, M; STARKSTEIN, S; Marsden, C D

    1994-01-01

    Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia...

  3. Retinal Cell Degeneration in Animal Models

    OpenAIRE

    Masayuki Niwa; Hitomi Aoki; Akihiro Hirata; Hiroyuki Tomita; Green, Paul G.; Akira Hara

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insi...

  4. An overview of sugar-modified oligonucleotides for antisense therapeutics.

    Science.gov (United States)

    Prakash, Thazha P

    2011-09-01

    Among the multitude of chemical modifications that have been described over the past two decades, oligonucleotide analogs that are modified at the 2'-position of the furanose sugar have been especially useful for improving the drug-like properties of antisense oligonucleotides (ASOs). These modifications bias the sugar pucker towards the 3'-endo-conformation and improve ASO affinity for its biological target (i.e., mRNA). In addition, antisense drugs incorporating 2'-modified nucleotides exhibit enhanced metabolic stability, and improved pharmacokinetic and toxicological properties. Further conformational restriction of the 2'-substituent to the 4'-position of the furanose ring yielded the 2',4'-bridged nucleic acid (BNA) analogs. ASOs containing BNA modifications showed unprecedented increase in binding affinity for target RNA, while also improved nuclease resistance, in vitro and in vivo potency. Several ASO drug candidates containing 2'-modified nucleotides have entered clinical trials and continue to make progress in the clinic for a variety of therapeutic indications. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hongguang Sun

    2014-01-01

    Full Text Available Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.

  6. The use of oligonucleotide probes for meningococcal serotype characterization

    Directory of Open Access Journals (Sweden)

    SACCHI Claudio Tavares

    1998-01-01

    Full Text Available In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs. Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A and 615U (VR3-B used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.

  7. Splitting deformations of degenerations of complex curves towards the classification of atoms of degenerations

    CERN Document Server

    2006-01-01

    The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from the singular fiber. These "barking deformations" are related to deformations of surface singularities (in particular, cyclic quotient singularities) as well as the mapping class groups of Riemann surfaces (complex curves) via monodromies. Important applications, such as the classification of atomic degenerations, are also explained.

  8. High-speed measurement of rifle primer blast waves

    CERN Document Server

    Courtney, Michael

    2011-01-01

    This article describes a method and results for direct high-speed measurements of rifle primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Our key findings are: 1) Most of the primer models tested show 5-12% standard deviation in the magnitudes of their peak pressure. 2) For most primer types tested, peak pressure magnitudes are well correlated with measured primer masses so that significant reductions in standard deviation are expected to result from sorting primers by mass. 3) A range of peak pressures from below 200 psi to above 500 psi is available in different primer types.

  9. The MOX/SUC precursor strategies: robust ways to construct functionalized oligonucleotides.

    Science.gov (United States)

    Polushin, N

    2001-01-01

    The use of phosphoramidites bearing one or more methoxyoxalamido (MOX) or succinimido (SUC) reactive groups for construction of functionalized oligonucleotides is described. The efficiency of the new precursor strategy was demonstrated in the synthesis of oligonucleotide containing up to 16 imidazole residues.

  10. Multicellular Tumor Spheroids as a Model for Assessing Delivery of Oligonucleotides in Three Dimensions

    Science.gov (United States)

    Carver, Kyle; Ming, Xin; Juliano, Rudolph L

    2014-01-01

    Oligonucleotides have shown promise in selectively manipulating gene expression in vitro, but that success has not translated to the clinic for cancer therapy. A potential reason for this is that cells behave differently in monolayer than in the three-dimensional tumor, resulting in limited penetration and distribution of oligonucleotides in the tumor. This may be especially true when oligonucleotides are associated with nanocarriers such as lipoplexes and polyplexes, commonly used delivery vehicles for oligonucleotides. The multicellular tumor spheroid (MCTS), a three-dimensional model that closely resembles small avascular tumors and micrometastases, has been utilized as an intermediate between monolayer culture and in vivo studies for the screening of small-molecule drugs. However, spheroids have been little used for the study of various oligonucleotide delivery formulations. Here, we have evaluated the uptake and efficacy of splice-switching antisense oligonucleotides using various delivery modalities in two- and three-dimensional culture models. We find that the size of the delivery agent dramatically influences penetration into the spheroid and thus the biological effect of the oligonucleotides. We hypothesize that the MCTS model will prove to be a useful tool in the future development of oligonucleotide delivery formulations. PMID:24618852

  11. Nucleobase azide-ethynylribose click chemistry contributes to stabilizing oligonucleotide duplexes and stem-loop structures.

    Science.gov (United States)

    Kitamura, Yoshiaki; Asakura, Ryo; Terazawa, Koki; Shibata, Aya; Ikeda, Masato; Kitade, Yukio

    2017-06-15

    The formation of 1,4-disubstituted 1,2,3-triazoles through copper-catalyzed azide-alkyne cycloaddition (CuAAC) in oligonucleotides bearing 1-deoxy-1-ethynyl-β-d-ribofuranose (R(E)) can have a positive impact on the stability of oligonucleotide duplexes and stem-loop structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies on the Syntheses and Properties of 5'-Branched-sugar Isonucleosides and the Related Oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    Tian Xiaobing; Zhang Lihe; Min Jimei

    2001-01-01

    @@ The chemistry of nucleosides and oligonucleotides is an actively investigated field in the search for new drugs. Thesyntheses and the properties of isonucleosides and oligonucleotides have been investigated to improve their stability,antitumor and antiviral activities, and to reduce their toxicity.

  13. Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides

    Science.gov (United States)

    Golova, Julia B.; Chernov, Boris K.

    2010-04-27

    New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.

  14. MPprimer: a program for reliable multiplex PCR primer design.

    Science.gov (United States)

    Shen, Zhiyong; Qu, Wubin; Wang, Wen; Lu, Yiming; Wu, Yonghong; Li, Zhifeng; Hang, Xingyi; Wang, Xiaolei; Zhao, Dongsheng; Zhang, Chenggang

    2010-03-18

    Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs) for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2x to 5x plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy), which has 79 exons, for 20x, 20x, 20x, 14x, and 5x plex PCR reactions in five tubes to detect underlying exon deletions. MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  15. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  16. Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus.

    Science.gov (United States)

    Lee, EunJung; Kim, Eun-Ju; Shin, Yeun-Kyung; Song, Jae-Young

    2016-02-01

    The avian influenza A virus causes respiratory infections in animal species. It can undergo genomic recombination with newly obtained genetic material through an interspecies transmission. However, the process is an unpredictable event, making it difficult to predict the emergence of a new pandemic virus and distinguish its origin, especially when the virus is the result of multiple infections. Therefore, identifying a novel influenza is entirely dependent on sequencing its whole genome. Occasionally, however, it can be time-consuming, costly, and labor-intensive when sequencing many influenza viruses. To compensate for the difficulty, we developed a rapid, cost-effective, and simple multiplex RT-PCR to identify the viral genomic segments. As an example to evaluate its performance, H3N8 equine influenza virus (EIV) was studied for the purpose. In developing this protocol to amplify the EIV eight-segments, a series of processes, including phylogenetic analysis based on different influenza hosts, in silico analyses to estimate primer specificity, coverage, and variation scores, and investigation of host-specific amino acids, were progressively conducted to reduce or eliminate the negative factors that might affect PCR amplification. Selectively, EIV specific primers were synthesized with dual priming oligonucleotides (DPO) system to increase primer specificity. As a result, 16 primer pairs were selected to screen the dominantly circulating H3N8 EIV 8 genome segments: PA (3), PB2 (1), PA (3), NP (3), NA8 (2), HA3 (1), NS (1), and M (2). The diagnostic performance of the primers was evaluated with eight sets composing of four segment combinations using viral samples from various influenza hosts. The PCR results suggest that the multiplex RT-PCR has a wide range of applications in detection and diagnosis of newly emerging EIVs. Further, the proposed procedures of designing multiplex primers are expected to be used for detecting other animal influenza A viruses

  17. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    Science.gov (United States)

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  18. Spectrophotometric determination of tetrazene in primers and primer mixes by use of resorcinol.

    Science.gov (United States)

    Norwitz, G; Keliher, P N

    1979-06-01

    A spectrophotometric method is proposed for the determination of tetrazene (tetracene) in primers and primer mixes that involves treatment of the tetrazene with resorcinol solution and measurement of the intensity of the yellow colour of the diazo-dye produced. In the application of the method, lead styphnate and barium nitrate are first removed by extraction with ammonium acetate solution and then nitrocellulose and PETN are removed by extraction with acetone. The insoluble matter containing the tetrazene is boiled with resorcinol reagent, the solution filtered, and the absorbance measured at 400 nm. Conditions for optimum colour development are studied and the nature of the reaction is considered.

  19. Cellular Uptake and Intracellular Trafficking of Antisense and siRNA Oligonucleotides

    Science.gov (United States)

    Juliano, RL; Ming, Xin; Nakagawa, Osamu

    2012-01-01

    Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as ‘free’ molecules, or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic. PMID:21992697

  20. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Zhou, Jing; Snipes, Matthew P; Battig, Mark R; Wang, Yong

    2011-10-01

    Biomaterials for the precise control of protein release are important to the development of new strategies for treating human diseases. This study aimed to fundamentally understand aptamer--protein dissociation triggered by complementary oligonucleotides, and to apply this understanding to develop affinity hydrogels for controlled protein release. The results showed that the oligonucleotide tails of the aptamers played a critical role in inducing intermolecular hybridization and triggering aptamer--protein dissociation. In addition, the attachment of the oligonucleotide tails to the aptamers and the increase of hybridizing length could produce a synergistic effect on the dissociation of bound proteins from their aptamers. More importantly, pegylated complementary oligonucleotides could successfully trigger protein release from the aptamer-functionalized hydrogels at multiple time points. Based on these results, it is believed that aptamer-functionalized hydrogels and complementary oligonucleotides hold great potential of controlling the release of protein drugs to treat human diseases.

  1. An engineering primer on extreme value statistics

    Energy Technology Data Exchange (ETDEWEB)

    Novog, D.R.; Hoppe, F. [McMaster Univ., Hamilton, Ontario (Canada); Nainer, O. [Bruce Power, Tiverton, Ontario (Canada); Phan, B. [Ontario Power Generation, Toronto, Ontario (Canada)

    2009-07-01

    This primer is intended for individuals interested in gaining an understanding of Extreme Value Statistics (EVS). This work provides an explanation of EVS at a level that can be accessible to most people with an engineering or science background. While this work represents a simplification of the discussions from Reference 1, it is hoped that the authors will forgive any liberties taken in this paper. Some of the simplifications presented here may not be rigorous in all aspects, but the sacrifice in rigour is intended to aid the fundamental understanding of the EVS formulation and basic application. (author)

  2. Primer Concilio Provincial del Nuevo Reino

    Directory of Open Access Journals (Sweden)

    Manuel Lucena Salmoral

    1963-01-01

    Full Text Available El acontecimiento más sobresaliente del patriarcado de don Fernando Arias de Ugarte, en el que hubo muchos notables, fue el Primer Concilio Provincial del Nuevo Reino de Granada, celebrado en el año 1623. Cumplió así una vieja aspiración de los arzobispos santafereños y la obligación impuesta en el Concilio de Trento, por lo que resulta incomprensible lo historiado por don José Antonio Plaza quien, al referirse a este hecho, dice lo siguiente...

  3. Precedentes musulmanes y primer arte cristiano

    OpenAIRE

    Cabañero Subiza, Bernabé

    2006-01-01

    La comarca de las Cinco Villas en la que en los siglos X y XI no existió ningún centro artístico de primer orden en el que se crearan concepciones espaciales y soluciones formales propias. Por eso los monumentos de esta comarca pertenecientes a dichas centurias constituyen en casi todos los casos manifestaciones periféricas de corrientes artísticas creadas y desarrolladas fuera de sus confines. Esta llegada de soluciones formales foráneas a las Cinco Villas es tanto más explicable si...

  4. Lógica de Primer Orden

    OpenAIRE

    Castel De Haro, María Jesús; Llorens Largo, Faraón

    1999-01-01

    Estos papeles que ahora tenéis en vuestras manos, nacieron con la idea de servir de material de apoyo a las clases de la asignatura “Lógica de Primer Orden”, que forma parte del programa de los estudios de Ingeniería Informática impartidos en la Escuela Politécnica Superior de la Universidad de Alicante. No se trata, por tanto, de un libro de texto sobre Lógica, ya que existen excelentes libros que cubren este objetivo y es una pérdida de tiempo volverlos a escribir. En ningún momento ha sido...

  5. Emulsion primers, their contribution to bonding

    OpenAIRE

    González Sburlati, Rubén Osmar; Sapei, José

    2014-01-01

    Asphalt irrigation in its various types, performs specific functions in the structure of a road during the construction phase or their service life. In particular, the so-called "Irrigation Primer " is used in underlying layers, in order to generate a transition surface with the new asphalt layer; thus the tack or prime coat will be placed on a surface to ensure a good bond with the overlying layer. For a long time Diluted Asphalts (Cut Back mediums) where used, but have been discontinued for...

  6. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  7. Signals and systems primer with Matlab

    CERN Document Server

    Poularikas, Alexander D

    2006-01-01

    Signals and Systems Primer with MATLAB® equally emphasizes the fundamentals of both analog and digital signals and systems. To ensure insight into the basic concepts and methods, the text presents a variety of examples that illustrate a wide range of applications, from microelectromechanical to worldwide communication systems. It also provides MATLAB functions and procedures for practice and verification of these concepts.Taking a pedagogical approach, the author builds a solid foundation in signal processing as well as analog and digital systems. The book first introduces orthogonal signals,

  8. Dogmatismo en estudiantes de primer semestre

    OpenAIRE

    Beltrán Montero, María Gladys

    2009-01-01

    Rokeach, (1960). Postula el dogmatismo como una teoría psicológica de la personalidad y plantea una escala para su evaluación. Este trabajo analiza la estructura factorial de esta escala, en su forma E, y compara los resultados de una muestra de 1320 estudiantes de primer semestre de carrera de la Universidad Nacional de Colombia, con los obtenidos por Rokeach y sus colaboradores en sus investigaciones. Analiza, además, el nivel de dogmatismo de esta muestra en relación con el ...

  9. Recommendations for safety pharmacology evaluations of oligonucleotide-based therapeutics.

    Science.gov (United States)

    Berman, Cindy L; Cannon, Keri; Cui, Yi; Kornbrust, Douglas J; Lagrutta, Armando; Sun, Sunny Z; Tepper, Jeff; Waldron, Gareth; Younis, Husam S

    2014-08-01

    This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities. 1) Safety pharmacology testing, as described in the International Conference on Harmonisation (ICH) S7 guidance, is as applicable to ONs as it is to small molecule drugs and biotherapeutics. 2) Study design considerations for ONs are similar to those for other classes of drugs. In general, as with other therapeutics, studies should evaluate the drug product administered via the clinical route. Species selection should ideally consider relevance of the model with regard to the endpoints of interest, pharmacological responsiveness, and continuity with the nonclinical development program. 3) Evaluation of potential effects in the core battery (cardiovascular, central nervous, and respiratory systems) is recommended. In general: a. In vitro human ether-a-go-go-related gene (hERG) testing does not provide any specific value and is not warranted. b. Emphasis should be placed on in vivo evaluation of cardiovascular function, typically in nonhuman primates (NHPs). c. Due to the low level of concern, neurologic and respiratory function can be assessed concurrently with cardiovascular safety pharmacology evaluation in NHPs, within repeat-dose toxicity studies, or as stand-alone studies. In the latter case, rodents are most commonly used. 4) Other dedicated safety pharmacology studies, beyond the core battery, may have limited value for ONs. Although ONs can accumulate in the kidney and liver

  10. Antisense Oligonucleotide (AON-based Therapy for Leber Congenital Amaurosis Caused by a Frequent Mutation in CEP290

    Directory of Open Access Journals (Sweden)

    Rob WJ Collin

    2012-01-01

    Full Text Available Leber congenital amaurosis (LCA is the most severe form of inherited retinal degeneration, with an onset in the first year of life. The most frequent mutation that causes LCA, present in at least 10% of individuals with LCA from North-American and Northern-European descent, is an intronic mutation in CEP290 that results in the inclusion of an aberrant exon in the CEP290 mRNA. Here, we describe a genetic therapy approach that is based on antisense oligonucleotides (AONs, small RNA molecules that are able to redirect normal splicing of aberrantly processed pre-mRNA. Immortalized lymphoblastoid cells of individuals with LCA homozygously carrying the intronic CEP290 mutation were transfected with several AONs that target the aberrant exon that is incorporated in the mutant CEP290 mRNA. Subsequent RNA isolation and reverse transcription-PCR analysis revealed that a number of AONs were capable of almost fully redirecting normal CEP290 splicing, in a dose-dependent manner. Other AONs however, displayed no effect on CEP290 splicing at all, indicating that the rescue of aberrant CEP290 splicing shows a high degree of sequence specificity. Together, our data show that AON-based therapy is a promising therapeutic approach for CEP290-associated LCA that warrants future research in animal models to develop a cure for this blinding disease.

  11. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  12. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    Directory of Open Access Journals (Sweden)

    Niels H Skotte

    Full Text Available Huntington disease (HD is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs. We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  13. Prospectives for gene therapy of retinal degenerations.

    Science.gov (United States)

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  14. Primer on CDM programme of activities

    Energy Technology Data Exchange (ETDEWEB)

    Hinostroza, M. (UNEP Risoe Centre, Roskilde (Denmark)); Lescano, A.D. (A2G Carbon Partners (Peru)); Alvarez, J.M. (Ministerio del Ambiente del Peru (Peru)); Avendano, F.M. (EEA Fund Management Ltd. (United Kingdom)

    2009-07-01

    As an advanced modality introduced in 2005, the Programmatic CDM (POA) is expected to address asymmetries of participation, especially of very small-scale project activities in certain areas, key sectors and many countries with considerable potential for greenhouse gas emission reductions, not reached by the traditional single-project-based CDM. Latest experiences with POAs and the recently finalized official guidance governing the Programmatic CDM are the grassroots of this Primer, which has the purpose of supporting the fully understanding of rules and procedures of POAs by interpreting them and analyzing real POA cases. Professional and experts from the public and private entities have contributed to the development of this Primer, produced by the UNEP Risoe Centre, as part of knowledge support activities for the Capacity Development for the CDM (CD4CDM) project. The overall objective of the CD4CDM is to develop the capacities of host countries to identify, design, approve, finance, implement CDM projects and commercialize CERs in participating countries. The CDM4CDM is funded by the Netherlands Ministry of Foreign Affairs. (author)

  15. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building...... blocks 5R and 5S, respectively. A single incorporation of either monomer X or monomer Y in the central position of a DNA 9-mer results in decreased thermal affinity toward both DNA and RNA complements (ΔT(m) = -3.5 °C/-3.5 °C for monomer X and ΔT(m) = -11.0 °C/-6.5 °C for monomer Y). CD measurements do...

  16. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Andrea Pauli

    Full Text Available Antisense oligonucleotides (ASOs are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.

  17. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases.

    Science.gov (United States)

    Schoch, Kathleen M; Miller, Timothy M

    2017-06-21

    Multiple neurodegenerative diseases are characterized by single-protein dysfunction and aggregation. Treatment strategies for these diseases have often targeted downstream pathways to ameliorate consequences of protein dysfunction; however, targeting the source of that dysfunction, the affected protein itself, seems most judicious to achieve a highly effective therapeutic outcome. Antisense oligonucleotides (ASOs) are small sequences of DNA able to target RNA transcripts, resulting in reduced or modified protein expression. ASOs are ideal candidates for the treatment of neurodegenerative diseases, given numerous advancements made to their chemical modifications and delivery methods. Successes achieved in both animal models and human clinical trials have proven ASOs both safe and effective. With proper considerations in mind regarding the human applicability of ASOs, we anticipate ongoing in vivo research and clinical trial development of ASOs for the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Antisense oligonucleotide targeting midkine suppresses in vivo angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Xiang Wang; Xing Yao; Yong-Liang Lu; Jin-Liang Ping; Jian-Fang He

    2007-01-01

    AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) andin situ human hepatocellular carcinoma (HCC).METHODS: An in situ human hepatocellular carcinoma (HCC) model and CAM assay were used in this experiment. The effect of MK-AS on angiogenesis was evaluated by cell proliferation assay and hematoxylineosin (HE) staining.RESULTS: MK-AS significantly inhibited human umbilical vein endothelial cells (HUVEC) and in situ human HCC growth. At the same time, MK-AS suppressed the angiogenesis both in human hepatocellular carcinoma cell line (HEPG2)-induced CAM and in situ human HCC tissues.CONCLUSION: MK-AS is an effective antiangiogenesis agent in vivo.

  19. A review of statistical methods for preprocessing oligonucleotide microarrays.

    Science.gov (United States)

    Wu, Zhijin

    2009-12-01

    Microarrays have become an indispensable tool in biomedical research. This powerful technology not only makes it possible to quantify a large number of nucleic acid molecules simultaneously, but also produces data with many sources of noise. A number of preprocessing steps are therefore necessary to convert the raw data, usually in the form of hybridisation images, to measures of biological meaning that can be used in further statistical analysis. Preprocessing of oligonucleotide arrays includes image processing, background adjustment, data normalisation/transformation and sometimes summarisation when multiple probes are used to target one genomic unit. In this article, we review the issues encountered in each preprocessing step and introduce the statistical models and methods in preprocessing.

  20. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Directory of Open Access Journals (Sweden)

    Jennifer G Mulle

    Full Text Available DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs, and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  1. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Science.gov (United States)

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  2. Tetramerization of an RNA oligonucleotide containing a GGGG sequence.

    Science.gov (United States)

    Kim, J; Cheong, C; Moore, P B

    1991-05-23

    Poly rG can form four-stranded helices. The Hoogsteen-paired quartets of G residues on which such structures depend are so stable that they will form in 5'-GMP solutions, provided that Na+ or K+ are present (see for example, refs 2-4). Telomeric DNA sequences, which are G-rich, adopt four-stranded antiparallel G-quartet conformations in vitro, and parallel tetramerization of G-rich sequences may be involved in meiosis. Here we show that RNAs containing short runs of Gs can also tetramerize. A 19-base oligonucleotide derived from the 5S RNA of Escherichia coli (strand III), 5'GCCGAUGGUAGUGUGGGGU3', forms a K(+)-stabilized tetrameric aggregate that depends on the G residues at its 3' end. This complex is so stable that it would be surprising if similar structures do not occur in nature.

  3. Optic pathway degeneration in Japanese black cattle.

    Science.gov (United States)

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  4. Direct microcontact printing of oligonucleotides for biochip applications

    Directory of Open Access Journals (Sweden)

    Trévisiol E

    2005-07-01

    Full Text Available Abstract Background A critical step in the fabrication of biochips is the controlled placement of probes molecules on solid surfaces. This is currently performed by sequential deposition of probes on a target surface with split or solid pins. In this article, we present a cost-effective procedure namely microcontact printing using stamps, for a parallel deposition of probes applicable for manufacturing biochips. Results Contrary to a previous work, we showed that the stamps tailored with an elastomeric poly(dimethylsiloxane material did not require any surface modification to be able to adsorb oligonucleotides or PCR products. The adsorbed DNA molecules are subsequently printed efficiently on a target surface with high sub-micron resolution. Secondly, we showed that successive stamping is characterized by an exponential decay of the amount of transferred DNA molecules to the surface up the 4th print, then followed by a second regime of transfer that was dependent on the contact time and which resulted in reduced quality of the features. Thus, while consecutive stamping was possible, this procedure turned out to be less reproducible and more time consuming than simply re-inking the stamps between each print. Thirdly, we showed that the hybridization signals on arrays made by microcontact printing were 5 to 10-times higher than those made by conventional spotting methods. Finally, we demonstrated the validity of this microcontact printing method in manufacturing oligonucleotides arrays for mutations recognition in a yeast gene. Conclusion The microcontact printing can be considered as a new potential technology platform to pattern DNA microarrays that may have significant advantages over the conventional spotting technologies as it is easy to implement, it uses low cost material to make the stamp, and the arrays made by this technology are 10-times more sensitive in term of hybridization signals than those manufactured by conventional spotting

  5. Design and development of thermolytic DNA oligonucleotide prodrugs.

    Science.gov (United States)

    Grajkowski, Andrzej; Pedras-Vasconcelos, Joao; Ausín, Cristina; Verthelyi, Daniela; Beaucage, Serge L

    2005-11-01

    Deoxyribonucleoside phosphoramidites functionalized with the thermolytic 2-(N-formyl-N-methyl)aminoethyl group for phosphorus protection (1a-d) have been prepared and employed in the solid-phase synthesis of CpG ODN fma1555. Given that this modified oligonucleotide can be converted to the immunomodulatory CpG ODN 1555 under neutral conditions at 37 degrees C, its biologic activity was demonstrated in vivo by studies showing that intraperitoneal administration of CpG ODN fma1555 in mice resulted in the activation of cytokine-secreting splenocytes. Furthermore, administration of CpG ODN fma1555 to mice that were challenged intradermally in the ear with live L. major metacyclic promastigotes, reduced the severity of Leishmania skin lesions over time to an extent similar to that obtained with CpG ODN 1555. In another infectious model experiment, CpG ODN fma1555 protected newborn mice from death (65% survival) when administered 3 days before infection with the aggressive Tacaribe (TCRV) virus. A comparable immunoprotection was obtained by treatment of TCRV-infected mice with CpG ODN 1555 administered on the same day of infection (45% survival). However, when TCRV-infected mice were treated with CpG ODN fma1555 on the day of infection, they died as a consequence of the relatively slow conversion of the oligonucleotide prodrug to the bioactive CpG ODN 1555. Co-administration of both CpG ODN 1555 and CpG ODN fma1555 to mice 3 days prior to TCRV infection or on the day of infection provided protection from death (45-65% survival) and thus widened the immunoprotection window against TCRV-infection.

  6. Combining gene expression data from different generations of oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Kong Sek

    2004-10-01

    Full Text Available Abstract Background One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different

  7. Phase space methods for degenerate quantum gases

    CERN Document Server

    Dalton, Bryan J; Barnett, Stephen M

    2015-01-01

    Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable...

  8. The cell stress machinery and retinal degeneration.

    Science.gov (United States)

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.

  9. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  10. Specific PCR product primer design using memetic algorithm.

    Science.gov (United States)

    Yang, Cheng-Hong; Cheng, Yu-Huei; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2009-01-01

    To provide feasible primer sets for performing a polymerase chain reaction (PCR) experiment, many primer design methods have been proposed. However, the majority of these methods require a relatively long time to obtain an optimal solution since large quantities of template DNA need to be analyzed. Furthermore, the designed primer sets usually do not provide a specific PCR product size. In recent years, evolutionary computation has been applied to PCR primer design and yielded promising results. In this article, a memetic algorithm (MA) is proposed to solve primer design problems associated with providing a specific product size for PCR experiments. The MA is compared with a genetic algorithm (GA) using an accuracy formula to estimate the quality of the primer design and test the running time. Overall, 50 accession nucleotide sequences were sampled for the comparison of the accuracy of the GA and MA for primer design. Five hundred runs of the GA and MA primer design were performed with PCR product lengths of 150-300 bps and 500-800 bps, and two different methods of calculating T(m) for each accession nucleotide sequence were tested. A comparison of the accuracy results for the GA and MA primer design showed that the MA primer design yielded better results than the GA primer design. The results further indicate that the proposed method finds optimal or near-optimal primer sets and effective PCR products in a dry dock experiment. Related materials are available online at http://bio.kuas.edu.tw/ma-pd/. 2009 American Institute of Chemical Engineers

  11. Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity.

    Directory of Open Access Journals (Sweden)

    Kai Hoehlig

    Full Text Available A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.

  12. Polymerase-Endonuclease Amplification Reaction (PEAR) for Large-Scale Enzymatic Production of Antisense Oligonucleotides

    Science.gov (United States)

    Wang, Xiaolong; Gou, Deming; Xu, Shuang-yong

    2010-01-01

    Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR), for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI) cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs. PMID:20062528

  13. Managing the sequence-specificity of antisense oligonucleotides in drug discovery.

    Science.gov (United States)

    Hagedorn, Peter H; Hansen, Bo R; Koch, Troels; Lindow, Morten

    2017-03-17

    All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Stereospecificity of Oligonucleotide Interactions Revisited: No Evidence for Heterochiral Hybridization and Ribozyme/DNAzyme Activity

    Science.gov (United States)

    Hoehlig, Kai; Bethge, Lucas; Klussmann, Sven

    2015-01-01

    A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-)oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be) stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa) prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications. PMID:25679211

  15. Release of DNA oligonucleotides and their conjugates from controlled-pore glass under thermolytic conditions.

    Science.gov (United States)

    Grajkowski, Andrzej; Cieślak, Jacek; Norris, Scott; Freedberg, Darón I; Kauffman, Jon S; Duff, Robert J; Beaucage, Serge L

    2008-12-01

    The sequential functionalization of long-chain alkylamine controlled-pore glass (CPG) with a 3-hydroxypropyl-(2-cyanoethyl)thiophosphoryl linker and a dinucleoside phosphorotetrazolide leads to a uniquely engineered support for solid-phase synthesis. Unlike conventional succinylated-CPG supports, this support is designed to allow oligonucleotide deprotection and elimination of deprotection side-products to proceed without release of the oligonucleotide. When needed, the DNA oligonucleotide can be thermolytically released in 2 hr under essentially neutral conditions. The modified CPG support has been successfully employed in the synthesis of both native and fully phosphorothioated DNA 20-mers. On the basis of reversed-phase HPLC and electrophoretic analyses, the purity of the released oligonucleotides is comparable to that of identical oligonucleotides synthesized from succinylated-CPG supports, in terms of both shorter-than-full-length oligonucleotide contaminants and overall yields. The detailed preparation of DNA oligonucleotides conjugated with exemplary reporter or functional groups, either at the 3'-terminus or at both 3'- and 5'-termini, is also described.

  16. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  17. Chaotic Inertia Weight Particle Swarm Optimization for PCR Primer Design

    Directory of Open Access Journals (Sweden)

    Cheng-Huei Yang

    2013-06-01

    Full Text Available In order to provide feasible primer sets for performing a polymerase chain reaction (PCR experiment, many primer design methods have been proposed. However, the majority of these methods require a long time to obtain an optimal solution since large quantities of template DNA need to be analyzed, and the designed primer sets usually do not provide a specific PCR product size. In recent years, particle swarm optimization (PSO has been applied to solve many problems and yielded good results. In this paper, a logistic map is proposed to determine the value of inertia weight of PSO (CIWPSO to design feasible primers. Accuracies for the primer design of the Homo sapiens RNA binding motif protein 11 (RBM11, mRNA (NM_144770, and the Homo sapiens G protein-coupled receptor 78 (GPR78, mRNA (NM_080819 were calculated. Five hundred runs of PSO and the CIWPSO primer design method were performed on different PCR product lengths and the different methods of calculating the melting temperature. A comparison of the accuracy results for PSO and CIWPSO primer design showed that CIWPSO is superior to the PSO for primer design. The proposed method could effectively find optimal or near-optimal primer sets.

  18. High universality of matK primers for barcoding gymnosperms

    Institute of Scientific and Technical Information of China (English)

    Yan LI; Lian-Ming GAO; RAM C.POUDEL; De-Zhu Li; Alan FORREST

    2011-01-01

    DNA barcoding is a tool to provide rapid and accurate taxonomic identification using a standard DNA region. A two-marker combination of rnatK+rbcL was formally proposed as the core barcode for land plants by the Consortium for the Barcode of Life Plant Working Group. However, there are currently no barcoding primers for matK showing high universality in gymnosperms. We used 57 gymnosperm species representing 40 genera, 11families and four subclasses to evaluate the universality of nine candidate matK primers and one rbcL primer in this study. Primer (1F/724R) of rbcL is proposed here as a universal primer for gymnosperms due to high universality. One of the nine candidate matK primers (Gym_F1A/Gym_R1A) is proposed as the best "universal" matK primer for gynnosperms because of high polymerase chain reaction success and routine generation of high quality bidirectional sequences. A specific matK primer for Ephedra was newly designed in this study, which performed well on the sampled species. The primers proposed here for rbcL and matK can be easily and successfully amplified for most gymnosperms.

  19. Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup

    Science.gov (United States)

    This primer explains the phytoremediation process, discusses the potential advantages and considerations in selecting phytoremediation to clean up brownfields sites, and provides information on additional resources about phytoremediation.

  20. Homolog-specific PCR primer design for profiling splice variants.

    Science.gov (United States)

    Srivastava, Gyan Prakash; Hanumappa, Mamatha; Kushwaha, Garima; Nguyen, Henry T; Xu, Dong

    2011-05-01

    To study functional diversity of proteins encoded from a single gene, it is important to distinguish the expression levels among the alternatively spliced variants. A variant-specific primer pair is required to amplify each alternatively spliced variant individually. For this purpose, we developed a new feature, homolog-specific primer design (HSPD), in our high-throughput primer and probe design software tool, PRIMEGENS-v2. The algorithm uses a de novo approach to design primers without any prior information of splice variants or close homologs for an input query sequence. It not only designs primer pairs but also finds potential isoforms and homologs of the input sequence. Efficiency of this algorithm was tested for several gene families in soybean. A total of 187 primer pairs were tested under five different abiotic stress conditions with three replications at three time points. Results indicate a high success rate of primer design. Some primer pairs designed were able to amplify all splice variants of a gene. Furthermore, by utilizing combinations within the same multiplex pool, we were able to uniquely amplify a specific variant or duplicate gene. Our method can also be used to design PCR primers to specifically amplify homologs in the same gene family. PRIMEGENS-v2 is available at: http://primegens.org.

  1. Primer extension studies on alpha-amylase mRNAs in barley aleurone. II. Hormonal regulation of expression.

    Science.gov (United States)

    Chandler, P M; Jacobsen, J V

    1991-04-01

    Relative levels of different alpha-amylase mRNAs were assessed by primer extension experiments using RNA prepared from aleurone of barley (Hordeum vulgare L. cv. Himalaya). Three different aleurone systems were studied: protoplasts prepared from aleurone layers, isolated aleurone layers, and aleurone from germinated grain. Oligonucleotide primers specific for the low-pI and high-pI alpha-amylase groups allowed the levels of different alpha-amylase mRNAs to be assessed both within and between the two groups. In all aleurone systems the same set of alpha-amylase mRNAs was produced in response to either applied gibberellic acid (aleurone protoplasts, isolated aleurone layers) or, presumably, native gibberellin(s) (germinated grain). This result indicates that the same set of genes is being expressed in each case. Differences were observed between the different aleurone systems in regulation of levels of alpha-amylase mRNAs. In particular, the regulation of alpha-amylase mRNA levels in aleurone of germinated grain has unique features which are not adequately explained by the response of isolated aleurone layers to gibberellic acid.

  2. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  3. [New aspects in age related macular degeneration].

    Science.gov (United States)

    Turlea, C

    2012-01-01

    Being the leading cause of blindness in modern world Age Related Macular Degeneration has beneficiated in the last decade of important progress in diagnosis, classification and the discovery of diverse factors who contribute to the etiology of this disease. Treatments have arised who can postpone the irreversible evolution of the disease and thus preserve vision. Recent findings have identified predisposing genetic factors and also inflamatory and imunological parameters that can be modified trough a good and adequate prevention and therapy This articole reviews new aspects of patology of Age Related Macular Degeneration like the role of complement in maintaining inflamation and the role of oxidative stress on different structures of the retina.

  4. Intracavity frequency-doubled degenerate laser

    CERN Document Server

    Liew, Seng Fatt; Weiler, Sascha; Monjardin-Lopez, Jesus Fernando; Ramme, Mark; Redding, Brandon; Choma, Michael A; Cao, Hui

    2016-01-01

    We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission supports many more transverse modes than the fundamental emission, and exhibit lower spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The high power, low spatial coherence and good directionality makes the green degenerate laser an attractive illumination source for parallel imaging and projection display.

  5. Comparative linkage analysis and visualization of high-density oligonucleotide SNP array data

    Directory of Open Access Journals (Sweden)

    Smith Richard JH

    2005-02-01

    Full Text Available Abstract Background The identification of disease-associated genes using single nucleotide polymorphisms (SNPs has been increasingly reported. In particular, the Affymetrix Mapping 10 K SNP microarray platform uses one PCR primer to amplify the DNA samples and determine the genotype of more than 10,000 SNPs in the human genome. This provides the opportunity for large scale, rapid and cost-effective genotyping assays for linkage analysis. However, the analysis of such datasets is nontrivial because of the large number of markers, and visualizing the linkage scores in the context of genome maps remains less automated using the current linkage analysis software packages. For example, the haplotyping results are commonly represented in the text format. Results Here we report the development of a novel software tool called CompareLinkage for automated formatting of the Affymetrix Mapping 10 K genotype data into the "Linkage" format and the subsequent analysis with multi-point linkage software programs such as Merlin and Allegro. The new software has the ability to visualize the results for all these programs in dChip in the context of genome annotations and cytoband information. In addition we implemented a variant of the Lander-Green algorithm in the dChipLinkage module of dChip software (V1.3 to perform parametric linkage analysis and haplotyping of SNP array data. These functions are integrated with the existing modules of dChip to visualize SNP genotype data together with LOD score curves. We have analyzed three families with recessive and dominant diseases using the new software programs and the comparison results are presented and discussed. Conclusions The CompareLinkage and dChipLinkage software packages are freely available. They provide the visualization tools for high-density oligonucleotide SNP array data, as well as the automated functions for formatting SNP array data for the linkage analysis programs Merlin and Allegro and calling

  6. Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    Directory of Open Access Journals (Sweden)

    Mattiuz Pier

    2005-10-01

    Full Text Available Abstract Background The minor histocompatibility antigens (mHags are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability.

  7. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    Science.gov (United States)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  8. Chimeric RNA Oligonucleotides with Triazole and Phosphate Linkages: Synthesis and RNA Interference.

    Science.gov (United States)

    Fujino, Tomoko; Kogashi, Kanako; Okada, Koudai; Mattarella, Martin; Suzuki, Takeru; Yasumoto, Kenichi; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2015-12-01

    Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution-phase click chemistry and solid-phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click-coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well-established phosphoramidite method for the elongation. The series of chimeric 21-mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small-interfering RNA molecules.

  9. Solid-phase synthesis of 2{sup '}-O-methoxyethyl oligonucleotides using dimeric phosphoramidate blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gi Weon; Kang, Yong Han [Dept. of Applied Chemistry, Hanyang University, Ansan (Korea, Republic of)

    2016-11-15

    This research focused on the method of using dimeric phosphoramidite blocks to synthesize oligonucleotides for development as oligonucleotide drugs. A 16-mer oligonucleotide with the randomly selected sequence of C*C*T*C*G*C *T*C*T*C*G*C*C* C*G*C was synthesized using CC, GC, and TC dimers, a combination of monomers and dimers, or only monomers as building blocks. Using dimer blocks in this synthetic method provided a significant decrease in critical impurities that had similar properties to the main product, which was confirmed by LC-MS and HPLC analysis.

  10. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  11. Primer on tritium safe handling practices

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

  12. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  13. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  14. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  15. Angels and Degenerates: Artistic Virtuosity and Degeneration Theory in Fin de Siècle Fiction

    OpenAIRE

    2015-01-01

    The aim in "Angels and Degenerates: Artistic Virtuosity and Degeneration Theory in Fin de Siècle Fiction" is to complicate the popular image of the fin de siècle as uniformly pessimistic by examining the continuities between a range of novelists, as well as other late nineteenth century writers from such disparate fields as psychology and cultural criticism, as they critique degeneration theory. Some of these writers, like Thomas Hardy, H.G. Wells, and Sarah Grand, are typically read as promo...

  16. Detection of varicella-zoster virus and herpes simplex virus by the polymerase chain reaction with degenerate primers

    NARCIS (Netherlands)

    Jacobs, J.J.L.; Folkers, E.; Vreeswijk, J.

    1999-01-01

    Varicella-zoster virus (VZV) and herpes simplex virus (HSV) are human pathogens of significance involved in multiple diseases with either typical or atypical clinical features. In neonates and immunocompromised patients these alphaherpesviruses may cause life-threatening diseases such as

  17. Detection of varicella-zoster virus and herpes simplex virus by the polymerase chain reaction with degenerate primers

    NARCIS (Netherlands)

    Jacobs, J.J.L.; Folkers, E.; Vreeswijk, J.

    1999-01-01

    Varicella-zoster virus (VZV) and herpes simplex virus (HSV) are human pathogens of significance involved in multiple diseases with either typical or atypical clinical features. In neonates and immunocompromised patients these alphaherpesviruses may cause life-threatening diseases such as encephaliti

  18. [Analysis of effectiveness of cDNA synthesis, induced using complementary primers and primers containing a noncomplementary base matrix].

    Science.gov (United States)

    D'iachenko, L B; Chenchik, A A; Khaspekov, G L; Tatarenko, A O; Bibilashvili, R Sh

    1994-01-01

    We have studied the efficiency of DNA synthesis catalyzed by M-MLV reverse transcriptase or Thermus aquaticus DNA polymerase for primers (4-17 nucleotides long) either completely matched or possessing a single mismatched base pair at all possible positions in the primer. It has been shown that DNA synthesis efficiency depends not only on the position of mismatched base pair but on the length and primary structure of the primer. The enzyme, template, and primer concentrations determine the relative level of mismatched DNA synthesis.

  19. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  20. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    , action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  1. MR findings of degenerating parenchymal neurocysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yul; Chung, Eun A; Yang, Ik; Park, Hae Jung; Chung, Soo Young [Hallym Univ. Kangnam Sungshim Hospital, Seoul (Korea, Republic of)

    1996-06-01

    To evaluate MR imaging findings of degenerating parenchymal neurocysticercosis and to determine the characteristics which distinguish it from other brain diseases. MR imagings of 19 patients (56 lesions) of degenerating parenchymal neurocysticercosis were retrospectively evaluated, focusing on the size and location of lesions signal intensity patterns of cyst fluid and wall, the extent of the surrounding edema and features of contrast enhancement. Degenerating parenchymal neurocysticercosis was located in gray or subcortical while matter in 89.3% of 56 lesions (50/56) ; most of these (98.2%) were smaller than 2 cm in diameter. Cyst fluid signal was hyperintense relative to CSF on T1 and proton density weighted images (92.9%). A hypointense signal rim of the cyst wall was noted in the lesions on proton density (92.9%) and T2 weighted (98.2%) images, Surrounding edema was mostly mild. Peripheral rim enhancement was noted in all lesions, and this was frequently irregular and lobulated (67.9%) with a focal defect in the enhancing rim(41.1%). Findings which could be helpful in distinguishing degenerating parencymal neurocysticercosis from other brain diseases are as follows : small, superficial lesions ; hyperintense signal of the cyst fluid on T1 and proton density weighted images ; hypointense signal of the cyst wall on proton density and T2 weighted images ; relatively mild extent of surrounding edema, and peripheral rim enhancement which is frequently irregular and lobulated with a focal defect in the enhancing rim.

  2. Single Degenerate Progenitors of Type Ia Supernovae

    Science.gov (United States)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  3. Driving and Age-Related Macular Degeneration

    Science.gov (United States)

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  4. The nature of apraxia in corticobasal degeneration.

    Science.gov (United States)

    Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D

    1994-01-01

    Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage. PMID:8163995

  5. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  6. Transversal heteroclinic orbits in general degenerate cases

    Institute of Scientific and Technical Information of China (English)

    朱德明

    1996-01-01

    A geometrical method using the exponential dichotomy and the invariant manifold thoery is given to set up the criteria for the existence of transversal and tangential heterodinic orbits under the most general degenerate cases. Conclusions given here extend and contain the relevant known results.

  7. Depression in Age-Related Macular Degeneration

    Science.gov (United States)

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  8. Nonunital Spectral Triples Associated to Degenerate Metrics

    Science.gov (United States)

    Rennie, A.

    We show that one can define (p,∞)-summable spectral triples using degenerate metrics on smooth manifolds. Furthermore, these triples satisfy Connes-Moscovici's discrete and finite dimension spectrum hypothesis, allowing one to use the Local Index Theorem [1] to compute the pairing with K-theory. We demonstrate this with a concrete example.

  9. On Doubly Degenerate Quasilinear Parabolic Equations of Higher Order

    Institute of Scientific and Technical Information of China (English)

    Zhen Hai LIU

    2005-01-01

    We deal with the existence of periodic solutions for doubly degenerate quasilinear parabolic equations of higher order, which can degenerate, on a part of the boundary, on a segment in the interior of the domain and in time.

  10. Quasiconformal mappings and degenerate elliptic and parabolic equations

    Directory of Open Access Journals (Sweden)

    Filippo Chiarenza

    1987-11-01

    Full Text Available In this paper two Harnak inequalities are proved concerning a degenerate elliptic and a degenerate parabolic equation. In both cases the weight giving the degeneracy is a power of the jacobian of a quasiconformal mapping.

  11. Degenerate solutions obtained from several variants of factor analysis

    NARCIS (Netherlands)

    Zijlstra, Bonne J.H.; Kiers, Henk A.L.

    2002-01-01

    Considerable research has been performed concerning degenerate solutions from the Parafac model. However, degenerate solutions have also been reported to occur with the shifted multiplicative model and a model for component analysis of multitrait multimethod matrices. Furthermore, we obtained

  12. The Fluid Reading Primer: Animated Decoding Support for Emergent Readers.

    Science.gov (United States)

    Zellweger, Polle T.; Mackinlay, Jock D.

    A prototype application called the Fluid Reading Primer was developed to help emergent readers with the process of decoding written words into their spoken forms. The Fluid Reading Primer is part of a larger research project called Fluid Documents, which is exploring the use of interactive animation of typography to show additional information in…

  13. Conjugation with receptor-targeted histidine-rich peptides enhances the pharmacological effectiveness of antisense oligonucleotides.

    Science.gov (United States)

    Nakagawa, Osamu; Ming, Xin; Carver, Kyle; Juliano, Rudy

    2014-01-15

    Ineffective delivery to intracellular sites of action is one of the key limitations to the use of antisense and siRNA oligonucleotides as therapeutic agents. Here, we describe molecular scale antisense oligonucleotide conjugates that bind selectively to a cell surface receptor, are internalized, and then partially escape from nonproductive endosomal locations to reach their sites of action in the nucleus. Peptides that include bombesin sequences for receptor targeting and a run of histidine residues for endosomal disruption were covalently linked to a splice switching antisense oligonucleotide. The conjugates were tested for their ability to correct splicing and up-regulate expression of a luciferase reporter in prostate cancer cells that express the bombesin receptor. We found that trivalent conjugates that included both the targeting sequence and several histidine residues were substantially more effective than conjugates containing only the bombesin or histidine moieties. This demonstrates the potential of creating molecular scale oligonucleotide conjugates with both targeting and endosome escape capabilities.

  14. Chemically robust fluoroalkyl phthalocyanine-oligonucleotide bioconjugates and their GRP78 oncogene photocleavage activity.

    Science.gov (United States)

    Patel, Pradeepkumar; Patel, Hemantbhai H; Borland, Emily; Gorun, Sergiu M; Sabatino, David

    2014-06-18

    The first representative of functionalized fluoroalkyl phthalocyanines, F48H7(COOH)PcZn, is reported. The complex generates (1)O2 affording long-lasting photooxidation of an external substrate without self-decomposition. The carboxylic group couples with an antisense oligonucleotide targeting GRP78 oncogenes, resulting in the F48H7PcZn-cancer targeting oligonucleotide (CTO). The bioconjugated fluorophthalocyanine effectively hybridizes complementary GRP78 DNA and mRNA sequences. Piperidine cleavage assays reveal desired photochemical oligonucleotide oxidative degradation for both F48H7PcZn-CTO:DNA and F48H7PcZn-CTO:mRNA hybrids. This new materials strategy could be extended to other functional fluorinated phthalocyanines-antisense oligonucleotide combinations for long-lasting oncogene-targeting photodynamic therapy.

  15. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    Science.gov (United States)

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  16. Exploiting Protected Maleimides to Modify Oligonucleotides, Peptides and Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Clément Paris

    2015-04-01

    Full Text Available This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  17. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  18. Polymerase chain reaction of Au nanoparticle-bound primers

    Institute of Scientific and Technical Information of China (English)

    SHEN Hebai; HU Min; YANG Zhongnan; WANG Chen; ZHU Longzhang

    2005-01-01

    Polymerase chain reaction (PCR) is a useful technique for in vitro amplification of a DNA fragment. In this paper, a PCR procedure using Au nanoparticle (AuNP) -bound primers was systemically studied. The 5′-SH- (CH2)6-modified primers were covalently attached to the AuNP surface via Au-S bonds, and plasmid pBluescript SK was used as a template. The effects of the concentration of AuNP-bound primers, annealing temperature and PCR cycles were evaluated, respectively. The results indicate that PCR can proceed successfully under optimized condition, with either forward or reverse primers bound to the AuNP surface or with both the two primers bound to the AuNP surface. Development of PCR procedure based on AuNPs not only makes the isolation of PCR products very convenient, but also provides novel methods to prepare AuNP-bound ssDNA and nanostructured material.

  19. Uncoupling primer and releaser responses to pheromone in honey bees

    Science.gov (United States)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  20. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  1. PolyMarker: A fast polyploid primer design pipeline.

    Science.gov (United States)

    Ramirez-Gonzalez, Ricardo H; Uauy, Cristobal; Caccamo, Mario

    2015-06-15

    The design of genetic markers is of particular relevance in crop breeding programs. Despite many economically important crops being polyploid organisms, the current primer design tools are tailored for diploid species. Bread wheat, for instance, is a hexaploid comprising of three related genomes and the performance of genetic markers is diminished if the primers are not genome specific. PolyMarker is a pipeline that generates SNP markers by selecting candidate primers for a specified genome using local alignments and standard primer design tools to test the viability of the primers. A command line tool and a web interface are available to the community. PolyMarker is available as a ruby BioGem: bio-polyploid-tools. Web interface: http://polymarker.tgac.ac.uk. © The Author 2015. Published by Oxford University Press.

  2. Complexes of carbon nanotubes with oligonucleotides in thin Langmuir-Blodgett films to detect electrochemically hybridization

    Science.gov (United States)

    Egorov, A. S.; Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Orekhovskaya, T. I.; Veligura, A. A.; Govorov, M. I.; Shulitsky, B. G.

    2014-10-01

    Self-assembled complexes consisting of thin multi-walled carbon nanotubes (MWCNTs) and DNA-oligonucleotides which are able to a cooperative binding to complementary oligonucleotides have been investigated. It was establised a high-performance charge transport in nanostructured Langmuir-Blodgett complexes thin MWCNTs/DNA. A method to electrochemically detect DNA hybridization on the self-organized structures has been proposed.

  3. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Directory of Open Access Journals (Sweden)

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  4. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    Science.gov (United States)

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-05-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours.

  5. Enzymic synthesis of oligonucleotides containing methylphosphonate internucleotide linkages.

    Science.gov (United States)

    Higuchi, H; Endo, T; Kaji, A

    1990-09-18

    Thymidine 5'-O-(pyrophosphoryl methylphosphonate) (dTTP alpha CH3) has been chemically synthesized by condensation of thymidine 5'-O-(methylphosphonate) with pyrophosphate. This novel nucleotide, which contained an alpha-phosphorus atom as methylphosphonate, was used as a substrate of terminal deoxynucleotidyltransferase (TDTase) in the presence of oligonucleotide (5'-GCTGTATCGTCAAGGCACTC-3') as an initiator. The reaction products were separated into two components by reverse-phase high-performance liquid chromatography (RP-HPLC). These products were, after purification, digested with nuclease P1 and alkaline phosphatase followed by separation of digested products by RP-HPLC. The result showed the presence of one of the isomers of 2'-deoxycytidyl-3'-methylphosphonyl-5'-thymidine (dCpCH3T) and 2'-deoxycytidyl-3'-methylphosphonyl-5'-thymidyl-3'-methyl phosphonyl-5'-thymidin e (dCpCH3TpCH3T), respectively. Fast atom bombardment mass spectrometry of these products further supported identification of the dinucleotide and the trinucleotide. These results indicated that dTTP alpha CH3 was used as a substrate of TDTase, resulting in methylphosphonate linkages. Produced oligomers were resistant to hydrolysis by snake venom phosphodiesterase I.

  6. Advancements of antisense oligonucleotides in treatment of breast cancer

    Institute of Scientific and Technical Information of China (English)

    YANGShuan-Ping; SONGSan-Tai; 等

    2003-01-01

    Breast cancer is one kind of multi-gene related malignancy.Overexpression of some oncogenes such as HER-2(c-erbB-2,Neu),bcl-2/bcl-xL,protein kinase A(PKA),and transferrin receptor gene(TfR gene),etc significantly affect the prognosis of breast cancer.It was shown that specific suppression of the overexpressed genes above resulted in the improvement of the therapy of breast cancer.Antisense interference.one of useful tools for inhibiting the overexpression of specific oncogenes,was involved in the therapy of breast cancer in recent years. Data indicated that antisense oligonucleotides(ON)could inhibit specially the expression of the target genes on mRNA or protein levels in most of cases;some ON candidates showed encouraging therapeutic effects in vitro and in vivo on breast cancer cell lines or xenografts.Furthermore,the combination use of the antisense ON and normal chemotherapeutic agents indicated synergistic antitumor effects,which was probably the best utilization of antisense ON in the treatment of breast cancer.

  7. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Directory of Open Access Journals (Sweden)

    Tamar Canello

    Full Text Available Silencing of O(6-methylguanine-DNA-methyltransferase (MGMT in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1 within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN. Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  8. Nanoexplosive gene therapy using triplex-forming oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eun Jung; Min, Hye Jung; Choe, Jae Gol; Park, Gil Hong; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Triplex forming oligonucleotides (TFO) labeled with Auger emitter could be ideal vehicles for delivering radiation energy to specific DNA sequences, and followed by double-stranded DNA breaks and subsequent inactivation of targeted genes. We designed TFOs targeting the selected DNA fragments (i.e., estrogen receptors and N-myc promoter) and labeled with {sup 125}I and {sup 111}In. Various Cancer cells, e.g., MCF-7 (breast adenocarcinoma), MCF-10A (immortalized breast cells), Jurkat (T-cell leukemia), ARO (thyroid cancer), SNU-449 (Colon Caner), and HL-60 (polymyelocytic leukemia), were prepared and treated with radiolabeled TFO for 24 h. After the incubation, subcellular fractions (i.e., cell nucleus, cytoplasm and cultured medium) were collected and measured radioactivity by a gamma scintillation counter, respectively. The mean value of % injected dose for each fraction was ranged as follows: nucleus, 4.4-20%; cytoplasm, 8.2-29%; and medium, 64-87%. Therefore, we speculated that TFO labeled with Auger emitter could be a next-generation therapeutic tool in nanoexplosive gene therapy.

  9. Efficient in vivo delivery of antisense oligonucleotide to choroid plexus.

    Science.gov (United States)

    Piao, Wenying; Nishina, Kazutaka; Yoshida-Tanaka, Kie; Kuwahara, Hiroya; Nishina, Tomoko; Sakata, Mina; Mizusawa, Hidehiro; Yokota, Takanori

    2013-03-01

    The choroid plexus (CP) is present on the ventricular walls of the brain, produces cerebrospinal fluid (CSF), contains many blood vessels, and is a major functional component of the blood-CSF barrier. The CP is an important site in the pathophysiology of various neurological diseases, including Alzheimer's disease and meningeal amyloidosis. We performed gene silencing in the CP in vivo by using an antisense oligonucleotide (ASO). A short ASO of length 12 nucleotides was intravenously injected into rats. The ASO was not delivered to neurons or glia in the central nervous system, but was successfully delivered into the CP, and resulted in a significant reduction of endogenous target gene expression in epithelial cells within the CP. Although the mechanism of uptake of the ASO by the CP was not elucidated, the ASO bound to albumin in vivo, and the distribution of ASO delivery was similar to that of albumin delivery. These findings suggest that we inhibited target gene expression in the epithelial cells of the CP via albumin-ASO conjugates. This strategy should be useful for investigations of the function of CP, and for the development of new gene-silencing therapies for diseases with pathophysiology related to the CP.

  10. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Science.gov (United States)

    Canello, Tamar; Ovadia, Haim; Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  11. Chimeric Antisense Oligonucleotide Conjugated to α-Tocopherol

    Directory of Open Access Journals (Sweden)

    Tomoko Nishina

    2015-01-01

    Full Text Available We developed an efficient system for delivering short interfering RNA (siRNA to the liver by using α-tocopherol conjugation. The α-tocopherol–conjugated siRNA was effective and safe for RNA interference–mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid-DNA gapmer antisense oligonucleotide (ASO was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5′-end of the ASO sequence by using 5′-α-tocopherol–conjugated 4- to 7-mers of unlocked nucleic acid (UNA as a “second wing.” Intravenous injection of mice with this α-tocopherol–conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol–conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS molecules are bound to ASO with UNA sequences.

  12. The development of bioactive triple helix-forming oligonucleotides.

    Science.gov (United States)

    Seidman, Michael M; Puri, Nitin; Majumdar, Alokes; Cuenoud, Bernard; Miller, Paul S; Alam, Rowshon

    2005-11-01

    We are developing triple helix-forming oligonucleotides (TFOs) as gene targeting reagents in mammalian cells. We have described psoralen-conjugated TFOs containing 2'-O-methyl (2'OMe) and 2'-O-aminoethoxy (AE) ribose substitutions. TFOs with a cluster of 3-4 AE residues, with all other sugars as 2'OMe, were bioactive in a gene knockout assay in mammalian cells. In contrast, TFOs with one or two clustered, or three dispersed, AE residues were inactive. Thermal stability analysis of the triplexes indicated that there were only incremental differences between the active and inactive TFOs. However the active and inactive TFOs could be distinguished by their association kinetics. The bioactive TFOs showed markedly greater on-rates than the inactive TFOs. It appears that the on-rate is a better predictor of TFO bioactivity than thermal stability. Our data are consistent with a model in which a cluster of 3-4 AE residues stabilizes the nucleation event that precedes formation of a complete triplex. It is likely that triplexes in cells are much less stable than triplexes in vitro probably as a result of elution by chromatin-associated translocases and helicases. Consequently the biologic assay will favor TFOs that can bind and rebind genomic targets quickly.

  13. Advantages of ion-exchange chromatography for oligonucleotide analysis.

    Science.gov (United States)

    Cook, Ken; Thayer, Jim

    2011-05-01

    The rapid development of therapeutic oligonucleotides (ONs) has created a need for in-depth characterization of ONs, beyond previous requirements. The natural migration to LC-MS requires the use of chromatography with MS-compatible eluents to introduce the large, highly charged biopolymers into the mass spectrometer. Most frequently this employs ion-pair reversed-phase liquid chromatography, which may leave gaps in the characterization, but these can be filled with the use of high-resolution ion-exchange chromatography. Several classes of isobaric isomers are among the impurities that will require further separation prior to MS analysis. This review shows how the use of ion exchange as an additional orthogonal analytical method can be used as standalone or interfaced with MS to achieve the highest possible analytical coverage in the characterization and quantification of impurities present in single- and double-stranded ON formulations. Some of these techniques have been in use for some time and the importance of others is just being recognized.

  14. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.

    Science.gov (United States)

    Rytkönen, Jussi; Arukuusk, Piret; Xu, Wujun; Kurrikoff, Kaido; Langel, Ulo; Lehto, Vesa-Pekka; Närvänen, Ale

    2014-02-01

    The largest obstacle to the use of oligonucleotides as therapeutic agents is the delivery of these large and negatively charged biomolecules through cell membranes into intracellular space. Mesoporous silicon (PSi) is widely recognized as a potential material for drug delivery purposes due to its several beneficial features like large surface area and pore volume, high loading capacity, biocompatibility, and biodegradability. In the present study, PSi nanoparticles stabilized by thermal oxidation or thermal carbonization and subsequently modified by grafting aminosilanes on the surface are utilized as an oligonucleotide carrier. Splice correcting oligonucleotides (SCOs), a model oligonucleotide drug, were loaded into the positively charged PSi nanoparticles with a loading degree as high as 14.3% (w/w). Rapid loading was achieved by electrostatic interactions, with the loading efficiencies reaching 100% within 5 min. The nanoparticles were shown to deliver and release SCOs, in its biologically active form, inside cells when formulated together with cell penetrating peptides (CPP). The biological effect was monitored with splice correction assay and confocal microscopy utilizing HeLa pLuc 705 cells. Furthermore, the use of PSi carrier platform in oligonucleotide delivery did not reduce the cell viability. Additionally, the SCO-CPP complexes formed in the pores of the carrier were stabilized against proteolytic digestion. The advantageous properties of protecting and releasing the cargo and the possibility to further functionalize the carrier surface make the hybrid nanoparticles a potential system for oligonucleotide delivery.

  15. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    Science.gov (United States)

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    Science.gov (United States)

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-04

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides.

    Science.gov (United States)

    Ming, Xin; Carver, Kyle; Fisher, Michael; Noel, Romain; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien; Cao, Canhong; Bauman, John; Juliano, Rudolph L

    2013-04-01

    The attainment of strong pharmacological effects with oligonucleotides is hampered by inefficient access of these molecules to their sites of action in the cytosol or nucleus. Attempts to address this problem with lipid or polymeric delivery systems have been only partially successful. Here, we describe a novel alternative approach involving the use of a non-toxic small molecule to enhance the pharmacological effects of oligonucleotides. The compound Retro-1 was discovered in a screen for small molecules that reduce the actions of bacterial toxins and has been shown to block the retrograde trafficking pathway. We demonstrate that Retro-1 can also substantially enhance the effectiveness of antisense and splice switching oligonucleotides in cell culture. This effect occurs at the level of intracellular trafficking or processing and is correlated with increased oligonucleotide accumulation in the nucleus but does not involve the perturbation of lysosomal compartments. We also show that Retro-1 can alter the effectiveness of splice switching oligonucleotides in the in vivo setting. These observations indicate that it is possible to enhance the pharmacological actions of oligonucleotides using non-toxic and non-lysosomotropic small molecule adjuncts.

  18. Improving signal intensities for genes with low-expression on oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Hu Limei

    2004-06-01

    Full Text Available Abstract Background DNA microarrays using long oligonucleotide probes are widely used to evaluate gene expression in biological samples. These oligonucleotides are pre-synthesized and sequence-optimized to represent specific genes with minimal cross-hybridization to homologous genes. Probe length and concentration are critical factors for signal sensitivity, particularly when genes with various expression levels are being tested. We evaluated the effects of oligonucleotide probe length and concentration on signal intensity measurements of the expression levels of genes in a target sample. Results Selected genes of various expression levels in a single cell line were hybridized to oligonucleotide arrays of four lengths and four concentrations of probes to determine how these critical parameters affected the intensity of the signal representing their expression. We found that oligonucleotides of longer length significantly increased the signals of genes with low-expression in the target. High-expressing gene signals were also boosted but to a lesser degree. Increasing the probe concentration, however, did not linearly increase the signal intensity for either low- or high-expressing genes. Conclusions We conclude that the longer the oligonuclotide probe the better the signal intensities of low expressing genes on oligonucleotide arrays.

  19. Oligonucleotide chip, real-time PCR and sequencing for genotyping of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Yong-Zhong Wang; Guo-Xiang Wu; Li-Bo Luo; Min Chen; Li-Hua Ruan

    2007-01-01

    AIM: To compare the oligonucleotide chip, real-time PCR and sequencing for genotyping of hepatitis B virus in Chinese patients with chronic hepatitis B.METHODS: Mixture of samples with different genotypes and clinical serum samples from 126 chronic hepatitis B patients was tested for hepatitis B virus genotypes by oligonucleotide chip, real-time PCR and sequencing of PCR products, respectively. Clinical performances, time required and costs of the three assays were evaluated.RESULTS: Oligonucleotide chips and real-time PCR detected 1% and 0.1% genotypes, respectively, in mixed samples. Of the 126 clinical samples from patients with chronic hepatitis B, genotype B was detected in 41(33%), 41 (33%) and 45 (36%) samples, and genotype C in 76 (60%), 76 (60%) and 81 (64%) samples, by oligonucleotide chip, real-time PCR and sequencing,respectively. Oligonucleotide chip and real-time PCR detected mixed genotypes B and C in 9 samples. Realtime PCR was the rapidest and cheapest among the three assays.CONCLUSION: Oligonucleotide chip and real-time PCR are able to detect mixed genotypes, while sequencing only detects the dominant genotype in clinical samples.

  20. Conceptual "Heat-Driven" approach to the synthesis of DNA oligonucleotides on microarrays.

    Science.gov (United States)

    Grajkowski, A; Cieślak, J; Chmielewski, M K; Marchán, V; Phillips, L R; Wilk, A; Beaucage, S L

    2003-12-01

    The discovery of deoxyribonucleoside cyclic N-acylphosphoramidites, a novel class of phosphoramidite monomers for solid-phase oligonucleotide synthesis, has led to the development of a number of phosphate protecting groups that can be cleaved from DNA oligonucleotides under thermolytic neutral conditions. These include the 2-(N-formyl-N-methyl)aminoethyl, 4-oxopentyl, 3-(N-tert-butyl)carboxamido-1-propyl, 3-(2-pyridyl)-1-propyl, 2-[N-methyl-N-(2-pyridyl)]aminoethyl, and 4-methythiobutyl groups. When used for 5'-hydroxyl protection of nucleosides, the analogous 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group exhibited excellent thermolytic properties, which may permit an iterative "heat-driven" synthesis of DNA oligonucleotides on microarrays. In this regard, progress has been made toward the use of deoxyribonucleoside cyclic N-acylphosphoramidites in solid-phase oligonucleotide syntheses without nucleobase protection. Given that deoxyribonucleoside cyclic N-acylphosphoramidites produce oligonucleotides with heat-sensitive phosphate protecting groups, blocking the 5'-hydroxyl of these monomers with, for example, the thermolabile 1-phenyl-2-[N-methyl-N-(2-pyridyl)]aminoethyloxycarbonyl group may provide a convenient thermo-controlled method for the synthesis of oligonucleotides on microarrays.

  1. Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications.

    Science.gov (United States)

    Beaucage, S L

    2001-08-01

    This report emphasizes the interfacial chemistry that is required to ensure proper attachment of oligonucleotides onto the surface of microarrays. For example, strategies for the covalent attachment of pre-synthesized oligonucleotides to glass slides, gold films, polyacrylamide gel pads, polypyrrole films, and optical fibers are surveyed in an attempt to better define the parameters for optimal formation and detection of DNA hybrids. These parameters include among others, the nature and length of the linkers attaching oligonucleotides to the arrays, and the surface density of oligonucleotides required for unhindered hybridization with DNA targets. Sensitive detection methods such as the use of light-scattering techniques, molecular beacons, surface plasmon resonance, attenuated total internal reflection-FTIR, and the evanescent field excitation of fluorescence from surface-bound fluorophores have been developed to study the kinetics and specificity of hybridization events. Finally, the synthesis of oligonucleotides directly on glass surfaces and polypropylene sheets has been investigated to enable DNA sequencing by hybridization and achieve oligonucleotide densities of ca. 10(6) sequences per cm(2) on DNA chips.

  2. PrimerSeq:Design and Visualization of RT-PCR Primers for Alternative Splicing Using RNA-seq Data

    Institute of Scientific and Technical Information of China (English)

    Collin Tokheim; Juw Won Park; Yi Xing

    2014-01-01

    The vast majority of multi-exon genes in higher eukaryotes are alternatively spliced and changes in alternative splicing (AS) can impact gene function or cause disease. High-throughput RNA sequencing (RNA-seq) has become a powerful technology for transcriptome-wide analysis of AS, but RT-PCR still remains the gold-standard approach for quantifying and validating exon splicing levels. We have developed PrimerSeq, a user-friendly software for systematic design and visualization of RT-PCR primers using RNA-seq data. PrimerSeq incorporates user-provided tran-scriptome profiles (i.e., RNA-seq data) in the design process, and is particularly useful for large-scale quantitative analysis of AS events discovered from RNA-seq experiments. PrimerSeq features a graphical user interface (GUI) that displays the RNA-seq data juxtaposed with the expected RT-PCR results. To enable primer design and visualization on user-provided RNA-seq data and transcript annotations, we have developed PrimerSeq as a stand-alone software that runs on local computers. PrimerSeq is freely available for Windows and Mac OS X along with source code at http://primerseq.sourceforge.net/. With the growing popularity of RNA-seq for transcriptome stud-ies, we expect PrimerSeq to help bridge the gap between high-throughput RNA-seq discovery of AS events and molecular analysis of candidate events by RT-PCR.

  3. Primer on electricity futures and other derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  4. Collecting in collections: a PCR strategy and primer set for DNA barcoding of decades-old dried museum specimens.

    Science.gov (United States)

    Mitchell, Andrew

    2015-09-01

    Natural history museums are vastly underutilized as a source of material for DNA analysis because of perceptions about the limitations of DNA degradation in older specimens. Despite very few exceptions, most DNA barcoding projects, which aim to obtain sequence data from all species, generally use specimens collected specifically for that purpose, instead of the wealth of identified material in museums, constrained by the lack of suitable PCR methods. Any techniques that extend the utility of museum specimens for DNA analysis therefore are highly valuable. This study first tested the effects of specimen age and PCR amplicon size on PCR success rates in pinned insect specimens, then developed a PCR primer set and amplification strategy allowing greatly increased utilization of older museum specimens for DNA barcoding. PCR success rates compare favourably with the few published studies utilizing similar aged specimens, and this new strategy has the advantage of being easily automated for high-throughput laboratory workflows. The strategy uses hemi-nested, degenerate, M13-tailed PCR primers to amplify two overlapping amplicons, using two PCRs per amplicon (i.e. four PCRs per DNA sample). Initial PCR products are reamplified using an internal primer and a M13 primer. Together the two PCR amplicons yield 559 bp of the COI gene from Coleoptera, Lepidoptera, Diptera, Hemiptera, Odonata and presumably also other insects. BARCODE standard-compliant data were recovered from 67% (56 of 84) of specimens up to 25 years old, and 51% (102 of 197) of specimens up to 55 years old. Given the time, cost and specialist expertise required for fieldwork and identification, 'collecting in collections' is a viable alternative allowing researchers to capitalize on the knowledge captured by curation work in decades past.

  5. 2-O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analog of 2-O-[2-(Methoxy)ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNA

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, T.P.; Manoharan, M.; Fraser, A.S.; Kawasaki, A.M.; Lesnik, E.; Sioufi, N.; Leeds, J.M.; Teplova, M.; Egli, M.

    2010-03-08

    A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.

  6. DNA sequence analysis by hybridization with oligonucleotide microchips : MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides.

    Energy Technology Data Exchange (ETDEWEB)

    Stomakhin, A. A.; Vasiliskov, V. A.; Timofeev, E.; Schulga, D.; Cotter, R. J.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Moscow Inst. of Physics and Technology; Middle Atlantic Mass Spectrometry Lab.; Johns Hopkins Univ. School of Medicine

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15{sup o}C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.

  7. PD5: a general purpose library for primer design software.

    Science.gov (United States)

    Riley, Michael C; Aubrey, Wayne; Young, Michael; Clare, Amanda

    2013-01-01

    Complex PCR applications for large genome-scale projects require fast, reliable and often highly sophisticated primer design software applications. Presently, such applications use pipelining methods to utilise many third party applications and this involves file parsing, interfacing and data conversion, which is slow and prone to error. A fully integrated suite of software tools for primer design would considerably improve the development time, the processing speed, and the reliability of bespoke primer design software applications. The PD5 software library is an open-source collection of classes and utilities, providing a complete collection of software building blocks for primer design and analysis. It is written in object-oriented C(++) with an emphasis on classes suitable for efficient and rapid development of bespoke primer design programs. The modular design of the software library simplifies the development of specific applications and also integration with existing third party software where necessary. We demonstrate several applications created using this software library that have already proved to be effective, but we view the project as a dynamic environment for building primer design software and it is open for future development by the bioinformatics community. Therefore, the PD5 software library is published under the terms of the GNU General Public License, which guarantee access to source-code and allow redistribution and modification. The PD5 software library is downloadable from Google Code and the accompanying Wiki includes instructions and examples: http://code.google.com/p/primer-design.

  8. Ultracompact quantum splitter of degenerate photon pairs

    CERN Document Server

    He, Jiakun; Casas-Bedoya, Alvaro; Zhang, Yanbing; Xiong, Chunle; Eggleton, Benjamin J

    2015-01-01

    Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultra-compact quantum splitter for degenerate single photons based on a monolithic chip incorporating Sagnac loop and a micro-ring resonator with a footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using time-reversed Hong-Ou-Mandel interference. The ring resonator provides enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed HOM effect to take place. In the experiment, we observed a HOM dip visibility of 94.5 +- 3.3 %, indicating the photons generated by the degenerate single photon source are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates.

  9. Acquired hepatocerebral degeneration: A case report

    Institute of Scientific and Technical Information of China (English)

    Wei-Xing Chen; Ping Wang; Sen-Xiang Yan; You-Ming Li; Chao-Hui Yu; Ling-Ling Jiang

    2005-01-01

    AIM: Acquired hepatocerebral degeneration (AHD) is an exceptional type of hepatic encephalopathies (HE). It is characterized by neuropsychiatric and extrapyramidal symptomathology similar to that seen in hepatolenticular degeneration (Wilson's disease). In this paper, we report a case of AHD with unusual presenting features.METHODS: A 28-year-old man with AHD was described and the literature was reviewed.RESULTS: The man had a history of HBV-related liver cirrhosis. He was admitted to our hospital with apathy,dysarthria, mild consciousness impairment and extrapyramidal symptoms after hematemesis. By review of the literature,cases with AHD often did not present consciousness impairment. So our case was once diagnosed incorrectly as Wilson's disease.CONCLUSION: AHD is a rare syndrome and its variable clinical manifestations make it difficult to be diagnosed.But we believe that extensive examination and thorough understanding of the disease are beneficial to a correct diagnosis. Moreover, biocoene is effective in treating the case.

  10. Small automorphic representations and degenerate Whittaker vectors

    CERN Document Server

    Gustafsson, Henrik P A; Persson, Daniel

    2014-01-01

    We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whittaker vectors on G. Although we expect our results to hold for arbitrary simply-laced groups, we give complete proofs only for G=SL(3) and G=SL(4). This is based on a method of Ginzburg that associates Fourier coefficients of automorphic forms with nilpotent orbits of G. Our results complement and extend recent results of Miller and Sahi. We also use our formalism to calculate various local (real and p-adic) spherical vectors of minimal representations of the exceptional groups E_6, E_7, E_8 using global (adelic) degenerate Whittaker vectors, correctly reproducing existing results for such spherical vectors obtained by very different methods.

  11. Real‐time PCR (qPCR) primer design using free online software

    National Research Council Canada - National Science Library

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    ...‐stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green‐based qPCR primers...

  12. Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J

    1997-01-01

    , but not with a noncomplementary tRNA-like molecule. The engineered primer was shown to be involved in both the initiation of first-strand synthesis and second-strand transfer. These results provide an in vivo demonstration that the retroviral replication machinery may recognize sequence complementarity rather than actual primer...... binding site and 3' primer sequences. Use of mutated primer binding site vectors replicating via engineered primers may add additional control features to retroviral gene transfer technology....

  13. Dichromatic Langmuir waves in degenerate quantum plasma

    Science.gov (United States)

    Dubinov, A. E.; Kitayev, I. N.

    2015-06-01

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  14. Immunology of age related macular degeneration

    Institute of Scientific and Technical Information of China (English)

    Kijlstra Aize; Yang Peizeng

    2011-01-01

    @@ Age-related macular degeneration(AMD)is the most important cause of blindness in persons over 55 years of age in the Western world.In view of the increasing life expectancy we can assume that the problem will increase dramatically over the coming decades unless preventive or therapeutic measures are developed.Towards this goal many groups all over the world have performed epidemiological studies to identify potential risk factors for AMD.

  15. Degenerate spacetimes in first order gravity

    CERN Document Server

    Kaul, Romesh K

    2016-01-01

    We present a systematic framework to obtain the most general solutions of the equations of motion in first order gravity theory with degenerate tetrads. There are many possible solutions. Generically, these exhibit non-vanishing torsion even in the absence of any matter coupling. These solutions are shown to contain a special set of eight configurations which are associated with the homogeneous model three-geometries of Thurston.

  16. Degenerate RFID Channel Modeling for Positioning Applications

    Directory of Open Access Journals (Sweden)

    A. Povalac

    2012-12-01

    Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.

  17. Biomechanical study of intervertebral disc degeneration

    OpenAIRE

    González Guitiérrez, Ramiro Arturo

    2012-01-01

    Degeneration and age affect the biomechanics of the intervertebral disc, by reducing its stiffness, flexibility and shock absorption capacities against daily movement and spinal load. The biomechanical characterization of intervertebral discs is achieved by conducting mechanical testing to vertebra-disc-vertebra segments and applying axial, shear, bend and torsion loads, statically or dynamically, with load magnitudes corresponding to the physiological range. However, traditional testing does...

  18. Biomechanical study of intervertebral disc degeneration

    OpenAIRE

    González Guitiérrez, Ramiro Arturo

    2012-01-01

    Degeneration and age affect the biomechanics of the intervertebral disc, by reducing its stiffness, flexibility and shock absorption capacities against daily movement and spinal load. The biomechanical characterization of intervertebral discs is achieved by conducting mechanical testing to vertebra-disc-vertebra segments and applying axial, shear, bend and torsion loads, statically or dynamically, with load magnitudes corresponding to the physiological range. However, traditional testing does...

  19. Depression in Age-Related Macular Degeneration

    OpenAIRE

    Casten,Robin; Rovner,Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling diseases. This article discusses the effect of depression on vision-related disability in patients with AMD, suggests methods for screening for depressio...

  20. Stem cell horizons in intervertebral disc degeneration

    Directory of Open Access Journals (Sweden)

    Joseph Ciacci

    2009-01-01

    Full Text Available Joseph Ciacci1, Allen Ho1,2, Christopher P Ames3, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: Intervertebral disc degeneration remains a pervasive and intractable disease arising from a combination of aging and stress on the back and spine. The growing field of regenerative medicine brings the promise of stem cells in the treatment of disc disease. Scientists and physicians hope to employ stem cells not only to stop, but also reverse degeneration. However, there are many important outstanding issues, including the hostile avascular, apoptotic physiological environment of the intervertebral disc, and the difficulty of obtaining mesenchymal stem cells, and directing them towards chondrocytic differentiation and integration within the nucleus pulposus of the disc. Given the recent advances in minimally invasive spine surgery, and developing body of work on stem cell manipulation and transplantation, stem cells are uniquely poised to bring about large-scale improvements in treatment and outcomes for degenerative disc disease. In this review we will first discuss the cellular and molecular factors influencing degeneration, and then examine the efficacy and difficulties of stem cell transplantation.Keywords: intervertebral disc degeneration, stem cells, disc disease, mesenchymal stem cells, stem cell transplantation