Kernel and divergence techniques in high energy physics separations
Bouř, Petr; Kůs, Václav; Franc, Jiří
2017-10-01
Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.
Review of Palm Kernel Oil Processing And Storage Techniques In South East Nigeria
Directory of Open Access Journals (Sweden)
Okeke CG
2017-06-01
Full Text Available An assessment of palm kernel processing and storage in South-Eastern Nigeria was carried out by investigative survey approach. The survey basically ascertained the extent of mechanization applicable in the area to enable the palm kernel processors and agricultural policy makers, device the modalities for improving palm kernel processing in the area. According to the results obtained from the study, in Abia state, 85% of the respondents use mechanical method while 15% use manual method in cracking their kernels. In Imo state, 83% of the processors use mechanical method while 17% use manual method. In Enugu and Ebonyi state, 70% and 50% of the processors respectively use mechanical method. It is only in Anambra state that greater number of the processors (50% use manual method while 45% use mechanical means. It is observable from the results that palm kernel oil extraction has not received much attention in mechanization. The ANOVA of the palm kernel oil extraction technique in South- East Nigeria showed significant difference in both the study area and oil extraction techniques at 5% level of probability. Results further revealed that in Abia State, 70% of the processors use complete fractional process in refining the palm kernel oil; 25% and 5% respectively use incomplete fractional process and zero refining process. In Anambra, 60% of the processors use complete fractional process and 40% use incomplete fractional process. Zero refining method is not applicable in Anambra state. In Enugu sate, 53% use complete fractional process while 25% and 22% respectively use zero refining and incomplete fractional process in refining the palm kernel oil. Imo state, mostly use complete fractional process (85% in refining palm kernel oil. About 10% use zero refining method while 5% of the processors use incomplete fractional process. Plastic containers and metal drums are dominantly used in most areas in south-east Nigeria for the storage of palm kernel oil.
Directory of Open Access Journals (Sweden)
Jose M. Bernal-de-Lázaro
2016-05-01
Full Text Available This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis systems (DDF based on historical data. Specifically this thesis provides: (1 new criteria for adjustment of the kernel methods used to select features with a high discriminative capacity for the fault diagnosis tasks, (2 a proposed approach process monitoring using statistical techniques multivariate that incorporates a reinforced information concerning to the dynamics of the Hotelling's T2 and SPE statistics, whose combination with kernel methods improves the detection of small-magnitude faults; (3 an robustness index to compare the diagnosis classifiers performance taking into account their insensitivity to possible noise and disturbance on historical data.
Validation of a dose-point kernel convolution technique for internal dosimetry
International Nuclear Information System (INIS)
Giap, H.B.; Macey, D.J.; Bayouth, J.E.; Boyer, A.L.
1995-01-01
The objective of this study was to validate a dose-point kernel convolution technique that provides a three-dimensional (3D) distribution of absorbed dose from a 3D distribution of the radionuclide 131 I. A dose-point kernel for the penetrating radiations was calculated by a Monte Carlo simulation and cast in a 3D rectangular matrix. This matrix was convolved with the 3D activity map furnished by quantitative single-photon-emission computed tomography (SPECT) to provide a 3D distribution of absorbed dose. The convolution calculation was performed using a 3D fast Fourier transform (FFT) technique, which takes less than 40 s for a 128 x 128 x 16 matrix on an Intel 486 DX2 (66 MHz) personal computer. The calculated photon absorbed dose was compared with values measured by thermoluminescent dosimeters (TLDS) inserted along the diameter of a 22 cm diameter annular source of 131 I. The mean and standard deviation of the percentage difference between the measurements and the calculations were equal to -1% and 3.6% respectively. This convolution method was also used to calculate the 3D dose distribution in an Alderson abdominal phantom containing a liver, a spleen, and a spherical tumour volume loaded with various concentrations of 131 I. By averaging the dose calculated throughout the liver, spleen, and tumour the dose-point kernel approach was compared with values derived using the MIRD formalism, and found to agree to better than 15%. (author)
External radiotherapy in macular degeneration: technique and preliminary subjective response
International Nuclear Information System (INIS)
Freire, Jorge; Longton, Wallace A.; Miyamoto, Curtis T.; Brady, Luther W.; Augsburger, James; Brown, Gary; Micaily, Bizhan; Unda, Ricardo
1996-01-01
Purpose: This study attempted to assess the toxicity and possible preliminary benefits from the administration of low-dose external beam irradiation for age-related macular degeneration (ARMD). The premise of the treatment is that radiation induces regression and/or promotes inactivation of the subretinal neovasculature which would result in reabsorption of fluid and blood. This would reduce the risk for further leakage or bleeding, as well as subretinal fibrosis. Consequently, the beneficial effect could be translated into stabilization of visual acuity and prevention of progression of the wet ARMD with the possibility for slight improvement. Methods and Materials: Allegheny University Department of Radiation Oncology treated 41 patients prospectively from January through October 1995 with low-dose irradiation for wet-type macular degeneration. A total of 39 patients were treated with a total dose of 14.4 Gy in eight fractions of 1.8 Gy/fraction over 10-13 elapsed days. The first two patients were treated with a total dose of 10 Gy in fivefractions of 2 Gy. Patients were evaluated at 2-3 weeks and 2-3 months. Some of the patients (36.7%) had laser treatments in the study eye: 21.9% (9) once, 5% (2) twice, 9.7% (4) thrice or more. Subjective visual acuity and toxicity data were collected on all patients. Results: At 2-3 weeks after treatment 29 patients (70%) retained their visual acuity without change, 10 (24.5%) stated they had improved vision, and 2 (4.8%) stated their vision continued to decrease. At 2-3 months after treatment, 27 patients (65.8%) had no change in their vision, 11 (27%) had an improvement in their vision, and 3 (7.2%) had a decrease in visual acuity. Six patients of 41 in the treated group had acute transient side effects. Conclusion: Our observations in this group of 41 patients support the conclusion that many patients will have improved or stable vision after treatment with low-dose irradiation for age-related wet-type macular degeneration
Ingacheva, Anastasia; Chukalina, Marina; Khanipov, Timur; Nikolaev, Dmitry
2018-04-01
Motion blur caused by camera vibration is a common source of degradation in photographs. In this paper we study the problem of finding the point spread function (PSF) of a blurred image using the tomography technique. The PSF reconstruction result strongly depends on the particular tomography technique used. We present a tomography algorithm with regularization adapted specifically for this task. We use the algebraic reconstruction technique (ART algorithm) as the starting algorithm and introduce regularization. We use the conjugate gradient method for numerical implementation of the proposed approach. The algorithm is tested using a dataset which contains 9 kernels extracted from real photographs by the Adobe corporation where the point spread function is known. We also investigate influence of noise on the quality of image reconstruction and investigate how the number of projections influence the magnitude change of the reconstruction error.
DEFF Research Database (Denmark)
Chen, Tianshi; Andersen, Martin Skovgaard; Ljung, Lennart
2014-01-01
Model estimation and structure detection with short data records are two issues that receive increasing interests in System Identification. In this paper, a multiple kernel-based regularization method is proposed to handle those issues. Multiple kernels are conic combinations of fixed kernels...
Side effects after radiotherapy of age-related macular degeneration with the Nijmegen technique.
Hoyng, C.B.; Tromp, A.I.; Meulendijks, C.F.M.; Leys, A.; Maazen, R.W.M. van der; Deutman, A.F.; Vingerling, J.R.
2002-01-01
BACKGROUND: In a randomized trial concerning radiotherapy for age-related macular degeneration, fluorescein angiograms were taken of controls and patients. In this study the frequency of side effects in eyes receiving radiotherapy with the Nijmegen technique is compared with the findings in the eyes
A Novel Kernel-Based Regularization Technique for PET Image Reconstruction
Directory of Open Access Journals (Sweden)
Abdelwahhab Boudjelal
2017-06-01
Full Text Available Positron emission tomography (PET is an imaging technique that generates 3D detail of physiological processes at the cellular level. The technique requires a radioactive tracer, which decays and releases a positron that collides with an electron; consequently, annihilation photons are emitted, which can be measured. The purpose of PET is to use the measurement of photons to reconstruct the distribution of radioisotopes in the body. Currently, PET is undergoing a revamp, with advancements in data measurement instruments and the computing methods used to create the images. These computer methods are required to solve the inverse problem of “image reconstruction from projection”. This paper proposes a novel kernel-based regularization technique for maximum-likelihood expectation-maximization ( κ -MLEM to reconstruct the image. Compared to standard MLEM, the proposed algorithm is more robust and is more effective in removing background noise, whilst preserving the edges; this suppresses image artifacts, such as out-of-focus slice blur.
DBKGrad: An R Package for Mortality Rates Graduation by Discrete Beta Kernel Techniques
Directory of Open Access Journals (Sweden)
Angelo Mazza
2014-04-01
Full Text Available We introduce the R package DBKGrad, conceived to facilitate the use of kernel smoothing in graduating mortality rates. The package implements univariate and bivariate adaptive discrete beta kernel estimators. Discrete kernels have been preferred because, in this context, variables such as age, calendar year and duration, are pragmatically considered as discrete and the use of beta kernels is motivated since it reduces boundary bias. Furthermore, when data on exposures to the risk of death are available, the use of adaptive bandwidth, that may be selected by cross-validation, can provide additional benefits. To exemplify the use of the package, an application to Italian mortality rates, for different ages and calendar years, is presented.
Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2016-09-01
An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Fanaro, L.C.C.B.
1984-01-01
It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Hao, Ming; Wang, Yanli, E-mail: ywang@ncbi.nlm.nih.gov; Bryant, Stephen H., E-mail: bryant@ncbi.nlm.nih.gov
2016-02-25
Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.
International Nuclear Information System (INIS)
Hao, Ming; Wang, Yanli; Bryant, Stephen H.
2016-01-01
Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision–recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. - Graphical abstract: Flowchart of the proposed RLS-KF algorithm for drug-target interaction predictions. - Highlights: • A nonlinear kernel fusion algorithm is proposed to perform drug-target interaction predictions. • Performance can further be improved by using the recalculated kernel. • Top predictions can be validated by experimental data.
Suitability of point kernel dose calculation techniques in brachytherapy treatment planning
Directory of Open Access Journals (Sweden)
Lakshminarayanan Thilagam
2010-01-01
Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5
International Nuclear Information System (INIS)
Law, Travis; Anthony, Marina-Portia; Kim, Mina; Khong, Pek-Lan; Chan, Queenie; Samartzis, Dino
2013-01-01
The purpose of this study was to report the feasibility of the ultrashort time-to-echo (UTE) MRI technique to assess cartilaginous endplate (CEP) defects in humans in vivo and to assess their relationship with intervertebral disc (IVD) degeneration. Nine volunteer subjects (mean age=43.9 years; range=22–61 years) were recruited, representing 54 IVDs and 108 CEPs. The subjects underwent T2-weighted and UTE MRI to assess for the presence and severity of IVD degeneration, and for the presence of CEP defects, respectively, from T12 to S1. IVD degeneration was graded according to the Schneiderman et al. classification on T2-weighted MRI. CEP defects were defined on UTE MRI as discontinuity of high signal over four consecutive images and were independently assessed by two observers. Thirty-seven out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (P=0.008). Multivariate logistic regression revealed that lower body mass index (P=0.009) and younger (P=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration (P=0.036). A higher prevalence of degenerated IVDs with CEP defects was found at L4/5 and L5/S1, while degenerated IVDs with no CEP defects were found throughout the whole lumbar region. Mean IVD degeneration scores of the L4/5 and L5/S1 levels with CEP defects were higher in comparison with those with no CEP defects. Our study demonstrates the feasibility of using UTE MRI in humans in vivo to assess the integrity of the CEP. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration. In the lower lumbar region, more severe degeneration was found to occur in the IVDs with CEP defects than in those without defects.
Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E
2012-11-01
Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.
Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki
2016-03-01
The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference
A simple technique for treating age-related macular degeneration with external beam radiotherapy
International Nuclear Information System (INIS)
Roos, Daniel E.; Francis, J. Winston; Newnham, W. John
1999-01-01
Purpose: To develop a simple external beam photon radiotherapy technique to treat age-related macular degeneration without the need for simulation, planning computed tomography (CT) or computer dosimetry. Methods and Materials: The goal was to enable the treatment to be set up reliably on the treatment machine on Day 1 with the patient supine in a head cast without any prior planning. Using measurements of ocular globe topography from Karlsson et al. (Int J Radiat Oncol Biol Phys 1996; 33: 705-712), we chose a point 1.5 cm behind the anterior surface of the upper eyelid (ASUE) as the isocentre of a half-beam, blocked, 5.0 x 3.0-cm, angled lateral field to treat the involved eye. This would position the isocentre about 0.5 cm behind the posterior surface of the lens, and a little over 1 cm in front of the macula, according to Karlsson et al. The setup requires initial adjustment of the gantry from horizontal (to account for any asymmetry of position of the eyes), then angling 15 deg. posteriorly to avoid the contralateral eye. Finally, the couch is raised to position the isocentre 1.5 cm behind the ASUE. Results: To verify the applicability of the technique, we performed CT and computer dosimetry on the first 11 eyes so treated. Our CT measurements were in good agreement with Karlsson et al. The lens dose was < 5% and the macula was within the 95% isodose curve in each case (6-MV linac). Treatment setup time is approximately 10 min each day. The 11 patients were treated with 5 x 2.00 Gy (2 patients) or 5 x 3.00 Gy (9 patients), and subjective response on follow-up over 1 to 12 months (median 4 months) was comparable to previously reported results, with no significant acute side effects. Conclusion: Our technique is easy to set up and reliably treats the macula, with sparing of the lens and contralateral eye. It enables treatment to commence rapidly and cost-effectively without the need for simulation or CT computer planning
A noise reduction technique based on nonlinear kernel function for heart sound analysis.
Mondal, Ashok; Saxena, Ishan; Tang, Hong; Banerjee, Poulami
2017-02-13
The main difficulty encountered in interpretation of cardiac sound is interference of noise. The contaminated noise obscures the relevant information which are useful for recognition of heart diseases. The unwanted signals are produced mainly by lungs and surrounding environment. In this paper, a novel heart sound de-noising technique has been introduced based on a combined framework of wavelet packet transform (WPT) and singular value decomposition (SVD). The most informative node of wavelet tree is selected on the criteria of mutual information measurement. Next, the coefficient corresponding to the selected node is processed by SVD technique to suppress noisy component from heart sound signal. To justify the efficacy of the proposed technique, several experiments have been conducted with heart sound dataset, including normal and pathological cases at different signal to noise ratios. The significance of the method is validated by statistical analysis of the results. The biological information preserved in de-noised heart sound (HS) signal is evaluated by k-means clustering algorithm and Fit Factor calculation. The overall results show that proposed method is superior than the baseline methods.
Muley, Sagar Sopanrao; Nandgude, Tanaji; Poddar, Sushilkumar
2017-01-01
In the present study, Lansoprazole pellets were prepared employing a novel excipient Carboxymethyl tamarind kernel powder (CMTKP) using extrusion-spheronization technique. Various research studies including patents have been carried out on this polymer. Pellet formulation was optimized for formulation parameters (concentration of microcrystalline cellulose, CMTKP, croscarmellose sodium and isopropyl alcohol). Process parameters (speed and duration of spheronization) were optimized using factorial design. The pellets were evaluated for yield, bulk and tapped density, particle size, hardness, drug content, disintegration time and drug release. The optimized batch showed 93.53% yield, 0.307 kg/cm2 hardness, 2.15 mm average particle size, 292 sec disintegration time and 90.46% drug content. Drug release of the optimized batch (2F7) and marketed formulation (LANZOL cap) was found to be 82.33% and 80.07%, respectively. An accelerated study indicated that optimized formulation was stable. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques
International Nuclear Information System (INIS)
Green, A.M.; Lukkarinen, J.; Pennanen, P.; Michael, C.
1996-01-01
The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with Β=2.4 on a 16 3 x32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials. copyright 1995 The American Physical Society
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
International Nuclear Information System (INIS)
Raisali, G.R.
1992-01-01
A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained
On Degenerate Partial Differential Equations
Chen, Gui-Qiang G.
2010-01-01
Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...
International Nuclear Information System (INIS)
Akmansu, M.; Dirican, Bahar; Oeztuerk, Berrin; Egehan, Ibrahim; Subasi, Mahmut; Or, Meral
1998-01-01
Purpose: This study was performed to determine the toxicity and efficacy of external-beam radiotherapy in patients with age-related subfoveal neovascularization. Methods and Materials: Between January 1996 and September 1996, 25 patients with a mean age of 70.5 (60-84) years were enrolled. All patients underwent fluorescein angiographic evaluation and documentation of their neovascular disease prior to irradiation. A total of 25 patients were treated with a total dose of 12 Gy in 6 fractions over 8 days. We used a lens-sparing technique and patients were treated with a single lateral 6-MV photon beam. To assess the risk of radiation carcinogenesis after treatment of age-related subfoveal neovascularization, we estimated the effective dose for a standard patient on the basis of tissue-weighting factors as defined by the International Commission on Radiological Protection (ICRP). The calculations were made with TLD on a male randophantom. The lens dose was found to be 0.217 Gy per fraction. Results: No significant acute morbidity was noted. Visual acuity was maintained or improved in 76% and 80% of treated patients at their 1- and 3-month follow-up examinations, respectively. On angiographic imaging, there was stabilization of subfoveal neovascular membranes in 23 patients (92%) at 3 months after irradiation. Conclusion: Our observations on these 25 patients in this study indicate that many patients will have improved or stable vision after radiotherapy treatment with low-dose irradiation
International Nuclear Information System (INIS)
Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Takaoka, Hiroko; Katahira, Kazuhiro; Honda, Keiichi; Noda, Katsuo; Oshima, Shuichi; Yamashita, Yasuyuki
2013-01-01
Objectives: To investigate the diagnostic performance of 256-slice cardiac CT for the evaluation of the in-stent lumen by using a hybrid iterative reconstruction (HIR) algorithm combined with a high-resolution kernel. Methods: This study included 28 patients with 28 stents who underwent cardiac CT. Three different reconstruction images were obtained with: (1) a standard filtered back projection (FBP) algorithm with a standard cardiac kernel (CB), (2) an FBP algorithm with a high-resolution cardiac kernel (CD), and (3) an HIR algorithm with the CD kernel. We measured image noise and kurtosis and used receiver operating characteristics analysis to evaluate observer performance in the detection of in-stent stenosis. Results: Image noise with FBP plus the CD kernel (80.2 ± 15.5 HU) was significantly higher than with FBP plus the CB kernel (28.8 ± 4.6 HU) and HIR plus the CD kernel (36.1 ± 6.4 HU). There was no significant difference in the image noise between FBP plus the CB kernel and HIR plus the CD kernel. Kurtosis was significantly better with the CD- than the CB kernel. The kurtosis values obtained with the CD kernel were not significantly different between the FBP- and HIR reconstruction algorithms. The areas under the receiver operating characteristics curves with HIR plus the CD kernel were significantly higher than with FBP plus the CB- or the CD kernel. The difference between FBP plus the CB- or the CD kernel was not significant. The average sensitivity, specificity, and positive and negative predictive value for the detection of in-stent stenosis were 83.3, 50.0, 33.3, and 91.6% for FBP plus the CB kernel, 100, 29.6, 40.0, and 100% for FBP plus the CD kernel, and 100, 54.5, 40.0, and 100% for HIR plus the CD kernel. Conclusions: The HIR algorithm combined with the high-resolution kernel significantly improved diagnostic performance in the detection of in-stent stenosis
Directory of Open Access Journals (Sweden)
S. P. Arunachalam
2018-01-01
Full Text Available Analysis of biomedical signals can yield invaluable information for prognosis, diagnosis, therapy evaluation, risk assessment, and disease prevention which is often recorded as short time series data that challenges existing complexity classification algorithms such as Shannon entropy (SE and other techniques. The purpose of this study was to improve previously developed multiscale entropy (MSE technique by incorporating nearest-neighbor moving-average kernel, which can be used for analysis of nonlinear and non-stationary short time series physiological data. The approach was tested for robustness with respect to noise analysis using simulated sinusoidal and ECG waveforms. Feasibility of MSE to discriminate between normal sinus rhythm (NSR and atrial fibrillation (AF was tested on a single-lead ECG. In addition, the MSE algorithm was applied to identify pivot points of rotors that were induced in ex vivo isolated rabbit hearts. The improved MSE technique robustly estimated the complexity of the signal compared to that of SE with various noises, discriminated NSR and AF on single-lead ECG, and precisely identified the pivot points of ex vivo rotors by providing better contrast between the rotor core and the peripheral region. The improved MSE technique can provide efficient complexity analysis of variety of nonlinear and nonstationary short-time biomedical signals.
... See More About Research The NINDS supports and conducts research on disorders of the brain and nervous system such as striatonigral degeneration. This research ... Publications Definition Striatonigral ...
Comparative Analysis of Kernel Methods for Statistical Shape Learning
National Research Council Canada - National Science Library
Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen
2006-01-01
.... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...
The macula is the part of the retina that distinguishes fine details at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating layer between the retina and the choroid layer of ...
Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping
2016-01-01
To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). They are sensitive to contaminated data, even when using bounded positive definite kernels. First, we propose robust kernel covariance operator (robust kernel CO) and robust kernel crosscovariance operator (robust kern...
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Powell, Alexis; Wooster, Mathew; Carroll, Megan; Cardentey-Oliva, Damian; Cavanagh-Voss, Sean; Armstrong, Paul; Shames, Murray; Illig, Karl; Gabbard, Wesley
2015-08-01
A substantial number of patients with autologous arteriovenous fistulas (AVFs) develop diffuse aneurysmal degeneration, which frequently interferes with successful access. These AVFs are often deemed unsalvageable. We hypothesize that long-segment plication in these patients can be performed safely with acceptable short-term AVF salvage rates. We reviewed a prospectively maintained database to identify all patients with extensive AVF aneurysmal disease operated on for this problem. Thirty-five patients, 25 (71%) male and 10 (29%) female were operated on between July 2012 and January 2014. AVFs included 23 (66%) brachiocephalic, 5 (14%) radiocephalic, and 7 brachiobasilic (20%) fistulae (one first stage only but in use). The cohort had one or a combination of local pain, arm edema, cannulation issue, recurrent thrombosis, dysfunctional during dialysis, or extreme tortuousity. Time range for AVF creation to consultation ranged from 3 months to 11 years. All underwent long-segment plication over a 20-Fr Bougie with or without segmental vein resection; 3 underwent concomitant first rib resection for costoclavicular stenosis; 21 patients had tunneled catheter placement for use while healing, whereas 13 were allowed segmental use of their AVF during the perioperative period (1 patient was not yet on dialysis). Early in our experience, AVFs were left under the wound, whereas all but one repaired since early 2013 were left under a lateral flap. All patients were followed by clinical examination and duplex. In the 30-day postoperative period, 2 AVFs (5.7%) became infected requiring excision, 2 occluded (5.7%), 1 day 1 and the other at 24 days out, 1 patient developed steal and required DRIL 1 week postoperatively, and 1 patient died, unrelated to his surgery. Postoperative functional primary patency was 88% (30 of 34). Of the patients needing temporary access catheter, mean time to first fistula use was 44 days. No wound or bleeding complications have occurred in repaired
Optimized Kernel Entropy Components.
Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau
2017-06-01
This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger
2011-01-01
In a recent paper we have introduced the class of realised kernel estimators of the increments of quadratic variation in the presence of noise. We showed that this estimator is consistent and derived its limit distribution under various assumptions on the kernel weights. In this paper we extend our...... that subsampling is impotent, in the sense that subsampling has no effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels, such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic variance. We also study the performance of subsampled...
Energy Technology Data Exchange (ETDEWEB)
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
Gärtner, Thomas
2009-01-01
This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by
Locally linear approximation for Kernel methods : the Railway Kernel
Muñoz, Alberto; González, Javier
2008-01-01
In this paper we present a new kernel, the Railway Kernel, that works properly for general (nonlinear) classification problems, with the interesting property that acts locally as a linear kernel. In this way, we avoid potential problems due to the use of a general purpose kernel, like the RBF kernel, as the high dimension of the induced feature space. As a consequence, following our methodology the number of support vectors is much lower and, therefore, the generalization capab...
RKRD: Runtime Kernel Rootkit Detection
Grover, Satyajit; Khosravi, Hormuzd; Kolar, Divya; Moffat, Samuel; Kounavis, Michael E.
In this paper we address the problem of protecting computer systems against stealth malware. The problem is important because the number of known types of stealth malware increases exponentially. Existing approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for isolation, verifying signatures coming from trusted code as opposed to malware for scalability and performing system checks driven by events. Our RKRD implementation is guided by our goals of strong isolation, no modifications to target guest OS kernels, easy deployment, minimal infra-structure impact, and minimal performance overhead. We developed a system prototype and conducted a number of experiments which show that the per-formance impact of our solution is negligible.
Motai, Yuichi
2015-01-01
Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include
Analog forecasting with dynamics-adapted kernels
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Hansen, P. Reinhard; Lunde, Asger
2009-01-01
and find a remarkable level of agreement. We identify some features of the high-frequency data, which are challenging for realized kernels. They are when there are local trends in the data, over periods of around 10 minutes, where the prices and quotes are driven up or down. These can be associated......Realized kernels use high-frequency data to estimate daily volatility of individual stock prices. They can be applied to either trade or quote data. Here we provide the details of how we suggest implementing them in practice. We compare the estimates based on trade and quote data for the same stock...
Flexible Scheduling in Multimedia Kernels: An Overview
Jansen, P.G.; Scholten, Johan; Laan, Rene; Chow, W.S.
1999-01-01
Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
International Nuclear Information System (INIS)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays
Kernel methods for deep learning
Cho, Youngmin
2012-01-01
We introduce a new family of positive-definite kernels that mimic the computation in large neural networks. We derive the different members of this family by considering neural networks with different activation functions. Using these kernels as building blocks, we also show how to construct other positive-definite kernels by operations such as composition, multiplication, and averaging. We explore the use of these kernels in standard models of supervised learning, such as support vector mach...
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Hansen, Peter Reinhard; Lunde, Asger
We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement noise of certain types and can also handle non-synchronous trading. It is the first estimator...
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads
2011-01-01
In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...
Spafford, Eugene H.; Mckendry, Martin S.
1986-01-01
An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
Poivert, Michel
2014-01-01
Pictorialist photography is renowned for its use of pigment printing techniques which enabled interpretive rendering of the photographic subject. Yet a large part of the pictorialist aesthetic came from optics that furnished the ‘blurred’ effects characteristic of the pictorialist movement. Drawing on theories by the Englishman Emerson, which proposed capitalizing on the eye’s natural imperfections, specialized optics were created to obtain the desired effects. France most significantly surpa...
Viscosity kernel of molecular fluids
DEFF Research Database (Denmark)
Puscasu, Ruslan; Todd, Billy; Daivis, Peter
2010-01-01
, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...
Reduced multiple empirical kernel learning machine.
Wang, Zhe; Lu, MingZhe; Gao, Daqi
2015-02-01
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3
... macula in the back of the eye. The macula is important for clear central vision, allowing an individual to see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...
Variable Kernel Density Estimation
Terrell, George R.; Scott, David W.
1992-01-01
We investigate some of the possibilities for improvement of univariate and multivariate kernel density estimates by varying the window over the domain of estimation, pointwise and globally. Two general approaches are to vary the window width by the point of estimation and by point of the sample observation. The first possibility is shown to be of little efficacy in one variable. In particular, nearest-neighbor estimators in all versions perform poorly in one and two dimensions, but begin to b...
Steerability of Hermite Kernel
Czech Academy of Sciences Publication Activity Database
Yang, Bo; Flusser, Jan; Suk, Tomáš
2013-01-01
Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387. pdf
Wilson Dslash Kernel From Lattice QCD Optimization
Energy Technology Data Exchange (ETDEWEB)
Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Visualization of nonlinear kernel models in neuroimaging by sensitivity maps
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard
There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...
Smolka, Gert
1994-01-01
Oz is a concurrent language providing for functional, object-oriented, and constraint programming. This paper defines Kernel Oz, a semantically complete sublanguage of Oz. It was an important design requirement that Oz be definable by reduction to a lean kernel language. The definition of Kernel Oz introduces three essential abstractions: the Oz universe, the Oz calculus, and the actor model. The Oz universe is a first-order structure defining the values and constraints Oz computes with. The ...
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...
7 CFR 981.408 - Inedible kernel.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...
7 CFR 981.8 - Inedible kernel.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger
2011-01-01
We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement error of certain types and can also handle non-synchronous trading. It is the first estimator...... which has these three properties which are all essential for empirical work in this area. We derive the large sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We implement the estimator on some US equity data, comparing our results to previous work which has used...
Clustering via Kernel Decomposition
DEFF Research Database (Denmark)
Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan
2006-01-01
Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....
Graphical analyses of connected-kernel scattering equations
International Nuclear Information System (INIS)
Picklesimer, A.
1982-10-01
Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a large class of connected-kernel scattering equations. This class includes the Rosenberg, Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host of generalizations of these and other equations. The graphical method also leads to a new, simplified form for some members of the class and elucidates the general structural features of the entire class
Global Polynomial Kernel Hazard Estimation
DEFF Research Database (Denmark)
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Kernel-based noise filtering of neutron detector signals
International Nuclear Information System (INIS)
Park, Moon Ghu; Shin, Ho Cheol; Lee, Eun Ki
2007-01-01
This paper describes recently developed techniques for effective filtering of neutron detector signal noise. In this paper, three kinds of noise filters are proposed and their performance is demonstrated for the estimation of reactivity. The tested filters are based on the unilateral kernel filter, unilateral kernel filter with adaptive bandwidth and bilateral filter to show their effectiveness in edge preservation. Filtering performance is compared with conventional low-pass and wavelet filters. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters. The effectiveness and simplicity of the unilateral kernel filter with adaptive bandwidth is also demonstrated by applying it to the reactivity measurement performed during reactor start-up physics tests
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Resummed memory kernels in generalized system-bath master equations
International Nuclear Information System (INIS)
Mavros, Michael G.; Van Voorhis, Troy
2014-01-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics
Fixed kernel regression for voltammogram feature extraction
International Nuclear Information System (INIS)
Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N
2009-01-01
Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals
Protein fold recognition using geometric kernel data fusion.
Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves
2014-07-01
Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.
Mixture Density Mercer Kernels: A Method to Learn Kernels
National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...
A kernel version of spatial factor analysis
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2009-01-01
. Schölkopf et al. introduce kernel PCA. Shawe-Taylor and Cristianini is an excellent reference for kernel methods in general. Bishop and Press et al. describe kernel methods among many other subjects. Nielsen and Canty use kernel PCA to detect change in univariate airborne digital camera images. The kernel...... version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply kernel versions of PCA, maximum autocorrelation factor (MAF) analysis...
kernel oil by lipolytic organisms
African Journals Online (AJOL)
USER
2010-08-02
Aug 2, 2010 ... Rancidity of extracted cashew oil was observed with cashew kernel stored at 70, 80 and 90% .... method of American Oil Chemist Society AOCS (1978) using glacial ..... changes occur and volatile products are formed that are.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.
The density function of the gamma distribution is used as shift kernel in Brownian semistationary processes modelling the timewise behaviour of the velocity in turbulent regimes. This report presents exact and asymptotic properties of the second order structure function under such a model......, and relates these to results of von Karmann and Horwath. But first it is shown that the gamma kernel is interpretable as a Green’s function....
Disc degeneration: current surgical options
Directory of Open Access Journals (Sweden)
C Schizas
2010-10-01
Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.
Employment of kernel methods on wind turbine power performance assessment
DEFF Research Database (Denmark)
Skrimpas, Georgios Alexandros; Sweeney, Christian Walsted; Marhadi, Kun S.
2015-01-01
A power performance assessment technique is developed for the detection of power production discrepancies in wind turbines. The method employs a widely used nonparametric pattern recognition technique, the kernel methods. The evaluation is based on the trending of an extracted feature from...... the kernel matrix, called similarity index, which is introduced by the authors for the first time. The operation of the turbine and consequently the computation of the similarity indexes is classified into five power bins offering better resolution and thus more consistent root cause analysis. The accurate...
International Nuclear Information System (INIS)
Yonemoto, Leslie T.; Slater, Jerry D.; Friedrichsen, Eric J.; Loredo, Lilia N.; Ing, Jeffrey; Archambeau, John O.; Teichman, Sandra; Moyers, Michael F.; Blacharski, Paul A.; Slater, James M.
1996-01-01
Purpose: Age-related macular degeneration is the prevalent etiology of subfoveal choroidal neovascularization (CNV). The only effective treatment is laser photocoagulation, which is associated with decreased visual acuity following treatment in most patients. This study assessed both the response of subfoveal CNV to proton beam irradiation and treatment-related morbidity. We evaluated preliminary results in patients treated with an initial dose of 8 Cobalt Gray Equivalents (CGE) using a relative biological effectiveness (RBE) of 1.1. Methods and Materials: Twenty-one patients with subfoveal CNV received proton irradiation to the central macula with a single fraction of 8 CGE; 19 were eligible for evaluation. Treatment-related morbidity was based on Radiation Therapy Oncology Group (RTOG) criteria; response was evaluated by Macular Photocoagulation Study (MPS) guidelines. Fluorescein angiography was performed; visual acuity, contrast sensitivity, and reading speed were measured at study entry and at 3-month intervals after treatment. Follow-up ranged from 6 to 15 months. Results: No measurable treatment-related morbidity was seen during or after treatment. Of 19 patients evaluated at 6 months, fluorescein angiography demonstrated treatment response in 10 (53%); 14 (74%) patients had improved or stable visual acuity. With a mean follow-up of 11.6 months, 11 (58%) patients have demonstrated improved or stable visual acuity. Conclusion: A macular dose of 8 CGE yielded no measurable treatment morbidity in patients studied. Fluorescein nagiography demonstrated that regressed or stabilized lesions were associated with improved visual acuity as compared with MPS results. In the next phase, a dose of 14 CGE in a single fraction will be used to further define the optimal dose fractionation schedule
Local coding based matching kernel method for image classification.
Directory of Open Access Journals (Sweden)
Yan Song
Full Text Available This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.
Influence Function and Robust Variant of Kernel Canonical Correlation Analysis
Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping
2017-01-01
Many unsupervised kernel methods rely on the estimation of the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). Both kernel CO and kernel CCO are sensitive to contaminated data, even when bounded positive definite kernels are used. To the best of our knowledge, there are few well-founded robust kernel methods for statistical unsupervised learning. In addition, while the influence function (IF) of an estimator can characterize its robustness, asymptotic ...
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kernel versions of some orthogonal transformations
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
Kernel versions of orthogonal transformations such as principal components are based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced...... by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel...... function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA) and kernel minimum noise fraction (MNF) analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function...
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Model Selection in Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...
Bivariate discrete beta Kernel graduation of mortality data.
Mazza, Angelo; Punzo, Antonio
2015-07-01
Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.
Insights from Classifying Visual Concepts with Multiple Kernel Learning
Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki
2012-01-01
Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970
Integral equations with contrasting kernels
Directory of Open Access Journals (Sweden)
Theodore Burton
2008-01-01
Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.
Kernel learning algorithms for face recognition
Li, Jun-Bao; Pan, Jeng-Shyang
2013-01-01
Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new
Model selection for Gaussian kernel PCA denoising
DEFF Research Database (Denmark)
Jørgensen, Kasper Winther; Hansen, Lars Kai
2012-01-01
We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...
RTOS kernel in portable electrocardiograph
Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.
2011-12-01
This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.
RTOS kernel in portable electrocardiograph
International Nuclear Information System (INIS)
Centeno, C A; Voos, J A; Riva, G G; Zerbini, C; Gonzalez, E A
2011-01-01
This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Walder, Christian; Henao, Ricardo; Mørup, Morten
We present three generalisations of Kernel Principal Components Analysis (KPCA) which incorporate knowledge of the class labels of a subset of the data points. The first, MV-KPCA, penalises within class variances similar to Fisher discriminant analysis. The second, LSKPCA is a hybrid of least...... squares regression and kernel PCA. The final LR-KPCA is an iteratively reweighted version of the previous which achieves a sigmoid loss function on the labeled points. We provide a theoretical risk bound as well as illustrative experiments on real and toy data sets....
Flexible Scheduling by Deadline Inheritance in Soft Real Time Kernels
Jansen, P.G.; Wygerink, Emiel
1996-01-01
Current Hard Real Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes HRT scheduling techniques inadequate for use in Soft Real Time (SRT) environment where we can make a considerable profit by a better and more
Mycological deterioration of stored palm kernels recovered from oil ...
African Journals Online (AJOL)
Palm kernels obtained from Pioneer Oil Mill Ltd. were stored for eight (8) weeks and examined for their microbiological quality and proximate composition. Seven (7) different fungal species were isolated by serial dilution plate technique. The fungal species included Aspergillus flavus Link; A nidulans Eidem; A niger ...
Corruption clubs: empirical evidence from kernel density estimates
Herzfeld, T.; Weiss, Ch.
2007-01-01
A common finding of many analytical models is the existence of multiple equilibria of corruption. Countries characterized by the same economic, social and cultural background do not necessarily experience the same levels of corruption. In this article, we use Kernel Density Estimation techniques to
Graphical analyses of connected-kernel scattering equations
International Nuclear Information System (INIS)
Picklesimer, A.
1983-01-01
Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a large class of connected-kernel scattering equations. This class includes the Rosenberg, Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host of generalizations of these and other equations. The basic result is the application of graphical methods to the derivation of interaction-set equations. This yields a new, simplified form for some members of the class and elucidates the general structural features of the entire class
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....
Kernel Methods for Mining Instance Data in Ontologies
Bloehdorn, Stephan; Sure, York
The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.
Multiple Kernel Learning with Data Augmentation
2016-11-22
JMLR: Workshop and Conference Proceedings 63:49–64, 2016 ACML 2016 Multiple Kernel Learning with Data Augmentation Khanh Nguyen nkhanh@deakin.edu.au...University, Australia Editors: Robert J. Durrant and Kee-Eung Kim Abstract The motivations of multiple kernel learning (MKL) approach are to increase... kernel expres- siveness capacity and to avoid the expensive grid search over a wide spectrum of kernels . A large amount of work has been proposed to
A kernel version of multivariate alteration detection
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack
2013-01-01
Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations.......Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations....
Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Mulder, J.A.
2012-01-01
The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an
Complex use of cottonseed kernels
Energy Technology Data Exchange (ETDEWEB)
Glushenkova, A I
1977-01-01
A review with 41 references is made on the manufacture of oil, protein, and other products from cottonseed, the effects of gossypol on protein yield and quality and technology of gossypol removal. A process eliminating thermal treatment of the kernels and permitting the production of oil, proteins, phytin, gossypol, sugar, sterols, phosphatides, tocopherols, and residual shells and baggase is described.
Kernel regression with functional response
Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe
2011-01-01
We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.
GRIM : Leveraging GPUs for Kernel integrity monitoring
Koromilas, Lazaros; Vasiliadis, Giorgos; Athanasopoulos, Ilias; Ioannidis, Sotiris
2016-01-01
Kernel rootkits can exploit an operating system and enable future accessibility and control, despite all recent advances in software protection. A promising defense mechanism against rootkits is Kernel Integrity Monitor (KIM) systems, which inspect the kernel text and data to discover any malicious
Paramecium: An Extensible Object-Based Kernel
van Doorn, L.; Homburg, P.; Tanenbaum, A.S.
1995-01-01
In this paper we describe the design of an extensible kernel, called Paramecium. This kernel uses an object-based software architecture which together with instance naming, late binding and explicit overrides enables easy reconfiguration. Determining which components reside in the kernel protection
Local Observed-Score Kernel Equating
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
Veto-Consensus Multiple Kernel Learning
Zhou, Y.; Hu, N.; Spanos, C.J.
2016-01-01
We propose Veto-Consensus Multiple Kernel Learning (VCMKL), a novel way of combining multiple kernels such that one class of samples is described by the logical intersection (consensus) of base kernelized decision rules, whereas the other classes by the union (veto) of their complements. The
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
International Nuclear Information System (INIS)
Burnett, R.C.; Hankart, L.J.; Horsley, G.W.
1965-05-01
The development of methods of producing spheroidal sintered porous kernels of hyperstoichiometric thorium/uranium dicarbide solid solution from thorium/uranium monocarbide/carbon and thoria/urania/carbon powder mixes is described. The work has involved study of (i) Methods of preparing green kernels from UC/Th/C powder mixes using the rotary sieve technique. (ii) Methods of producing green kernels from UO2/Th02/C powder mixes using the planetary mill technique. (iii) The conversion by appropriate heat treatment of green kernels produced by both routes to sintered porous kernels of thorium/uranium carbide. (iv) The efficiency of the processes. (author)
Directory of Open Access Journals (Sweden)
Senyue Zhang
2016-01-01
Full Text Available According to the characteristics that the kernel function of extreme learning machine (ELM and its performance have a strong correlation, a novel extreme learning machine based on a generalized triangle Hermitian kernel function was proposed in this paper. First, the generalized triangle Hermitian kernel function was constructed by using the product of triangular kernel and generalized Hermite Dirichlet kernel, and the proposed kernel function was proved as a valid kernel function of extreme learning machine. Then, the learning methodology of the extreme learning machine based on the proposed kernel function was presented. The biggest advantage of the proposed kernel is its kernel parameter values only chosen in the natural numbers, which thus can greatly shorten the computational time of parameter optimization and retain more of its sample data structure information. Experiments were performed on a number of binary classification, multiclassification, and regression datasets from the UCI benchmark repository. The experiment results demonstrated that the robustness and generalization performance of the proposed method are outperformed compared to other extreme learning machines with different kernels. Furthermore, the learning speed of proposed method is faster than support vector machine (SVM methods.
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Credit scoring analysis using kernel discriminant
Widiharih, T.; Mukid, M. A.; Mustafid
2018-05-01
Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.
Testing Infrastructure for Operating System Kernel Development
DEFF Research Database (Denmark)
Walter, Maxwell; Karlsson, Sven
2014-01-01
Testing is an important part of system development, and to test effectively we require knowledge of the internal state of the system under test. Testing an operating system kernel is a challenge as it is the operating system that typically provides access to this internal state information. Multi......-core kernels pose an even greater challenge due to concurrency and their shared kernel state. In this paper, we present a testing framework that addresses these challenges by running the operating system in a virtual machine, and using virtual machine introspection to both communicate with the kernel...... and obtain information about the system. We have also developed an in-kernel testing API that we can use to develop a suite of unit tests in the kernel. We are using our framework for for the development of our own multi-core research kernel....
Kernel parameter dependence in spatial factor analysis
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2010-01-01
kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent reference for kernel methods in general. Bishop [5] and Press et al. [6] describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional...... feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply a kernel version of maximum autocorrelation factor (MAF) [7, 8] analysis to irregularly sampled stream sediment geochemistry data from South Greenland and illustrate the dependence...... of the kernel width. The 2,097 samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements....
TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM
Directory of Open Access Journals (Sweden)
Samarjit Das
2014-04-01
Full Text Available Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performance due to the fact that here also the initial centroids are obtained based on the randomly initialized membership values of the objects. Our present work proposes a new method where we have applied the Subtractive clustering technique of Chiu as a preprocessor to Kernelized Fuzzy CMeans clustering technique. With this new method we have tried not only to remove the inconsistency of Kernelized Fuzzy C-Means clustering technique but also to deal with the situations where the number of clusters is not predetermined. We have also provided a comparison of our method with the Subtractive clustering technique of Chiu and Kernelized Fuzzy C-Means clustering technique using two validity measures namely Partition Coefficient and Clustering Entropy.
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Directory of Open Access Journals (Sweden)
Ujjwal Maulik
Full Text Available Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request.sarkar@labri.fr.
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....
Validation of Born Traveltime Kernels
Baig, A. M.; Dahlen, F. A.; Hung, S.
2001-12-01
Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.
Kernel Bayesian ART and ARTMAP.
Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan
2018-02-01
Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theory of reproducing kernels and applications
Saitoh, Saburou
2016-01-01
This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...
The gravitational potential of axially symmetric bodies from a regularized green kernel
Trova, A.; Huré, J.-M.; Hersant, F.
2011-12-01
The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.
Convergence of barycentric coordinates to barycentric kernels
Kosinka, Jiří
2016-02-12
We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.
Convergence of barycentric coordinates to barycentric kernels
Kosinka, Jiří
2016-01-01
We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.
Kernel principal component analysis for change detection
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Morton, J.C.
2008-01-01
region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...... with a Gaussian kernel successfully finds the change observations in a case where nonlinearities are introduced artificially....
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
Directory of Open Access Journals (Sweden)
Chunmei Liu
2016-01-01
Full Text Available This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
Process for producing metal oxide kernels and kernels so obtained
International Nuclear Information System (INIS)
Lelievre, Bernard; Feugier, Andre.
1974-01-01
The process desbribed is for producing fissile or fertile metal oxide kernels used in the fabrication of fuels for high temperature nuclear reactors. This process consists in adding to an aqueous solution of at least one metallic salt, particularly actinide nitrates, at least one chemical compound capable of releasing ammonia, in dispersing drop by drop the solution thus obtained into a hot organic phase to gel the drops and transform them into solid particles. These particles are then washed, dried and treated to turn them into oxide kernels. The organic phase used for the gel reaction is formed of a mixture composed of two organic liquids, one acting as solvent and the other being a product capable of extracting the anions from the metallic salt of the drop at the time of gelling. Preferably an amine is used as product capable of extracting the anions. Additionally, an alcohol that causes a part dehydration of the drops can be employed as solvent, thus helping to increase the resistance of the particles [fr
Hilbertian kernels and spline functions
Atteia, M
1992-01-01
In this monograph, which is an extensive study of Hilbertian approximation, the emphasis is placed on spline functions theory. The origin of the book was an effort to show that spline theory parallels Hilbertian Kernel theory, not only for splines derived from minimization of a quadratic functional but more generally for splines considered as piecewise functions type. Being as far as possible self-contained, the book may be used as a reference, with information about developments in linear approximation, convex optimization, mechanics and partial differential equations.
Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo
2018-05-01
We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.
Optimal kernel shape and bandwidth for atomistic support of continuum stress
International Nuclear Information System (INIS)
Ulz, Manfred H; Moran, Sean J
2013-01-01
The treatment of atomistic scale interactions via molecular dynamics simulations has recently found favour for multiscale modelling within engineering. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. This averaging volume, and therefore the associated stress at a continuum point, is highly dependent on the bandwidth and shape of the kernel. In this paper we propose an effective and entirely data-driven strategy for simultaneously computing the optimal shape and bandwidth for the kernel. We thoroughly evaluate our proposed approach on copper using three classical elasticity problems. Our evaluation yields three key findings: firstly, our technique can provide a physically meaningful estimation of kernel bandwidth; secondly, we show that a uniform kernel is preferred, thereby justifying the default selection of this kernel shape in future work; and thirdly, we can reliably estimate both of these attributes in a data-driven manner, obtaining values that lead to an accurate estimation of the stress at a continuum point. (paper)
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
Dense Medium Machine Processing Method for Palm Kernel/ Shell ...
African Journals Online (AJOL)
ADOWIE PERE
Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.
Mitigation of artifacts in rtm with migration kernel decomposition
Zhan, Ge; Schuster, Gerard T.
2012-01-01
The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently
Ranking Support Vector Machine with Kernel Approximation
Directory of Open Access Journals (Sweden)
Kai Chen
2017-01-01
Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Sentiment classification with interpolated information diffusion kernels
Raaijmakers, S.
2007-01-01
Information diffusion kernels - similarity metrics in non-Euclidean information spaces - have been found to produce state of the art results for document classification. In this paper, we present a novel approach to global sentiment classification using these kernels. We carry out a large array of
Evolution kernel for the Dirac field
International Nuclear Information System (INIS)
Baaquie, B.E.
1982-06-01
The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
Improving the Bandwidth Selection in Kernel Equating
Andersson, Björn; von Davier, Alina A.
2014-01-01
We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…
Kernel Korner : The Linux keyboard driver
Brouwer, A.E.
1995-01-01
Our Kernel Korner series continues with an article describing the Linux keyboard driver. This article is not for "Kernel Hackers" only--in fact, it will be most useful to those who wish to use their own keyboard to its fullest potential, and those who want to write programs to take advantage of the
Intervertebral disc degeneration in dogs
Bergknut, N.
2011-01-01
Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting
Intervertebral disc degeneration in dogs
Bergknut, Niklas
Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting
Second order degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-08-01
Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs
International Nuclear Information System (INIS)
Xin-Lian, Luo; Hua, Bai; Lei, Zhao
2008-01-01
Regardless of the formation mechanism, an exotic object, the double degenerate star (DDS), is introduced and investigated, which is composed of baryonic matter and some unknown fermion dark matter. Different from the simple white dwarfs (WDs), there is additional gravitational force provided by the unknown fermion component inside DDSs, which may strongly affect the structure and the stability of such kind of objects. Many possible and strange observational phenomena connecting with them are concisely discussed. Similar to the normal WD, this object can also experience thermonuclear explosion as type Ia supernova explosion when DDS's mass exceeds the maximum mass that can be supported by electron degeneracy pressure. However, since the total mass of baryonic matter can be much lower than that of WD at Chandrasekhar mass limit, the peak luminosity should be much dimmer than what we expect before, which may throw a slight shadow on the standard candle of SN Ia in the research of cosmology. (general)
Metabolic network prediction through pairwise rational kernels.
Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian
2014-09-26
Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.
Putting Priors in Mixture Density Mercer Kernels
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
Anisotropic hydrodynamics with a scalar collisional kernel
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Frontotemporal lobar degeneration: current perspectives
Directory of Open Access Journals (Sweden)
Riedl L
2014-02-01
Full Text Available Lina Riedl,1 Ian R Mackenzie,2 Hans Förstl,1 Alexander Kurz,1 Janine Diehl-Schmid1 1Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; 2Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada Abstract: The term frontotemporal lobar degeneration (FTLD refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT, the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN, and in the chromosome 9 open reading frame 72 (C9orf72 accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake
Magnetization transfer and spin lock MR imaging of patellar cartilage degeneration at 0.1 T
International Nuclear Information System (INIS)
Koskinen, S.K.; Ylae-Outinen, H.; Komu, M.E.S.; Aho, H.J.
1997-01-01
Purpose: To investigate magnetization transfer (MT) parameters and rotating frame relaxation time T1ρ in patellar cartilage at different levels of degeneration. Material and Methods: Thirty cadaveric patellae were examined at 0.1 T using the time-dependent saturation-transfer MT technique and the spin lock (SL) technique. In an SL experiment, nuclear spins are locked with a radiofrequency (RF) field, and the locked nuclear magnetization relaxes along the magnetic component of the locking RF field. The specimens were divided into three groups according to the level of cartilage degeneration. MT parameters and T1ρ were measured. Results: The MT effect was greater in degenerated cartilage than in normal cartilage. T1ρ was longer in advanced cartilage degeneration than in intermediate cartilage degeneration. Conculsion: The results suggest that more studies are needed to fully establish the value of SL imaging in cartilage degeneration. (orig.)
Ahmed, Qasim Zeeshan
2013-01-01
In this letter, a new detector is proposed for amplifyand- forward (AF) relaying system when communicating with the assistance of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the receiver. The probability density function is estimated with the help of kernel density technique. A generalized Gaussian kernel is proposed. This new kernel provides more flexibility and encompasses Gaussian and uniform kernels as special cases. The optimal window width of the kernel is calculated. Simulations results show that a gain of more than 1 dB can be achieved in terms of BER performance as compared to the minimum mean square error (MMSE) receiver when communicating over Rayleigh fading channels.
Macular degeneration - age-related
... AMD occurs when the blood vessels under the macula become thin and brittle. Small yellow deposits, called drusen, form. Almost all people with macular degeneration start with the dry form. Wet AMD occurs ...
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
NLO corrections to the Kernel of the BKP-equations
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fadin, V.S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-10-02
We present results for the NLO kernel of the BKP equations for composite states of three reggeized gluons in the Odderon channel, both in QCD and in N=4 SYM. The NLO kernel consists of the NLO BFKL kernel in the color octet representation and the connected 3{yields}3 kernel, computed in the tree approximation.
Adaptive Kernel in Meshsize Boosting Algorithm in KDE ...
African Journals Online (AJOL)
This paper proposes the use of adaptive kernel in a meshsize boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...
Adaptive Kernel In The Bootstrap Boosting Algorithm In KDE ...
African Journals Online (AJOL)
This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...
Kernel maximum autocorrelation factor and minimum noise fraction transformations
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2010-01-01
in hyperspectral HyMap scanner data covering a small agricultural area, and 3) maize kernel inspection. In the cases shown, the kernel MAF/MNF transformation performs better than its linear counterpart as well as linear and kernel PCA. The leading kernel MAF/MNF variates seem to possess the ability to adapt...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...
7 CFR 51.2296 - Three-fourths half kernel.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...
7 CFR 981.401 - Adjusted kernel weight.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Adjusted kernel weight. 981.401 Section 981.401... Administrative Rules and Regulations § 981.401 Adjusted kernel weight. (a) Definition. Adjusted kernel weight... kernels in excess of five percent; less shells, if applicable; less processing loss of one percent for...
7 CFR 51.1403 - Kernel color classification.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...
The Linux kernel as flexible product-line architecture
M. de Jonge (Merijn)
2002-01-01
textabstractThe Linux kernel source tree is huge ($>$ 125 MB) and inflexible (because it is difficult to add new kernel components). We propose to make this architecture more flexible by assembling kernel source trees dynamically from individual kernel components. Users then, can select what
Computed tomography of Wallerian degeneration
International Nuclear Information System (INIS)
Uchino, Akira; Maeda, Fumihiko
1986-01-01
CT findings of wallerian degeneration of the pyramidal tract at the midbrain (atrophy of cerebral peduncle following cerebrovascular accident) were studied in 34 patients (44 CT scans) with old cerebrovascular accidents. Severe atrophy of cerebral peduncle was noted when the ipsilateral motor cortex was involved. However, when the posterior limb of the internal capsule was involved, atrophy of the ipsilateral cerebral peduncle was mild. In this series, the shortest interval between cerebrovascular accident and wallerian degeneration was 8 month. (author)
Local Kernel for Brains Classification in Schizophrenia
Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.
In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.
Optimal Bandwidth Selection for Kernel Density Functionals Estimation
Directory of Open Access Journals (Sweden)
Su Chen
2015-01-01
Full Text Available The choice of bandwidth is crucial to the kernel density estimation (KDE and kernel based regression. Various bandwidth selection methods for KDE and local least square regression have been developed in the past decade. It has been known that scale and location parameters are proportional to density functionals ∫γ(xf2(xdx with appropriate choice of γ(x and furthermore equality of scale and location tests can be transformed to comparisons of the density functionals among populations. ∫γ(xf2(xdx can be estimated nonparametrically via kernel density functionals estimation (KDFE. However, the optimal bandwidth selection for KDFE of ∫γ(xf2(xdx has not been examined. We propose a method to select the optimal bandwidth for the KDFE. The idea underlying this method is to search for the optimal bandwidth by minimizing the mean square error (MSE of the KDFE. Two main practical bandwidth selection techniques for the KDFE of ∫γ(xf2(xdx are provided: Normal scale bandwidth selection (namely, “Rule of Thumb” and direct plug-in bandwidth selection. Simulation studies display that our proposed bandwidth selection methods are superior to existing density estimation bandwidth selection methods in estimating density functionals.
Digital signal processing with kernel methods
Rojo-Alvarez, José Luis; Muñoz-Marí, Jordi; Camps-Valls, Gustavo
2018-01-01
A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors. * Presents the necess...
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
Ensemble Approach to Building Mercer Kernels
National Aeronautics and Space Administration — This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive...
What Is Age-Related Macular Degeneration?
... Eye Health / Eye Health A-Z Age-Related Macular Degeneration Sections What Is Macular Degeneration? How is AMD ... What Does Macular Degeneration Look Like? What Is Macular Degeneration? Leer en Español: ¿Qué es la degeneración macular ...
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Control Transfer in Operating System Kernels
1994-05-13
microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating
Uranium kernel formation via internal gelation
International Nuclear Information System (INIS)
Hunt, R.D.; Collins, J.L.
2004-01-01
In the 1970s and 1980s, U.S. Department of Energy (DOE) conducted numerous studies on the fabrication of nuclear fuel particles using the internal gelation process. These amorphous kernels were prone to flaking or breaking when gases tried to escape from the kernels during calcination and sintering. These earlier kernels would not meet today's proposed specifications for reactor fuel. In the interim, the internal gelation process has been used to create hydrous metal oxide microspheres for the treatment of nuclear waste. With the renewed interest in advanced nuclear fuel by the DOE, the lessons learned from the nuclear waste studies were recently applied to the fabrication of uranium kernels, which will become tri-isotropic (TRISO) fuel particles. These process improvements included equipment modifications, small changes to the feed formulations, and a new temperature profile for the calcination and sintering. The modifications to the laboratory-scale equipment and its operation as well as small changes to the feed composition increased the product yield from 60% to 80%-99%. The new kernels were substantially less glassy, and no evidence of flaking was found. Finally, key process parameters were identified, and their effects on the uranium microspheres and kernels are discussed. (orig.)
Quantum tomography, phase-space observables and generalized Markov kernels
International Nuclear Information System (INIS)
Pellonpaeae, Juha-Pekka
2009-01-01
We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.
Sitompul, Monica Angelina
2015-01-01
Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...
International Nuclear Information System (INIS)
Welsch, Goetz Hannes; Trattnig, Siegfried; Goed, Sabine; Stelzeneder, David; Paternostro-Sluga, Tatjana; Bohndorf, Klaus; Mamisch, Tallal Charles
2011-01-01
To assess, compare and correlate quantitative T2 and T2* relaxation time measurements of intervertebral discs (IVDs) in patients suffering from low back pain, with respect to the IVD degeneration as assessed by the morphological Pfirrmann Score. Special focus was on the spatial variation of T2 and T2* between the annulus fibrosus (AF) and the nucleus pulposus (NP). Thirty patients (mean age: 38.1 ± 9.1 years; 20 female, 10 male) suffering from low back pain were included. Morphological (sagittal T1-FSE, sagittal and axial T2-FSE) and biochemical (sagittal T2- and T2* mapping) MRI was performed at 3 Tesla covering IVDs L1-L2 to L5-S1. All IVDs were morphologically classified using the Pfirrmann score. Region-of-interest (ROI) analysis was performed on midsagittal T2 and T2* maps at five ROIs from anterior to posterior to obtain information on spatial variation between the AF and the NP. Statistical analysis-of-variance and Pearson correlation was performed. The spatial variation as an increase in T2 and T2* values from the AF to the NP was highest at Pfirmann grade I and declined at higher Pfirmann grades II-IV (p < 0.05). With increased IVD degeneration, T2 and T2* revealed a clear differences in the NP, whereas T2* was additionally able to depict changes in the posterior AF. Correlation between T2 and T2* showed a medium Pearson's correlation (0.210 to 0.356 [p < 0.001]). The clear differentiation of IVD degeneration and the possible quantification by means of T2 and fast T2* mapping may provide a new tool for follow-up therapy protocols in patients with low back pain. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Masood, W. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); Eliasson, B. [Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)
2013-09-15
In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.
Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM
Directory of Open Access Journals (Sweden)
Chenchao Zhao
2018-01-01
Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.
Azadirachtin derivatives from seed kernels of Azadirachta excelsa.
Kanokmedhakul, Somdej; Kanokmedhakul, Kwanjai; Prajuabsuk, Thirada; Panichajakul, Sanha; Panyamee, Piyanan; Prabpai, Samran; Kongsaeree, Palangpon
2005-07-01
Three new azadirachtin derivatives, named azadirachtins O-Q (1-3), along with the known azadirachtin B (4), azadirachtin L (5), azadirachtin M (6) 11alpha-azadirachtin H (7), 11beta-azadirachtin H (8), and azadirachtol (9) were isolated from seed kernels of Azadirachta excelsa. Their structures were established by spectroscopic techniques, and the structure of 3 was confirmed by X-ray analysis. Compounds 1-7 and 9 exhibited toxicity to the diamondback moth (Plutella xylostella) with an LD50 of 0.75-1.92 microg/g body weight, in 92 h.
Fast Interrupt Priority Management in Operating System Kernels
1993-05-01
We present results for the Mach 3.0 microkernel operating system, although the technique is applicable to other kernel architectures, both micro and...protection in the Mach 3.0 microkernel for several different processor architectures. For example, on the Omron Luna88k, we observed a 50% reduction in...general interrupt mask raise/lower pair within the Mach 3.0 microkernel on a variety of architectures. DTIC QUALM i.N1’R%.*1IMD 5 k81tltC Avail andl
Komatitsch, Dimitri
2016-06-13
We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.
Komatitsch, Dimitri; Xie, Zhinan; Bozdağ, Ebru; de Andrade, Elliott Sales; Peter, Daniel; Liu, Qinya; Tromp, Jeroen
2016-01-01
We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.
Komatitsch, Dimitri; Xie, Zhinan; Bozdaǧ, Ebru; Sales de Andrade, Elliott; Peter, Daniel; Liu, Qinya; Tromp, Jeroen
2016-09-01
We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.
Aflatoxin contamination of developing corn kernels.
Amer, M A
2005-01-01
Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.
Identification of Age-Related Macular Degeneration Using OCT Images
Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.
2018-02-01
Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.
OS X and iOS Kernel Programming
Halvorsen, Ole Henry
2011-01-01
OS X and iOS Kernel Programming combines essential operating system and kernel architecture knowledge with a highly practical approach that will help you write effective kernel-level code. You'll learn fundamental concepts such as memory management and thread synchronization, as well as the I/O Kit framework. You'll also learn how to write your own kernel-level extensions, such as device drivers for USB and Thunderbolt devices, including networking, storage and audio drivers. OS X and iOS Kernel Programming provides an incisive and complete introduction to the XNU kernel, which runs iPhones, i
The Classification of Diabetes Mellitus Using Kernel k-means
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
Object classification and detection with context kernel descriptors
DEFF Research Database (Denmark)
Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping
2014-01-01
Context information is important in object representation. By embedding context cue of image attributes into kernel descriptors, we propose a set of novel kernel descriptors called Context Kernel Descriptors (CKD) for object classification and detection. The motivation of CKD is to use spatial...... consistency of image attributes or features defined within a neighboring region to improve the robustness of descriptor matching in kernel space. For feature selection, Kernel Entropy Component Analysis (KECA) is exploited to learn a subset of discriminative CKD. Different from Kernel Principal Component...
A class of kernel based real-time elastography algorithms.
Kibria, Md Golam; Hasan, Md Kamrul
2015-08-01
In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu
2017-12-15
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.
Age-Related Macular Degeneration.
Mehta, Sonia
2015-09-01
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.
Kernel abortion in maize. II. Distribution of 14C among kernel carboydrates
International Nuclear Information System (INIS)
Hanft, J.M.; Jones, R.J.
1986-01-01
This study was designed to compare the uptake and distribution of 14 C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35 0 C were transferred to [ 14 C]sucrose media 10 days after pollination. Kernels cultured at 35 0 C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on [ 14 C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35 0 C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35 0 C compared to kernels cultured at 30 0 C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35 0 C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30 0 C (89%). Kernels cultured at 35 0 C had a correspondingly higher proportion of 14 C in endosperm fructose, glucose, and sucrose
Fluidization calculation on nuclear fuel kernel coating
International Nuclear Information System (INIS)
Sukarsono; Wardaya; Indra-Suryawan
1996-01-01
The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program
An iterative method for selecting degenerate multiplex PCR primers.
Souvenir, Richard; Buhler, Jeremy; Stormo, Gary; Zhang, Weixiong
2007-01-01
Single-nucleotide polymorphism (SNP) genotyping is an important molecular genetics process, which can produce results that will be useful in the medical field. Because of inherent complexities in DNA manipulation and analysis, many different methods have been proposed for a standard assay. One of the proposed techniques for performing SNP genotyping requires amplifying regions of DNA surrounding a large number of SNP loci. To automate a portion of this particular method, it is necessary to select a set of primers for the experiment. Selecting these primers can be formulated as the Multiple Degenerate Primer Design (MDPD) problem. The Multiple, Iterative Primer Selector (MIPS) is an iterative beam-search algorithm for MDPD. Theoretical and experimental analyses show that this algorithm performs well compared with the limits of degenerate primer design. Furthermore, MIPS outperforms an existing algorithm that was designed for a related degenerate primer selection problem.
Degenerated differential pair with controllable transconductance
Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram
1998-01-01
A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are
PKI, Gamma Radiation Reactor Shielding Calculation by Point-Kernel Method
International Nuclear Information System (INIS)
Li Chunhuai; Zhang Liwu; Zhang Yuqin; Zhang Chuanxu; Niu Xihua
1990-01-01
1 - Description of program or function: This code calculates radiation shielding problem of gamma-ray in geometric space. 2 - Method of solution: PKI uses a point kernel integration technique, describes radiation shielding geometric space by using geometric space configuration method and coordinate conversion, and makes use of calculation result of reactor primary shielding and flow regularity in loop system for coolant
Analysis of total hydrogen content in palm oil and palm kernel oil ...
African Journals Online (AJOL)
A fast and non-destructive technique based on thermal neutron moderation has been used for determining the total hydrogen content in two types of red palm oil (dzomi and amidze) and palm kernel oil produced by traditio-nal methods in Ghana. An equipment consisting of an 241Am-Be neutron source and 3He neutron ...
An hp-adaptive strategy for the solution of the exact kernel curved wire Pocklington equation
D.J.P. Lahaye (Domenico); P.W. Hemker (Piet)
2007-01-01
textabstractIn this paper we introduce an adaptive method for the numerical solution of the Pocklington integro-differential equation with exact kernel for the current induced in a smoothly curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,
Degeneration of osteoarthritis cartilage
DEFF Research Database (Denmark)
Jørgensen, Dan Richter
of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine......-learning techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... be relevant for both OA diagnosis and for prediction of future cartilage loss. The second part of the thesis investigates spatial patterns of longitudinal cartilage thickness changes in healthy and OA knees. Based on our findings, we propose a new, conceptually simple biomarker that embraces the heterogeneous...
Variable kernel density estimation in high-dimensional feature spaces
CSIR Research Space (South Africa)
Van der Walt, Christiaan M
2017-02-01
Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...
Influence of differently processed mango seed kernel meal on ...
African Journals Online (AJOL)
Influence of differently processed mango seed kernel meal on performance response of west African ... and TD( consisted spear grass and parboiled mango seed kernel meal with concentrate diet in a ratio of 35:30:35). ... HOW TO USE AJOL.
On methods to increase the security of the Linux kernel
International Nuclear Information System (INIS)
Matvejchikov, I.V.
2014-01-01
Methods to increase the security of the Linux kernel for the implementation of imposed protection tools have been examined. The methods of incorporation into various subsystems of the kernel on the x86 architecture have been described [ru
Linear and kernel methods for multi- and hypervariate change detection
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Canty, Morton J.
2010-01-01
. Principal component analysis (PCA) as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change background. The kernel versions are based on a dual...... formulation, also termed Q-mode analysis, in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution......, also known as the kernel trick, these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component...
Kernel methods in orthogonalization of multi- and hypervariate data
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2009-01-01
A kernel version of maximum autocorrelation factor (MAF) analysis is described very briefly and applied to change detection in remotely sensed hyperspectral image (HyMap) data. The kernel version is based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis...... via inner products in the Gram matrix only. In the kernel version the inner products are replaced by inner products between nonlinear mappings into higher dimensional feature space of the original data. Via kernel substitution also known as the kernel trick these inner products between the mappings...... are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MAF analysis handle nonlinearities by implicitly transforming data into high (even infinite...
A Fourier-series-based kernel-independent fast multipole method
International Nuclear Information System (INIS)
Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai
2011-01-01
We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.
Wang, Jim Jing-Yan
2014-09-20
Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods.
Mitigation of artifacts in rtm with migration kernel decomposition
Zhan, Ge
2012-01-01
The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently. In this paper, we present a generalized diffraction-stack migration approach for reducing RTM artifacts via decomposition of migration kernel. The decomposition leads to an improved understanding of migration artifacts and, therefore, presents us with opportunities for improving the quality of RTM images.
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function
Relationship between attenuation coefficients and dose-spread kernels
International Nuclear Information System (INIS)
Boyer, A.L.
1988-01-01
Dose-spread kernels can be used to calculate the dose distribution in a photon beam by convolving the kernel with the primary fluence distribution. The theoretical relationships between various types and components of dose-spread kernels relative to photon attenuation coefficients are explored. These relations can be valuable as checks on the conservation of energy by dose-spread kernels calculated by analytic or Monte Carlo methods
Fabrication of Uranium Oxycarbide Kernels for HTR Fuel
International Nuclear Information System (INIS)
Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric
2010-01-01
Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.
Consistent Estimation of Pricing Kernels from Noisy Price Data
Vladislav Kargin
2003-01-01
If pricing kernels are assumed non-negative then the inverse problem of finding the pricing kernel is well-posed. The constrained least squares method provides a consistent estimate of the pricing kernel. When the data are limited, a new method is suggested: relaxed maximization of the relative entropy. This estimator is also consistent. Keywords: $\\epsilon$-entropy, non-parametric estimation, pricing kernel, inverse problems.
Solutions to quasilinear equations of $N$-biharmonic type with degenerate coercivity
Directory of Open Access Journals (Sweden)
Sami Aouaoui
2014-10-01
Full Text Available In this article we show the existence of multiple solutions for quasilinear equations in divergence form with degenerate coercivity. Our strategy is to combine a variational method and an iterative technique to obtain the solutions.
Quantum logic in dagger kernel categories
Heunen, C.; Jacobs, B.P.F.
2009-01-01
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial
Quantum logic in dagger kernel categories
Heunen, C.; Jacobs, B.P.F.; Coecke, B.; Panangaden, P.; Selinger, P.
2011-01-01
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial
Symbol recognition with kernel density matching.
Zhang, Wan; Wenyin, Liu; Zhang, Kun
2006-12-01
We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.
Reproducing kernel Hilbert spaces of Gaussian priors
Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.
2008-01-01
We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described
A synthesis of empirical plant dispersal kernels
Czech Academy of Sciences Publication Activity Database
Bullock, J. M.; González, L. M.; Tamme, R.; Götzenberger, Lars; White, S. M.; Pärtel, M.; Hooftman, D. A. P.
2017-01-01
Roč. 105, č. 1 (2017), s. 6-19 ISSN 0022-0477 Institutional support: RVO:67985939 Keywords : dispersal kernel * dispersal mode * probability density function Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.813, year: 2016
Analytic continuation of weighted Bergman kernels
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2010-01-01
Roč. 94, č. 6 (2010), s. 622-650 ISSN 0021-7824 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * analytic continuation * Toeplitz operator Subject RIV: BA - General Mathematics Impact factor: 1.450, year: 2010 http://www.sciencedirect.com/science/article/pii/S0021782410000942
On convergence of kernel learning estimators
Norkin, V.I.; Keyzer, M.A.
2009-01-01
The paper studies convex stochastic optimization problems in a reproducing kernel Hilbert space (RKHS). The objective (risk) functional depends on functions from this RKHS and takes the form of a mathematical expectation (integral) of a nonnegative integrand (loss function) over a probability
Analytic properties of the Virasoro modular kernel
Energy Technology Data Exchange (ETDEWEB)
Nemkov, Nikita [Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); National University of Science and Technology MISIS, The Laboratory of Superconducting metamaterials, Moscow (Russian Federation)
2017-06-15
On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block. (orig.)
Kernel based subspace projection of hyperspectral images
DEFF Research Database (Denmark)
Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten
In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Scattering kernels and cross sections working group
International Nuclear Information System (INIS)
Russell, G.; MacFarlane, B.; Brun, T.
1998-01-01
Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics
Enhanced gluten properties in soft kernel durum wheat
Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...
Predictive Model Equations for Palm Kernel (Elaeis guneensis J ...
African Journals Online (AJOL)
Estimated error of ± 0.18 and ± 0.2 are envisaged while applying the models for predicting palm kernel and sesame oil colours respectively. Keywords: Palm kernel, Sesame, Palm kernel, Oil Colour, Process Parameters, Model. Journal of Applied Science, Engineering and Technology Vol. 6 (1) 2006 pp. 34-38 ...
Stable Kernel Representations as Nonlinear Left Coprime Factorizations
Paice, A.D.B.; Schaft, A.J. van der
1994-01-01
A representation of nonlinear systems based on the idea of representing the input-output pairs of the system as elements of the kernel of a stable operator has been recently introduced. This has been denoted the kernel representation of the system. In this paper it is demonstrated that the kernel
7 CFR 981.60 - Determination of kernel weight.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...
21 CFR 176.350 - Tamarind seed kernel powder.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
End-use quality of soft kernel durum wheat
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Heat kernel analysis for Bessel operators on symmetric cones
DEFF Research Database (Denmark)
Möllers, Jan
2014-01-01
. The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $Ω$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergmann space...
A Fast and Simple Graph Kernel for RDF
de Vries, G.K.D.; de Rooij, S.
2013-01-01
In this paper we study a graph kernel for RDF based on constructing a tree for each instance and counting the number of paths in that tree. In our experiments this kernel shows comparable classification performance to the previously introduced intersection subtree kernel, but is significantly faster
7 CFR 981.61 - Redetermination of kernel weight.
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...
Single pass kernel k-means clustering method
Indian Academy of Sciences (India)
paper proposes a simple and faster version of the kernel k-means clustering ... It has been considered as an important tool ... On the other hand, kernel-based clustering methods, like kernel k-means clus- ..... able at the UCI machine learning repository (Murphy 1994). ... All the data sets have only numeric valued features.
Directory of Open Access Journals (Sweden)
Jinlu Sheng
2016-07-01
Full Text Available To effectively extract the typical features of the bearing, a new method that related the local mean decomposition Shannon entropy and improved kernel principal component analysis model was proposed. First, the features are extracted by time–frequency domain method, local mean decomposition, and using the Shannon entropy to process the original separated product functions, so as to get the original features. However, the features been extracted still contain superfluous information; the nonlinear multi-features process technique, kernel principal component analysis, is introduced to fuse the characters. The kernel principal component analysis is improved by the weight factor. The extracted characteristic features were inputted in the Morlet wavelet kernel support vector machine to get the bearing running state classification model, bearing running state was thereby identified. Cases of test and actual were analyzed.
Scuba: scalable kernel-based gene prioritization.
Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio
2018-01-25
The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .
Light and inherited retinal degeneration
Paskowitz, D M; LaVail, M M; Duncan, J L
2006-01-01
Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...
Kernel based orthogonalization for change detection in hyperspectral images
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MNF analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via...... analysis all 126 spectral bands of the HyMap are included. Changes on the ground are most likely due to harvest having taken place between the two acquisitions and solar effects (both solar elevation and azimuth have changed). Both types of kernel analysis emphasize change and unlike kernel PCA, kernel MNF...
A laser optical method for detecting corn kernel defects
Energy Technology Data Exchange (ETDEWEB)
Gunasekaran, S.; Paulsen, M. R.; Shove, G. C.
1984-01-01
An opto-electronic instrument was developed to examine individual corn kernels and detect various kernel defects according to reflectance differences. A low power helium-neon (He-Ne) laser (632.8 nm, red light) was used as the light source in the instrument. Reflectance from good and defective parts of corn kernel surfaces differed by approximately 40%. Broken, chipped, and starch-cracked kernels were detected with nearly 100% accuracy; while surface-split kernels were detected with about 80% accuracy. (author)
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws
Directory of Open Access Journals (Sweden)
Mohammed D. ABDULMALIK
2008-06-01
Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.
Difference between standard and quasi-conformal BFKL kernels
International Nuclear Information System (INIS)
Fadin, V.S.; Fiore, R.; Papa, A.
2012-01-01
As it was recently shown, the colour singlet BFKL kernel, taken in Möbius representation in the space of impact parameters, can be written in quasi-conformal shape, which is unbelievably simple compared with the conventional form of the BFKL kernel in momentum space. It was also proved that the total kernel is completely defined by its Möbius representation. In this paper we calculated the difference between standard and quasi-conformal BFKL kernels in momentum space and discovered that it is rather simple. Therefore we come to the conclusion that the simplicity of the quasi-conformal kernel is caused mainly by using the impact parameter space.
Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray
Directory of Open Access Journals (Sweden)
Lan Shu
2008-07-01
Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLEÃ¢Â€Â™s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.
TORCH Computational Reference Kernels - A Testbed for Computer Science Research
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich
2010-12-02
For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.
Classification of Hyperspectral Images Using Kernel Fully Constrained Least Squares
Directory of Open Access Journals (Sweden)
Jianjun Liu
2017-11-01
Full Text Available As a widely used classifier, sparse representation classification (SRC has shown its good performance for hyperspectral image classification. Recent works have highlighted that it is the collaborative representation mechanism under SRC that makes SRC a highly effective technique for classification purposes. If the dimensionality and the discrimination capacity of a test pixel is high, other norms (e.g., ℓ 2 -norm can be used to regularize the coding coefficients, except for the sparsity ℓ 1 -norm. In this paper, we show that in the kernel space the nonnegative constraint can also play the same role, and thus suggest the investigation of kernel fully constrained least squares (KFCLS for hyperspectral image classification. Furthermore, in order to improve the classification performance of KFCLS by incorporating spatial-spectral information, we investigate two kinds of spatial-spectral methods using two regularization strategies: (1 the coefficient-level regularization strategy, and (2 the class-level regularization strategy. Experimental results conducted on four real hyperspectral images demonstrate the effectiveness of the proposed KFCLS, and show which way to incorporate spatial-spectral information efficiently in the regularization framework.
Automatic performance tuning of parallel and accelerated seismic imaging kernels
Haberdar, Hakan
2014-01-01
With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino
2018-05-01
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.
Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet
Mansour, Mohy S.
2014-04-23
Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.
Analytic scattering kernels for neutron thermalization studies
International Nuclear Information System (INIS)
Sears, V.F.
1990-01-01
Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results
Quantized kernel least mean square algorithm.
Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C
2012-01-01
In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.
Kernel-based tests for joint independence
DEFF Research Database (Denmark)
Pfister, Niklas; Bühlmann, Peter; Schölkopf, Bernhard
2018-01-01
if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test......We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed...... the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only...
Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo
2018-02-01
Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
A Kernel for Protein Secondary Structure Prediction
Guermeur , Yann; Lifchitz , Alain; Vert , Régis
2004-01-01
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...
Scalar contribution to the BFKL kernel
International Nuclear Information System (INIS)
Gerasimov, R. E.; Fadin, V. S.
2010-01-01
The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.
Weighted Bergman Kernels for Logarithmic Weights
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2010-01-01
Roč. 6, č. 3 (2010), s. 781-813 ISSN 1558-8599 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * Toeplitz operator * logarithmic weight * pseudodifferential operator Subject RIV: BA - General Mathematics Impact factor: 0.462, year: 2010 http://www.intlpress.com/site/pub/pages/journals/items/pamq/content/vols/0006/0003/a008/
Heat kernels and zeta functions on fractals
International Nuclear Information System (INIS)
Dunne, Gerald V
2012-01-01
On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)
Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan
2011-01-01
The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
Age-related macular degeneration
DEFF Research Database (Denmark)
la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst
2002-01-01
Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian....... Smoking is probably also a risk factor. Preventive strategies using macular laser photocoagulation are under investigation, but their efficacy in preventing visual loss is as yet unproven. There is no treatment with proven efficacy for geographic atrophy. Optimal treatment for exudative AMD requires...
Identification of Fusarium damaged wheat kernels using image analysis
Directory of Open Access Journals (Sweden)
Ondřej Jirsa
2011-01-01
Full Text Available Visual evaluation of kernels damaged by Fusarium spp. pathogens is labour intensive and due to a subjective approach, it can lead to inconsistencies. Digital imaging technology combined with appropriate statistical methods can provide much faster and more accurate evaluation of the visually scabby kernels proportion. The aim of the present study was to develop a discrimination model to identify wheat kernels infected by Fusarium spp. using digital image analysis and statistical methods. Winter wheat kernels from field experiments were evaluated visually as healthy or damaged. Deoxynivalenol (DON content was determined in individual kernels using an ELISA method. Images of individual kernels were produced using a digital camera on dark background. Colour and shape descriptors were obtained by image analysis from the area representing the kernel. Healthy and damaged kernels differed significantly in DON content and kernel weight. Various combinations of individual shape and colour descriptors were examined during the development of the model using linear discriminant analysis. In addition to basic descriptors of the RGB colour model (red, green, blue, very good classification was also obtained using hue from the HSL colour model (hue, saturation, luminance. The accuracy of classification using the developed discrimination model based on RGBH descriptors was 85 %. The shape descriptors themselves were not specific enough to distinguish individual kernels.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures
Directory of Open Access Journals (Sweden)
Leontyev A.V.
2015-01-01
Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.
Optimal Control for the Degenerate Elliptic Logistic Equation
International Nuclear Information System (INIS)
Delgado, M.; Montero, J.A.; Suarez, A.
2002-01-01
We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results
Kernel based subspace projection of near infrared hyperspectral images of maize kernels
DEFF Research Database (Denmark)
Larsen, Rasmus; Arngren, Morten; Hansen, Per Waaben
2009-01-01
In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods ......- tor transform outperform the linear methods as well as kernel principal components in producing interesting projections of the data.......In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods...... including principal component analysis and maximum autocorrelation factor analysis. The latter utilizes the fact that interesting phenomena in images exhibit spatial autocorrelation. However, linear projections often fail to grasp the underlying variability on the data. Therefore we propose to use so...
Detiger, Suzanne E. L.; Holewijn, Roderick M.; Hoogendoorn, Roel J. W.; van Royen, Barend J.; Helder, Marco N.; Berger, Ferco H.; Kuijer, Joost P. A.; Smit, Theo H.
2015-01-01
To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been
Detiger, S.E.L.; Holewijn, R.M.; Hoogendoorn, R.J.W.; van Royen, B.J.; Helder, M.N.; Berger, F.H.; Kuijer, J.P.A.; Smit, T.H.
2015-01-01
Purpose: To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been
Kernel based eigenvalue-decomposition methods for analysing ham
DEFF Research Database (Denmark)
Christiansen, Asger Nyman; Nielsen, Allan Aasbjerg; Møller, Flemming
2010-01-01
methods, such as PCA, MAF or MNF. We therefore investigated the applicability of kernel based versions of these transformation. This meant implementing the kernel based methods and developing new theory, since kernel based MAF and MNF is not described in the literature yet. The traditional methods only...... have two factors that are useful for segmentation and none of them can be used to segment the two types of meat. The kernel based methods have a lot of useful factors and they are able to capture the subtle differences in the images. This is illustrated in Figure 1. You can see a comparison of the most...... useful factor of PCA and kernel based PCA respectively in Figure 2. The factor of the kernel based PCA turned out to be able to segment the two types of meat and in general that factor is much more distinct, compared to the traditional factor. After the orthogonal transformation a simple thresholding...
Chen, Lili; Zhang, Xi; Wang, Hui
2015-05-01
Obstructive sleep apnea (OSA) is a common sleep disorder that often remains undiagnosed, leading to an increased risk of developing cardiovascular diseases. Polysomnogram (PSG) is currently used as a golden standard for screening OSA. However, because it is time consuming, expensive and causes discomfort, alternative techniques based on a reduced set of physiological signals are proposed to solve this problem. This study proposes a convenient non-parametric kernel density-based approach for detection of OSA using single-lead electrocardiogram (ECG) recordings. Selected physiologically interpretable features are extracted from segmented RR intervals, which are obtained from ECG signals. These features are fed into the kernel density classifier to detect apnea event and bandwidths for density of each class (normal or apnea) are automatically chosen through an iterative bandwidth selection algorithm. To validate the proposed approach, RR intervals are extracted from ECG signals of 35 subjects obtained from a sleep apnea database ( http://physionet.org/cgi-bin/atm/ATM ). The results indicate that the kernel density classifier, with two features for apnea event detection, achieves a mean accuracy of 82.07 %, with mean sensitivity of 83.23 % and mean specificity of 80.24 %. Compared with other existing methods, the proposed kernel density approach achieves a comparably good performance but by using fewer features without significantly losing discriminant power, which indicates that it could be widely used for home-based screening or diagnosis of OSA.
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
Directory of Open Access Journals (Sweden)
Bo Liu
2012-02-01
Full Text Available In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL, for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI. Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD. Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces.
A Weighted Spatial-Spectral Kernel RX Algorithm and Efficient Implementation on GPUs
Directory of Open Access Journals (Sweden)
Chunhui Zhao
2017-02-01
Full Text Available The kernel RX (KRX detector proposed by Kwon and Nasrabadi exploits a kernel function to obtain a better detection performance. However, it still has two limits that can be improved. On the one hand, reasonable integration of spatial-spectral information can be used to further improve its detection accuracy. On the other hand, parallel computing can be used to reduce the processing time in available KRX detectors. Accordingly, this paper presents a novel weighted spatial-spectral kernel RX (WSSKRX detector and its parallel implementation on graphics processing units (GPUs. The WSSKRX utilizes the spatial neighborhood resources to reconstruct the testing pixels by introducing a spectral factor and a spatial window, thereby effectively reducing the interference of background noise. Then, the kernel function is redesigned as a mapping trick in a KRX detector to implement the anomaly detection. In addition, a powerful architecture based on the GPU technique is designed to accelerate WSSKRX. To substantiate the performance of the proposed algorithm, both synthetic and real data are conducted for experiments.
International Nuclear Information System (INIS)
Nguyen, H.; Bredy, R.; Camp, H.A.; DePaola, B.D.; Awata, T.
2004-01-01
Resolution plays a vital role in spectroscopic studies. In the usual recoil-ion momentum spectroscopy (RIMS), Q-value resolution is relied upon to distinguish between different collision channels: The better the Q-value resolution, the better one is able to resolve energetically similar channels. Although traditional COLTRIMS greatly improves Q-value resolution by cooling the target and thus greatly reducing the initial target momentum spread, the resolution of the technique is still limited by target temperature. However, with the recent development in RIMS, namely, magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) superior recoil ion momentum resolution as well as charge transfer measurements with laser excited targets have become possible. Through MOTRIMS, methods for the measurements of target excited state fraction and kinematically complete relative charge transfer cross sections have been developed, even for some systems having energetically degenerate or nearly degenerate channels. In the present work, the systems of interest having energy degeneracies or near degeneracies are Rb + , K + , and Li + colliding with trapped Rb(5l), where l=s and p
Classification of maize kernels using NIR hyperspectral imaging
DEFF Research Database (Denmark)
Williams, Paul; Kucheryavskiy, Sergey V.
2016-01-01
NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....
Ideal gas scattering kernel for energy dependent cross-sections
International Nuclear Information System (INIS)
Rothenstein, W.; Dagan, R.
1998-01-01
A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations
Embedded real-time operating system micro kernel design
Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng
2005-12-01
Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.
An SVM model with hybrid kernels for hydrological time series
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
Dose point kernels for beta-emitting radioisotopes
International Nuclear Information System (INIS)
Prestwich, W.V.; Chan, L.B.; Kwok, C.S.; Wilson, B.
1986-01-01
Knowledge of the dose point kernel corresponding to a specific radionuclide is required to calculate the spatial dose distribution produced in a homogeneous medium by a distributed source. Dose point kernels for commonly used radionuclides have been calculated previously using as a basis monoenergetic dose point kernels derived by numerical integration of a model transport equation. The treatment neglects fluctuations in energy deposition, an effect which has been later incorporated in dose point kernels calculated using Monte Carlo methods. This work describes new calculations of dose point kernels using the Monte Carlo results as a basis. An analytic representation of the monoenergetic dose point kernels has been developed. This provides a convenient method both for calculating the dose point kernel associated with a given beta spectrum and for incorporating the effect of internal conversion. An algebraic expression for allowed beta spectra has been accomplished through an extension of the Bethe-Bacher approximation, and tested against the exact expression. Simplified expression for first-forbidden shape factors have also been developed. A comparison of the calculated dose point kernel for 32 P with experimental data indicates good agreement with a significant improvement over the earlier results in this respect. An analytic representation of the dose point kernel associated with the spectrum of a single beta group has been formulated. 9 references, 16 figures, 3 tables
Hadamard Kernel SVM with applications for breast cancer outcome predictions.
Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong
2017-12-21
Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.
Parameter optimization in the regularized kernel minimum noise fraction transformation
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack
2012-01-01
Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....
Analysis of Advanced Fuel Kernel Technology
International Nuclear Information System (INIS)
Oh, Seung Chul; Jeong, Kyung Chai; Kim, Yeon Ku; Kim, Young Min; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung
2010-03-01
The reference fuel for prismatic reactor concepts is based on use of an LEU UCO TRISO fissile particle. This fuel form was selected in the early 1980s for large high-temperature gas-cooled reactor (HTGR) concepts using LEU, and the selection was reconfirmed for modular designs in the mid-1980s. Limited existing irradiation data on LEU UCO TRISO fuel indicate the need for a substantial improvement in performance with regard to in-pile gaseous fission product release. Existing accident testing data on LEU UCO TRISO fuel are extremely limited, but it is generally expected that performance would be similar to that of LEU UO 2 TRISO fuel if performance under irradiation were successfully improved. Initial HTGR fuel technology was based on carbide fuel forms. In the early 1980s, as HTGR technology was transitioning from high-enriched uranium (HEU) fuel to LEU fuel. An initial effort focused on LEU prismatic design for large HTGRs resulted in the selection of UCO kernels for the fissile particles and thorium oxide (ThO 2 ) for the fertile particles. The primary reason for selection of the UCO kernel over UO 2 was reduced CO pressure, allowing higher burnup for equivalent coating thicknesses and reduced potential for kernel migration, an important failure mechanism in earlier fuels. A subsequent assessment in the mid-1980s considering modular HTGR concepts again reached agreement on UCO for the fissile particle for a prismatic design. In the early 1990s, plant cost-reduction studies led to a decision to change the fertile material from thorium to natural uranium, primarily because of a lower long-term decay heat level for the natural uranium fissile particles. Ongoing economic optimization in combination with anticipated capabilities of the UCO particles resulted in peak fissile particle burnup projection of 26% FIMA in steam cycle and gas turbine concepts
Learning Rotation for Kernel Correlation Filter
Hamdi, Abdullah
2017-08-11
Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.
Research of Performance Linux Kernel File Systems
Directory of Open Access Journals (Sweden)
Andrey Vladimirovich Ostroukh
2015-10-01
Full Text Available The article describes the most common Linux Kernel File Systems. The research was carried out on a personal computer, the characteristics of which are written in the article. The study was performed on a typical workstation running GNU/Linux with below characteristics. On a personal computer for measuring the file performance, has been installed the necessary software. Based on the results, conclusions and proposed recommendations for use of file systems. Identified and recommended by the best ways to store data.
Reciprocity relation for multichannel coupling kernels
International Nuclear Information System (INIS)
Cotanch, S.R.; Satchler, G.R.
1981-01-01
Assuming time-reversal invariance of the many-body Hamiltonian, it is proven that the kernels in a general coupled-channels formulation are symmetric, to within a specified spin-dependent phase, under the interchange of channel labels and coordinates. The theorem is valid for both Hermitian and suitably chosen non-Hermitian Hamiltonians which contain complex effective interactions. While of direct practical consequence for nuclear rearrangement reactions, the reciprocity relation is also appropriate for other areas of physics which involve coupled-channels analysis
Wheat kernel dimensions: how do they contribute to kernel weight at ...
Indian Academy of Sciences (India)
2011-12-02
Dec 2, 2011 ... yield components, is greatly influenced by kernel dimensions. (KD), such as ..... six linkage gaps, and it covered 3010.70 cM of the whole genome with an ...... Ersoz E. et al. 2009 The Genetic architecture of maize flowering.
DEFF Research Database (Denmark)
Arenas-Garcia, J.; Petersen, K.; Camps-Valls, G.
2013-01-01
correlation analysis (CCA), and orthonormalized PLS (OPLS), as well as their nonlinear extensions derived by means of the theory of reproducing kernel Hilbert spaces (RKHSs). We also review their connections to other methods for classification and statistical dependence estimation and introduce some recent...
Genetics of Frontotemporal Lobar Degeneration
Directory of Open Access Journals (Sweden)
Daniela eGalimberti
2012-04-01
Full Text Available Frontotemporal Lobar Degeneration (FTLD is the most frequent neurodegenerative disorder with a presenile onset. It presents with a spectrum of clinical manifestations, ranging from behavioural and executive impairment to language disorders and motor dysfunction. Familial aggregation is frequently reported in FTLD, and about 10% of cases have an autosomal dominant transmission. Microtubule Associated Protein Tau gene (MAPT mutations have been the first ones identified and are generally associated with early onset behavioural variant Frontotemporal Dementia (bvFTD phenotype. More recently, progranulin gene (GRN mutations were recognized in association with familial form of FTLD. In addition, other genes are linked to rare cases of familial FTLD. Lastly, a number of genetic risk factors for sporadic forms have also been identified.
Frontotemporal Degeneration in a Child.
Terrill, Tyler; Pascual, Juan M
2017-07-01
There is a predilection for the frontal and temporal lobes in certain cases of dementia in the adult, leading to the syndrome of frontotemporal dementia. However, this syndrome has seemed to elude the developing brain until now. We describe an example of apparently selective neurodegeneration of the frontal and temporal regions during development associated with some of the clinical, magnetic resonance imaging, and fludeoxyglucose positron emission tomography (FDG PET) scan features of canonical frontotemporal dementia in the adult. This patient does not have any of the common frontotemporal dementia-causing mutations or known progressive brain disorders of children. This patient illustrates that symptomatic, selective, and progressive vulnerability of the frontal and temporal lobes is not restricted to adulthood, expanding the phenotype of frontotemporal degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Naturalness of nearly degenerate neutrinos
International Nuclear Information System (INIS)
Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.
1999-01-01
If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Δm sol 2 atm 2 hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all observations
Eigenstate Thermalization for Degenerate Observables
Anza, Fabio; Gogolin, Christian; Huber, Marcus
2018-04-01
Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of the ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive, or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian. We show that the relative overlaps are unbiased for highly degenerate observables and demonstrate that unless relative phases conspire to cumulative effects, this makes such observables verify the ETH. Through this we elucidate potential pathways towards proofs of thermalization.
Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena
2018-05-01
Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
Directory of Open Access Journals (Sweden)
Xin Zhao
2017-01-01
Full Text Available Fungi infection in maize kernels is a major concern worldwide due to its toxic metabolites such as mycotoxins, thus it is necessary to develop appropriate techniques for early detection of fungi infection in maize kernels. Thirty-six sterilised maize kernels were inoculated each day with Aspergillus parasiticus from one to seven days, and then seven groups (D1, D2, D3, D4, D5, D6, D7 were determined based on the incubated time. Another 36 sterilised kernels without inoculation with fungi were taken as control (DC. Hyperspectral images of all kernels were acquired within spectral range of 921–2529 nm. Background, labels and bad pixels were removed using principal component analysis (PCA and masking. Separability computation for discrimination of fungal contamination levels indicated that the model based on the data of the germ region of individual kernels performed more effectively than on that of the whole kernels. Moreover, samples with a two-day interval were separable. Thus, four groups, DC, D1–2 (the group consisted of D1 and D2, D3–4 (D3 and D4, and D5–7 (D5, D6, and D7, were defined for subsequent classification. Two separate sample sets were prepared to verify the influence on a classification model caused by germ orientation, that is, germ up and the mixture of germ up and down with 1:1. Two smooth preprocessing methods (Savitzky-Golay smoothing, moving average smoothing and three scatter-correction methods (normalization, standard normal variate, and multiple scatter correction were compared, according to the performance of the classification model built by support vector machines (SVM. The best model for kernels with germ up showed the promising results with accuracies of 97.92% and 91.67% for calibration and validation data set, respectively, while accuracies of the best model for samples of the mixed kernels were 95.83% and 84.38%. Moreover, five wavelengths (1145, 1408, 1935, 2103, and 2383 nm were selected as the key
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying
2015-09-01
Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.
Calculation of degenerated Eigenmodes with modified power method
Energy Technology Data Exchange (ETDEWEB)
Zhang, Peng; Lee, Hyun Suk; Lee, Deok Jung [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2017-02-15
The modified power method has been studied by many researchers to calculate the higher Eigenmodes and accelerate the convergence of the fundamental mode. Its application to multidimensional problems may be unstable due to degenerated or near-degenerated Eigenmodes. Complex Eigenmode solutions are occasionally encountered in such cases, and the shapes of the corresponding eigenvectors may change during the simulation. These issues must be addressed for the successful implementation of the modified power method. Complex components are examined and an approximation method to eliminate the usage of the complex numbers is provided. A technique to fix the eigenvector shapes is also provided. The performance of the methods for dealing with those aforementioned problems is demonstrated with two dimensional one group and three dimensional one group homogeneous diffusion problems.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Verification of helical tomotherapy delivery using autoassociative kernel regression
International Nuclear Information System (INIS)
Seibert, Rebecca M.; Ramsey, Chester R.; Garvey, Dustin R.; Wesley Hines, J.; Robison, Ben H.; Outten, Samuel S.
2007-01-01
Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The error and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector
Abdelfattah, Ahmad
2015-01-15
High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The
Dougherty, Andrew W.
Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor
The Kernel Estimation in Biosystems Engineering
Directory of Open Access Journals (Sweden)
Esperanza Ayuga Téllez
2008-04-01
Full Text Available In many fields of biosystems engineering, it is common to find works in which statistical information is analysed that violates the basic hypotheses necessary for the conventional forecasting methods. For those situations, it is necessary to find alternative methods that allow the statistical analysis considering those infringements. Non-parametric function estimation includes methods that fit a target function locally, using data from a small neighbourhood of the point. Weak assumptions, such as continuity and differentiability of the target function, are rather used than "a priori" assumption of the global target function shape (e.g., linear or quadratic. In this paper a few basic rules of decision are enunciated, for the application of the non-parametric estimation method. These statistical rules set up the first step to build an interface usermethod for the consistent application of kernel estimation for not expert users. To reach this aim, univariate and multivariate estimation methods and density function were analysed, as well as regression estimators. In some cases the models to be applied in different situations, based on simulations, were defined. Different biosystems engineering applications of the kernel estimation are also analysed in this review.
Consistent Valuation across Curves Using Pricing Kernels
Directory of Open Access Journals (Sweden)
Andrea Macrina
2018-03-01
Full Text Available The general problem of asset pricing when the discount rate differs from the rate at which an asset’s cash flows accrue is considered. A pricing kernel framework is used to model an economy that is segmented into distinct markets, each identified by a yield curve having its own market, credit and liquidity risk characteristics. The proposed framework precludes arbitrage within each market, while the definition of a curve-conversion factor process links all markets in a consistent arbitrage-free manner. A pricing formula is then derived, referred to as the across-curve pricing formula, which enables consistent valuation and hedging of financial instruments across curves (and markets. As a natural application, a consistent multi-curve framework is formulated for emerging and developed inter-bank swap markets, which highlights an important dual feature of the curve-conversion factor process. Given this multi-curve framework, existing multi-curve approaches based on HJM and rational pricing kernel models are recovered, reviewed and generalised and single-curve models extended. In another application, inflation-linked, currency-based and fixed-income hybrid securities are shown to be consistently valued using the across-curve valuation method.
Aligning Biomolecular Networks Using Modular Graph Kernels
Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant
Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.
Pareto-path multitask multiple kernel learning.
Li, Cong; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2015-01-01
A traditional and intuitively appealing Multitask Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing among the tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a multiobjective optimization problem, which considers the concurrent optimization of all task objectives involved in the Multitask Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel support vector machine MT-MKL framework that considers an implicitly defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using the algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving a better classification performance, when compared with other similar MTL approaches.
Formal truncations of connected kernel equations
International Nuclear Information System (INIS)
Dixon, R.M.
1977-01-01
The Connected Kernel Equations (CKE) of Alt, Grassberger and Sandhas (AGS); Kouri, Levin and Tobocman (KLT); and Bencze, Redish and Sloan (BRS) are compared against reaction theory criteria after formal channel space and/or operator truncations have been introduced. The Channel Coupling Class concept is used to study the structure of these CKE's. The related wave function formalism of Sandhas, of L'Huillier, Redish and Tandy and of Kouri, Krueger and Levin are also presented. New N-body connected kernel equations which are generalizations of the Lovelace three-body equations are derived. A method for systematically constructing fewer body models from the N-body BRS and generalized Lovelace (GL) equations is developed. The formally truncated AGS, BRS, KLT and GL equations are analyzed by employing the criteria of reciprocity and two-cluster unitarity. Reciprocity considerations suggest that formal truncations of BRS, KLT and GL equations can lead to reciprocity-violating results. This study suggests that atomic problems should employ three-cluster connected truncations and that the two-cluster connected truncations should be a useful starting point for nuclear systems
Scientific Computing Kernels on the Cell Processor
Energy Technology Data Exchange (ETDEWEB)
Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine
2007-04-04
The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.
Delimiting areas of endemism through kernel interpolation.
Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J
2015-01-01
We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.
Delimiting areas of endemism through kernel interpolation.
Directory of Open Access Journals (Sweden)
Ubirajara Oliveira
Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.
Extracting Feature Model Changes from the Linux Kernel Using FMDiff
Dintzner, N.J.R.; Van Deursen, A.; Pinzger, M.
2014-01-01
The Linux kernel feature model has been studied as an example of large scale evolving feature model and yet details of its evolution are not known. We present here a classification of feature changes occurring on the Linux kernel feature model, as well as a tool, FMDiff, designed to automatically
Replacement Value of Palm Kernel Meal for Maize on Carcass ...
African Journals Online (AJOL)
This study was conducted to evaluate the effect of replacing maize with palm kernel meal on nutrient composition, fatty acid profile and sensory qualities of the meat of turkeys fed the dietary treatments. Six dietary treatments were formulated using palm kernel meal to replace maize at 0, 20, 40, 60, 80 and 100 percent.
Effect of Palm Kernel Cake Replacement and Enzyme ...
African Journals Online (AJOL)
A feeding trial which lasted for twelve weeks was conducted to study the performance of finisher pigs fed five different levels of palm kernel cake replacement for maize (0%, 40%, 40%, 60%, 60%) in a maize-palm kernel cake based ration with or without enzyme supplementation. It was a completely randomized design ...
Capturing option anomalies with a variance-dependent pricing kernel
Christoffersen, P.; Heston, S.; Jacobs, K.
2013-01-01
We develop a GARCH option model with a variance premium by combining the Heston-Nandi (2000) dynamic with a new pricing kernel that nests Rubinstein (1976) and Brennan (1979). While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is
Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan
This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi...
Commutators of Integral Operators with Variable Kernels on Hardy ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4. Commutators of Integral Operators with Variable Kernels on Hardy Spaces. Pu Zhang Kai Zhao. Volume 115 Issue 4 November 2005 pp 399-410 ... Keywords. Singular and fractional integrals; variable kernel; commutator; Hardy space.
Discrete non-parametric kernel estimation for global sensitivity analysis
International Nuclear Information System (INIS)
Senga Kiessé, Tristan; Ventura, Anne
2016-01-01
This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.
Kernel Function Tuning for Single-Layer Neural Networks
Czech Academy of Sciences Publication Activity Database
Vidnerová, Petra; Neruda, Roman
-, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/
Geodesic exponential kernels: When Curvature and Linearity Conflict
DEFF Research Database (Denmark)
Feragen, Aase; Lauze, François; Hauberg, Søren
2015-01-01
manifold, the geodesic Gaussian kernel is only positive definite if the Riemannian manifold is Euclidean. This implies that any attempt to design geodesic Gaussian kernels on curved Riemannian manifolds is futile. However, we show that for spaces with conditionally negative definite distances the geodesic...
Denoising by semi-supervised kernel PCA preimaging
DEFF Research Database (Denmark)
Hansen, Toke Jansen; Abrahamsen, Trine Julie; Hansen, Lars Kai
2014-01-01
Kernel Principal Component Analysis (PCA) has proven a powerful tool for nonlinear feature extraction, and is often applied as a pre-processing step for classification algorithms. In denoising applications Kernel PCA provides the basis for dimensionality reduction, prior to the so-called pre-imag...
Design and construction of palm kernel cracking and separation ...
African Journals Online (AJOL)
Design and construction of palm kernel cracking and separation machines. ... Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Design and construction of palm kernel cracking and separation machines. JO Nordiana, K ...
Kernel Methods for Machine Learning with Life Science Applications
DEFF Research Database (Denmark)
Abrahamsen, Trine Julie
Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear a...
Genetic relationship between plant growth, shoot and kernel sizes in ...
African Journals Online (AJOL)
Maize (Zea mays L.) ear vascular tissue transports nutrients that contribute to grain yield. To assess kernel heritabilities that govern ear development and plant growth, field studies were conducted to determine the combining abilities of parents that differed for kernel-size, grain-filling rates and shoot-size. Thirty two hybrids ...
A relationship between Gel'fand-Levitan and Marchenko kernels
International Nuclear Information System (INIS)
Kirst, T.; Von Geramb, H.V.; Amos, K.A.
1989-01-01
An integral equation which relates the output kernels of the Gel'fand-Levitan and Marchenko inverse scattering equations is specified. Structural details of this integral equation are studied when the S-matrix is a rational function, and the output kernels are separable in terms of Bessel, Hankel and Jost solutions. 4 refs
Boundary singularity of Poisson and harmonic Bergman kernels
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2015-01-01
Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170
Oven-drying reduces ruminal starch degradation in maize kernels
Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.
2014-01-01
The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels
Real time kernel performance monitoring with SystemTap
CERN. Geneva
2018-01-01
SystemTap is a dynamic method of monitoring and tracing the operation of a running Linux kernel. In this talk I will present a few practical use cases where SystemTap allowed me to turn otherwise complex userland monitoring tasks in simple kernel probes.
Resolvent kernel for the Kohn Laplacian on Heisenberg groups
Directory of Open Access Journals (Sweden)
Neur Eddine Askour
2002-07-01
Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.
Reproducing Kernels and Coherent States on Julia Sets
Energy Technology Data Exchange (ETDEWEB)
Thirulogasanthar, K., E-mail: santhar@cs.concordia.ca; Krzyzak, A. [Concordia University, Department of Computer Science and Software Engineering (Canada)], E-mail: krzyzak@cs.concordia.ca; Honnouvo, G. [Concordia University, Department of Mathematics and Statistics (Canada)], E-mail: g_honnouvo@yahoo.fr
2007-11-15
We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems.
Reproducing Kernels and Coherent States on Julia Sets
International Nuclear Information System (INIS)
Thirulogasanthar, K.; Krzyzak, A.; Honnouvo, G.
2007-01-01
We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems
A multi-scale kernel bundle for LDDMM
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Nielsen, Mads; Lauze, Francois Bernard
2011-01-01
The Large Deformation Diffeomorphic Metric Mapping framework constitutes a widely used and mathematically well-founded setup for registration in medical imaging. At its heart lies the notion of the regularization kernel, and the choice of kernel greatly affects the results of registrations...
Comparison of Kernel Equating and Item Response Theory Equating Methods
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
An analysis of 1-D smoothed particle hydrodynamics kernels
International Nuclear Information System (INIS)
Fulk, D.A.; Quinn, D.W.
1996-01-01
In this paper, the smoothed particle hydrodynamics (SPH) kernel is analyzed, resulting in measures of merit for one-dimensional SPH. Various methods of obtaining an objective measure of the quality and accuracy of the SPH kernel are addressed. Since the kernel is the key element in the SPH methodology, this should be of primary concern to any user of SPH. The results of this work are two measures of merit, one for smooth data and one near shocks. The measure of merit for smooth data is shown to be quite accurate and a useful delineator of better and poorer kernels. The measure of merit for non-smooth data is not quite as accurate, but results indicate the kernel is much less important for these types of problems. In addition to the theory, 20 kernels are analyzed using the measure of merit demonstrating the general usefulness of the measure of merit and the individual kernels. In general, it was decided that bell-shaped kernels perform better than other shapes. 12 refs., 16 figs., 7 tabs
Optimal Bandwidth Selection in Observed-Score Kernel Equating
Häggström, Jenny; Wiberg, Marie
2014-01-01
The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…
Computing an element in the lexicographic kernel of a game
Faigle, U.; Kern, Walter; Kuipers, Jeroen
The lexicographic kernel of a game lexicographically maximizes the surplusses $s_{ij}$ (rather than the excesses as would the nucleolus). We show that an element in the lexicographic kernel can be computed efficiently, provided we can efficiently compute the surplusses $s_{ij}(x)$ corresponding to a
Computing an element in the lexicographic kernel of a game
Faigle, U.; Kern, Walter; Kuipers, J.
2002-01-01
The lexicographic kernel of a game lexicographically maximizes the surplusses $s_{ij}$ (rather than the excesses as would the nucleolus). We show that an element in the lexicographic kernel can be computed efficiently, provided we can efficiently compute the surplusses $s_{ij}(x)$ corresponding to a
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Anatomically-aided PET reconstruction using the kernel method.
Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2016-09-21
This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.
Open Problem: Kernel methods on manifolds and metric spaces
DEFF Research Database (Denmark)
Feragen, Aasa; Hauberg, Søren
2016-01-01
Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....
Compactly Supported Basis Functions as Support Vector Kernels for Classification.
Wittek, Peter; Tan, Chew Lim
2011-10-01
Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.
Motor axon excitability during Wallerian degeneration
DEFF Research Database (Denmark)
Moldovan, Mihai; Alvarez, Susana; Krarup, Christian
2008-01-01
Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...
Disk degeneration in 14 year old children
International Nuclear Information System (INIS)
Erkintalo, M.; Salminen, J.J.; Paajanen, H.; Terho, P.; Kormano, M.
1989-01-01
This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood
Total absorption by degenerate critical coupling
Energy Technology Data Exchange (ETDEWEB)
Piper, Jessica R., E-mail: jrylan@stanford.edu; Liu, Victor; Fan, Shanhui, E-mail: shanhui@stanford.edu [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
2014-06-23
We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.
Chan, Deva D; Khan, Safdar N; Ye, Xiaojing; Curtiss, Shane B; Gupta, Munish C; Klineberg, Eric O; Neu, Corey P
2011-08-15
Evaluation of degenerated intervertebral discs from a rabbit annular puncture model by using specialized magnetic resonance imaging (MRI) techniques, including displacement encoding with stimulated echoes and a fast-spin echo (DENSE-FSE) acquisition and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). To evaluate a rabbit disc degeneration model by using various MRI techniques. To determine the displacements and strains, spin-lattice relaxation time (T1), and glycosaminoglycan (GAG) distribution of degenerated discs as compared to normal and adjacent level discs. Annular puncture of the intervertebral disc produces disc degeneration in rabbits. DENSE-FSE has been previously demonstrated in articular cartilage for the measurement of soft tissue displacements and strains. MRI also can measure the T1 of tissue, and dGEMRIC can quantify GAG concentration in cartilage. METHODS.: In eight New Zealand white rabbits, the annulus fibrosis of a lumbar disc was punctured. After 4 weeks, the punctured and cranially adjacent motion segments were isolated for MRI and histology. MRI was used to estimate the disc volume and map T1. DENSE-FSE was used to determine displacements for the estimation of strains. dGEMRIC was then used to determine GAG distributions. Histology and standard MRI indicated degeneration in punctured discs. Disc volume increased significantly at 4 weeks after the puncture. Displacement of the nucleus pulposus was distinct from that of the annulus fibrosis in most untreated discs but not in punctured discs. T1 was significantly higher and GAG concentration significantly lower in punctured discs compared with untreated adjacent level discs. Noninvasive and quantitative MRI techniques can be used to evaluate the mechanical and biochemical changes that occur with animal models of disc degeneration. DENSE-FSE, dGEMRIC, and similar techniques have potential for evaluating the progression of disc degeneration and the efficacy of treatments.
Improved modeling of clinical data with kernel methods.
Daemen, Anneleen; Timmerman, Dirk; Van den Bosch, Thierry; Bottomley, Cecilia; Kirk, Emma; Van Holsbeke, Caroline; Valentin, Lil; Bourne, Tom; De Moor, Bart
2012-02-01
Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. For clinical data consisting of variables of different types, the proposed kernel function--which takes into account the type and range of each variable--has shown to be a better alternative for linear and non-linear classification problems
Genetics of frontotemporal lobar degeneration
Directory of Open Access Journals (Sweden)
Aswathy P
2010-10-01
Full Text Available Frontotemporal lobar degeneration (FTLD is a highly heterogenous group of progressive neurodegenerative disorders characterized by atrophy of prefrontal and anterior temporal cortices. Recently, the research in the field of FTLD has gained increased attention due to the clinical, neuropathological, and genetic heterogeneity and has increased our understanding of the disease pathogenesis. FTLD is a genetically complex disorder. It has a strong genetic basis and 50% of patients show a positive family history for FTLD. Linkage studies have revealed seven chromosomal loci and a number of genes including MAPT, PGRN, VCP, and CHMB-2B are associated with the disease. Neuropathologically, FTLD is classified into tauopathies and ubiquitinopathies. The vast majority of FTLD cases are characterized by pathological accumulation of tau or TDP-43 positive inclusions, each as an outcome of mutations in MAPT or PGRN, respectively. Identification of novel proteins involved in the pathophysiology of the disease, such as progranulin and TDP-43, may prove to be excellent biomarkers of disease progression and thereby lead to the development of better therapeutic options through pharmacogenomics. However, much more dissections into the causative pathways are needed to get a full picture of the etiology. Over the past decade, advances in research on the genetics of FTLD have revealed many pathogenic mutations leading to different clinical manifestations of the disease. This review discusses the current concepts and recent advances in our understanding of the genetics of FTLD.
Degeneration of biogenic superparamagnetic magnetite.
Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J
2009-01-01
Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.
Degeneration of Biogenic Superparamagnetic Magnetite
Energy Technology Data Exchange (ETDEWEB)
Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL
2009-01-01
ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.
Age related macular degeneration and visual disability.
Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro
2011-02-01
Age-related macular degeneration (AMD) is the leading cause of central blindness or low vision among the elderly in industrialized countries. AMD is caused by a combination of genetic and environmental factors. Among modifiable environmental risk factors, cigarette smoking has been associated with both the dry and wet forms of AMD and may increase the likelihood of worsening pre-existing AMD. Despite advances, the treatment of AMD has limitations and affected patients are often referred for low vision rehabilitation to help them cope with their remaining eyesight. The characteristic visual impairment for both forms of AMD is loss of central vision (central scotoma). This loss results in severe difficulties with reading that may be only partly compensated by magnifying glasses or screen-projection devices. The loss of central vision associated with the disease has a profound impact on patient quality of life. With progressive central visual loss, patients lose their ability to perform the more complex activities of daily living. Common vision aids include low vision filters, magnifiers, telescopes and electronic aids. Low vision rehabilitation (LVR) is a new subspecialty emerging from the traditional fields of ophthalmology, optometry, occupational therapy, and sociology, with an ever-increasing impact on the usual concepts of research, education, and services for visually impaired patients. Relatively few ophthalmologists practise LVR and fewer still routinely use prismatic image relocation (IR) in AMD patients. IR is a method of stabilizing oculomotor functions with the purpose of promoting better function of preferred retinal loci (PRLs). The aim of vision rehabilitation therapy consists in the achievement of techniques designed to improve PRL usage. The use of PRLs to compensate for diseased foveae has offered hope to these patients in regaining some function. However, in a recently published meta-analysis, prism spectacles were found to be unlikely to be of
Single corn kernel wide-line NMR oil analysis for breeding purpose
Energy Technology Data Exchange (ETDEWEB)
Wilmers, M C.C.; Rettori, C; Vargas, H; Barberis, G E [Universidade Estadual de Campinas (Brazil). Inst. de Fisica; da Silva, W J [Universidade Estadual de Campinas (Brazil). Inst. de Biologia
1978-12-01
The Wide-Line NMR technique was used to determine the oil content in single corn seeds. Using distinct radio frequency (RF) power, a systematic work was done in kernels with about 10% of moisture, and also in artificially dried seeds with approximated 5% of moisture. For nondried seeds NMR spectra showed clearly the presence of three resonances with different RF saturation factor. For dried seeds, the oil concentration determined by NMR was highly correlated (r = 0,997) with that determined by a gravimetric method. The highest discrepancy between the two methods was found to be about 1,3%. When relative measurements are required as in the case of single kernel for recurrent selection program, precision in the individual selected kernel will be about 2,5%. Applying this technique, a first cycle of recurrent selection using S/sub 1/ lines for low and high oil content was performed in an open pollinated variety. Gain from selection was 12.0 and 14.1% in the populations for high and low oil contents, respectively.
A method for manufacturing kernels of metallic oxides and the thus obtained kernels
International Nuclear Information System (INIS)
Lelievre Bernard; Feugier, Andre.
1973-01-01
A method is described for manufacturing fissile or fertile metal oxide kernels, consisting in adding at least a chemical compound capable of releasing ammonia to an aqueous solution of actinide nitrates dispersing the thus obtained solution dropwise in a hot organic phase so as to gelify the drops and transform them into solid particles, washing drying and treating said particles so as to transform them into oxide kernels. Such a method is characterized in that the organic phase used in the gel-forming reactions comprises a mixture of two organic liquids, one of which acts as a solvent, whereas the other is a product capable of extracting the metal-salt anions from the drops while the gel forming reaction is taking place. This can be applied to the so-called high temperature nuclear reactors [fr
A scatter model for fast neutron beams using convolution of diffusion kernels
International Nuclear Information System (INIS)
Moyers, M.F.; Horton, J.L.; Boyer, A.L.
1988-01-01
A new model is proposed to calculate dose distributions in materials irradiated with fast neutron beams. Scattered neutrons are transported away from the point of production within the irradiated material in the forward, lateral and backward directions, while recoil protons are transported in the forward and lateral directions. The calculation of dose distributions, such as for radiotherapy planning, is accomplished by convolving a primary attenuation distribution with a diffusion kernel. The primary attenuation distribution may be quickly calculated for any given set of beam and material conditions as it describes only the magnitude and distribution of first interaction sites. The calculation of energy diffusion kernels is very time consuming but must be calculated only once for a given energy. Energy diffusion distributions shown in this paper have been calculated using a Monte Carlo type of program. To decrease beam calculation time, convolutions are performed using a Fast Fourier Transform technique. (author)
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.
Learning molecular energies using localized graph kernels
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Magnetic resonance imaging of intervertebral disc degeneration
International Nuclear Information System (INIS)
Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.
1993-01-01
The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)
Magnetic resonance imaging of intervertebral disc degeneration
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi
1993-02-01
The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).
Genetics Home Reference: Stargardt macular degeneration
... recognizing faces. In most people with Stargardt macular degeneration , a fatty yellow pigment (lipofuscin) builds up in cells underlying the macula. Over time, the abnormal accumulation of this substance ...
Ataxias and Cerebellar or Spinocerebellar Degeneration
... and conducts a broad range of basic and clinical research on cerebellar and spinocerebellar degeneration, including work aimed at finding the cause(s) of ataxias and ways to ... Publications Definition Ataxia ...
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results
Hamiltonization of theories with degenerate coordinates
International Nuclear Information System (INIS)
Gitman, D.M.; Tyutin, I.V.
2002-01-01
We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta
Hamiltonization of theories with degenerate coordinates
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. E-mail: gitman@fma.if.usp.br; Tyutin, I.V. E-mail: tyutin@lpi.ru
2002-05-27
We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta.
2006-01-01
The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from the singular fiber. These "barking deformations" are related to deformations of surface singularities (in particular, cyclic quotient singularities) as well as the mapping class groups of Riemann surfaces (complex curves) via monodromies. Important applications, such as the classification of atomic degenerations, are also explained.
Multiple kernel boosting framework based on information measure for classification
International Nuclear Information System (INIS)
Qi, Chengming; Wang, Yuping; Tian, Wenjie; Wang, Qun
2016-01-01
The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.
Per-Sample Multiple Kernel Approach for Visual Concept Learning
Directory of Open Access Journals (Sweden)
Ling-Yu Duan
2010-01-01
Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.
Per-Sample Multiple Kernel Approach for Visual Concept Learning
Directory of Open Access Journals (Sweden)
Tian Yonghong
2010-01-01
Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.
Localized Multiple Kernel Learning Via Sample-Wise Alternating Optimization.
Han, Yina; Yang, Kunde; Ma, Yuanliang; Liu, Guizhong
2014-01-01
Our objective is to train support vector machines (SVM)-based localized multiple kernel learning (LMKL), using the alternating optimization between the standard SVM solvers with the local combination of base kernels and the sample-specific kernel weights. The advantage of alternating optimization developed from the state-of-the-art MKL is the SVM-tied overall complexity and the simultaneous optimization on both the kernel weights and the classifier. Unfortunately, in LMKL, the sample-specific character makes the updating of kernel weights a difficult quadratic nonconvex problem. In this paper, starting from a new primal-dual equivalence, the canonical objective on which state-of-the-art methods are based is first decomposed into an ensemble of objectives corresponding to each sample, namely, sample-wise objectives. Then, the associated sample-wise alternating optimization method is conducted, in which the localized kernel weights can be independently obtained by solving their exclusive sample-wise objectives, either linear programming (for l1-norm) or with closed-form solutions (for lp-norm). At test time, the learnt kernel weights for the training data are deployed based on the nearest-neighbor rule. Hence, to guarantee their generality among the test part, we introduce the neighborhood information and incorporate it into the empirical loss when deriving the sample-wise objectives. Extensive experiments on four benchmark machine learning datasets and two real-world computer vision datasets demonstrate the effectiveness and efficiency of the proposed algorithm.
Deep Restricted Kernel Machines Using Conjugate Feature Duality.
Suykens, Johan A K
2017-08-01
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.
Training Lp norm multiple kernel learning in the primal.
Liang, Zhizheng; Xia, Shixiong; Zhou, Yong; Zhang, Lei
2013-10-01
Some multiple kernel learning (MKL) models are usually solved by utilizing the alternating optimization method where one alternately solves SVMs in the dual and updates kernel weights. Since the dual and primal optimization can achieve the same aim, it is valuable in exploring how to perform Lp norm MKL in the primal. In this paper, we propose an Lp norm multiple kernel learning algorithm in the primal where we resort to the alternating optimization method: one cycle for solving SVMs in the primal by using the preconditioned conjugate gradient method and other cycle for learning the kernel weights. It is interesting to note that the kernel weights in our method can obtain analytical solutions. Most importantly, the proposed method is well suited for the manifold regularization framework in the primal since solving LapSVMs in the primal is much more effective than solving LapSVMs in the dual. In addition, we also carry out theoretical analysis for multiple kernel learning in the primal in terms of the empirical Rademacher complexity. It is found that optimizing the empirical Rademacher complexity may obtain a type of kernel weights. The experiments on some datasets are carried out to demonstrate the feasibility and effectiveness of the proposed method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Age-related macular degeneration.
Cheung, Lily K; Eaton, Angie
2013-08-01
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease. © 2013 Pharmacotherapy Publications, Inc.
A point kernel shielding code, PKN-HP, for high energy proton incident
Energy Technology Data Exchange (ETDEWEB)
Kotegawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1996-06-01
A point kernel integral technique code PKN-HP, and the related thick target neutron yield data have been developed to calculate neutron and secondary gamma-ray dose equivalents in ordinary concrete and iron shields for fully stopping length C, Cu and U-238 target neutrons produced by 100 MeV-10 GeV proton incident in a 3-dimensional geometry. The comparisons among calculation results of the present code and other calculation techniques, and measured values showed the usefulness of the code. (author)
The non-invasive investigation of lumbar disc degeneration in patients with chronic low back pain
International Nuclear Information System (INIS)
Buirski, G.
1989-01-01
The painful degenerate disc is a recognised cause of low back pain. Magnetic Resonance Imaging (MRI) has now replaced discography in the non-invasive assessment of disk degeneration. However, the prohibitive capital expense of MRI and the small number of MR units in Australia produce limitations in clinical access. In contrast, Computed Tomography (CT) is readily available and is performed in most patients prior to MRI referral. This prospective study was undertaken to determine whether preliminary CT could offer any information about disc degeneration and so reduce the demand on a MRI scanner. 30 consecutive patients were studied all of whom had both CT and MRI examinations. Of a total 107 discs examined by both techniques, MRI was able to identify 37 degenerate discs. Conclusive evidence of degeneration (i.e. the presence of intervertebral gas) was only seen in 3 discs at CT (1 patient). Of the 29 posterior disc bulges found on CT, all were both bulging and degenerate on MRI. Indications for MRI based on the CT findings are recommended. Using these criteria, 13% (4 patients) of this study group could have avoided an expensive and unnecessary MR investigation. A useful algorithm for the investigation and assessment of patients with chronic low back pain is discussed. 8 refs., 5 figs., 1 tab
Indian hedgehog contributes to human cartilage endplate degeneration.
Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei
2015-08-01
To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.
Gradient-based adaptation of general gaussian kernels.
Glasmachers, Tobias; Igel, Christian
2005-10-01
Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.
On weights which admit the reproducing kernel of Bergman type
Directory of Open Access Journals (Sweden)
Zbigniew Pasternak-Winiarski
1992-01-01
Full Text Available In this paper we consider (1 the weights of integration for which the reproducing kernel of the Bergman type can be defined, i.e., the admissible weights, and (2 the kernels defined by such weights. It is verified that the weighted Bergman kernel has the analogous properties as the classical one. We prove several sufficient conditions and necessary and sufficient conditions for a weight to be an admissible weight. We give also an example of a weight which is not of this class. As a positive example we consider the weight μ(z=(Imz2 defined on the unit disk in ℂ.
Flour quality and kernel hardness connection in winter wheat
Directory of Open Access Journals (Sweden)
Szabó B. P.
2016-12-01
Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.
Deep kernel learning method for SAR image target recognition
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
DEFF Research Database (Denmark)
Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo
2011-01-01
This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...
Self-reported optometric practise patterns in age-related macular degeneration.
Ly, Angelica; Nivison-Smith, Lisa; Zangerl, Barbara; Assaad, Nagi; Kalloniatis, Michael
2017-11-01
The use of advanced imaging in clinical practice is emerging and the use of this technology by optometrists in assessing patients with age-related macular degeneration is of interest. Therefore, this study explored contemporary, self-reported patterns of practice regarding age-related macular degeneration diagnosis and management using a cross-sectional survey of optometrists in Australia and New Zealand. Practising optometrists were surveyed on four key areas, namely, demographics, clinical skills and experience, assessment and management of age-related macular degeneration. Questions pertaining to self-rated competency, knowledge and attitudes used a five-point Likert scale. Completed responses were received from 127 and 87 practising optometrists in Australia and New Zealand, respectively. Advanced imaging showed greater variation in service delivery than traditional techniques (such as slitlamp funduscopy) and trended toward optical coherence tomography, which was routinely performed in age-related macular degeneration by 49 per cent of respondents. Optical coherence tomography was also associated with higher self-rated competency, knowledge and perceived relevance to practice than other modalities. Most respondents (93 per cent) indicated that they regularly applied patient symptoms, case history, visual function results and signs from traditional testing, when queried about their management of patients with age-related macular degeneration. Over half (63 per cent) also considered advanced imaging, while 31 per cent additionally considered all of these as well as the disease stage and clinical guidelines. Contrary to the evidence base, 68 and 34 per cent rated nutritional supplements as highly relevant or relevant in early age-related macular degeneration and normal aging changes, respectively. These results highlight the emergence of multimodal and advanced imaging (especially optical coherence tomography) in the assessment of age-related macular degeneration
Phase transition in the non-degenerate Hubbard Hamiltonian
International Nuclear Information System (INIS)
Chaves, C.M.; Lederer, P.; Gomes, A.A.
1976-01-01
Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed
Cid, Jaime A; von Davier, Alina A
2015-05-01
Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Desvillettes, Laurent
2010-01-01
We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Li Heng; Mohan, Radhe; Zhu, X Ronald
2008-01-01
The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.
Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition
Liwicki, Stephan; Zafeiriou, Stefanos; Tzimiropoulos, Georgios; Pantic, Maja
2012-01-01
We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an
Optimizing The Performance of Streaming Numerical Kernels On The IBM Blue Gene/P PowerPC 450
Malas, Tareq
2011-07-01
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a formidable challenge despite the regularity of memory access. Sophisticated optimization techniques beyond the capabilities of modern compilers are required to fully utilize the Central Processing Unit (CPU). The aim of the work presented here is to improve the performance of streaming numerical kernels on high performance architectures by developing efficient algorithms to utilize the vectorized floating point units. The importance of the development time demands the creation of tools to enable simple yet direct development in assembly to utilize the power-efficient cores featuring in-order execution and multiple-issue units. We implement several stencil kernels for a variety of cached memory scenarios using our Python instruction simulation and generation tool. Our technique simplifies the development of efficient assembly code for the IBM Blue Gene/P supercomputer\\'s PowerPC 450. This enables us to perform high-level design, construction, verification, and simulation on a subset of the CPU\\'s instruction set. Our framework has the capability to implement streaming numerical kernels on current and future high performance architectures. Finally, we present several automatically generated implementations, including a 27-point stencil achieving a 1.7x speedup over the best previously published results.
International Nuclear Information System (INIS)
Drozdowicz, K.
1995-01-01
A comprehensive unified description of the application of Granada's Synthetic Model to the slow-neutron scattering by the molecular systems is continued. Detailed formulae for the zero-order energy transfer kernel are presented basing on the general formalism of the model. An explicit analytical formula for the total scattering cross section as a function of the incident neutron energy is also obtained. Expressions of the free gas model for the zero-order scattering kernel and for total scattering kernel are considered as a sub-case of the Synthetic Model. (author). 10 refs
Kernel methods and flexible inference for complex stochastic dynamics
Capobianco, Enrico
2008-07-01
Approximation theory suggests that series expansions and projections represent standard tools for random process applications from both numerical and statistical standpoints. Such instruments emphasize the role of both sparsity and smoothness for compression purposes, the decorrelation power achieved in the expansion coefficients space compared to the signal space, and the reproducing kernel property when some special conditions are met. We consider these three aspects central to the discussion in this paper, and attempt to analyze the characteristics of some known approximation instruments employed in a complex application domain such as financial market time series. Volatility models are often built ad hoc, parametrically and through very sophisticated methodologies. But they can hardly deal with stochastic processes with regard to non-Gaussianity, covariance non-stationarity or complex dependence without paying a big price in terms of either model mis-specification or computational efficiency. It is thus a good idea to look at other more flexible inference tools; hence the strategy of combining greedy approximation and space dimensionality reduction techniques, which are less dependent on distributional assumptions and more targeted to achieve computationally efficient performances. Advantages and limitations of their use will be evaluated by looking at algorithmic and model building strategies, and by reporting statistical diagnostics.
Kernel-based discriminant feature extraction using a representative dataset
Li, Honglin; Sancho Gomez, Jose-Luis; Ahalt, Stanley C.
2002-07-01
Discriminant Feature Extraction (DFE) is widely recognized as an important pre-processing step in classification applications. Most DFE algorithms are linear and thus can only explore the linear discriminant information among the different classes. Recently, there has been several promising attempts to develop nonlinear DFE algorithms, among which is Kernel-based Feature Extraction (KFE). The efficacy of KFE has been experimentally verified by both synthetic data and real problems. However, KFE has some known limitations. First, KFE does not work well for strongly overlapped data. Second, KFE employs all of the training set samples during the feature extraction phase, which can result in significant computation when applied to very large datasets. Finally, KFE can result in overfitting. In this paper, we propose a substantial improvement to KFE that overcomes the above limitations by using a representative dataset, which consists of critical points that are generated from data-editing techniques and centroid points that are determined by using the Frequency Sensitive Competitive Learning (FSCL) algorithm. Experiments show that this new KFE algorithm performs well on significantly overlapped datasets, and it also reduces computational complexity. Further, by controlling the number of centroids, the overfitting problem can be effectively alleviated.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
Energy Technology Data Exchange (ETDEWEB)
Thimmisetty, Charanraj A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zhao, Wenju [Florida State Univ., Tallahassee, FL (United States). Dept. of Scientific Computing; Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Tong, Charles H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.
International Nuclear Information System (INIS)
Russell, K.R.; Saxner, M.; Ahnesjoe, A.; Montelius, A.; Grusell, E.; Dahlgren, C.V.
2000-01-01
The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three-dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi-Eyges formalism and Moliere multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media. (author)
Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon
Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira
2018-04-01
Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.
Directory of Open Access Journals (Sweden)
Shanshan Yang
Full Text Available Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson's disease (PD, and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by using the sequential forward selection (SFS and kernel principal component analysis (KPCA methods. Four selected vocal measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification experiments, Fisher's linear discriminant analysis (FLDA was applied to perform the linear classification of voice records for healthy control subjects and PD patients, and the maximum a posteriori (MAP decision rule and support vector machine (SVM with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC curve. The diagnostic performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD patients with minimal functional disability are more difficult to be correctly identified.
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.
Bioconversion of palm kernel meal for aquaculture: Experiences ...
African Journals Online (AJOL)
SERVER
2008-04-17
Apr 17, 2008 ... es as well as food supplies have existed traditionally with coastal regions of Liberia and ..... Contamination of palm kernel meal with Aspergillus ... Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia. Aquacult. Res.
The effect of apricot kernel flour incorporation on the ...
African Journals Online (AJOL)
STORAGESEVER
2009-01-05
Jan 5, 2009 ... 2Department of Food Engineering, Erciyes University 38039, Kayseri, Turkey. Accepted 27 ... Key words: Noodle; apricot kernel, flour, cooking, sensory properties. ... their simple preparation requirement, desirable sensory.
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi; Alkhalifah, Tariq Ali
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate
Linear and kernel methods for multivariate change detection
DEFF Research Database (Denmark)
Canty, Morton J.; Nielsen, Allan Aasbjerg
2012-01-01
), as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (nonlinear), may further enhance change signals relative to no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric...... normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available...... that allows fast data exploration and experimentation with smaller datasets. New, multiresolution versions of IR-MAD that accelerate convergence and that further reduce no-change background noise are introduced. Computationally expensive matrix diagonalization and kernel image projections are programmed...
SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry
International Nuclear Information System (INIS)
Disney, R.K.; Vogtman, S.E.
1987-01-01
1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total
On Improving Convergence Rates for Nonnegative Kernel Density Estimators
Terrell, George R.; Scott, David W.
1980-01-01
To improve the rate of decrease of integrated mean square error for nonparametric kernel density estimators beyond $0(n^{-\\frac{4}{5}}),$ we must relax the constraint that the density estimate be a bonafide density function, that is, be nonnegative and integrate to one. All current methods for kernel (and orthogonal series) estimators relax the nonnegativity constraint. In this paper we show how to achieve similar improvement by relaxing the integral constraint only. This is important in appl...
Improved Variable Window Kernel Estimates of Probability Densities
Hall, Peter; Hu, Tien Chung; Marron, J. S.
1995-01-01
Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...
MULTITASKER, Multitasking Kernel for C and FORTRAN Under UNIX
International Nuclear Information System (INIS)
Brooks, E.D. III
1988-01-01
1 - Description of program or function: MULTITASKER implements a multitasking kernel for the C and FORTRAN programming languages that runs under UNIX. The kernel provides a multitasking environment which serves two purposes. The first is to provide an efficient portable environment for the development, debugging, and execution of production multiprocessor programs. The second is to provide a means of evaluating the performance of a multitasking program on model multiprocessor hardware. The performance evaluation features require no changes in the application program source and are implemented as a set of compile- and run-time options in the kernel. 2 - Method of solution: The FORTRAN interface to the kernel is identical in function to the CRI multitasking package provided for the Cray XMP. This provides a migration path to high speed (but small N) multiprocessors once the application has been coded and debugged. With use of the UNIX m4 macro preprocessor, source compatibility can be achieved between the UNIX code development system and the target Cray multiprocessor. The kernel also provides a means of evaluating a program's performance on model multiprocessors. Execution traces may be obtained which allow the user to determine kernel overhead, memory conflicts between various tasks, and the average concurrency being exploited. The kernel may also be made to switch tasks every cpu instruction with a random execution ordering. This allows the user to look for unprotected critical regions in the program. These features, implemented as a set of compile- and run-time options, cause extra execution overhead which is not present in the standard production version of the kernel
The Flux OSKit: A Substrate for Kernel and Language Research
1997-10-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 tions. Our own microkernel -based OS, Fluke [17], puts almost all of the OSKit to use...kernels distance the language from the hardware; even microkernels and other extensible kernels enforce some default policy which often conflicts with a...be particu- larly useful in these research projects. 6.1.1 The Fluke OS In 1996 we developed an entirely new microkernel - based system called Fluke
Centralization of extruded medial meniscus delays cartilage degeneration in rats.
Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro
2017-05-01
Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Salus: Kernel Support for Secure Process Compartments
Directory of Open Access Journals (Sweden)
Raoul Strackx
2015-01-01
Full Text Available Consumer devices are increasingly being used to perform security and privacy critical tasks. The software used to perform these tasks is often vulnerable to attacks, due to bugs in the application itself or in included software libraries. Recent work proposes the isolation of security-sensitive parts of applications into protected modules, each of which can be accessed only through a predefined public interface. But most parts of an application can be considered security-sensitive at some level, and an attacker who is able to gain inapplication level access may be able to abuse services from protected modules. We propose Salus, a Linux kernel modification that provides a novel approach for partitioning processes into isolated compartments sharing the same address space. Salus significantly reduces the impact of insecure interfaces and vulnerable compartments by enabling compartments (1 to restrict the system calls they are allowed to perform, (2 to authenticate their callers and callees and (3 to enforce that they can only be accessed via unforgeable references. We describe the design of Salus, report on a prototype implementation and evaluate it in terms of security and performance. We show that Salus provides a significant security improvement with a low performance overhead, without relying on any non-standard hardware support.
KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION
Directory of Open Access Journals (Sweden)
Y. Bai
2016-06-01
Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.
An Ensemble Approach to Building Mercer Kernels with Prior Information
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
A new discrete dipole kernel for quantitative susceptibility mapping.
Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian
2018-09-01
Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.
Exploration of Shorea robusta (Sal seeds, kernels and its oil
Directory of Open Access Journals (Sweden)
Shashi Kumar C.
2016-12-01
Full Text Available Physical, mechanical, and chemical properties of Shorea robusta seed with wing, seed without wing, and kernel were investigated in the present work. The physico-chemical composition of sal oil was also analyzed. The physico-mechanical properties and proximate composition of seed with wing, seed without wing, and kernel at three moisture contents of 9.50% (w.b, 9.54% (w.b, and 12.14% (w.b, respectively, were studied. The results show that the moisture content of the kernel was highest as compared to seed with wing and seed without wing. The sphericity of the kernel was closer to that of a sphere as compared to seed with wing and seed without wing. The hardness of the seed with wing (32.32, N/mm and seed without wing (42.49, N/mm was lower than the kernels (72.14, N/mm. The proximate composition such as moisture, protein, carbohydrates, oil, crude fiber, and ash content were also determined. The kernel (30.20%, w/w contains higher oil percentage as compared to seed with wing and seed without wing. The scientific data from this work are important for designing of equipment and processes for post-harvest value addition of sal seeds.
Omnibus risk assessment via accelerated failure time kernel machine modeling.
Sinnott, Jennifer A; Cai, Tianxi
2013-12-01
Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. © 2013, The International Biometric Society.
Ideal Gas Resonance Scattering Kernel Routine for the NJOY Code
International Nuclear Information System (INIS)
Rothenstein, W.
1999-01-01
In a recent publication an expression for the temperature-dependent double-differential ideal gas scattering kernel is derived for the case of scattering cross sections that are energy dependent. Some tabulations and graphical representations of the characteristics of these kernels are presented in Ref. 2. They demonstrate the increased probability that neutron scattering by a heavy nuclide near one of its pronounced resonances will bring the neutron energy nearer to the resonance peak. This enhances upscattering, when a neutron with energy just below that of the resonance peak collides with such a nuclide. A routine for using the new kernel has now been introduced into the NJOY code. Here, its principal features are described, followed by comparisons between scattering data obtained by the new kernel, and the standard ideal gas kernel, when such comparisons are meaningful (i.e., for constant values of the scattering cross section a 0 K). The new ideal gas kernel for variable σ s 0 (E) at 0 K leads to the correct Doppler-broadened σ s T (E) at temperature T
Proteome analysis of the almond kernel (Prunus dulcis).
Li, Shugang; Geng, Fang; Wang, Ping; Lu, Jiankang; Ma, Meihu
2016-08-01
Almond (Prunus dulcis) is a popular tree nut worldwide and offers many benefits to human health. However, the importance of almond kernel proteins in the nutrition and function in human health requires further evaluation. The present study presents a systematic evaluation of the proteins in the almond kernel using proteomic analysis. The nutrient and amino acid content in almond kernels from Xinjiang is similar to that of American varieties; however, Xinjiang varieties have a higher protein content. Two-dimensional electrophoresis analysis demonstrated a wide distribution of molecular weights and isoelectric points of almond kernel proteins. A total of 434 proteins were identified by LC-MS/MS, and most were proteins that were experimentally confirmed for the first time. Gene ontology (GO) analysis of the 434 proteins indicated that proteins involved in primary biological processes including metabolic processes (67.5%), cellular processes (54.1%), and single-organism processes (43.4%), the main molecular function of almond kernel proteins are in catalytic activity (48.0%), binding (45.4%) and structural molecule activity (11.9%), and proteins are primarily distributed in cell (59.9%), organelle (44.9%), and membrane (22.8%). Almond kernel is a source of a wide variety of proteins. This study provides important information contributing to the screening and identification of almond proteins, the understanding of almond protein function, and the development of almond protein products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Singular and degenerate cauchy problems
Carroll, R.W
1976-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Intramuscular degeneration process in Duchenne muscular dystrophy
International Nuclear Information System (INIS)
Hasegawa, Takeshi; Matsumra, Kiichiro; Hashimoto, Takahiro; Ikehira, Hiroo; Fukuda, Hiroshi; Tateno, Yukio.
1992-01-01
Intramuscular degeneration process of Duchenne dystrophy skeletal muscles was investigated by longitudinal skeletal muscle imaging with high-field-strength NMR-CT of 1.5 Tesla. Thigh muscles in 10 cases ranging in age from 4 to 19 years were examined by T 1 -weighted longitudinal images (TR=215∼505 ms, TE=19∼20 ms). The following results were obtained. Skeletal muscle degeneration was depicted as high signal intensity area reflecting its high fat contents. These high signal intensity areas had a longitudinally streaky appearance in parallel direction with myofibers. These findings were more prominent toward myotendon junction than muscle bellies. Skeletal muscle degeneration progressed rapidly between 7 to 10 years of age, and reached a plateau after that. (author)
[Peripheral retinal degenerations--treatment recommendations].
Joussen, A M; Kirchhof, B
2004-10-01
This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.
Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform
Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah
2017-02-01
Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.
Retinal Cell Degeneration in Animal Models
Directory of Open Access Journals (Sweden)
Masayuki Niwa
2016-01-01
Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Kinematic control of robot with degenerate wrist
Barker, L. K.; Moore, M. C.
1984-01-01
Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.
Late complications following cryotherapy of lattice degeneration.
Benson, W E; Morse, P H; Nantawan, P
1977-10-01
We observed 341 patients who had received cryotherapy for lattice degeneration in order to identify possible late complications. Sequelae such as retinal tears posterior to an operculum or flap tears within treated areas showed that treatment did not necessarily prevent subsequent vitreous traction. Moreover, the newly created flap tears may extend beyond the treated area and can cause retinal detachment. Even scleral buckling did not necesserily prevent further traction. Therefore, we concluded that when cryotherapy is used to treat lattice degeneration, an adequate margin of surrounding retina should be treated and the treatment should extend to the ora serrata.
Genetics of lattice degeneration of the retina.
Murakami, F; Ohba, N
1982-01-01
First-degree relatives of proband patients with lattice degeneration of the retina revealed a significantly higher prevalence of the disease than the prevalence in the general population: the former had the disease about three times as frequently as the latter. The observed data were analyzed in terms of their accordance with recognized genetic models. The inheritance pattern did not fit well to a monogenic mode of inheritance, and it was hypothesized that a polygenic or multifactorial mode of inheritance is the most likely for lattice degeneration of the retina.
CT of sarcomatous degeneration in neurofibromatosis
International Nuclear Information System (INIS)
Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.
1983-01-01
Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents
The rabbit as an animal model for post-natal vitreous matrix differentiation and degeneration
Los, L. I.
2008-01-01
Purpose This study evaluates whether rabbits are a suitable animal model to study post-natal vitreous differentiation and degeneration. Methods Human and rabbit eyes of various ages were studied by complementary anatomical techniques, light microscopy, and transmission electron microscopy. Results
Low-pressure degenerate four-wave mixing spectroscopy with flam atomization
International Nuclear Information System (INIS)
Nolan, T.G.; Koutny, L.B.; Blazewicz, P.R.; Whitten, W.B.; Ramsey, J.M.
1988-01-01
A combination of degenerate four-wave mixing spectroscopy and a low-pressure sampling technique has been studied for isotopic analysis in an air-acetylene flame. Hyperfine spectra of D lines of sodium and several mixtures of lithium isotopes obtained in this way are presented
Patterns of cortical degeneration in an elderly cohort with cerebral small vessel disease.
Reid, A.T.; Norden, A.G.W. van; Laat, K.F. de; Oudheusden, L.J.B. van; Zwiers, M.P.; Evans, A.C.; Leeuw, F.E. de; Kotter, R.
2010-01-01
Emerging noninvasive neuroimaging techniques allow for the morphometric analysis of patterns of gray and white matter degeneration in vivo, which may help explain and predict the occurrence of cognitive impairment and Alzheimer's disease. A single center prospective follow-up study (Radboud
Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib
2016-01-01
Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and
DEFF Research Database (Denmark)
Petersen, Annette
of kernels promoted (10 and 60 kernels/day for the general population and cancer patients, respectively), exposures exceeded the ARfD 17–413 and 3–71 times in toddlers and adults, respectively. The estimated maximum quantity of apricot kernels (or raw apricot material) that can be consumed without exceeding...
Energy Technology Data Exchange (ETDEWEB)
Jin, Zheming [Argonne National Lab. (ANL), Argonne, IL (United States); Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-04-20
Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication and kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.
Malas, Tareq Majed Yasin
2012-05-21
Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of partial differential equations, represents a challenge despite the regularity of memory access. Sophisticated optimization techniques are required to fully utilize the CPU. We propose a new method for constructing streaming numerical kernels using a high-level assembly synthesis and optimization framework. We describe an implementation of this method in Python targeting the IBM® Blue Gene®/P supercomputer\\'s PowerPC® 450 core. This paper details the high-level design, construction, simulation, verification, and analysis of these kernels utilizing a subset of the CPU\\'s instruction set. We demonstrate the effectiveness of our approach by implementing several three-dimensional stencil kernels over a variety of cached memory scenarios and analyzing the mechanically scheduled variants, including a 27-point stencil achieving a 1.7× speedup over the best previously published results. © The Author(s) 2012.
Generalized synthetic kernel approximation for elastic moderation of fast neutrons
International Nuclear Information System (INIS)
Yamamoto, Koji; Sekiya, Tamotsu; Yamamura, Yasunori.
1975-01-01
A method of synthetic kernel approximation is examined in some detail with a view to simplifying the treatment of the elastic moderation of fast neutrons. A sequence of unified kernel (fsub(N)) is introduced, which is then divided into two subsequences (Wsub(n)) and (Gsub(n)) according to whether N is odd (Wsub(n)=fsub(2n-1), n=1,2, ...) or even (Gsub(n)=fsub(2n), n=0,1, ...). The W 1 and G 1 kernels correspond to the usual Wigner and GG kernels, respectively, and the Wsub(n) and Gsub(n) kernels for n>=2 represent generalizations thereof. It is shown that the Wsub(n) kernel solution with a relatively small n (>=2) is superior on the whole to the Gsub(n) kernel solution for the same index n, while both converge to the exact values with increasing n. To evaluate the collision density numerically and rapidly, a simple recurrence formula is derived. In the asymptotic region (except near resonances), this recurrence formula allows calculation with a relatively coarse mesh width whenever hsub(a)<=0.05 at least. For calculations in the transient lethargy region, a mesh width of order epsilon/10 is small enough to evaluate the approximate collision density psisub(N) with an accuracy comparable to that obtained analytically. It is shown that, with the present method, an order of approximation of about n=7 should yield a practically correct solution diviating not more than 1% in collision density. (auth.)
Unsupervised multiple kernel learning for heterogeneous data integration.
Mariette, Jérôme; Villa-Vialaneix, Nathalie
2018-03-15
Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.
A new method by steering kernel-based Richardson–Lucy algorithm for neutron imaging restoration
International Nuclear Information System (INIS)
Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng
2014-01-01
Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson–Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively
Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Cooper, A.S.
1981-01-01
The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)
Kernel method for air quality modelling. II. Comparison with analytic solutions
Energy Technology Data Exchange (ETDEWEB)
Lorimer, G S; Ross, D G
1986-01-01
The performance of Lorimer's (1986) kernel method for solving the advection-diffusion equation is tested for instantaneous and continuous emissions into a variety of model atmospheres. Analytical solutions are available for comparison in each case. The results indicate that a modest minicomputer is quite adequate for obtaining satisfactory precision even for the most trying test performed here, which involves a diffusivity tensor and wind speed which are nonlinear functions of the height above ground. Simulations of the same cases by the particle-in-cell technique are found to provide substantially lower accuracy even when use is made of greater computer resources.
Collision kernels in the eikonal approximation for Lennard-Jones interaction potential
International Nuclear Information System (INIS)
Zielinska, S.
1985-03-01
The velocity changing collisions are conveniently described by collisional kernels. These kernels depend on an interaction potential and there is a necessity for evaluating them for realistic interatomic potentials. Using the collision kernels, we are able to investigate the redistribution of atomic population's caused by the laser light and velocity changing collisions. In this paper we present the method of evaluating the collision kernels in the eikonal approximation. We discuss the influence of the potential parameters Rsub(o)sup(i), epsilonsub(o)sup(i) on kernel width for a given atomic state. It turns out that unlike the collision kernel for the hard sphere model of scattering the Lennard-Jones kernel is not so sensitive to changes of Rsub(o)sup(i) as the previous one. Contrary to the general tendency of approximating collisional kernels by the Gaussian curve, kernels for the Lennard-Jones potential do not exhibit such a behaviour. (author)
Driving and Age-Related Macular Degeneration
Owsley, Cynthia; McGwin, Gerald
2008-01-01
This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research.
Specific heats of degenerate ideal gases
Caruso, Francisco; Oguri, Vitor; Silveira, Felipe
2017-01-01
From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.
Ecological transition predictably associated with gene degeneration.
Wessinger, Carolyn A; Rausher, Mark D
2015-02-01
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Geometry of non-degenerate Susskind fermions
International Nuclear Information System (INIS)
Mitra, P.
1983-01-01
The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)
Exploring Nonconvex, Crossed and Degenerate Polygons
Contreras, Jose N.
2004-01-01
An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
MR findings of degenerating parenchymal neurocysticercosis
International Nuclear Information System (INIS)
Lee, Yul; Chung, Eun A; Yang, Ik; Park, Hae Jung; Chung, Soo Young
1996-01-01
To evaluate MR imaging findings of degenerating parenchymal neurocysticercosis and to determine the characteristics which distinguish it from other brain diseases. MR imagings of 19 patients (56 lesions) of degenerating parenchymal neurocysticercosis were retrospectively evaluated, focusing on the size and location of lesions signal intensity patterns of cyst fluid and wall, the extent of the surrounding edema and features of contrast enhancement. Degenerating parenchymal neurocysticercosis was located in gray or subcortical while matter in 89.3% of 56 lesions (50/56) ; most of these (98.2%) were smaller than 2 cm in diameter. Cyst fluid signal was hyperintense relative to CSF on T1 and proton density weighted images (92.9%). A hypointense signal rim of the cyst wall was noted in the lesions on proton density (92.9%) and T2 weighted (98.2%) images, Surrounding edema was mostly mild. Peripheral rim enhancement was noted in all lesions, and this was frequently irregular and lobulated (67.9%) with a focal defect in the enhancing rim(41.1%). Findings which could be helpful in distinguishing degenerating parencymal neurocysticercosis from other brain diseases are as follows : small, superficial lesions ; hyperintense signal of the cyst fluid on T1 and proton density weighted images ; hypointense signal of the cyst wall on proton density and T2 weighted images ; relatively mild extent of surrounding edema, and peripheral rim enhancement which is frequently irregular and lobulated with a focal defect in the enhancing rim
Degenerate conformal theories on higher-genus surfaces
International Nuclear Information System (INIS)
Gerasimov, A.A.
1989-01-01
Two-dimensional degenerate field theories on higher-genus surfaces are investigated. Objects are built on the space of moduli, whose linear combinations are hypothetically conformal blocks in degenerate theories
Leung, Victor Y.L.; Chan, Wilson C.W.; Hung, Siu-Chun; Cheung, Kenneth M.C.; Chan, Danny
2009-01-01
Various imaging techniques have been used to assess degeneration of the intervertebral disc, including many histological methods, but cartilage-oriented histological stains do not clearly show the comparatively complex structures of the disc. In addition, there is no integrated method to assess efficiently both the compartmental organization and matrix composition in disc samples. In this study, a novel histological method, termed FAST staining, has been developed to investigate disc growth and degeneration by sequential staining with fast green, Alcian blue, Safranin-O, and tartrazine to generate multichromatic histological profiles (FAST profiles). This identifies the major compartments of the vertebra-disc region, including the cartilaginous endplate and multiple zones of the annulus fibrosus, by specific FAST profile patterns. A disc degeneration model in rabbit established using a previously described puncture method showed gradual but profound alteration of the FAST profile during disc degeneration, supporting continual alteration of glycosaminoglycan. Changes of the FAST profile pattern in the nucleus pulposus and annulus fibrosus of the postnatal mouse spine suggested matrix remodeling activity during the growth of intervertebral discs. In summary, we developed an effective staining method capable of defining intervertebral disc compartments in detail and showing matrix remodeling events within the disc. The FAST staining method may be used to develop a histopathological grading system to evaluate disc degeneration or malformation. (J Histochem Cytochem 57:249–256, 2009) PMID:19001641
MR imaging of central nervous system white matter tract degeneration (Wallerian degeneration)
International Nuclear Information System (INIS)
Kuhn, M.J.; Johnson, K.A.; Davis, K.R.
1987-01-01
Wallerian degeneration is readily demonstrated by MR imaging. Twenty-one patients with MR signal abnormalities in various central nervous system (CNS) white matter tracts were evaluated with regard to (1) nature of signal abnormality, (2) MR anatomy of the involved tract, and (3) primary pathology (e.g., infarct, tumor, hemorrhage). Most examples of wallerian degeneration result in a thin, continuous band of long T1, long T2 signal abnormality conforming to the known anatomic pathway of a CNS axonal tract. Old, large cortical infarcts have the greatest propensity to show subsequent white-matter tract degeneration. Corticospinal tract degeneration is the type most readily visualized, often seen extending completely from the cerebral cortex through the medulla
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
Mixed kernel function support vector regression for global sensitivity analysis
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
On flame kernel formation and propagation in premixed gases
Energy Technology Data Exchange (ETDEWEB)
Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2010-12-15
Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)
Semi-supervised learning for ordinal Kernel Discriminant Analysis.
Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C
2016-12-01
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ethanol Exposure Causes Muscle Degeneration in Zebrafish
Directory of Open Access Journals (Sweden)
Elizabeth C. Coffey
2018-03-01
Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.
Davies, B M; Atkinson, R A; Ludwinski, F; Freemont, A J; Hoyland, J A; Gnanalingham, K K
2016-08-01
Clinically, magnetic resonance (MR) imaging is the most effective non-invasive tool for assessing IVD degeneration. Histological examination of the IVD provides a more detailed assessment of the pathological changes at a tissue level. However, very few reports have studied the relationship between these techniques. Identifying a relationship may allow more detailed staging of IVD degeneration, of importance in targeting future regenerative therapies. To investigate the relationship between MR and histological grading of IVD degeneration in the cervical and lumbar spine in patients undergoing discectomy. Lumbar (N = 99) and cervical (N = 106) IVD samples were obtained from adult patients undergoing discectomy surgery for symptomatic IVD herniation and graded to ascertain a histological grade of degeneration. The pre-operative MR images from these patients were graded for the degree of IVD (MR grade) and vertebral end-plate degeneration (Modic Changes, MC). The relationship between histological and MR grades of degeneration were studied. In lumbar and cervical IVD the majority of samples (93%) exhibited moderate levels of degeneration (ie MR grades 3-4) on pre-operative MR scans. Histologically, most specimens displayed moderate to severe grades of degeneration in lumbar (99%) and cervical spine (93%). MR grade was weakly correlated with patient age in lumbar and cervical study groups. MR and histological grades of IVD degeneration did not correlate in lumbar or cervical study groups. MC were more common in the lumbar than cervical spine (e.g. 39 versus 20% grade 2 changes; p < 0.05), but failed to correlate with MR or histological grades for degeneration. In this surgical series, the resected IVD tissue displayed moderate to severe degeneration, but there is no correlation between MR and histological grades using a qualitative classification system. There remains a need for a quantitative, non-invasive, pre-clinical measure of IVD degeneration that
International Nuclear Information System (INIS)
Kotegawa, Hiroshi; Tanaka, Shun-ichi
1991-09-01
A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)
International Nuclear Information System (INIS)
Kercher, Andrew K.; Hunn, John D.
2006-01-01
Measurements were made using optical microscopy to determine the size and shape of the LEU03 kernels. Hg porosimetry was performed to measure density. The results are summarized in Table 1-1. Values in the table are for the composite and are calculated at 95% confidence from the measured values of a random riffled sample. The LEu03 kernel composite met all the specifications in Table 1-1. The BWXT results for measuring the same kernel properties are given in Table 1-2. BWXT characterization methods were significantly different from ORNL methods, which resulted in slight differences in the reported results. BWXT performed manual microscopy measurements for mean diameter (100 particles measured along 2 axes) and aspect ratio (100 particles measured); ORNL used automated image acquisition and analysis (3847 particles measured along 180 axes). Diameter measurements were in good agreement. The narrower confidence interval in the ORNL results for average mean diameter is due to the greater number of particles measured. The critical limits for mean diameter reported at ORNL and BWXT are similar, because ORNL measured a larger standard deviation (10.46 (micro)m vs. 8.70 (micro)m). Aspect ratio satisfied the specification with greater margin in the ORNL results mostly because of the larger sample size resulting in a lower uncertainty in the binomial distribution statistical calculation. ORNL measured 11 out of 3847 kernels exceeding the control limit (1.05); BWXT measured 1 out of 100 particles exceeding the control limit. BWXT used the aspect ratio of perpendicular diameters in a random image plane, where one diameter was a maximum or a minimum. ORNL used the aspect ratio of the absolute maximum and minimum diameters in a random image plane. The ORNL technique can be expected to yield higher measured aspect ratios. Hand tabling was performed at ORNL prior to characterization by repeatedly pouring a small fraction of the kernels in a pan and tilting the pan so that rounder
Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B
1992-01-01
Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Intervertebral disc (IVD): Structure, degeneration, repair and regeneration
Energy Technology Data Exchange (ETDEWEB)
Whatley, Benjamin R.; Wen Xuejun, E-mail: xjwen@clemson.edu
2012-02-01
challenges met when tissue engineering an IVD, while offering a perspective on which biomaterials and scaffold fabrication methods have the realistic ability to serve as scaffolding constructs for IVD regeneration. - Highlights: Black-Right-Pointing-Pointer Comprehensive review on IVD repair. Black-Right-Pointing-Pointer Covers disc structure, pathology, treatments (clinical and developmental), and modeling. Black-Right-Pointing-Pointer Highlights important research works on IVD degeneration and repair. Black-Right-Pointing-Pointer Emphasizes importance of new materials and treatments to improve current techniques.
Quasi-degenerate perturbation theory using matrix product states
International Nuclear Information System (INIS)
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost
Quasi-degenerate perturbation theory using matrix product states
Energy Technology Data Exchange (ETDEWEB)
Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2016-01-21
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Quasi-degenerate perturbation theory using matrix product states
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance
International Nuclear Information System (INIS)
Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.
1993-01-01
Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)
Present and future treatment possibilities in macular degeneration
Fisher, E.; Wegner, A.; Pfeiler, T.; Mertz, M.
2005-11-01
Purpose: To discuss present and future treatment possibilities in different types of choroidal neovascularisation. Methods: Presented are angiographic- and OCT-findings in patients with macular degeneration of different origin. Choroidal neovascularisations, which are not likely to respond positively to established procedures like thermal laser coagulation or photodynamic therapy will be discussed. Results and conclusions: Present study-guidelines and new methods of pharmacological intervention are analysed in different patterns of macular degeneration. Conventional laser coagulation in the treatment of classic, extrafoveal CNV and photodynamic therapy of predominantly classic subfoveal CNV still represent a gold standard. There are new recommendations, loosening the tight criteria of the TAP and VIP-guidelines, which cover, for instance, wider visual acuity ranges and the treatment of juxtafoveally located choroidal neovascularisations. Positive findings in literature confirm the role of PDT in pathologic myopia and other non-AMD CNV. Studies about surgical procedures, like macula- or RPE-translocation after surgical removal or thermal laser destruction of the CNV are in progress and are expected to show promising results. Phase II/III studies will soon point out the effect of anti-VEGF agents. The application of intravitreal (triamcinolone) or peribulbar (anecortave acetat) steroids could be useful. The combination with surgical or laser techniques could bring further benefit to the patient.
Directory of Open Access Journals (Sweden)
Yi Wang
2018-03-01
Full Text Available In this paper, we introduce a novel classification framework for hyperspectral images (HSIs by jointly employing spectral, spatial, and hierarchical structure information. In this framework, the three types of information are integrated into the SVM classifier in a way of multiple kernels. Specifically, the spectral kernel is constructed through each pixel’s vector value in the original HSI, and the spatial kernel is modeled by using the extended morphological profile method due to its simplicity and effectiveness. To accurately characterize hierarchical structure features, the techniques of Fish-Markov selector (FMS, marker-based hierarchical segmentation (MHSEG and algebraic multigrid (AMG are combined. First, the FMS algorithm is used on the original HSI for feature selection to produce its spectral subset. Then, the multigrid structure of this subset is constructed using the AMG method. Subsequently, the MHSEG algorithm is exploited to obtain a hierarchy consist of a series of segmentation maps. Finally, the hierarchical structure information is represented by using these segmentation maps. The main contributions of this work is to present an effective composite kernel for HSI classification by utilizing spatial structure information in multiple scales. Experiments were conducted on two hyperspectral remote sensing images to validate that the proposed framework can achieve better classification results than several popular kernel-based classification methods in terms of both qualitative and quantitative analysis. Specifically, the proposed classification framework can achieve 13.46–15.61% in average higher than the standard SVM classifier under different training sets in the terms of overall accuracy.
Semisupervised kernel marginal Fisher analysis for face recognition.
Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun
2013-01-01
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.
Capturing Option Anomalies with a Variance-Dependent Pricing Kernel
DEFF Research Database (Denmark)
Christoffersen, Peter; Heston, Steven; Jacobs, Kris
2013-01-01
We develop a GARCH option model with a new pricing kernel allowing for a variance premium. While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is nonmonotonic. A negative variance premium makes it U shaped. We present new semiparametric...... evidence to confirm this U-shaped relationship between the risk-neutral and physical probability densities. The new pricing kernel substantially improves our ability to reconcile the time-series properties of stock returns with the cross-section of option prices. It provides a unified explanation...... for the implied volatility puzzle, the overreaction of long-term options to changes in short-term variance, and the fat tails of the risk-neutral return distribution relative to the physical distribution....
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
Weighted Feature Gaussian Kernel SVM for Emotion Recognition.
Wei, Wei; Jia, Qingxuan
2016-01-01
Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods.
Rational kernels for Arabic Root Extraction and Text Classification
Directory of Open Access Journals (Sweden)
Attia Nehar
2016-04-01
Full Text Available In this paper, we address the problems of Arabic Text Classification and root extraction using transducers and rational kernels. We introduce a new root extraction approach on the basis of the use of Arabic patterns (Pattern Based Stemmer. Transducers are used to model these patterns and root extraction is done without relying on any dictionary. Using transducers for extracting roots, documents are transformed into finite state transducers. This document representation allows us to use and explore rational kernels as a framework for Arabic Text Classification. Root extraction experiments are conducted on three word collections and yield 75.6% of accuracy. Classification experiments are done on the Saudi Press Agency dataset and N-gram kernels are tested with different values of N. Accuracy and F1 report 90.79% and 62.93% respectively. These results show that our approach, when compared with other approaches, is promising specially in terms of accuracy and F1.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
Measurement of Weight of Kernels in a Simulated Cylindrical Fuel Compact for HTGR
International Nuclear Information System (INIS)
Kim, Woong Ki; Lee, Young Woo; Kim, Young Min; Kim, Yeon Ku; Eom, Sung Ho; Jeong, Kyung Chai; Cho, Moon Sung; Cho, Hyo Jin; Kim, Joo Hee
2011-01-01
The TRISO-coated fuel particle for the high temperature gas-cooled reactor (HTGR) is composed of a nuclear fuel kernel and outer coating layers. The coated particles are mixed with graphite matrix to make HTGR fuel element. The weight of fuel kernels in an element is generally measured by the chemical analysis or a gamma-ray spectrometer. Although it is accurate to measure the weight of kernels by the chemical analysis, the samples used in the analysis cannot be put again in the fabrication process. Furthermore, radioactive wastes are generated during the inspection procedure. The gamma-ray spectrometer requires an elaborate reference sample to reduce measurement errors induced from the different geometric shape of test sample from that of reference sample. X-ray computed tomography (CT) is an alternative to measure the weight of kernels in a compact nondestructively. In this study, X-ray CT is applied to measure the weight of kernels in a cylindrical compact containing simulated TRISO-coated particles with ZrO 2 kernels. The volume of kernels as well as the number of kernels in the simulated compact is measured from the 3-D density information. The weight of kernels was calculated from the volume of kernels or the number of kernels. Also, the weight of kernels was measured by extracting the kernels from a compact to review the result of the X-ray CT application
Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints
Directory of Open Access Journals (Sweden)
Diego Peluffo-Ordóñez
2017-08-01
Full Text Available To perform an exploration process over complex structured data within unsupervised settings, the so-called kernel spectral clustering (KSC is one of the most recommended and appealing approaches, given its versatility and elegant formulation. In this work, we explore the relationship between (KSC and other well-known approaches, namely normalized cut clustering and kernel k-means. To do so, we first deduce a generic KSC model from a primal-dual formulation based on least-squares support-vector machines (LS-SVM. For experiments, KSC as well as other consider methods are assessed on image segmentation tasks to prove their usability.
Modelling microwave heating of discrete samples of oil palm kernels
International Nuclear Information System (INIS)
Law, M.C.; Liew, E.L.; Chang, S.L.; Chan, Y.S.; Leo, C.P.
2016-01-01
Highlights: • Microwave (MW) drying of oil palm kernels is experimentally determined and modelled. • MW heating of discrete samples of oil palm kernels (OPKs) is simulated. • OPK heating is due to contact effect, MW interference and heat transfer mechanisms. • Electric field vectors circulate within OPKs sample. • Loosely-packed arrangement improves temperature uniformity of OPKs. - Abstract: Recently, microwave (MW) pre-treatment of fresh palm fruits has showed to be environmentally friendly compared to the existing oil palm milling process as it eliminates the condensate production of palm oil mill effluent (POME) in the sterilization process. Moreover, MW-treated oil palm fruits (OPF) also possess better oil quality. In this work, the MW drying kinetic of the oil palm kernels (OPK) was determined experimentally. Microwave heating/drying of oil palm kernels was modelled and validated. The simulation results show that temperature of an OPK is not the same over the entire surface due to constructive and destructive interferences of MW irradiance. The volume-averaged temperature of an OPK is higher than its surface temperature by 3–7 °C, depending on the MW input power. This implies that point measurement of temperature reading is inadequate to determine the temperature history of the OPK during the microwave heating process. The simulation results also show that arrangement of OPKs in a MW cavity affects the kernel temperature profile. The heating of OPKs were identified to be affected by factors such as local electric field intensity due to MW absorption, refraction, interference, the contact effect between kernels and also heat transfer mechanisms. The thermal gradient patterns of OPKs change as the heating continues. The cracking of OPKs is expected to occur first in the core of the kernel and then it propagates to the kernel surface. The model indicates that drying of OPKs is a much slower process compared to its MW heating. The model is useful
Reproducing Kernel Method for Solving Nonlinear Differential-Difference Equations
Directory of Open Access Journals (Sweden)
Reza Mokhtari
2012-01-01
Full Text Available On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some nonlinear differential-difference equations (NDDEs is presented. The analytical solution is shown in a series form in a reproducing kernel space, and the approximate solution , is constructed by truncating the series to terms. The convergence of , to the analytical solution is also proved. Results obtained by the proposed method imply that it can be considered as a simple and accurate method for solving such differential-difference problems.
Rebootless Linux Kernel Patching with Ksplice Uptrack at BNL
International Nuclear Information System (INIS)
Hollowell, Christopher; Pryor, James; Smith, Jason
2012-01-01
Ksplice/Oracle Uptrack is a software tool and update subscription service which allows system administrators to apply security and bug fix patches to the Linux kernel running on servers/workstations without rebooting them. The RHIC/ATLAS Computing Facility (RACF) at Brookhaven National Laboratory (BNL) has deployed Uptrack on nearly 2,000 hosts running Scientific Linux and Red Hat Enterprise Linux. The use of this software has minimized downtime, and increased our security posture. In this paper, we provide an overview of Ksplice's rebootless kernel patch creation/insertion mechanism, and our experiences with Uptrack.
Sparse kernel orthonormalized PLS for feature extraction in large datasets
DEFF Research Database (Denmark)
Arenas-García, Jerónimo; Petersen, Kaare Brandt; Hansen, Lars Kai
2006-01-01
In this paper we are presenting a novel multivariate analysis method for large scale problems. Our scheme is based on a novel kernel orthonormalized partial least squares (PLS) variant for feature extraction, imposing sparsity constrains in the solution to improve scalability. The algorithm...... is tested on a benchmark of UCI data sets, and on the analysis of integrated short-time music features for genre prediction. The upshot is that the method has strong expressive power even with rather few features, is clearly outperforming the ordinary kernel PLS, and therefore is an appealing method...
Non-negative Feynman endash Kac kernels in Schroedinger close-quote s interpolation problem
International Nuclear Information System (INIS)
Blanchard, P.; Garbaczewski, P.; Olkiewicz, R.
1997-01-01
The local formulations of the Markovian interpolating dynamics, which is constrained by the prescribed input-output statistics data, usually utilize strictly positive Feynman endash Kac kernels. This implies that the related Markov diffusion processes admit vanishing probability densities only at the boundaries of the spatial volume confining the process. We discuss an extension of the framework to encompass singular potentials and associated non-negative Feynman endash Kac-type kernels. It allows us to deal with a class of continuous interpolations admitted by general non-negative solutions of the Schroedinger boundary data problem. The resulting nonstationary stochastic processes are capable of both developing and destroying nodes (zeros) of probability densities in the course of their evolution, also away from the spatial boundaries. This observation conforms with the general mathematical theory (due to M. Nagasawa and R. Aebi) that is based on the notion of multiplicative functionals, extending in turn the well known Doob close-quote s h-transformation technique. In view of emphasizing the role of the theory of non-negative solutions of parabolic partial differential equations and the link with open-quotes Wiener exclusionclose quotes techniques used to evaluate certain Wiener functionals, we give an alternative insight into the issue, that opens a transparent route towards applications.copyright 1997 American Institute of Physics
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem
2018-05-23
-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.
Automated design of degenerate codon libraries.
Mena, Marco A; Daugherty, Patrick S
2005-12-01
Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.
Atomic rate coefficients in a degenerate plasma
Aslanyan, Valentin; Tallents, Greg
2015-11-01
The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.
K-causality and degenerate spacetimes
Dowker, H. F.; Garcia, R. S.; Surya, S.
2000-11-01
The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.
Directory of Open Access Journals (Sweden)
Chuang Lin
2015-01-01
Full Text Available Kernel Locality Preserving Projection (KLPP algorithm can effectively preserve the neighborhood structure of the database using the kernel trick. We have known that supervised KLPP (SKLPP can preserve within-class geometric structures by using label information. However, the conventional SKLPP algorithm endures the kernel selection which has significant impact on the performances of SKLPP. In order to overcome this limitation, a method named supervised kernel optimized LPP (SKOLPP is proposed in this paper, which can maximize the class separability in kernel learning. The proposed method maps the data from the original space to a higher dimensional kernel space using a data-dependent kernel. The adaptive parameters of the data-dependent kernel are automatically calculated through optimizing an objective function. Consequently, the nonlinear features extracted by SKOLPP have larger discriminative ability compared with SKLPP and are more adaptive to the input data. Experimental results on ORL, Yale, AR, and Palmprint databases showed the effectiveness of the proposed method.
Aspergillus flavus and Fusarium verticillioides infect maize kernels and contaminate them with the mycotoxins aflatoxin and fumonisin, respectively. Combined histological examination of fungal colonization and transcriptional changes in maize kernels at 4, 12, 24, 48, and 72 hours post inoculation (...
Directory of Open Access Journals (Sweden)
Hailun Wang
2017-01-01
Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.
Degenerate RFID Channel Modeling for Positioning Applications
Directory of Open Access Journals (Sweden)
A. Povalac
2012-12-01
Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.