Anharmonic oscillator and Bogoliubov transformation
International Nuclear Information System (INIS)
Pattnayak, G.C.; Torasia, S.; Rath, B.
1990-01-01
The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
Quantum theory of anharmonic oscillators
International Nuclear Information System (INIS)
Yamazaki, K.; Kyoto Univ.
1983-01-01
This in investigation of an anharmonic oscillator characterized by the potential ωsub(o) 2 /2 g 2 + lambda'q 4 . By using the equations of motion and the relations obtained by evaluating where O is an arbitrary operator, H is our total Hamiltonian and |i> and |j> are exact eigenstates of H, we derive an exact recurrence formula. This formula allows us to express tau-functions with a higher power of the variables through tau-functions with a lower power of the variables and energy eigenvalues. In this way we derive several exact relations, which are, in a sense, generalizations of the virial theorem and sum rules. These exact relations are the central equations of this paper. On the basis of these exact relations we propose our 'nearest neighbour level' (N.N.L.) approximation, which seems to provide a good approximation scheme. We can also use our exact relations to test the validity of various approximation methods, and as an example, we discuss the 'New-Tamm-Dancoff' (N.T.D)-type of approximation in detail. (Author)
Theory of a quantum anharmonic oscillator
International Nuclear Information System (INIS)
Carusotto, S.
1988-01-01
The time evolution of a quantum single-quartic anharmonic oscillator is considered. The study is carried on in operational form by use of the raising and lowering operators of the oscillator. The equation of motion is solved by application of a new integration method based on iteration techniques, and the rigorous solutions that describe the time development of the displacement and momentum operators of the oscillator are obtained. These operators are presented as a Laplace transform and a subsequent inverse Laplace transform of suitable functionals. Finally, the results are employed to describe the time evolution of a quasiclassical anharmonic oscillator
Quantum anharmonic oscillator: The airy function approach
Energy Technology Data Exchange (ETDEWEB)
Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)
2014-05-15
New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.
Anharmonic potential in the oscillator representation
International Nuclear Information System (INIS)
Dineykhan, M.; Efimov, G.V.
1994-01-01
In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)
Harmonic and Anharmonic Behaviour of a Simple Oscillator
O'Shea, Michael J.
2009-01-01
We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…
Ground state energy values and moments of the anharmonic oscillator
International Nuclear Information System (INIS)
Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.
1981-01-01
It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)
Exact solutions and ladder operators for a new anharmonic oscillator
International Nuclear Information System (INIS)
Dong Shihai; Sun Guohua; Lozada-Cassou, M.
2005-01-01
In this Letter, we propose a new anharmonic oscillator and present the exact solutions of the Schrodinger equation with this oscillator. The ladder operators are established directly from the normalized radial wave functions and used to evaluate the closed expressions of matrix elements for some related functions. Some comments are made on the general calculation formula and recurrence relation for off-diagonal matrix elements. Finally, we show that this anharmonic oscillator possesses a hidden symmetry between E(r) and E(ir) by substituting r->ir
Variational random phase approximation for the anharmonic oscillator
International Nuclear Information System (INIS)
Dukelsky, J.; Schuck, P.
1990-04-01
The recently derived Variational Random Phase Approximation is examined using the anharmonic oscillator model. Special attention is paid to the ground state RPA wave function and the convergence of the proposed truncation scheme to obtain the diagonal density matrix. Comparison with the standard Coupled Cluster method is made
Spherical anharmonic oscillator in self-similar approximation
International Nuclear Information System (INIS)
Yukalova, E.P.; Yukalov, V.I.
1992-01-01
The method of self-similar approximation is applied here for calculating the eigenvalues of the three-dimensional spherical anharmonic oscillator. The advantage of this method is in its simplicity and high accuracy. The comparison with other known analytical methods proves that this method is more simple and accurate. 25 refs
Finite-element time evolution operator for the anharmonic oscillator
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Dirac bound states of anharmonic oscillator in external fields
International Nuclear Information System (INIS)
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-01-01
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method
Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator
International Nuclear Information System (INIS)
Verbaarschot, J.J.M.; West, P.
1991-01-01
In this paper we give an analytical derivation of the large-order behavior of the perturbation series for both the ground state and the excited states of the supersymmetric anharmonic oscillator and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of the fermion coupling. The results which are obtained with the help of instanton calculus coincide with those obtained numerically in previous work. The large-order perturbation series of the ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the perturbation series diverges factorially. The perturbation series of the excited states diverges factorially both at the supersymmetric point and away from this point
Many-dimensional anisotropic anharmonic oscillator
International Nuclear Information System (INIS)
Turbiner, A.V.
1987-01-01
Precision calculation of energies of several first states at d=2 and first 17 states at d=3 has been performed within the framework of a unique method based on ''nonlinearization'' method for d-dimension anisotropic an harmonic oscillator. Spectrum behaviour within the limit d → ∞ has been investigated and problems of the given approach accuracy have been studied. For the first time properties of nodal surfaces of the given task have been investigated. Routine perturbation theory in degrees of a perturbation parameter has been constructed for several first states
A quantum anharmonic oscillator model for the stock market
Gao, Tingting; Chen, Yu
2017-02-01
A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.
A New Quasi-Exactly Solvable Problem and Its Connection with an Anharmonic Oscillator
International Nuclear Information System (INIS)
Yang Dabao; Zhang Fulin; Chen Jingling
2010-01-01
The two-dimensional hydrogen with a linear potential in a magnetic field is solved by two different methods. Furthermore the connection between the model and an anharmonic oscillator is investigated by methods of KS transformation. (general)
International Nuclear Information System (INIS)
Thomaz, M.T.; Toledo Piza, A.F.R. de
1994-01-01
We show that the Hartree-Fock-Bogoliubov (alias Gaussian) approximation of the initial condition problem of the Fermionic Anharmonic Oscillator i equivalent to a bosonic Hamiltonian system of two classical spin. (author)
International Nuclear Information System (INIS)
Rezende, J.
1983-01-01
We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)
International Nuclear Information System (INIS)
Chung, N. N.; Chew, L. Y.
2007-01-01
We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems
Internal oscillation frequencies and anharmonic effects for the double sine-Gordon kink
DEFF Research Database (Denmark)
Salerno, M.; Samuelsen, Mogens Rugholm
1989-01-01
A simple derivation of the small oscillation frequency around 4π-kink solutions of the double sine-Gordon equation is presented. Small corrections to these frequencies due to anharmonic effects are also numerically and analytically investigated. The analysis is based on energetic considerations...
Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator
International Nuclear Information System (INIS)
Kibler, M.; Negadi, T.
1984-01-01
This work establishes, by means of the Kustaanheimo-Stiefel transformation, a connection between two branches of theoretical physics which are, in present times, the object of numerous studies: the quantum mechanics of anharmonic oscillators and of the hydrogen atom in a (strong) homogeneous and constant electromagnetic field
Two-step approach to the dynamics of coupled anharmonic oscillators
International Nuclear Information System (INIS)
Chung, N. N.; Chew, L. Y.
2009-01-01
We have further extended the two-step approach developed by Chung and Chew [N. N. Chung and L. Y. Chew, Phys. Rev. A 76, 032113 (2007)] to the solution of the quantum dynamics of general systems of N-coupled anharmonic oscillators. The idea is to employ an optimized basis set to represent the dynamical quantum states of these oscillator systems. The set is generated via the action of the optimized Bogoliubov transformed bosonic operators on the optimal squeezed vacuum product state. The procedure requires (i) applying the two-step approach to the eigendecomposition of the time evolution operator and (ii) transforming the representation of the initial state from the original to the optimal bases. We have applied the formalism to examine the dynamics of squeezing and entanglement of several anharmonic oscillator systems.
Quantum effects in amplitude death of coupled anharmonic self-oscillators
Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph
2018-05-01
Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.
International Nuclear Information System (INIS)
Kowalenko, V.; Rawlinson, A.A.
1998-01-01
We introduce the numerical technique of Mellin-Barnes regularization, which can be used to evaluate both convergent and divergent series. The technique is shown to be numerically equivalent to the corresponding results obtained by Borel summation. Both techniques are then applied to the Bender-Wu formula, which represents an asymptotic expansion for the energy levels of the anharmonic oscillator. We find that this formula is unable to give accurate values for the ground state energy, particularly when the coupling is greater than 0.1. As a consequence, the inability of the Bender-Wu formula to yield exact values for the energy level of the anharmonic oscillator cannot be attributed to its asymptotic nature. (authors)
Two new types of solvability of the one-dimensional anharmonic oscillators
International Nuclear Information System (INIS)
Znojil, M.
1989-01-01
In the Schroedinger picture, we propose a new modification of the so-called Hill-determinant technique. It is shown to guarantee a proper matching of the two underlying power series Ψ(x) at x=0. In the Heisenberg picture, an evolution of the same one-dimensional polynomially anharmonic oscillator is considered. A modified Peano-Baker method is applied and shown to define the explicit solutions by recurrences. 11 refs
Large time asymptotics of solutions to the anharmonic oscillator model from nonlinear optics
Jochmann, Frank
2005-01-01
The anharmonic oscillator model describing the propagation of electromagnetic waves in an exterior domain containing a nonlinear dielectric medium is investigated. The system under consideration consists of a generally nonlinear second order differential equation for the dielectrical polarization coupled with Maxwell's equations for the electromagnetic field. Local decay of the electromagnetic field for t to infinity in the charge free case is shown for a large class of potentials. (This pape...
The Feynman integral for time-dependent anharmonic oscillators
International Nuclear Information System (INIS)
Grothaus, M.; Khandekar, D.C.; da Silva, J.L.; Streit, L.
1997-01-01
We review some basic notions and results of white noise analysis that are used in the construction of the Feynman integrand as a generalized white noise functional. We show that the Feynman integrand for the time-dependent harmonic oscillator in an external potential is a Hida distribution. copyright 1997 American Institute of Physics
Momeni, F.; Naderi, M. H.
2018-05-01
In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.
Random-phase approximation and its extension for the O(2) anharmonic oscillator
International Nuclear Information System (INIS)
Aouissat, Z.; Martin, C.
2004-01-01
We apply the random-phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogolyubov equation. We draw the parallel between the two approaches. (orig.)
Random-phase approximation and its extension for the O(2) anharmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Aouissat, Z. [Institut fuer Kernphysik, Technische Hochschule Darmstadt, Schlossgarten 9, D-64289, Darmstadt (Germany); Martin, C. [Groupe de Physique Theorique, Institut de Physique Nucleaire, F-91406, Orsay Cedex (France)
2004-02-01
We apply the random-phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogolyubov equation. We draw the parallel between the two approaches. (orig.)
Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator
International Nuclear Information System (INIS)
Belendez, Augusto; Pascual, Carolina
2007-01-01
The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A
Quantum theory of anharmonic oscillators - a variational and systematic general approximation method
International Nuclear Information System (INIS)
Yamazaki, K.; Kyoto Univ.
1984-01-01
The paper investigates the energy levels and wavefunctions of an anharmonic oscillator characterised by the potential 1/2ω 2 q 2 +lambdaq 4 . As a lowest-order approximation an extremely simple formula for energy levels, Esub(i)sup(0) = (i+1/2)1/4(3/αsub(i)+αsub(i)), is derived (i being the quantum number of the energy level). This formula reproduces the exact energy levels within an error of about 1%. Systematically higher orders of the present perturbation theory are developed. The present second-order perturbation theory reduces the errors of the lowest-order results by a factor of about 1/5 in general. Various ranges (large, intermediate, small) of (i, lambda) are investigated and compared with the exact values obtained by other workers. For i = 0, 1, even the fourth-order perturbation calculation can be elaborated explicitly, which reduces the error to about 0.01% for any lambda. For small lambda it gives correct numerical coefficients up to lambda 4 terms, as it should. (author)
International Nuclear Information System (INIS)
Caswell, W.E.
1979-01-01
We introduce a generalization of Wick-ordering which maps the anharmonic oscillator (AO) Hamiltonian for mass m and coupling lambda exactly into a ''Wick-ordered'' Hamiltonian with an effective mass M which is a simple analytic function of lambda and m. The effective coupling Λ=lambda/M 3 is bounded. We transform the AO perturbation series in lambda into one in Λ. This series may then be summed using Borel summation methods. We also introduce a new summation method for the AO series (which is a practical necessity to obtain accurate energy levels of the excited states). We obtain a numerical accuracy for (E/sub P/T--E/sub e/xact)/ E/sub e/xact of at least 10 -7 (using 20 orders of perturbation theory) and 10 -3 (using only 2 orders of perturbation theory) for all couplings and all energy levels of the anharmonic oscillator. The methods are applicable also to the double-well potential (DWP, the AO with a negative mass-squared). The only change is that now the effective coupling is unbounded as lambda→0. The series in Λ is, however, still summable. The relative accuracy in the energy levels for 20 orders of perturbation theory varies from 10 -7 for large coupling to 1% at lambda=0.1 and to 10% at lambda=.05. We also present results for the sextic oscillator
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
Directory of Open Access Journals (Sweden)
N. Al Sdran
2016-06-01
Full Text Available The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x = Ax2α + Bx2, (A>0, B<0, with (α = 2 for quadratic, (α =3 for sextic and (α =4 for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x by a piecewise-linear potential v(x, while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.
Energy Technology Data Exchange (ETDEWEB)
Rath, Biswanath
1988-01-01
An ansatz is developed to find out an analytical expression for energy levels of anharmonic oscillators of the type V(X) X/sup 2//2 + lambdaXsup(2m) (m = 2,3) which is valid for all values of n and all regimes of parameter space. The procedure is extended to find out an analytical expression for the energy levels of the oscillator V(X) X/sup 2//2 + lambda/sub 1/ X/sup 4/ + lambda/sub 2/ X/sup 6/. As a practical application, it has been applied to calculate the characteristics of radiation emitted due to channeling of relativistic positrons between (100) planes in silicon.
International Nuclear Information System (INIS)
Sarkar, P.; Bhattacharyya, S.P.
1995-01-01
The effects of quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent force constant (K) or harmonic frequency (ω) are studied both perturbatively and numerically by the time-dependent Fourier grid Hamiltonian method. In the absence of anharmonicity, the ground-state population decreases and the population of an accessible excited state (k = 2.4, 6 ... ) increases with time. However, when anharmonicity is introduced, both the ground- and excited-state populations show typical oscillations. For weak coupling, the population of an accessible excited state at a certain instant of time (short) turns out to be a parabolic function of the anharmonic coupling constant (λ), when all other parameters of the system are kept fixed. This parabolic nature of the excited-state population vs. the λ profile is independent of the specific form of the time dependence of the force constant, K t . However, it depends upon the rate at which K t relaxes. For small anharmonic coupling strength and short time scales, the numerical results corroborate expectations based on the first-order time-dependent perturbative analysis, using a suitably repartitioned Hamiltonian that makes H 0 time-independent. Some of the possible experimental implications of our observations are analyzed, especially in relation to intensity oscillations observed in some charge-transfer spectra in systems in which the dephasing rates are comparable with the time scale of the electron transfer. 21 refs., 7 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); Chung, Won Sang [Gyeongsang National University, Department of Physics and Research Institute of Natural Science, College of Natural Science, Jinju (Korea, Republic of)
2018-02-15
In this article, we determine the thermodynamical properties of the anharmonic canonical ensemble within the cosmic-string framework. We use the ordinary statistics and the q-deformed superstatistics for this study. The q-deformed superstatistics is derived by modifying the probability density in the original superstatistics. The Schroedinger equation is rewritten in the cosmic-string framework. Next, the anharmonic oscillator is investigated in detail. The wave function and the energy spectrum of the considered system are derived using the bi-confluent Heun functions. In the next step, we first determine the thermodynamical properties for the canonical ensemble of the anharmonic oscillator in the cosmic-string framework using the ordinary statistics approach. Also, these quantities have been obtained in the q-deformed superstatistics. For vanishing deformation parameter, the ordinary results are obtained. (orig.)
Equidistance of the complex two-dimensional anharmonic oscillator spectrum: the exact solution
International Nuclear Information System (INIS)
Cannata, F; Ioffe, M V; Nishnianidze, D N
2012-01-01
We study a class of quantum two-dimensional models with complex potentials of a specific form. They can be considered as the generalization of a recently studied model with quadratic interaction not amenable to the conventional separation of variables. In the present case, the property of shape invariance provides the equidistant form of the spectrum and the algorithm to construct eigenfunctions analytically. It is shown that the Hamiltonian is non-diagonalizable, and the resolution of identity must also include the corresponding associated functions. In the specific case of anharmonic second plus fourth-order interaction, expressions for the wavefunctions and associated functions are constructed explicitly for the lowest levels, and the recursive algorithm to produce higher level wavefunctions is given. (paper)
International Nuclear Information System (INIS)
Joshi, A.; Lawande, S.V.
1990-01-01
A systematic study of squeezing obtained from k-photon anharmonic oscillator (with interaction hamiltonian of the form (a † ) k , k ≥ 2) interacting with light whose statistics can be varied from sub-Poissonian to poissonian via binomial state of field and super-Poissonian to poissonian via negative binomial state of field is presented. The authors predict that for all values of k there is a tendency increase in squeezing with increased sub-Poissonian character of the field while the reverse is true with super-Poissonian field. They also present non-classical behavior of the first order coherence function explicitly for k = 2 case (i.e., for two-photon anharmonic oscillator model used for a Kerr-like medium) with variation in the statistics of the input light
International Nuclear Information System (INIS)
Ginsburg, C.A.
1977-01-01
A new method for approximating the eigenfunctions and eigenvalues of anharmonic oscillators. An attempt was made to develop an analytic method which provides simple formulae for all values of the parameters as the W.K.B. approximation and perturbation theory do for certain limiting case, and which has the convergence properties associated with the computer methods. The procedure is based upon combining knowledge of the asymptotic behavior of the wave function for large and small values of the coordinate(s) to obtain approximations valid for all values of coordinate(s) and all strengths of the anharmonicity. A systematic procedure for improving these approximations is developed. Finally the groundstate of a lattice model of the phi 4 field theory which consists of an infinite number of coupled anharmonic oscillators. A first order calculation yields a covariant expression for the groundstate eigenvalue with the physical mass, m, given by a characteristic polynomial which involves the bare mass, μ, the lattice spacing, l, and the coupling constant, lambda. For l > 0, μ can be adjusted (a mass renormalization) 0 < m < infinity. As l → 0 lambda (l) (a charge renormalization) is adjusted so that lambda/sup 1/3//l → eta, a constant, as l → 0. Then eta can be chosen so that m can take any experimental value
Onoda, Masashige; Sato, Takuma
2017-12-01
The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.
Energy Technology Data Exchange (ETDEWEB)
Al Sdran, N. [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Najran University, Faculty of Sciences and Arts, Najran (Saudi Arabia); Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Thermal Process Laboratory Research and Technologies Centre of Energy, BP 95, 2050 Hammam-lif (Tunisia)
2016-06-15
The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.
Nonadiabatic anharmonic electron transfer
Energy Technology Data Exchange (ETDEWEB)
Schmidt, P. P. [Molecular Physics Research, 6547 Kristina Ursula Court, Falls Church, Virginia 22044 (United States)
2013-03-28
The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, Gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity {Delta}=-{Delta}G. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy ({Delta}={Lambda}{sub s}) along a maximum ln (w) vs. {Delta} ridge of the surface. The surface also reveals additional regions for {Delta} where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions.
Directory of Open Access Journals (Sweden)
Yoshitaka Haribara
2016-04-01
Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.
Nuclear catalysis mediated by localized anharmonic vibrations
Dubinko, Vladimir
2015-01-01
In many-body nonlinear systems with sufficient anharmonicity, a special kind of lattice vibrations, namely, Localized Anharmonic Vibrations (LAVs) can be excited either thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. Coherency and persistence of LAVs may have drastic effect on quantum tunneling due to correlation effects discovered by Schrodinger and Robertson in 1...
Detecting anharmonicity at a glance
International Nuclear Information System (INIS)
Giliberti, M; Stellato, M; Barbieri, S; Cavinato, M; Rigon, E; Tamborini, M
2014-01-01
Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases. (paper)
Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixture
International Nuclear Information System (INIS)
Ferlaino, F; Brecha, R J; Hannaford, P; Riboli, F; Roati, G; Modugno, G; Inguscio, M
2003-01-01
We study the dynamics of coupled dipolar oscillations in a Fermi-Bose mixture of 40 K and 87 Rb atoms. This low-energy collective mode is strongly affected by the interspecies interactions. Measurements are performed in the classical and quantum degenerate regimes and reveal the crucial role of the statistical properties of the mixture. At the onset of quantum degeneracy, we investigate the role of Pauli blocking and superfluidity for K and Rb atoms, respectively, resulting in a change in the collisional interactions
Time evolution of gibbs states for an anharmonic lattice
Energy Technology Data Exchange (ETDEWEB)
Marchioro, C; Pellegrinotti, A; Suhov, Y [Camerino Univ. (Italy). Istituto di Matematica; Pulvirenti, M [L' Aquila Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Matematica)
1979-01-01
In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given.
Time evolution of gibbs states for an anharmonic lattice
International Nuclear Information System (INIS)
Marchioro, C.; Pellegrinotti, A.; Suhov, Y.; Pulvirenti, M.; Rome Univ.
1979-01-01
In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given. (orig.) [de
Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao
2014-10-06
Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.
Synaptic Remodeling Generates Synchronous Oscillations in the Degenerated Outer Mouse Retina
Directory of Open Access Journals (Sweden)
Wadood eHaq
2014-09-01
Full Text Available During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs establish contacts with remnant cone photoreceptors (cones as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs, we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from HCs. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.
Quantum versus semiclassical description of selftrapping: anharmonic effects
International Nuclear Information System (INIS)
Raghavan, S.; Bishop, A.R.; Kenkre, V.M.
1998-09-01
Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)
E x circle epsilon Jahn-Teller anharmonic coupling for an octahedral system
Avram, N M; Kibler, M R
2001-01-01
The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived.
International Nuclear Information System (INIS)
Tsallis, C.; Valle, J.W.F.
1979-01-01
The use of the Variational Method to discuss Quantum Statistical Mechanics of anharmonic systems requires, in order to be able to obtain the correct classical limit, the allowance for renormalization of every operator whose definition depends on the harmonic coefficients. The point is exhibited for a single anharmonic oscillator. In this particular case there is no need for mass renormalization. (Author) [pt
International Nuclear Information System (INIS)
Giricheva, N.I.; Girichev, G.V.; Smorodin, S.V.
2007-01-01
Scanning of potential energy surface in the LaI 3 molecule along normal coordinates are realized using the B3LYP/SDD,SDD method. The most anharmonicity is shown to have a potential function of non-planar oscillation ν 2 (A 2 ''). Effect of anharmonicity on the value of mean-square oscillation amplitudes and oscillation spectrum of the molecule is established. It is noted that the account of anharmonicity of potential functions leads to decreasing mean-square oscillation amplitudes [ru
Anharmonicity in nuclear wobbling motion
International Nuclear Information System (INIS)
Oi, M.
2007-01-01
An unexpected strong anharmonicity was observed in the wobbling spectrum in 163 Lu. In an attempt to understand what causes the deviation from the original wobbling model by Bohr and Mottelson, an analysis is presented using several different approaches, such as exact diagonalization, a semiclassical model to deal with anharmonic wobbling motion, and a microscopic method based on the self-consistent cranking calculation
Quantum versus semiclassical description of self-trapping: Anharmonic effects
International Nuclear Information System (INIS)
Raghavan, S.; Bishop, A.R.; Kenkre, V.M.
1999-01-01
Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement, with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. copyright 1999 The American Physical Society
Effective harmonic oscillator description of anharmonic molecular ...
Indian Academy of Sciences (India)
Administrator
are carried out in HO basis, this study ought to pro- vide an insight into ... coupling are presented in Section 2 and the con- truction of VOHB is ..... quantum numbers of the target state. After initializing .... Computational facilities pro- vided by the ...
Microscopic approach to nuclear anharmonicities
International Nuclear Information System (INIS)
Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi
1985-01-01
Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)
Anharmonic phonons and the isotope effect in superconductivity
International Nuclear Information System (INIS)
Crespi, V.H.; Cohen, M.L.; Penn, D.R.
1991-01-01
Anharmonic interionic potentials are examined in an Einstein model to study the unusual isotope-effect exponents for the high-T c oxides. The mass dependences of the electron-phonon coupling constant λ and the average phonon frequency √ left-angle ω 2 right-angle are computed from weighted sums over the oscillator levels. The isotope-effect exponent is depressed below 1/2 by either a double-well potential or a potential with positive quadratic and quartic parts. Numerical solutions of Schroedinger's equation for double-well potentials produce λ's in the range 1.5--4 for a material with a vanishing isotope-effect parameter α. However, low phonon frequencies limit T c to roughly 15 K. A negative quartic perturbation to a harmonic well can increase α above 1/2. In the extreme-strong-coupling limit, α is 1/2, regardless of anharmonicity
Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach
Energy Technology Data Exchange (ETDEWEB)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2015-02-15
This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.
Orientational anharmonicity of interatomic interaction in cubic monocrystals
International Nuclear Information System (INIS)
Belomestnykh, Vladimir N.; Tesleva, Elena P.
2010-01-01
Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound
Kinematic anharmonicity of internal rotation of molecules
International Nuclear Information System (INIS)
Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.
2017-01-01
The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.
Sokolov, V I; Shirokov, E A; Kislov, A N
2002-01-01
Paper presents the results of investigations into lattice vibrations induced by nickel impurities charged negatively as to the lattice in ZnSe:Ni, ZnO:Ni, ZnS:Ni, CdS:Ni semiconductors. To investigate into vibrations one applies a sensitive technique of field exciton-oscillation spectroscopy. One observes experimentally oscillating reiterations of the impurity exciton head line including the intensive peaks of combined repetitions up to the 8-th order. The experimental results are discussed on the basis of the model estimations of oscillations of a lattice with a charged impurity centre, as well as, on the ground of calculations for oscillations of monoatomic chain with high anharmonicity. Charged impurity centres are shown to induce new oscillations of lattice - impurity anharmonic modes
ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.
Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra
2018-05-08
Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Approximation methods for the partition functions of anharmonic systems
International Nuclear Information System (INIS)
Lew, P.; Ishida, T.
1979-07-01
The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations
Confinement-induced resonances in anharmonic waveguides
Energy Technology Data Exchange (ETDEWEB)
Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China); Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Hu Hui; Liu Xiaji; Drummond, Peter D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)
2011-10-15
We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a{sub 3D}>0) for a quasi-two-dimensional (2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order transverse ACIRs are identified in experimental data, including up to N=4 transverse c.m. quantum numbers.
Kinks in systems with cubic and quartic anharmonicity
International Nuclear Information System (INIS)
Kashcheev, V.N.
1988-01-01
For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity
Scattering of Neutrons by an Anharmonic Crystal
Energy Technology Data Exchange (ETDEWEB)
Hoegberg, T; Bohlin, L; Ebbsjoe, I
1967-04-15
Numerical calculations have been performed for the anharmonic effects in neutron scattering. The phonon frequency widths and shifts have been calculated as a function of neutron frequency at different wave numbers and temperatures for a potential with central symmetry and for a face-centered cubic lattice.
Heat transport in an anharmonic crystal
Acharya, Shiladitya; Mukherjee, Krishnendu
2018-04-01
We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.
Anharmonic vibrational spectroscopic investigation of malonaldehyde
International Nuclear Information System (INIS)
Alparone, A.; Millefiori, S.
2003-01-01
Anharmonic IR spectra of H-bonded and non-H-bonded conformers of malonaldehyde (MA) and its isotopomers MA-D 6 D 8 and MA-D 7 D 9 have been computed by the Vibrational-Self-Consistent-Field (VSCF) and the correlation-corrected-VSCF (CC-VSCF) techniques using ab initio MP2/6-31G*(+p) potential energies. The agreement between the experimental and calculated frequencies is significantly improved to within 2-3%. Anharmonic contributions are substantial especially for νOH of the H-bonded form, by reducing the harmonic value by more than 500 cm -1 . The effect is less important in the non-H-bonded form. The νOH stretching mode is strongly coupled with the ν 3 mode (essentially νCH 7 ) and with the in-plane and out-of-plane OH bending deformations. H-bond formation and deuteration batochromically shift νOH by an amount which is influenced by the anharmonic terms, the major contribution arising from coupling between modes. The comparison with the νOH mode of some other H-bonded systems suggests that anharmonic correction follows H-bonding strength
Proof of Nishida's Conjecture on Anharmonic Lattices
Rink, Bob
2006-02-01
We prove Nishida's 1971 conjecture stating that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice with fixed endpoints are quasi-periodic. The proof is based on the formal computations of Nishida, the KAM theorem, discrete symmetry considerations and an algebraic trick that considerably simplifies earlier results.
Comparative study of quantum anharmonic potentials
International Nuclear Information System (INIS)
Amore, Paolo; Aranda, Alfredo; De Pace, Arturo; Lopez, Jorge A.
2004-01-01
We perform a study of various anharmonic potentials using a recently developed method. We calculate both the wave functions and the energy eigenvalues for the ground and first excited states of the quartic, sextic and octic potentials with high precision, comparing the results with other techniques available in the literature
Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator
Thomchick, John; McKelvey, J. P.
1978-01-01
Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)
Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin
2014-03-05
In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant. Copyright © 2013 Wiley Periodicals, Inc.
Anharmonic Vibrational Spectroscopy on Metal Transition Complexes
Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2014-06-01
Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.
... See More About Research The NINDS supports and conducts research on disorders of the brain and nervous system such as striatonigral degeneration. This research ... Publications Definition Striatonigral ...
Bende, Attila; Muntean, Cristina M
2014-03-01
The theoretical IR and Raman spectra of the guanine-cytosine DNA base pairs in Watson-Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H⁺ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.
Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides
Hattori, Kazumasa; Tsunetsugu, Hirokazu
2010-03-01
We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.
Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment
International Nuclear Information System (INIS)
Toutounji, Mohamad
2015-01-01
This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron–phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron–phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron–phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work
Vibrational spectra and thermal rectification in three-dimensional anharmonic lattices
International Nuclear Information System (INIS)
Lan Jinghua; Li Baowen
2007-01-01
We study thermal rectification in a three-dimensional model consisting of two segments of anharmonic lattices. One segment consists of layers of harmonic oscillator arrays coupled to a substrate potential, which is a three-dimensional Frenkel-Kontorova model, and the other segment is a three-dimensional Fermi-Pasta-Ulam model. We study the vibrational bands of the two lattices analytically and numerically, and find that, by choosing the system parameters properly, the rectification can be as high as a few thousands, which is high enough to be observed in experiment. Possible experiments in nanostructures are discussed
... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...
The macula is the part of the retina that distinguishes fine details at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating layer between the retina and the choroid layer of ...
Energy Technology Data Exchange (ETDEWEB)
Chandra, J; Scott, A C
1983-01-01
Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.
Low-temperature anharmonicity in cesium chloride (CsCl)
Energy Technology Data Exchange (ETDEWEB)
Sist, Mattia; Faerch Fischer, Karl Frederik; Brummerstedt Iversen, Bo [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Kasai, Hidetaka [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Faculty of Pure and Applied Sciences, TIMS and CiRfSE, University of Tsukuba (Japan)
2017-03-20
Anharmonic lattice vibrations govern heat transfer in materials, and anharmonicity is commonly assumed to be dominant at high temperature. The textbook cubic ionic defect-free crystal CsCl is shown to have an unexplained low thermal conductivity at room temperature (ca. 1 W/(m K)), which increases to around 13 W/(m K) at 25 K. Through high-resolution X-ray diffraction it is unexpectedly shown that the Cs atomic displacement parameter becomes anharmonic at 20 K. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems
Zylka, Christian; Vojta, Guenter
1993-01-01
The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
Effects of hypersonic field and anharmonic interactions on channelling radiation
International Nuclear Information System (INIS)
George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G
2007-01-01
The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably
A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei
International Nuclear Information System (INIS)
Volpe, M.C.
1997-01-01
Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)
Improved models of dense anharmonic lattices
Energy Technology Data Exchange (ETDEWEB)
Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.
2017-01-15
We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.
Thermal behaviour of the Debye-Waller factor and the specific heat of anharmonic crystals
International Nuclear Information System (INIS)
Lima, R.A.T. de; Tsallis, C.
1979-08-01
The influence of the cubic and quartic crystalline anharmonicity on the classical and quantum thermal behaviour of the specific heat, Debye temperaturetheta, Debye-Waller factor W, crystalline expansion and phonon spectrum is studied, within the framework of the Variational Method in Statistical Mechanics. The sistems, mainly focalized are the single oscillator, the mono-atomic linear chain and simple cubic crystal. The trial Hamiltonian is an harmonic one, therefore the various anharmonic influences are mainly absorbed into the renormalization of theta(T). Several differences between the classical and quantum results are exhibited. Satisfactory qualitative agreement with experience was obtained in the low-temperature regime, in particular in what concerns the existence of a minimum in theta(T) which has been observed in Cu, Al, Ag, Au and Pb. For the intermediate-temperature regime the customary linear behaviour of W(T) (hence theta(T) almost constant) is reobtained. Finally in the high-temperature regime, the present treatment leads to a √T - dependence for the W-factor, which implies in the wrong curvature with respect to experimental data. A possible explanation of this disagreement might be related to the melting phenomenon, which is not covered by the present theory. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2014-02-28
Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.
International Nuclear Information System (INIS)
Huveneers, François
2013-01-01
We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter ϵ > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in ϵ as ϵ → 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz (2008 Phys. Rev. Lett. 100 134301), and to a classic spin chain recently investigated by Oganesyan, Pal and Huse (2009 Phys. Rev. B 80 115104). (paper)
Chaotic behavior of current-carrying plasmas in external periodic oscillations
Energy Technology Data Exchange (ETDEWEB)
Ohno, Noriyasu; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu
1989-01-01
A set of cascading bifurcations and a chaotic state in the presence of an external periodic oscillation are experimentally investigated in a current-carrying plasma. The measured bifurcation sequence leading to chaos, which is controlled by changing plasma densities and the frequencies of external oscillations, is in qualitative agreement with a theory which describes anharmonic systems in periodic fields. (author).
Anharmonic effects in the quantum cluster equilibrium method
von Domaros, Michael; Perlt, Eva
2017-03-01
The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.
First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals
Tadano, Terumasa; Tsuneyuki, Shinji
2018-04-01
We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.
The anharmonic phonon decay rate in group-III nitrides
International Nuclear Information System (INIS)
Srivastava, G P
2009-01-01
Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by considering three-phonon anharmonic interaction processes. The basic ingredients of the theory include full phonon dispersion relations obtained from the application of an adiabatic bond charge model and crystal anharmonic potential within the isotropic elastic continuum model. The role of various decay routes, such as Klemens, Ridley, Vallee-Bogani and Barman-Srivastava channels, in determining the lifetimes of the Raman active zone-centre longitudinal optical (LO) modes in BN (zincblende structure) and A 1 (LO) modes in AlN, GaN and InN (wurtzite structure) has been quantified.
Relativistic degenerate electron plasma in an intense magnetic field
International Nuclear Information System (INIS)
Delsante, A.E.; Frankel, N.E.
1978-01-01
The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained
Anharmonic phonons and magnons in BiFeO3
Energy Technology Data Exchange (ETDEWEB)
Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill
2012-01-01
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
Computer Program for Inelastic Neutron Scattering by an Anharmonic Crystal
International Nuclear Information System (INIS)
Bohlin, L.; Ebbsjoe, I.; Hoegberg, T.
1969-02-01
A description is given of the program SAW (Shift and Width), which calculates the energy-dependent shift and width of the intensity peaks obtained for thermal neutrons scattered inelastically by an anharmonic crystal. The program has been coded in FORTRAN IV and may be applied to every solid with a monatomic face-centered cubic lattice where the intermolecular interactions can be described by a centro-symmetrical potential. Interactions beyond third neighbours are neglected
Computer Program for Inelastic Neutron Scattering by an Anharmonic Crystal
Energy Technology Data Exchange (ETDEWEB)
Bohlin, L; Ebbsjoe, I; Hoegberg, T
1969-02-15
A description is given of the program SAW (Shift and Width), which calculates the energy-dependent shift and width of the intensity peaks obtained for thermal neutrons scattered inelastically by an anharmonic crystal. The program has been coded in FORTRAN IV and may be applied to every solid with a monatomic face-centered cubic lattice where the intermolecular interactions can be described by a centro-symmetrical potential. Interactions beyond third neighbours are neglected.
Jacobian elliptic wave solutions in an anharmonic molecular crystal model
International Nuclear Information System (INIS)
Teh, C.G.R.; Lee, B.S.; Koo, W.K.
1997-07-01
Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig
... macula in the back of the eye. The macula is important for clear central vision, allowing an individual to see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...
Fragility, anharmonicity and anelasticity of silver borate glasses
International Nuclear Information System (INIS)
Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di
2006-01-01
The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions
Suparmi; Cari, C.; Wea, K. N.; Wahyulianti
2018-03-01
The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Phonon density of states and anharmonicity of UO2
Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.
2014-03-01
Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.
Perturbation method for non-square Hamiltonians and its application to polynomial oscillators
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2005-01-01
Roč. 341, 1 2 3 4 (2005), s. 67-80 ISSN 0375-9601 R&D Projects: GA AV ČR(CZ) IAA1048302 Keywords : linear-space structure * Schrödinger-equation * anharmonic-oscillator Subject RIV: BE - The oretical Physics Impact factor: 1.550, year: 2005
International Nuclear Information System (INIS)
Taneichi, T.; Kobayashi, T.
2007-01-01
Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal
Anharmonicity and hydrogen bonding in electrooptic sucrose crystal
Szostak, M. M.; Giermańska, J.
1990-03-01
The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.
Study of thermophysical and anharmonic properties of fluorite compounds
International Nuclear Information System (INIS)
Singh, R.K.; Pandey, N.K.
1983-01-01
An extensive study is made of thermophysical and anharmonic properties of fluorite compounds using an interionic potential, which consists of a long-range Coulomb and three-body interactions and the short-range overlap repulsion and van der Waals attraction. The agreement achieved between experimental and theoretical results on third-order elastic constants and pressure derivatives of second order elastic constants are generally better than those obtained by others. This potential succeeds in predicting various thermophysical properties, like compressibility and its pressure and temperature derivatives, thermal expansion and Grueneisen parameters of seven crystals of fluorite structure. (author)
Asymptotic solvability of an imaginary cubic oscillator with spikes
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Gemperle, F.; Mustafa, O.
2002-01-01
Roč. 35, č. 27 (2002), s. 5781-5793 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048004; GA ČR GA203/00/1025 Institutional research plan: CEZ:AV0Z1048901 Keywords : quantum-mechanics * anharmonic-oscillators * perturbation-theory Subject RIV: BE - Theoretical Physics Impact factor: 1.406, year: 2002
Phonon anharmonicity and Gruneisen parameters of alpha-plutonium
International Nuclear Information System (INIS)
Filanovich, A.N.; Povzner, A.A.
2015-01-01
A self-consistent thermodynamic model of alpha-phase of plutonium is constructed. The calculations of thermal and elastic properties of α-Pu, carried out within this model, demonstrate that anomalously strong temperature dependence of the bulk modulus and unusually high value of the coefficient of thermal expansion of α-Pu are caused by its strong lattice anharmonicity. The isothermal and isobaric Gruneisen parameters of α-Pu and δ-Pu Pu_0_._9_6Ga_0_._0_4 are calculated. It is shown that wide spread of the values of Gruneisen parameter of α-Pu, obtained previously from different experimental data, is explained by the dependence of Gruneisen parameter of α-Pu on temperature. - Highlights: • A self-consistent thermodynamic model of alpha-plutonium is developed. • Thermal and elastic properties of alpha-plutonium are calculated. • The reason of spread in the values of Gruneisen parameter of alpha-Pu is established. • Different types of phonon anharmonicity in alpha-Pu and delta-Pu are revealed.
Naturalness of nearly degenerate neutrinos
International Nuclear Information System (INIS)
Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.
1999-01-01
If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Δm sol 2 atm 2 hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all observations
Ruggiero, Michael T; Zeitler, J Axel
2016-11-17
Anharmonicity has been shown to be an important piece of the fundamental framework that dictates numerous observable phenomena. In particular, anharmonicity is the driving force of vibrational relaxation processes, mechanisms that are integral to the proper function of numerous chemical processes. However, elucidating its origins has proven difficult due to experimental and theoretical challenges, specifically related to separating the anharmonic contributions from other unrelated effects. While no one technique is particularly suited for providing a complete picture of anharmonicity, by combining multiple complementary methods such a characterization can be made. In this study the role of individual atomic interactions on the anharmonic properties of crystalline purine, the building block of many DNA and RNA nucleobases, is studied by experimental terahertz time-domain spectroscopy and first-principles density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD). In particular, the detailed vibrational information provided by the DFT calculations is used to interpret the atomic origins of anharmonic-related effects as determined by the AIMD calculations, which are in good agreement with the experimental data. The results highlight that anharmonicity is especially pronounced in the intermolecular interactions, particularly along the amine hydrogen bond coordinate, and yields valuable insight into what is similarly observed complex biosystems and crystalline solids.
Rydalevskaya, Maria A.; Voroshilova, Yulia N.
2018-05-01
Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.
Low-lying spectra in anharmonic three-body oscillators with a strong short-range
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2003-01-01
Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003
Anharmonic, dimensionality and size effects in phonon transport
Thomas, Iorwerth O.; Srivastava, G. P.
2017-12-01
We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.
Terahertz generation via laser coupling to anharmonic carbon nanotube array
Sharma, Soni; Vijay, A.
2018-02-01
A scheme of terahertz radiation generation employing a matrix of anharmonic carbon nanotubes (CNTs) embedded in silica is proposed. The matrix is irradiated by two collinear laser beams that induce large excursions on CNT electrons and exert a nonlinear force at the beat frequency ω = ω1-ω2. The force derives a nonlinear current producing THz radiation. The THz field is resonantly enhanced at the plasmon resource, ω = ω p ( 1 + β ) / √{ 2 } , where ωp is the plasma frequency and β is a characteristic parameter. Collisions are a limiting factor, suppressing the plasmon resonance. For typical values of plasma parameters, we obtain power conversion efficiency of the order of 10-6.
Anharmonic effective pair potentials of gold under high pressure and high temperature
Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W
2002-01-01
In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.
DEFF Research Database (Denmark)
Bak, KL; Bludsky, O.; Jorgensen, P
1995-01-01
A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...... for the atomic axial tensors and using second-order Moller-Plesset theory for the atomic polar tensors and the force fields, The changes of the vibrational rotatory strengths from anharmonicities are small, and do not explain the previously observed large discrepancies between the double-harmonic results...
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Interbasis expansions for isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)
2012-03-12
The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.
International Nuclear Information System (INIS)
Bordyuk, N.A.; Nikitchuk, V.I.; Voloshin, O.M.
1995-01-01
The force constants of anharmonicity, the total energy, and the force of interaction between structural elements of PVC systems are determined from the values of the quasielastic constants of filled polymer systems
Energy Technology Data Exchange (ETDEWEB)
Dabiri, Zohreh, E-mail: z.dabiri@stu.yazd.ac.ir [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Kazempour, Ali [Department of Physics, Payame Noor University, P.O. BOX 119395-3697, Tehran (Iran, Islamic Republic of); Nano Structured Coatings Institute of Yazd Payame Noor University, P.O. Code 89431-74559, Yazd (Iran, Islamic Republic of); Sadeghzadeh, Mohammad Ali [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)
2016-11-15
The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron–phonon interaction directly and, phonon–phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.
Carignano, Marcelo André s; Aravindh, S. Assa; Roqan, Iman S.; Even, Jacky; Katan, Claudine
2017-01-01
cations as the temperature is decreased from 450 K. The reverse transformation from tetragonal to cubic is also monitored through the large distribution of the octahedral tilting angles accompanied by an increase in the anharmonicity of the iodine atoms
Energy Technology Data Exchange (ETDEWEB)
Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering
2018-02-03
Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.
Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress
Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.
2013-01-01
A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...
Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J
2017-06-08
Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).
Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities.
Yurchenko, Stanislav O; Komarov, Kirill A; Kryuchkov, Nikita P; Zaytsev, Kirill I; Brazhkin, Vadim V
2018-04-07
The heat capacity of classical crystals is determined by the Dulong-Petit value C V ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value C V ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.
Energy Technology Data Exchange (ETDEWEB)
Volpe, M.C. [Caen Univ., 14 (France)
1997-12-31
Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for {sup 208} Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author). 113 refs.
International Nuclear Information System (INIS)
McNeill, G.A.
1981-01-01
Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification
Properties of one-dimensional anharmonic lattice solitons
Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed
2000-12-01
The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.
Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon
Lv, Wei; Henry, Asegun
We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.
Nearly degenerate neutrinos, supersymmetry and radiative corrections
International Nuclear Information System (INIS)
Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.
2000-01-01
If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the Δm 2 sol 2 atm hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....
Distinguishing quantum from classical oscillations in a driven phase qubit
International Nuclear Information System (INIS)
Shevchenko, S N; Omelyanchouk, A N; Zagoskin, A M; Savel'ev, S; Nori, Franco
2008-01-01
Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant drive, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently (Groenbech-Jensen N and Cirillo M 2005 Phys. Rev. Lett. 95 067001) that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effects. Firstly, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency ω 10 (multiphoton processes), the classical effect also exists when the system is excited at the overtones, nω 10 . Secondly, the shape of the resonance is, in the classical case, characteristically asymmetric, whereas quantum resonances are described by symmetric Lorentzians. Thirdly, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow us to distinguish confidently the bona fide Rabi oscillations from their classical Doppelgaenger
Czech Academy of Sciences Publication Activity Database
Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.
2005-01-01
Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005
Oscillations of the static meson fields at finite baryon density
International Nuclear Information System (INIS)
Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt
1996-04-01
The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)
Lites, B.W.; Rutten, R.J.; Thomas, J.H.
1995-01-01
We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.
Energy Technology Data Exchange (ETDEWEB)
Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)
2006-07-15
The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.
Energy Technology Data Exchange (ETDEWEB)
Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M. [Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Huang, Xinchuan; Lee, Timothy J. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Oomens, Jos, E-mail: w.j.buma@uva.nl, E-mail: petrignani@strw.leidenuniv.nl [Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands)
2015-11-20
We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.
Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.
2018-01-01
Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2016-01-01
We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.
On Degenerate Partial Differential Equations
Chen, Gui-Qiang G.
2010-01-01
Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...
Indian Academy of Sciences (India)
IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.
Indian Academy of Sciences (India)
the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP and signi......Low back pain (LBP) is one of the most common conditions, and at the same time one of the most complex nosological entities. The lifetime prevalence is approximately 80%, and radiological features of lumbar degeneration are almost universal in adults. The individual risk factors for LBP...... and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Laenderyggens degeneration og radiologi
DEFF Research Database (Denmark)
Jacobsen, Steffen; Gosvig, Kasper Kjaerulf; Sonne-Holm, Stig
2006-01-01
and significant relationships between radiological findings and subjective symptoms have both been notoriously difficult to identify. The lack of consensus on clinical criteria and radiological definitions has hampered the undertaking of properly executed epidemiological studies. The natural history of LBP...... is cyclic: exacerbations relieved by asymptomatic periods. New imaging modalities, including the combination of MR imaging and multiplanar 3-D CT scans, have broadened our awareness of possible pain-generating degenerative processes of the lumbar spine other than disc degeneration....
Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr
2007-06-14
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third
Crystal anharmonicity in Li(H,D) and Na(H,D) systems
International Nuclear Information System (INIS)
Islam, A.K.M.A.; Haque, E.; Azad, A.S.
1993-05-01
The reliability of our recently developed potential model is tested by extending the study to various anharmonic properties, e.g., third order elastic constants, fourth order elastic constants, Grueneisen parameters, and the pressure derivatives of second order elastic constants of hydrides and deuterides of lithium and sodium. A comparison of the calculated properties with the available experimental results and other theoretical estimates shows the validity and reliability of the derived potential in the study of crystal anharmonicities also. (author). 43 refs, 2 figs, 4 tabs
Neutron scattering by anharmonic crystals and the effect of sublattice displacements
International Nuclear Information System (INIS)
Viswanathan, K.S.; Phillip, Jacob
1979-01-01
A theory has been described for the scattering of neutrons by anharmonic crystals, for which terms of the type Vsup(3) (k 1 j 1 ;-k 1 j 1 ;aj) which contribute to the sublattice displacements are not neglected. It is shown that the sublattice displacements will modify the phase factor arising from the scattering by any atom in the unit cell, and the Debye-Waller factor also gets altered both by the sublattice displacements as well as by higher order terms arising from anharmonicity. (author)
Chaos in generically coupled phase oscillator networks with nonpairwise interactions
Energy Technology Data Exchange (ETDEWEB)
Bick, Christian; Ashwin, Peter; Rodrigues, Ana [Centre for Systems, Dynamics and Control and Department of Mathematics, University of Exeter, Exeter EX4 4QF (United Kingdom)
2016-09-15
The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.
Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
Bick, Christian; Ashwin, Peter; Rodrigues, Ana
2016-09-01
The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.
Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures
Directory of Open Access Journals (Sweden)
Leontyev A.V.
2015-01-01
Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Rotational states of Bose gases with attractive interactions in anharmonic traps
International Nuclear Information System (INIS)
Lundh, Emil; Collin, Anssi; Suominen, Kalle-Antti
2004-01-01
A rotated and harmonically trapped Bose gas with attractive interactions is expected to either remain stationary or escape from the trap. Here we report that, on the contrary, in an anharmonic trapping potential the Bose gas with attractive interactions responds to external rotation very differently, namely, through center-of-mass motion or by formation of vortices
Scattering of acoustic waves from a surface in the presence of an anharmonic interface
DEFF Research Database (Denmark)
Kulak, A.; Lodziana, Zbigniew; Srokowski, T.
2002-01-01
Energy transfer coefficient (analogue of LDOS) and aperiodicity index are defined to characterise the nonlinear response and the surface resonances in a thin layer separated from the underlying bulk crystal by an anharmonic interface. Regions of periodic, aperiodic and intermittent motion of the ...
Anharmonicities of coupled β and γ vibrations discussed in a simple model
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1984-01-01
The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method. (orig.)
Anharmonicities of coupled β and γ vibrations discussed in a simple model
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1983-11-01
The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method
Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study
Directory of Open Access Journals (Sweden)
Andrea Alparone
2013-01-01
Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.
Anharmonic solution of Schrödinger time-independent equation
Indian Academy of Sciences (India)
243–261. Anharmonic solution of Schrödinger time-independent equation. MOHAMMED ASHRAFUL ISLAM1,2,∗ and JAMAL NAZRUL ISLAM1. 1Research Centre for Mathematical and Physical Sciences, University of Chittagong, Chittagong,. Bangladesh. 2Department of Mathematics, University of Chittagong, Chittagong, ...
Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo
2018-05-01
We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.
Anharmonic thermal vibrations of be metal found in the MEM nuclear density map
International Nuclear Information System (INIS)
Takata, Masaki; Sakata, Makoto; Larsen, F.K.; Kumazawa, Shintaro; Iversen, B.B.
1993-01-01
A direct observation of the thermal vibrations of Be metal was performed by the Maximum Entropy Method (MEM) using neutron single crystal data. In the previous study, the existence of the small but significant cubic anharmonicity of Be has been found by the conventional least squares refinement of the observed structure factors [Larsen, Lehmann and Merisalo (1980) Acta Cryst. A36, 159-163]. In the present study, the same data were used for the MEM analysis which are comprised of 48 reflections up to sinθ/λ = 1.41A -1 in order to obtain the high resolution nuclear density of Be without using any thermal vibrational model. It was directly visible in the MEM map that not only the cubic terms but also quartic anharmonicities exist in the thermal vibrations of Be nuclei. In order to evaluate thermal parameters of Be including anharmonic terms quantitatively, the least squares refinement of the effective one-particle potential (OPP) parameters up to quartic term was carried out by using the MEM nuclear densities around atomic sites as the data set to be fitted. It was found that the present treatment has a great advantage to decide the most appropriate model of OPP by visually comparing the model with MEM density map. As a result of the least squares refinement, the anharmonic thermal parameters are obtained as α 33 = -0.340(5)[eV/A 3 ], α 40 = 0, β 20 = 9.89(1)[eV/A 4 ] and γ 00 = 0. No other anharmonic term was significant. (author)
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
International Nuclear Information System (INIS)
Blaizot, J.P.
1982-01-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)
Intervertebral disc degeneration in dogs
Bergknut, N.
2011-01-01
Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting
Intervertebral disc degeneration in dogs
Bergknut, Niklas
Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting
Second order degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-08-01
Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs
International Nuclear Information System (INIS)
Xin-Lian, Luo; Hua, Bai; Lei, Zhao
2008-01-01
Regardless of the formation mechanism, an exotic object, the double degenerate star (DDS), is introduced and investigated, which is composed of baryonic matter and some unknown fermion dark matter. Different from the simple white dwarfs (WDs), there is additional gravitational force provided by the unknown fermion component inside DDSs, which may strongly affect the structure and the stability of such kind of objects. Many possible and strange observational phenomena connecting with them are concisely discussed. Similar to the normal WD, this object can also experience thermonuclear explosion as type Ia supernova explosion when DDS's mass exceeds the maximum mass that can be supported by electron degeneracy pressure. However, since the total mass of baryonic matter can be much lower than that of WD at Chandrasekhar mass limit, the peak luminosity should be much dimmer than what we expect before, which may throw a slight shadow on the standard candle of SN Ia in the research of cosmology. (general)
A method of solving simple harmonic oscillator Schroedinger equation
Maury, Juan Carlos F.
1995-01-01
A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.
Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation
International Nuclear Information System (INIS)
Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-01-01
Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)
Oscillations of the static meson fields at finite baryon density
International Nuclear Information System (INIS)
Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt
1996-04-01
The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Raman scattering study of the anharmonic effects in CeO2-y nanocrystals
Popović, Z. V.; Dohčević-Mitrović, Z.; Cros, A.; Cantarero, A.
2007-12-01
We have studied the temperature dependence of the F2g Raman mode phonon frequency and broadening in CeO2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO2 powders than in the bulk counterpart.
Raman scattering study of the anharmonic effects in CeO2-y nanocrystals
International Nuclear Information System (INIS)
Popovic, Z V; Dohcevic-Mitrovic, Z; Cros, A; Cantarero, A
2007-01-01
We have studied the temperature dependence of the F 2g Raman mode phonon frequency and broadening in CeO 2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO 2 powders than in the bulk counterpart
Raman scattering study of the anharmonic effects in CeO{sub 2-y} nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Popovic, Z V [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Dohcevic-Mitrovic, Z [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Cros, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain)
2007-12-12
We have studied the temperature dependence of the F{sub 2g} Raman mode phonon frequency and broadening in CeO{sub 2-y} nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO{sub 2} powders than in the bulk counterpart.
Graf, Rudolf F
1996-01-01
This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing
Czech Academy of Sciences Publication Activity Database
Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr
2007-01-01
Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007
Šebek, Jiří; Pele, Liat; Potma, Eric O; Gerber, R Benny
2011-07-28
First-principles anharmonic vibrational calculations are carried out for the Raman spectrum of the C-H stretching bands in dodecane, and for the C-D bands in the deuterated molecule. The calculations use the Vibrational Self-Consistent Field (VSCF) algorithm. The results are compared with liquid-state experiments, after smoothing the isolated-molecule sharp-line computed spectra. Very good agreement between the computed and experimental results is found for the two systems. The combined theoretical and experimental results provide insights into the spectrum, elucidating the roles of symmetric and asymmetric CH(3) and CH(2) hydrogenic stretches. This is expected to be very useful for the interpretation of spectra of long-chain hydrocarbons. The results show that anharmonic effects on the spectrum are large. On the other hand, vibrational degeneracy effects seem to be rather modest at the resolution of the experiments. The degeneracy effects may have more pronounced manifestations in higher-resolution experiments. The results show that first-principles anharmonic vibrational calculations for hydrocarbons are feasible, in good agreement with experiment, opening the way for applications to many similar systems. The results may be useful for the analysis of CARS imaging of lipids, for which dodecane is a representative molecule. It is suggested that first-principles vibrational calculations may be useful also for CARS imaging of other systems. This journal is © the Owner Societies 2011
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
Anharmonic behavior and structural phase transition in Yb2O3
Directory of Open Access Journals (Sweden)
Sugandha Dogra Pandey
2013-12-01
Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.
Macular degeneration - age-related
... AMD occurs when the blood vessels under the macula become thin and brittle. Small yellow deposits, called drusen, form. Almost all people with macular degeneration start with the dry form. Wet AMD occurs ...
Computed tomography of Wallerian degeneration
International Nuclear Information System (INIS)
Uchino, Akira; Maeda, Fumihiko
1986-01-01
CT findings of wallerian degeneration of the pyramidal tract at the midbrain (atrophy of cerebral peduncle following cerebrovascular accident) were studied in 34 patients (44 CT scans) with old cerebrovascular accidents. Severe atrophy of cerebral peduncle was noted when the ipsilateral motor cortex was involved. However, when the posterior limb of the internal capsule was involved, atrophy of the ipsilateral cerebral peduncle was mild. In this series, the shortest interval between cerebrovascular accident and wallerian degeneration was 8 month. (author)
One dimension harmonic oscillator
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr
What Is Age-Related Macular Degeneration?
... Eye Health / Eye Health A-Z Age-Related Macular Degeneration Sections What Is Macular Degeneration? How is AMD ... What Does Macular Degeneration Look Like? What Is Macular Degeneration? Leer en Español: ¿Qué es la degeneración macular ...
Generation of 2.1 m wavelength from degenerate high gray track ...
Indian Academy of Sciences (India)
2014-02-12
Feb 12, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2. Generation of 2.1 m wavelength from degenerate high gray track resistant potassium titanyl phosphate optical parametric oscillator. S Verma C Mishra V Kumar M Yadav K C Bahuguna N S Vasan S P Gaba. Contributed Papers Volume ...
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
International Nuclear Information System (INIS)
Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.
1976-01-01
Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained
Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.
1980-01-01
This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.
Oscillators - a simple introduction
DEFF Research Database (Denmark)
Lindberg, Erik
2013-01-01
Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...
DEFF Research Database (Denmark)
Lindberg, Erik
1997-01-01
In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....
Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard
2018-04-01
Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.
Quasi-Dirac neutrino oscillations
Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin
2018-05-01
Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
Pressure measurements of TO-phonon anharmonicity in isotopic ZnS
Energy Technology Data Exchange (ETDEWEB)
Tallman, R.E.; Weinstein, B.A. [SUNY at Buffalo, Department of Physics, Buffalo, NY 14260 (United States); Ritter, T.M. [Dept. of Chemistry and Physics, UNC Pembroke, NC 28372 (United States); Cantarero, A. [Dept. of Physics and Institute of Materials Science, University of Valencia (Spain); Serrano, J.; Lauck, R.; Cardona, M. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)
2004-03-01
We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of {beta}-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, {sup 68}Zn{sup 32}S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)
2014-05-14
A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.
Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas
2017-09-01
Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
Age-Related Macular Degeneration.
Mehta, Sonia
2015-09-01
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.
Degenerated differential pair with controllable transconductance
Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram
1998-01-01
A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are
Carignano, Marcelo Andrés
2017-09-05
We present a systematic study based on first principles molecular dynamics simulations of lead iodide perovskites with three different cations, including methylammonium (MA), formamidinium (FA) and cesium. Using the high temperature perovskite structure as a reference, we investigate the instabilities that develop as the material is cooled down to 370 K. All three perovskites display anharmonicity in the motion of the iodine atoms, with the stronger effect observed for the MAPbI$_3$ and CsPbI$_3$. At high temperature, this behavior can be traced back to the reduced effective size of the Cs$^+$ and MA$^+$ cations. MAPbI$_3$ undergoes a spontaneous phase transition within our simulation model driven by the dipolar interaction between neighboring MA cations as the temperature is decreased from 450 K. The reverse transformation from tetragonal to cubic is also monitored through the large distribution of the octahedral tilting angles accompanied by an increase in the anharmonicity of the iodine atoms motion. Both MA and FA hybrid perovskites show a strong coupling between the molecular orientations and the local lattice deformations, suggesting mixed order-disorder/displacive characters of the high temperature phase transitions.
Computing with networks of nonlinear mechanical oscillators.
Directory of Open Access Journals (Sweden)
Jean C Coulombe
Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.
Mauri, Francesco
Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.
Light and inherited retinal degeneration
Paskowitz, D M; LaVail, M M; Duncan, J L
2006-01-01
Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...
Quantum oscillations in nodal line systems
Yang, Hui; Moessner, Roderich; Lim, Lih-King
2018-04-01
We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.
Oscillations in a simple climate–vegetation model
Directory of Open Access Journals (Sweden)
J. Rombouts
2015-05-01
Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.
Oscillations in a simple climate-vegetation model
Rombouts, J.; Ghil, M.
2015-05-01
We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.
Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy
Directory of Open Access Journals (Sweden)
Wilfried Nörtershäuser
2010-03-01
Full Text Available The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
1981-03-01
Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to
Neutrino oscillations in matter
International Nuclear Information System (INIS)
Mikheyev, S.P.; Smirnov, A.Yu.
1986-01-01
In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)
The colpitts oscillator family
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...
Anharmonic properties of Raman modes in double wall carbon nano tubes
Energy Technology Data Exchange (ETDEWEB)
Marquina, J. [Universidad de los Andes, Facultad de Ciencias, Centro de Estudios Avanzados en Optica, 5101 Merida (Venezuela, Bolivarian Republic of); Power, Ch.; Gonzalez, J. [Universidad de los Andes, Facultad de Ciencias, Centro de Estudios en Semiconductores, 5101 Merida (Venezuela, Bolivarian Republic of); Broto, J. M. [Universite de Toulouse, Laboratoire National des Champs Magnetiques Intenses, CNRS UPR 3228, 31400 Toulouse (France); Flahaut, E., E-mail: castella@ula.v [Universite Paul Sabatier, Laboratoire de Chimie des Materiaux Inorganiques, UMR CNRS 5085, 31062 Toulouse (France)
2011-07-01
The temperature dependence of the radial breathing modes (RB Ms) and the zone-center tangential optical phonons (G-bands) of double-walled carbon nano tubes has been investigated between 300 and 700 K using Raman scattering. As expected, with increasing temperature, the frequencies of the Raman peaks, including the RB Ms and G-bands downshift simultaneously. We show here that the temperature dependence of the RB Ms can be fitted by a simple linear dependence and different RB Ms have different frequency shifts. We observe a noticeable nonlinearity in the temperature dependence of the G-band associated with the outer semiconducting tube G+ext (s). The deviation from the linear trend is due to the contribution of the third-order anharmonic term in the lattice potential energy with a pure temperature effect. An estimated value of 1.5 for the Grueneisen parameter of the G+ext (s) band was found. (Author)
International Nuclear Information System (INIS)
Audzijonis, A.; Zigas, L.; Vinokurova, I.V.; Farberovic, O.V.; Zaltauskas, R.; Cijauskas, E.; Pauliukas, A.; Kvedaravicius, A.
2006-01-01
The force constants of SbSI crystal have been calculated by the pseudo-potential method. The frequencies and normal coordinates of SbSI vibration modes along the c (z) direction have been determined in harmonic approximation. The potential energies of SbSI normal modes dependence on normal coordinates along the c (z) direction V(z) have been determined in anharmonic approximation, taking into account the interaction between the phonons. It has been found, that in the range of 30-120 cm -1 , the vibrational spectrum is determined by a V(z) double-well normal mode, but in the range of 120-350 cm -1 , it is determined by a V(z) single-well normal mode
Anharmonicity, mechanical instability, and thermodynamic properties of the Cr-Re σ-phase
Energy Technology Data Exchange (ETDEWEB)
Palumbo, Mauro, E-mail: mauro.palumbo@rub.de; Fries, Suzana G. [ICAMS, Ruhr University Bochum, Universität Str. 150, D-44801 Bochum (Germany); Pasturel, Alain [SIMAP, UMR CNRS-INPG-UJF 5266, BP 75, F-38402 Saint Martin d’Hères (France); Alfè, Dario [Department of Earth Sciences, Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre-UCL, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2014-04-14
Using density-functional theory in combination with the direct force method and molecular dynamics we investigate the vibrational properties of a binary Cr-Re σ-phase. In the harmonic approximation, we have computed phonon dispersion curves and density of states, evidencing structural and chemical effects. We found that the σ-phase is mechanically unstable in some configurations, for example, when all crystallographic sites are occupied by Re atoms. By using a molecular-dynamics-based method, we have analysed the anharmonicity in the system and found negligible effects (∼0.5 kJ/mol) on the Helmholtz energy of the binary Cr-Re σ-phase up to 2000 K (∼0.8T{sub m}). Finally, we show that the vibrational contribution has significant consequences on the disordering of the σ-phase at high temperature.
Frequency and Temperature Dependence of Anharmonic Phonon Relaxation Rate in Carbon Nanotubes
International Nuclear Information System (INIS)
Hepplestone, S P; Srivastava, G P
2007-01-01
The relaxation rate of phonon modes in the (10, 10) single wall carbon nanotube undergoing three-phonon interactions at various temperatures has been studied using both qualitative and quantitative approaches based upon Fermi's Golden Rule and a quasi-elastic continuum model for the anharmonic potential. For the quantitative calculations, dispersion relations for the phonon modes were obtained from analytic expressions developed by Zhang et al. The qualitative expressions were derived using simple linear phonon dispersions relations. We show that in the high temperature regime the relaxation rate varies linearly with temperature and with the square of the frequency. In the low temperature regime we show that the relaxation rate varies exponentially with the inverse of temperature. These results have some very interesting implifications for effects for mean free path and thermal conductivity calculations
Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface
International Nuclear Information System (INIS)
Hamann, D.R.; Feibelman, P.J.
1988-01-01
The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni
Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity
International Nuclear Information System (INIS)
Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco
2012-01-01
We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)
International Nuclear Information System (INIS)
Fei Xiang; Snow, W.M.
1999-01-01
Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles
Fei Xiang
1999-01-01
Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles.
Numerical solutions of anharmonic vibration of BaO and SrO molecules
Energy Technology Data Exchange (ETDEWEB)
Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda [Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia); Sumaryada, Tony, E-mail: tsumaryada@ipb.ac.id [Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia); Computational Biophysics and Molecular Modeling Research Group (CBMoRG), Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)
2016-03-11
The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potential solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.
Monge Palacios, Manuel
2018-01-29
We performed a theoretical study on the double hydrogen shift isomerization reaction of a six carbon atom Criegee intermediate (C6-CI), catalyzed by formic acid (HCOOH), to produce vinylhydroperoxide (VHP), C6-CI+HCOOH→VHP+HCOOH. This Criegee intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic effect on the studied reaction by lowering the barrier height, but the kinetic enhancement is hindered by the multistructural anharmonicity. First, the rigid ring-structure adopted by the saddle point to facilitate simultaneous transfer of two atoms does not allow formation of as many conformers as those formed by the reactant C6-CI. And second, the flexible carbon chain of C6-CI facilitates the formation of stabilizing intramolecular C–H···O hydrogen bonds; this stabilizing effect is less pronounced in the saddle point structure due to its tightness and steric effects. Thus, the contribution of the reactant C6-CI conformers to the multistructural partition function is larger than that of the saddle point conformers. The resulting low multistructural anharmonicity factor partially cancels out the catalytic effect of the carboxylic acid, yielding in a moderately large rate coefficient, k(298 K) = 4.9·10-13 cm3 molecule-1 s-1. We show that carboxylic acids may promote the conversion of stabilized Criegee intermediates into vinylhydroperoxides in the atmosphere, which generates OH radicals and leads to secondary organic aerosol, thereby affecting the oxidative capacity of the atmosphere and ultimately the climate.
Krasnoshchekov, Sergey V; Stepanov, Nikolay F
2013-11-14
In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.
X ray absorption fine structure of systems in the anharmonic limit
Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.
A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.
X-ray absorption fine structure of systems in the anharmonic limit
International Nuclear Information System (INIS)
Mustre de Leon, J.; Conradson, S.D.; Batistic, I.; Bishop, A.R.; Raistrick, I.; Jackson, W.E.; Brown, G.E.
1991-01-01
A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allow the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca 3 Fe 2 Si 3 O 12 ) and magnesiowustite (Mg 0.9 Fe 0.1 O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe 2 SiO 4 ). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa 2 Cu 3 O 7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and T c . The relation of the observed lattice distortion to mechanisms of superconductivity is discussed. 33 refs., 6 figs
Using qubits to reveal quantum signatures of an oscillator
Agarwal, Shantanu
In this thesis, we seek to study the qubit-oscillator system with the aim to identify and quantify inherent quantum features of the oscillator. We show that the quantum signatures of the oscillator get imprinted on the dynamics of the joint system. The two key features which we explore are the quantized energy spectrum of the oscillator and the non-classicality of the oscillator's wave function. To investigate the consequences of the oscillator's discrete energy spectrum, we consider the qubit to be coupled to the oscillator through the Rabi Hamiltonian. Recent developments in fabrication technology have opened up the possibility to explore parameter regimes which were conventionally inaccessible. Motivated by these advancements, we investigate in this thesis a parameter space where the qubit frequency is much smaller than the oscillator frequency and the Rabi frequency is allowed to be an appreciable fraction of the bare frequency of the oscillator. We use the adiabatic approximation to understand the dynamics in this quasi-degenerate qubit regime. By deriving a dressed master equation, we systematically investigate the effects of the environment on the system dynamics. We develop a spectroscopic technique, using which one can probe the steady state response of the driven and damped system. The spectroscopic signal clearly reveals the quantized nature of the oscillator's energy spectrum. We extend the adiabatic approximation, earlier developed only for the single qubit case, to a scenario where multiple qubits interact with the oscillator. Using the extended adiabatic approximation, we study the collapse and revival of multi-qubit observables. We develop analytic expressions for the revival signals which are in good agreement with the numerically evaluated results. Within the quantum restriction imposed by Heisenberg's uncertainty principle, the uncertainty in the position and momentum of an oscillator is minimum and shared equally when the oscillator is prepared
The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier
Energy Technology Data Exchange (ETDEWEB)
Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)
2014-04-15
We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.
Nature's Autonomous Oscillators
Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.
2012-01-01
Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.
Disc degeneration: current surgical options
Directory of Open Access Journals (Sweden)
C Schizas
2010-10-01
Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
Age-related macular degeneration
DEFF Research Database (Denmark)
la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst
2002-01-01
Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian....... Smoking is probably also a risk factor. Preventive strategies using macular laser photocoagulation are under investigation, but their efficacy in preventing visual loss is as yet unproven. There is no treatment with proven efficacy for geographic atrophy. Optimal treatment for exudative AMD requires...
The Morse oscillator in position space, momentum space, and phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder; Springborg, Michael
1988-01-01
We present a unified description of the position-space wave functions, the momentum-space wave functions, and the phase-space Wigner functions for the bound states of a Morse oscillator. By comparing with the functions for the harmonic oscillator the effects of anharmonicity are visualized....... Analytical expressions for the wave functions and the phase space functions are given, and it is demonstrated how a numerical problem arising from the summation of an alternating series in evaluating Laguerre functions can be circumvented. The method is applicable also for other problems where Laguerre...... functions are to be calculated. The wave and phase space functions are displayed in a series of curves and contour diagrams. An Appendix discusses the calculation of the modified Bessel functions of real, positive argument and complex order, which is required for calculating the phase space functions...
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne
2012-10-06
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Kato, Shoji
2016-01-01
This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...
Oscillations in stellar atmospheres
International Nuclear Information System (INIS)
Costa, A.; Ringuelet, A.E.; Fontenla, J.M.
1989-01-01
Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs
Energy Technology Data Exchange (ETDEWEB)
Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)
2016-12-15
High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.
Genetics of Frontotemporal Lobar Degeneration
Directory of Open Access Journals (Sweden)
Daniela eGalimberti
2012-04-01
Full Text Available Frontotemporal Lobar Degeneration (FTLD is the most frequent neurodegenerative disorder with a presenile onset. It presents with a spectrum of clinical manifestations, ranging from behavioural and executive impairment to language disorders and motor dysfunction. Familial aggregation is frequently reported in FTLD, and about 10% of cases have an autosomal dominant transmission. Microtubule Associated Protein Tau gene (MAPT mutations have been the first ones identified and are generally associated with early onset behavioural variant Frontotemporal Dementia (bvFTD phenotype. More recently, progranulin gene (GRN mutations were recognized in association with familial form of FTLD. In addition, other genes are linked to rare cases of familial FTLD. Lastly, a number of genetic risk factors for sporadic forms have also been identified.
Frontotemporal Degeneration in a Child.
Terrill, Tyler; Pascual, Juan M
2017-07-01
There is a predilection for the frontal and temporal lobes in certain cases of dementia in the adult, leading to the syndrome of frontotemporal dementia. However, this syndrome has seemed to elude the developing brain until now. We describe an example of apparently selective neurodegeneration of the frontal and temporal regions during development associated with some of the clinical, magnetic resonance imaging, and fludeoxyglucose positron emission tomography (FDG PET) scan features of canonical frontotemporal dementia in the adult. This patient does not have any of the common frontotemporal dementia-causing mutations or known progressive brain disorders of children. This patient illustrates that symptomatic, selective, and progressive vulnerability of the frontal and temporal lobes is not restricted to adulthood, expanding the phenotype of frontotemporal degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Eigenstate Thermalization for Degenerate Observables
Anza, Fabio; Gogolin, Christian; Huber, Marcus
2018-04-01
Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of the ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive, or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian. We show that the relative overlaps are unbiased for highly degenerate observables and demonstrate that unless relative phases conspire to cumulative effects, this makes such observables verify the ETH. Through this we elucidate potential pathways towards proofs of thermalization.
The Oscillator Principle of Nature
DEFF Research Database (Denmark)
Lindberg, Erik
2012-01-01
Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...
Vitale, Valerio; Dziedzic, Jacek; Dubois, Simon M-M; Fangohr, Hans; Skylaris, Chris-Kriton
2015-07-14
Density functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFT-MD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in the understanding and assignment of experimental peaks and bands at finite temperature, particularly in the case of floppy molecules. Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids, and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code. In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same time removing the solvent contribution from the spectra.
Ghatge, Mayur; Tabrizian, Roozbeh
2018-03-01
A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.
International Nuclear Information System (INIS)
Rodrigues, R. de Lima
2007-01-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
DEFF Research Database (Denmark)
Hjorth, Poul G.
2008-01-01
We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....
Synchronization of hyperchaotic oscillators
DEFF Research Database (Denmark)
Tamasevicius, A.; Cenys, A.; Mykolaitis, G.
1997-01-01
Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....
Resonant retuning of Rabi oscillations in a two-level system
International Nuclear Information System (INIS)
Leonov, A.V.; Feranchuk, I.D.
2009-01-01
The evolution of a two-level system in a single-mode quantum field is considered beyond the rotating wave approximation. The existence of quasi-degenerate energy levels is shown to influence the essential characteristics of temporal and amplitude Rabi oscillations of the system in a resonant manner. (authors)
Frontotemporal lobar degeneration: current perspectives
Directory of Open Access Journals (Sweden)
Riedl L
2014-02-01
Full Text Available Lina Riedl,1 Ian R Mackenzie,2 Hans Förstl,1 Alexander Kurz,1 Janine Diehl-Schmid1 1Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; 2Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada Abstract: The term frontotemporal lobar degeneration (FTLD refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT, the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN, and in the chromosome 9 open reading frame 72 (C9orf72 accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake
Motor axon excitability during Wallerian degeneration
DEFF Research Database (Denmark)
Moldovan, Mihai; Alvarez, Susana; Krarup, Christian
2008-01-01
Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...
Disk degeneration in 14 year old children
International Nuclear Information System (INIS)
Erkintalo, M.; Salminen, J.J.; Paajanen, H.; Terho, P.; Kormano, M.
1989-01-01
This paper reports low back symptoms of 1,500 school children (14 years old) evaluated with a questionnaire and with a standardized clinical examination. Forty children who complained of recurrent and/or persistent low back pain and 40 matching symptomless controls were randomly chosen to undergo MR imaging of the lumbar spine. Premature disk degeneration was seen in 25.5% of asymptomatic children and in 40% of those with low back pain. The difference was statistically not significant. Disk degeneration is a surprisingly frequent MR finding in symptomless children. Premature disk degeneration may be the cause of low back pain in some children but is not always symptomatic in childhood
Total absorption by degenerate critical coupling
Energy Technology Data Exchange (ETDEWEB)
Piper, Jessica R., E-mail: jrylan@stanford.edu; Liu, Victor; Fan, Shanhui, E-mail: shanhui@stanford.edu [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
2014-06-23
We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.
Validity of the cumulant method for a pulse nonlinear Kerr oscillator
International Nuclear Information System (INIS)
Grygiel, K.; Leonski, W.; Szlachetka, P.
1998-01-01
We study the dynamics of an anharmonic oscillator driven by a train of pulses. The cumulant expansion and quantum evolution operator approaches are presented and compared. The modifications introduced by quantum mechanics into the dynamics of classical systems which manifest chaos are a problem of great importance. It is known that quantization modifies the dynamics of classical system is usually studied by means of the equation for the Wigner function derived from the quantum Liouville equation. In Wigner's formulation of quantum mechanics we treat a quantum system in a 'classical way' including all their quantum features. And what is more, we can contrast the quantum and classical dynamics within the framework of one formalism. The problem is, that the equations for the Wigner functions are mathematically cumbersome and their analytic solutions for most nonlinear systems are unknown. However, instead of the equation for the Wigner function we can use the set of equations for statistical moments generated by our equation for the Wigner function. It is obvious that in this approach a quantum system is governed by an infinite set of equations. Therefore, for numerical reasons the set of equations for statistical moments has to be truncated at a finite number, which means approximating it. It is known that first cumulant approximation represents the classical dynamics. The second cumulant approximation adds the first quantum corrections to the classical dynamics. In this paper we compare some aspects of the cumulant method and the method used by Leonski and Tanas to study an anharmonic oscillator driven by a train of pulses. The Kerr oscillator model is the same ad that is discussed in an earlier paper albeit without the damping mechanism
Genetics of frontotemporal lobar degeneration
Directory of Open Access Journals (Sweden)
Aswathy P
2010-10-01
Full Text Available Frontotemporal lobar degeneration (FTLD is a highly heterogenous group of progressive neurodegenerative disorders characterized by atrophy of prefrontal and anterior temporal cortices. Recently, the research in the field of FTLD has gained increased attention due to the clinical, neuropathological, and genetic heterogeneity and has increased our understanding of the disease pathogenesis. FTLD is a genetically complex disorder. It has a strong genetic basis and 50% of patients show a positive family history for FTLD. Linkage studies have revealed seven chromosomal loci and a number of genes including MAPT, PGRN, VCP, and CHMB-2B are associated with the disease. Neuropathologically, FTLD is classified into tauopathies and ubiquitinopathies. The vast majority of FTLD cases are characterized by pathological accumulation of tau or TDP-43 positive inclusions, each as an outcome of mutations in MAPT or PGRN, respectively. Identification of novel proteins involved in the pathophysiology of the disease, such as progranulin and TDP-43, may prove to be excellent biomarkers of disease progression and thereby lead to the development of better therapeutic options through pharmacogenomics. However, much more dissections into the causative pathways are needed to get a full picture of the etiology. Over the past decade, advances in research on the genetics of FTLD have revealed many pathogenic mutations leading to different clinical manifestations of the disease. This review discusses the current concepts and recent advances in our understanding of the genetics of FTLD.
Degeneration of biogenic superparamagnetic magnetite.
Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J
2009-01-01
Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.
Degeneration of Biogenic Superparamagnetic Magnetite
Energy Technology Data Exchange (ETDEWEB)
Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL
2009-01-01
ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.
Observation of Quasichanneling Oscillations
International Nuclear Information System (INIS)
Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.
2017-01-01
Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.
LSND neutrino oscillation results
International Nuclear Information System (INIS)
Louis, W.C.
1996-01-01
In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations
International Nuclear Information System (INIS)
Kayser, Boris
2014-01-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures
Energy Technology Data Exchange (ETDEWEB)
Kayser, Boris [Fermilab (United States)
2014-07-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.
International Nuclear Information System (INIS)
Agaisse, R.; Leguen, R.; Ombredane, D.
1960-01-01
The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented
Magnetic resonance imaging of intervertebral disc degeneration
International Nuclear Information System (INIS)
Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.
1993-01-01
The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)
Magnetic resonance imaging of intervertebral disc degeneration
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi
1993-02-01
The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).
Genetics Home Reference: Stargardt macular degeneration
... recognizing faces. In most people with Stargardt macular degeneration , a fatty yellow pigment (lipofuscin) builds up in cells underlying the macula. Over time, the abnormal accumulation of this substance ...
Ataxias and Cerebellar or Spinocerebellar Degeneration
... and conducts a broad range of basic and clinical research on cerebellar and spinocerebellar degeneration, including work aimed at finding the cause(s) of ataxias and ways to ... Publications Definition Ataxia ...
Insight into structural phase transitions from the decoupled anharmonic mode approximation.
Adams, Donat J; Passerone, Daniele
2016-08-03
We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T = 0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.
Hamiltonization of theories with degenerate coordinates
International Nuclear Information System (INIS)
Gitman, D.M.; Tyutin, I.V.
2002-01-01
We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta
Hamiltonization of theories with degenerate coordinates
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. E-mail: gitman@fma.if.usp.br; Tyutin, I.V. E-mail: tyutin@lpi.ru
2002-05-27
We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta.
2006-01-01
The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from the singular fiber. These "barking deformations" are related to deformations of surface singularities (in particular, cyclic quotient singularities) as well as the mapping class groups of Riemann surfaces (complex curves) via monodromies. Important applications, such as the classification of atomic degenerations, are also explained.
OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION
Energy Technology Data Exchange (ETDEWEB)
Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)
2017-01-10
We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.
Age-related macular degeneration.
Cheung, Lily K; Eaton, Angie
2013-08-01
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease. © 2013 Pharmacotherapy Publications, Inc.
Again on neutrino oscillations
International Nuclear Information System (INIS)
Bilenky, S.M.; Pontecorvo, B.
1976-01-01
The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent
International Nuclear Information System (INIS)
Belblidia, L.A.; Bratianu, C.
1979-01-01
Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)
Oscillators and operational amplifiers
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.
Energy Technology Data Exchange (ETDEWEB)
Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)
1981-09-01
A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.
Case for neutrino oscillations
International Nuclear Information System (INIS)
Ramond, P.
1982-01-01
The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations
Beć, Krzysztof B.; Grabska, Justyna; Czarnecki, Mirosław A.
2018-05-01
We investigated near-infrared (7500-4000 cm-1) spectra of n-hexanol, cyclohexanol and phenol in CCl4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules.
Indian hedgehog contributes to human cartilage endplate degeneration.
Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei
2015-08-01
To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.
International Nuclear Information System (INIS)
Sy Savane, Y.
1995-12-01
The influence of the anharmonicity of the core vibration, on the magnetic transition 11/2 - 1 → 7/2 + 1 in 115 Sn have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a ''quasiparticle + two phonons'' component. The performed numerical calculations show that those effects cannot explain the strong reduction of the M2-transition observed in the experiment. A full agreement with the experimental value is obtained with g eff s = 0.42g free s . (author). 10 refs, 2 figs, 1 tab
International Nuclear Information System (INIS)
Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Smaalen, Sander van
2011-01-01
The superspace maximum entropy method (MEM) density in combination with structure refinements has been used to uncover the modulation in incommensurate Rb 2 ZnCl 4 close to the lock-in transition. Modulated atomic displacement parameters (ADPs) and modulated anharmonic ADPs are found to form an intrinsic part of the modulation. Refined values for the displacement modulation function depend on the presence or absence of modulated ADPs in the model. A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb 2 ZnCl 4 , at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to
Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure
Energy Technology Data Exchange (ETDEWEB)
Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)
2016-07-04
Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.
Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi
2017-09-01
First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.
Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6
Chang, Jun; Eremin, Ilya; Thalmeier, Peter
2009-05-01
We study the influence of anharmonic rattling phonons in the β-pyrochlore superconductor KOs2O6 using the strong-coupling Eliashberg approach. In particular, by analyzing the specific heat data, we find that the rattling phonon frequency changes discontinuously at the critical temperature of the first-order phase transition. Solving the strong-coupling Eliashberg equations with effective temperature-dependent α2F(ω), we investigate the consequence of this first-order phase transition for the anomalous temperature dependence of the superconducting gap. We discuss our results in the context of the recent experimental data.
Kashyap, Rahul; Westley, Alexandra; Sen, Surajit
The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.
International Nuclear Information System (INIS)
Pietsch, U.
1982-01-01
X-ray structure amplitudes of elemental and A 3 B 5 semiconductors can be described by means of spherical atomic form factors and an additional scattered particle at the position of the centre of the covalent bond between next neighbours named bond charge. For this analysis anharmonic core vibrations were neglegted. In this note the influence is estimated of anharmonic core vibrations on the total structure amplitudes of some zinc-blende compounds (GaAs, ZnSe, CuBr, InSb, and CuCl)
Bianco, Raffaello; Errea, Ion; Calandra, Matteo; Mauri, Francesco
2018-06-01
We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure I m 3 ¯m and R 3 m phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition I m 3 ¯m →R 3 m is expected, with hydrogen-bond desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately 10 % could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation. Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method that allows to estimate the critical pressure with much higher precision (and much lower computational cost) compared with the free-energy "finite-difference" approach previously used. Using PBE and BLYP, we find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition pressure for D3S than for H3S . Finally, within the stochastic self-consistent harmonic approximation, with PBE
Energy Technology Data Exchange (ETDEWEB)
Williams, Robert W. [Department of Biomedical Informatics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20815 (United States)], E-mail: bob@bob.usuhs.mil; Schluecker, Sebastian [Institute of Physical Chemistry, University of Wuerzburg, Wuerzburg (Germany); Hudson, Bruce S. [Department of Chemistry, Syracuse University, Syracuse, NY (United States)
2008-01-22
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
International Nuclear Information System (INIS)
Williams, Robert W.; Schluecker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano
2017-10-01
One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.
Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration
2014-03-01
Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.
Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.
International Nuclear Information System (INIS)
Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.
1997-01-01
We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)
International Nuclear Information System (INIS)
Hoeye, Gudrun Kristine
1999-01-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hoeye, Gudrun Kristine
1999-07-01
We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Intramuscular degeneration process in Duchenne muscular dystrophy
International Nuclear Information System (INIS)
Hasegawa, Takeshi; Matsumra, Kiichiro; Hashimoto, Takahiro; Ikehira, Hiroo; Fukuda, Hiroshi; Tateno, Yukio.
1992-01-01
Intramuscular degeneration process of Duchenne dystrophy skeletal muscles was investigated by longitudinal skeletal muscle imaging with high-field-strength NMR-CT of 1.5 Tesla. Thigh muscles in 10 cases ranging in age from 4 to 19 years were examined by T 1 -weighted longitudinal images (TR=215∼505 ms, TE=19∼20 ms). The following results were obtained. Skeletal muscle degeneration was depicted as high signal intensity area reflecting its high fat contents. These high signal intensity areas had a longitudinally streaky appearance in parallel direction with myofibers. These findings were more prominent toward myotendon junction than muscle bellies. Skeletal muscle degeneration progressed rapidly between 7 to 10 years of age, and reached a plateau after that. (author)
[Peripheral retinal degenerations--treatment recommendations].
Joussen, A M; Kirchhof, B
2004-10-01
This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.
Oscillating acoustic streaming jet
International Nuclear Information System (INIS)
Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul
2014-01-01
The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Brownian parametric oscillators
Zerbe, Christine; Jung, Peter; Hänggi, Peter
1994-05-01
We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).
Friedel oscillations in graphene
DEFF Research Database (Denmark)
Lawlor, J. A.; Power, S. R.; Ferreira, M.S.
2013-01-01
Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...
Proprioceptive evoked gamma oscillations
DEFF Research Database (Denmark)
Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.
2007-01-01
A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.
Oscillators from nonlinear realizations
Kozyrev, N.; Krivonos, S.
2018-02-01
We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.
Oscillation Baselining and Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2017-03-27
PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).
Retinal Cell Degeneration in Animal Models
Directory of Open Access Journals (Sweden)
Masayuki Niwa
2016-01-01
Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Kinematic control of robot with degenerate wrist
Barker, L. K.; Moore, M. C.
1984-01-01
Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.
Late complications following cryotherapy of lattice degeneration.
Benson, W E; Morse, P H; Nantawan, P
1977-10-01
We observed 341 patients who had received cryotherapy for lattice degeneration in order to identify possible late complications. Sequelae such as retinal tears posterior to an operculum or flap tears within treated areas showed that treatment did not necessarily prevent subsequent vitreous traction. Moreover, the newly created flap tears may extend beyond the treated area and can cause retinal detachment. Even scleral buckling did not necesserily prevent further traction. Therefore, we concluded that when cryotherapy is used to treat lattice degeneration, an adequate margin of surrounding retina should be treated and the treatment should extend to the ora serrata.
Genetics of lattice degeneration of the retina.
Murakami, F; Ohba, N
1982-01-01
First-degree relatives of proband patients with lattice degeneration of the retina revealed a significantly higher prevalence of the disease than the prevalence in the general population: the former had the disease about three times as frequently as the latter. The observed data were analyzed in terms of their accordance with recognized genetic models. The inheritance pattern did not fit well to a monogenic mode of inheritance, and it was hypothesized that a polygenic or multifactorial mode of inheritance is the most likely for lattice degeneration of the retina.
CT of sarcomatous degeneration in neurofibromatosis
International Nuclear Information System (INIS)
Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.
1983-01-01
Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents
From excitability to oscillations
DEFF Research Database (Denmark)
Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.
2013-01-01
One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...
Neutrino oscillation experiments
International Nuclear Information System (INIS)
Camilleri, L.
1996-01-01
Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs
Jones, R. T.
1976-01-01
For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.
Nonlinearity in oscillating bridges
Directory of Open Access Journals (Sweden)
Filippo Gazzola
2013-09-01
Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.
Integrated optoelectronic oscillator.
Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming
2018-04-30
With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.
The variational spiked oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Ullah, N.
1992-08-01
A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)
Neutrino oscillation experiments
Energy Technology Data Exchange (ETDEWEB)
Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)
1996-11-01
Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.
McAneny, M.; Freericks, J. K.
2014-11-01
The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.
Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles
Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo
2018-01-01
At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric
Driving and Age-Related Macular Degeneration
Owsley, Cynthia; McGwin, Gerald
2008-01-01
This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety, and considers directions for future research.
Specific heats of degenerate ideal gases
Caruso, Francisco; Oguri, Vitor; Silveira, Felipe
2017-01-01
From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.
Ecological transition predictably associated with gene degeneration.
Wessinger, Carolyn A; Rausher, Mark D
2015-02-01
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Geometry of non-degenerate Susskind fermions
International Nuclear Information System (INIS)
Mitra, P.
1983-01-01
The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)
Exploring Nonconvex, Crossed and Degenerate Polygons
Contreras, Jose N.
2004-01-01
An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
MR findings of degenerating parenchymal neurocysticercosis
International Nuclear Information System (INIS)
Lee, Yul; Chung, Eun A; Yang, Ik; Park, Hae Jung; Chung, Soo Young
1996-01-01
To evaluate MR imaging findings of degenerating parenchymal neurocysticercosis and to determine the characteristics which distinguish it from other brain diseases. MR imagings of 19 patients (56 lesions) of degenerating parenchymal neurocysticercosis were retrospectively evaluated, focusing on the size and location of lesions signal intensity patterns of cyst fluid and wall, the extent of the surrounding edema and features of contrast enhancement. Degenerating parenchymal neurocysticercosis was located in gray or subcortical while matter in 89.3% of 56 lesions (50/56) ; most of these (98.2%) were smaller than 2 cm in diameter. Cyst fluid signal was hyperintense relative to CSF on T1 and proton density weighted images (92.9%). A hypointense signal rim of the cyst wall was noted in the lesions on proton density (92.9%) and T2 weighted (98.2%) images, Surrounding edema was mostly mild. Peripheral rim enhancement was noted in all lesions, and this was frequently irregular and lobulated (67.9%) with a focal defect in the enhancing rim(41.1%). Findings which could be helpful in distinguishing degenerating parencymal neurocysticercosis from other brain diseases are as follows : small, superficial lesions ; hyperintense signal of the cyst fluid on T1 and proton density weighted images ; hypointense signal of the cyst wall on proton density and T2 weighted images ; relatively mild extent of surrounding edema, and peripheral rim enhancement which is frequently irregular and lobulated with a focal defect in the enhancing rim
Quantum degenerate atomic gases in controlled optical lattice potentials
Gemelke, Nathan D.
2007-12-01
Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.
Degenerate conformal theories on higher-genus surfaces
International Nuclear Information System (INIS)
Gerasimov, A.A.
1989-01-01
Two-dimensional degenerate field theories on higher-genus surfaces are investigated. Objects are built on the space of moduli, whose linear combinations are hypothetically conformal blocks in degenerate theories
Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo
2017-12-01
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.
Bimodal oscillations in nephron autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik
2002-01-01
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...
MR imaging of central nervous system white matter tract degeneration (Wallerian degeneration)
International Nuclear Information System (INIS)
Kuhn, M.J.; Johnson, K.A.; Davis, K.R.
1987-01-01
Wallerian degeneration is readily demonstrated by MR imaging. Twenty-one patients with MR signal abnormalities in various central nervous system (CNS) white matter tracts were evaluated with regard to (1) nature of signal abnormality, (2) MR anatomy of the involved tract, and (3) primary pathology (e.g., infarct, tumor, hemorrhage). Most examples of wallerian degeneration result in a thin, continuous band of long T1, long T2 signal abnormality conforming to the known anatomic pathway of a CNS axonal tract. Old, large cortical infarcts have the greatest propensity to show subsequent white-matter tract degeneration. Corticospinal tract degeneration is the type most readily visualized, often seen extending completely from the cerebral cortex through the medulla
Ethanol Exposure Causes Muscle Degeneration in Zebrafish
Directory of Open Access Journals (Sweden)
Elizabeth C. Coffey
2018-03-01
Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.
Observation and analysis of oscillations in linear accelerators
International Nuclear Information System (INIS)
Seeman, J.T.
1991-11-01
This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations
Energy Technology Data Exchange (ETDEWEB)
Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.
Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators
Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei
2018-03-01
Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.
Pattern formation in arrays of chemical oscillators
Indian Academy of Sciences (India)
Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...
Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B
1992-01-01
Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615
Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao
2015-11-01
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Directory of Open Access Journals (Sweden)
Christine Haselier
Full Text Available Retinal prostheses that are currently used to restore vision in patients suffering from retinal degeneration are not adjusted to the changes occurring during the remodeling process of the retina. Recent studies revealed abnormal rhythmic activity in the retina of genetic mouse models of retinitis pigmentosa. Here we describe this abnormal activity also in a pharmacologically-induced (MNU mouse model of retinal degeneration. To investigate how this abnormal activity affects the excitability of retinal ganglion cells, we recorded the electrical activity from whole mounted retinas of rd10 mice and MNU-treated mice using a microelectrode array system and applied biphasic current pulses of different amplitude and duration to stimulate ganglion cells electrically. We show that the electrical stimulation efficiency is strongly reduced in degenerated retinas, in particular when abnormal activity such as oscillations and rhythmic firing of bursts of action potentials can be observed. Using a prestimulus pulse sequence, we could abolish rhythmic retinal activity. Under these conditions, the stimulation efficiency was enhanced in a few cases but not in the majority of tested cells. Nevertheless, this approach supports the idea that modified stimulation protocols could help to improve the efficiency of retinal prostheses in the future.
Entanglement in neutrino oscillations
Energy Technology Data Exchange (ETDEWEB)
Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)
2009-03-15
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Entanglement in neutrino oscillations
International Nuclear Information System (INIS)
Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.
2009-01-01
Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Discrete repulsive oscillator wavefunctions
International Nuclear Information System (INIS)
Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2009-01-01
For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.
Neutrino Masses and Oscillations
CERN. Geneva. Audiovisual Unit; Treille, Daniel
2002-01-01
This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.
Oscillations in quasineutral plasmas
International Nuclear Information System (INIS)
Grenier, E.
1996-01-01
The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs
Density oscillations within hadrons
International Nuclear Information System (INIS)
Arnold, R.; Barshay, S.
1976-01-01
In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr
Fogli, Gianluigi
2005-06-01
We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.
Automated design of degenerate codon libraries.
Mena, Marco A; Daugherty, Patrick S
2005-12-01
Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.
Atomic rate coefficients in a degenerate plasma
Aslanyan, Valentin; Tallents, Greg
2015-11-01
The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.
K-causality and degenerate spacetimes
Dowker, H. F.; Garcia, R. S.; Surya, S.
2000-11-01
The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.
Degenerate RFID Channel Modeling for Positioning Applications
Directory of Open Access Journals (Sweden)
A. Povalac
2012-12-01
Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.
Degenerate odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
2000-01-01
A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra
Immunology of age-related macular degeneration
Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.
2014-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979
Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas
Mamun, A. A.
2018-02-01
The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.
Quasioptical Josephson oscillator
International Nuclear Information System (INIS)
Wengler, M.J.; Pance, A.; Liu, B.
1991-01-01
This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer
Modeling microtubule oscillations
DEFF Research Database (Denmark)
Jobs, E.; Wolf, D.E.; Flyvbjerg, H.
1997-01-01
Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Neutrino oscillations at LAMPF
International Nuclear Information System (INIS)
Carlini, R.; Choi, C.; Donohue, J.
1985-01-01
Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF
Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich
1966-01-01
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-
Solar and stellar oscillations
International Nuclear Information System (INIS)
Fossat, E.
1981-01-01
We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)
Brain Oscillations, Hypnosis, and Hypnotizability.
Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin
2015-01-01
This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.
Bounded-oscillation Pushdown Automata
Directory of Open Access Journals (Sweden)
Pierre Ganty
2016-09-01
Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.
Nonlinear dynamics in micromechanical and nanomechanical resonators and oscillators
Dunn, Tyler
In recent years, the study of nonlinear dynamics in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) has attracted considerable attention, motivated by both fundamental and practical interests. One example is the phenomenon of stochastic resonance. Previous measurements have established the presence of this counterintuitive effect in NEMS, showing that certain amounts of white noise can effectively amplify weak switching signals in nanomechanical memory elements and switches. However, other types of noise, particularly noises with 1/falpha spectra, also bear relevance in these and many other systems. At a more fundamental level, the role which noise color plays in stochastic resonance remains an open question in the field. To these ends, this work presents systematic measurements of stochastic resonance in a nanomechanical resonator using 1/f alpha and Ornstein-Uhlenbeck noise types. All of the studied noise spectra induce stochastic resonance, proving that colored noise can also be beneficial; however, stronger noise correlations suppress the effect, decreasing the maximum signal-to-noise ratio and increasing the optimal noise intensity. Evidence suggests that 1/falpha noise spectra with increasing noise color lead to increasingly asymmetric switching, reducing the achievable amplification. Another manifestly nonlinear effect anticipated in these systems is modal coupling. Measurements presented here demonstrate interactions between various mode types on a wide scale, providing the first reported observations of coupling in bulk longitudinal modes of MEMS. As a result of anharmonic elastic effects, each mode shifts in frequency by an amount proportional to the squared displacement (or energy) of a coupled mode. Since all resonator modes couple in this manner, these effects enable nonlinear measurement of energy and mechanical nonlinear signal processing across a wide range of frequencies. Finally, while these experiments address nonlinear
Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors
Directory of Open Access Journals (Sweden)
J. W. Horng
2011-09-01
Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.
Stable And Oscillating Acoustic Levitation
Barmatz, Martin B.; Garrett, Steven L.
1988-01-01
Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.
Isotropic oscillator: spheroidal wave functions
International Nuclear Information System (INIS)
Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.
1985-01-01
Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states
Neutrino oscillations. Theory and experiment
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2001-01-01
Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)
Mode instability in one-dimensional anharmonic lattices: Variational equation approach
Yoshimura, K.
1999-03-01
The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.
Chemotaxis and Actin Oscillations
Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir
Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.
The Wien Bridge Oscillator Family
DEFF Research Database (Denmark)
Lindberg, Erik
2006-01-01
A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...
Unstable oscillators based hyperchaotic circuit
DEFF Research Database (Denmark)
Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.
1999-01-01
A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...
Heat exchanger with oscillating flow
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Human disc degeneration is associated with increased MMP 7 expression.
Le Maitre, C L; Freemont, A J; Hoyland, J A
2006-01-01
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.
Pump depletion effects in thermal degenerate four-wave mixing
International Nuclear Information System (INIS)
Guha, S.; Chen, W.
1987-01-01
Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported
Effect of anharmonicity and Debye-Waller factor on the superconductivity of PdHsub(x) and PdDsub(x)
International Nuclear Information System (INIS)
Griessen, R.; Groot, D.G. de
1983-01-01
On the basis of existing superconducting tunnelling, neutron scattering, electrical resistivity and Raman scattering data and new thermal expansion, elastic moduli and point-contact spectroscopy data it is concluded that the anharmonicity of the proton (deuteron)-palladium potential is such that Msub(H)#betta#sub(H) 2 /(Msub(D)#betta#sub(D) 2 ) = 1.12 +- 0.05 Msub(H(D)) is the mass and #betta#sub(H(D)) the frequency of the vibration of hydrogen (deuterium). This anharmonicity is approximately 2 times too weak to reproduce the observed inverse isotope effect in the superconducting transition temperature of concentrated PdHsub(x) and PdDsub(x) alloys. Within a pseudopotential formalism it is shown that the Debye-Waller factor arising from the large zero-point amplitude of the interstitial hydrogen (deuterium) leads to a contribution to the inverse isotope effect in Tsub(c) which is as large as that of anharmonicity alone. (Auth.)
Reactor oscillator - I - III, Part I
International Nuclear Information System (INIS)
Lolic, B.
1961-12-01
Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction
Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating
Transverse kink oscillations in the presence of twist
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
Intacs for early pellucid marginal degeneration.
Kymionis, George D; Aslanides, Ioannis M; Siganos, Charalambos S; Pallikaris, Ioannis G
2004-01-01
A 42-year-old man had Intacs (Addition Technology Inc.) implantation for early pellucid marginal degeneration (PMD). Two Intacs segments (0.45 mm thickness) were inserted uneventfully in the fashion typically used for low myopia correction (nasal-temporal). Eleven months after the procedure, the uncorrected visual acuity was 20/200, compared with counting fingers preoperatively, while the best spectacle-corrected visual acuity improved to 20/25 from 20/50. Corneal topographic pattern also improved. Although the results are encouraging, concern still exists regarding the long-term effect of this approach for the management of patients with PMD.
Genome instability: Linking ageing and brain degeneration.
Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef
2017-01-01
Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.
Degenerate stars. XII - Recognition of hot nondegenerates
Greenstein, J. L.
1980-12-01
Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.
Aneutronic fusion in a degenerate plasma
International Nuclear Information System (INIS)
Son, S.; Fisch, N.J.
2004-01-01
In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot
Aneutronic Fusion in a Degenerate Plasma
International Nuclear Information System (INIS)
Son, S.; Fisch, N.J.
2004-01-01
In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot
Damping of Coherent oscillations
Vos, L
1996-01-01
Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.
Convection and stellar oscillations
DEFF Research Database (Denmark)
Aarslev, Magnus Johan
2017-01-01
for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...
Photospheric oscillations. Pt. 1
International Nuclear Information System (INIS)
Fossat, E.; Ricort, G.
1975-01-01
Intensity fluctuations in the wings of the Fraunhofer line Na D 1 5896 have been recorded for about two hundred hours at the focus of the Nice coude refractor, using a sodium optical resonance device. Because of the large beam aperture available, records have been made on circular apertures from 22'' up to 32' diameter (the whole sun). The principal results from the analysis of these date are: As shown by White and Cha, the five-minute oscillation has a gaussian random character with a mean lifetime of about 20 min. Its two-dimensional spatial power spectrum is roughly gaussian for every temporal frequency between 2 and 6 MHz. The width of this gaussian spectrum is near 5 x 10 -5 km -1 (i.e. π = 20,000 km). (orig./BJ) [de
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Oscillator strengths for neutral technetium
International Nuclear Information System (INIS)
Garstang, R.H.
1981-01-01
Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations
Hyperchaos in coupled Colpitts oscillators
DEFF Research Database (Denmark)
Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas
2003-01-01
The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Augmenting cognition by neuronal oscillations
Horschig, J.M.; Zumer, J.; Bahramisharif, A.
2014-01-01
Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both
MRI and MR tractography in bilateral hypertrophic olivary degeneration
Directory of Open Access Journals (Sweden)
Debraj Sen
2014-01-01
Full Text Available Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.
MRI and MR tractography in bilateral hypertrophic olivary degeneration.
Sen, Debraj; Gulati, Yoginder S; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra
2014-10-01
Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted.
An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment
Mathew, David J.; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.
2016-01-01
Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were al...
MRI and MR tractography in bilateral hypertrophic olivary degeneration
International Nuclear Information System (INIS)
Sen, Debraj; Gulati, Yoginder S.; Malik, Virender; Mohimen, Aneesh; Sibi, Eranki; Reddy, Deepak Chandra
2014-01-01
Hypertrophic olivary degeneration is a trans-synaptic neuronal degeneration associated with hypertrophy of the inferior olivary nucleus due to a lesion in the triangle of Guillain-Mollaret. Familiarity with this entity on magnetic resonance imaging (MRI) is essential to avoid other erroneous ominous diagnoses. We present a case of bilateral hypertrophic olivary degeneration and discuss the etiopathogenesis and MRI findings in this entity. The contributory role of MR tractography in the diagnosis is also highlighted
Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.
Briggs, C E; Rucinski, D; Rosenfeld, P J; Hirose, T; Berson, E L; Dryja, T P
2001-09-01
To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.
Oscillating universe with quintom matter
International Nuclear Information System (INIS)
Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin
2008-01-01
In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing
Many-Body Green Function of Degenerate Systems
International Nuclear Information System (INIS)
Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel
2009-01-01
A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.
The prognosis of retinal detachment due to lattice degeneration.
Benson, W E; Morse, P H
1978-09-01
In a series of 553 consecutive retinal detachments, 29% (120) were due to lattice degeneration. Forty-five percent of these were due to atrophic holes in the lattice degeneration and 55% were due to tears caused by traction posterior to or at the end of a patch of lattice. In phakic patients, retinal detachments due to atrophic holes were most common in young myopes. Detachments due to traction tears were seen in older, less myopic patients. The incidence of massive periretinal proliferation was less (5%) in detachments due to lattice degeneration than in detachments not due to lattice degeneration (6.5%).
Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R
2014-06-06
We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing
2015-03-01
It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.
Directory of Open Access Journals (Sweden)
A. Glensk
2014-02-01
Full Text Available We study the temperature dependence of the Gibbs energy of vacancy formation in Al and Cu from T=0 K up to the melting temperature, fully taking into account anharmonic contributions. Our results show that the formation entropy of vacancies is not constant as often assumed but increases almost linearly with temperature. The resulting highly nonlinear temperature dependence in the Gibbs formation energy naturally explains the differences between positron annihilation spectroscopy and differential dilatometry data and shows that nonlinear thermal corrections are crucial to extrapolate high-temperature experimental data to T=0 K. Employing these corrections—rather than the linear Arrhenius extrapolation that is commonly assumed in analyzing experimental data—revised formation enthalpies are obtained that differ up to 20% from the previously accepted ones. Using the revised experimental formation enthalpies, we show that a large part of the discrepancies between DFT-GGA and unrevised experimental vacancy formation energies disappears. The substantial shift between previously accepted and the newly revised T=0 K formation enthalpies also has severe consequences in benchmarking ab initio methods against experiments, e.g., in deriving corrections that go beyond commonly used LDA and GGA exchange-correlation functionals such as the AM05 functional.
International Nuclear Information System (INIS)
Montgomery, T. W. A.; Scott, R. G.; Lesanovsky, I.; Fromhold, T. M.
2010-01-01
We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number, and chiral symmetry breaking due to counter-rotation of the two clouds.
Directory of Open Access Journals (Sweden)
Y. Abedini
2000-06-01
Full Text Available This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth. We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.
Getting superstring amplitudes by degenerating Riemann surfaces
International Nuclear Information System (INIS)
Matone, Marco; Volpato, Roberto
2010-01-01
We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.
Metabolic anatomy of paraneoplastic cerebellar degeneration
International Nuclear Information System (INIS)
Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.
1988-01-01
Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis
Progranulin in frontotemporal lobar degeneration and neuroinflammation
Directory of Open Access Journals (Sweden)
Hutton Michael L
2007-02-01
Full Text Available Abstract Progranulin (PGRN is a pleiotropic protein that has gained the attention of the neuroscience community with recent discoveries of mutations in the gene for PGRN that cause frontotemporal lobar degeneration (FTLD. Pathogenic mutations in PGRN result in null alleles, and the disease is likely the result of haploinsufficiency. Little is known about the normal function of PGRN in the central nervous system apart from a role in brain development. It is expressed by microglia and neurons. In the periphery, PGRN is involved in wound repair and inflammation. High PGRN expression has been associated with more aggressive growth of various tumors. The properties of full length PGRN are distinct from those of proteolytically derived peptides, referred to as granulins (GRNs. While PGRN has trophic properties, GRNs are more akin to inflammatory mediators such as cytokines. Loss of the neurotrophic properties of PGRN may play a role in selective neuronal degeneration in FTLD, but neuroinflammation may also be important. Gene expression studies suggest that PGRN is up-regulated in a variety of neuroinflammatory conditions, and increased PGRN expression by microglia may play a pivotal role in the response to brain injury, neuroinflammation and neurodegeneration.
Observable consequences of partially degenerate leptogenesis
Ellis, Jonathan Richard; Yanagida, T; Ellis, John; Raidal, Martti
2002-01-01
In the context of the seesaw mechanism, it is natural that the large solar and atmospheric neutrino mixing angles originate separately from large 2 by 2 mixings in the neutrino and charged-lepton sectors, respectively, and large mixing in the neutrino couplings is in turn more plausible if two of the heavy singlet neutrinos are nearly degenerate. We study the phenomenology of this scenario, calculating leptogenesis by solving numerically the set of coupled Boltzmann equations for out-of-equilibrium heavy singlet neutrino decays in the minimal supersymmetric seesaw model. The near-degenerate neutrinos may weigh < 10^8 GeV, avoiding the cosmological gravitino problem. This scenario predicts that Br(mu to e gamma) should be strongly suppressed, because of the small singlet neutrino masses, whilst Br(tau to mu gamma) may be large enough to be observable in B-factory or LHC experiments. If the light neutrino masses are hierarchical, we predict that the neutrinoless double-beta decay parameter m_{ee} is approxim...
MR imaging findings of hypertrophic olivary degeneration
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Joong; Jeon, Pyung; Kim, Dong Ik [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)
1997-06-01
To describe the magnetic resonance (MR) imaging findings of hypertrophic olivary degeneration (HOD) MR images of seven patients with HOD were retrospectively reviewed. Two were women and five were men, and they were aged between 48 and 65 (mean 58) years. Imaging examinations were performed with a 1.5-T unit, and the findings were used to evaluate the size and signal intensity of olivary lesions. The time interval from hemorrhagic ictus to MR imaging was between two and 30 months. Follow-up examinations were performed in two patients. All four patients with hemorrhages involving the central tegmental tract in the pons or midbrain showed ipsilateral HOD. Among these four, bilateral HOD was seen in one patient with hemorrhage involving the bilateral central tegmental tract, and in another with tegmental hemorrhage extending to the ipsilateral superior cerebellar peduncle. One patient with cerebellar hemorrhage involving the dentate nucleus had contralateral HOD. Two patients with multiple hemorrhages involving both the pons and cerebellum showed bilateral HOD. Axial MR images showed mild enlargement of the involved olivary mucleus, with high signal intensity on both proton density and T2 weighted images. There was no apparent enhancement on postcontrast T1-weighted images. MR imaging can clearly distinguish secondary olivary degeneration from underlying pathology involving the central tegmental tract in the pons or midbrain and cerebellum. These olivary abnormalities should not, however, be mistaken for primary medullary lesions.
Vitreous in lattice degeneration of retina.
Foos, R Y; Simons, K B
1984-05-01
A localized pocket of missing vitreous invariably overlies lattice degeneration of the retina. Subjects with lattice also have a higher rate of rhegmatogenous retinal detachment, which is usually a complication of retinal tears. The latter are in turn a result of alterations in the central vitreous--that is, synchysis senilis leading to posterior vitreous detachment. In order to determine if there is either an association or a deleterious interaction between the local and central lesions of the vitreous in eyes with lattice, a comparison was made in autopsy eyes with and without lattice the degree of synchysis and rate of vitreous detachment. Results show no association between the local and central vitreous lesions, indicating that a higher rate of vitreous detachment is not the basis for the higher rate of retinal detachment in eyes with lattice. Also, there was no suggestion of deleterious interaction between the local and central vitreous lesions, either through vitreodonesis as a basis for precocious vitreous detachment, or through a greater degree of synchysis as a basis for interconnection of local and central lacunae (which could extend the localized retinal detachment in eyes with holes in lattice degeneration).
MR imaging findings of hypertrophic olivary degeneration
International Nuclear Information System (INIS)
Kim, Do Joong; Jeon, Pyung; Kim, Dong Ik
1997-01-01
To describe the magnetic resonance (MR) imaging findings of hypertrophic olivary degeneration (HOD) MR images of seven patients with HOD were retrospectively reviewed. Two were women and five were men, and they were aged between 48 and 65 (mean 58) years. Imaging examinations were performed with a 1.5-T unit, and the findings were used to evaluate the size and signal intensity of olivary lesions. The time interval from hemorrhagic ictus to MR imaging was between two and 30 months. Follow-up examinations were performed in two patients. All four patients with hemorrhages involving the central tegmental tract in the pons or midbrain showed ipsilateral HOD. Among these four, bilateral HOD was seen in one patient with hemorrhage involving the bilateral central tegmental tract, and in another with tegmental hemorrhage extending to the ipsilateral superior cerebellar peduncle. One patient with cerebellar hemorrhage involving the dentate nucleus had contralateral HOD. Two patients with multiple hemorrhages involving both the pons and cerebellum showed bilateral HOD. Axial MR images showed mild enlargement of the involved olivary mucleus, with high signal intensity on both proton density and T2 weighted images. There was no apparent enhancement on postcontrast T1-weighted images. MR imaging can clearly distinguish secondary olivary degeneration from underlying pathology involving the central tegmental tract in the pons or midbrain and cerebellum. These olivary abnormalities should not, however, be mistaken for primary medullary lesions
Hyaline cartilage degenerates after autologous osteochondral transplantation.
Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S
2004-11-01
Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.
Kozlov, I. V.; Kolesnichenko, Yu. A.
2017-07-01
We present a theoretical study of the spatial distribution of the local density of states (LDOS) and the local magnetization density (LMD) in the vicinity of a magnetic point-defect in a degenerate two-dimensional electron gas with a mixed Rashba-Dresselhaus spin-orbit coupling interaction (SOI). The dependence of the Friedel oscillations, which arise under these conditions, on the ratio of the SOI constants is investigated. We obtain asymptotic expressions for the oscillatory parts of the LDOS and the LMD, that are accurate for large distances from the defect. It is shown, that the Friedel oscillations are significantly anisotropic and contain several harmonics for certain ratios of the SOI constants. Period of the oscillations for directions along the symmetry axes of the Fermi contours are determined. Finally, we introduce a method for determining the values of the two SOI constants by measuring the period of the Friedel oscillations of the LDOS and the LMD for different harmonics.
A theory of generalized Bloch oscillations
International Nuclear Information System (INIS)
Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The influence of Kohn singularity on the occurrence scattering time for the electron-ion interaction is investigated in degenerate quantum collisional plasmas. The first-order eikonal analysis is used to obtain the scattering amplitude and the occurrence scattering time. The result shows that the Friedel oscillation due to the Kohn singularity suppresses the advance phenomena of occurrence scattering time in both forward and backward scattering domains. It is shown that the increase of plasmon energy would reduce the time advance for both forward and backward scattering domains. However, the increase of Fermi energy would enhance the phenomena of time advance. It is also found that the time advance with high collision frequency is larger than that with low collision frequency for the forward scattering domain and vice versa for the backward scattering domain. We have shown that the time advance is stronger in general for the forward scattering domain than that for the backward scattering domain.
Properties of the localized field emitted from degenerate Λ-type atoms in photonic crystals
International Nuclear Information System (INIS)
Foroozani, N.; Golshan, M. M.; Mahjoei, M.
2007-01-01
The spontaneous emission from a degenerate Λ-type three-level atom, embedded in a photonic crystal, is studied. The emitted field, as a function of time and position, is calculated by solving the three coupled differential equations governing the amplitudes. We show that the spontaneously emitted field is characterized by three components (as in the case of two-level and V-type atoms): a localized part, a traveling part, and a t -3/2 decaying part. Our calculations indicate that under specific conditions the atoms do not emit propagating fields, while the localized field, having shorter localization length and time, is intensified. As a consequence, the population of the upper level, after a short period of oscillations, approaches a constant value. It is also shown that this steady value, under the same conditions, is much larger than its counterpart in V-type atoms
Neutrino oscillation: status and outlooks
International Nuclear Information System (INIS)
Nedelec, P.
1994-01-01
Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs
Synchronous Oscillations in Microtubule Polymerization
Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.
1987-08-01
Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.
Rabi oscillation between states of a coupled harmonic oscillator
International Nuclear Information System (INIS)
Park, Tae Jun
2003-01-01
Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves
Oscillations in Mathematical Biology
1983-01-01
The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...
Principal oscillation patterns
International Nuclear Information System (INIS)
Storch, H. von; Buerger, G.; Storch, J.S. von
1993-01-01
The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)
A dam for retrograde axonal degeneration in multiple sclerosis?
Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A.F.S.
2014-01-01
Objective: Trans-synaptic axonal degeneration is a mechanism by which neurodegeneration can spread from a sick to a healthy neuron in the central nervous system. This study investigated to what extent trans-synaptic axonal degeneration takes place within the visual pathway in multiple sclerosis
New treatment strategies for canine intervertebral disc degeneration
Smolders, L.A.
2013-01-01
Degeneration of the intervertebral disc (IVD) is a common problem in dogs and humans. IVD degeneration can lead to herniation of the IVD with subsequent compression of neural structures and various clinical signs, including back pain. Current treatment of IVD disease is conservative or surgical.
Lattice degeneration of the retina and retinal detachment.
Semes, L P
1992-01-01
Lattice retinal degeneration is considered the most significant peripheral retinal disorder potentially predisposing to retinal breaks and retinal detachment. Lattice degeneration affects the vitreous and inner retinal layers with secondary changes as deep as the retinal pigment epithelium and perhaps the choriocapillaris. Variations in clinical appearance are the rule; geographically, lattice lesions favor the vertical meridians between the equator and the ora serrata. Lattice degeneration begins early in life and has been reported in sequential generations of the same family. Along with its customary bilateral occurrence, lattice shares other characteristics of a dystrophy. The association between the vitreous and retina in lattice lesions may be responsible for the majority of lattice-induced retinal detachments. The tumultuous event of posterior vitreous separation in the presence of abnormally strong vitreoretinal adherence is the trigger for a retinal tear that, in turn, may lead to retinal detachment. Although retinal holes in young patients with lattice degeneration may play a role in the evolution of retinal detachment, the clinical course of lattice degeneration seems to be one of dormancy rather than of progressive change. This discussion outlines the pathophysiology of lattice retinal degeneration and the relationship of pathophysiology to clinical presentation. The epidemiology of lattice degeneration is summarized, as are the possible precursors to retinal detachment. A clinical characterization of the natural history of lattice degeneration is offered, and interventions for complications are described. To conclude, management strategies from a primary-care standpoint are reviewed.
Prevalence of age-related macular degeneration in elderly Caucasians
DEFF Research Database (Denmark)
Erke, Maja G; Bertelsen, Geir; Peto, Tunde
2012-01-01
To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD).......To describe the sex- and age-specific prevalence of drusen, geographic atrophy, and neovascular age-related macular degeneration (AMD)....
Oscillator construction of su(n|m) Q-operators
Energy Technology Data Exchange (ETDEWEB)
Frassek, Rouven, E-mail: rfrassek@physik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Lukowski, Tomasz, E-mail: lukowski@mathematik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Meneghelli, Carlo, E-mail: carlo@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany); Staudacher, Matthias, E-mail: matthias@aei.mpg.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2011-09-01
We generalize our recent explicit construction of the full hierarchy of Baxter Q-operators of compact spin chains with su(n) symmetry to the supersymmetric case su(n|m). The method is based on novel degenerate solutions of the graded Yang-Baxter equation, leading to an amalgam of bosonic and fermionic oscillator algebras. Our approach is fully algebraic, and leads to the exact solution of the associated compact spin chains while avoiding Bethe ansatz techniques. It furthermore elucidates the algebraic and combinatorial structures underlying the system of nested Bethe equations. Finally, our construction naturally reproduces the representation, due to Z. Tsuboi, of the hierarchy of Baxter Q-operators in terms of hypercubic Hasse diagrams.
Negative electroretinograms in pericentral pigmentary retinal degeneration.
Hotta, Kazuki; Kondo, Mineo; Nakamura, Makoto; Hotta, Junko; Terasaki, Hiroko; Miyake, Yozo; Hida, Tetsuo
2006-01-01
The clinical presentation and electrophysiological findings are described of three consecutive cases with pericentral pigmentary retinal degeneration. The responses to bright flashes after dark adaptation showed negative waveform shape in all cases. Rod responses were strongly reduced compared with cone responses. Cone electroretinograms elicited by long-duration stimuli showed greater loss of the on-response than the off-response. The ratio of the on-response amplitude to off-response amplitude of these patients (0.52 +/- 0.12; mean +/- SD, n = 6) was significantly smaller than that of normal subject (0.83 +/- 0.21; mean +/- SD, n = 8) (Mann-Whitney U-test, P retinal function, especially in transmission between photoreceptors and depolarizing bipolar cells.
Tidal effects in twin-degenerate binaries
International Nuclear Information System (INIS)
Campbell, C.G.
1984-01-01
The tidal velocity field is calculated for an initially non-rotating low mass white dwarf secondary in a twin-degenerate binary. These motions are used to find the tidal torque on the secondary, to first order in the orbital frequency, and an expression is derived for the synchronization time. For a lobe-filling secondary the synchronization time has a weak dependence on the mass and luminosity of the star, and for the binary G61-29 is found to be of the same order as the estimated lifetime of the system. It is emphasized, however, that tidal excitation of non-radial oscillatory modes in the secondary may significantly shorten the synchronization time. (author)
A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION
Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.
2014-01-01
SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365
A computational model of motor neuron degeneration.
Le Masson, Gwendal; Przedborski, Serge; Abbott, L F
2014-08-20
To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Degenerate R-S perturbation theory
Hirschfelder, J. O.; Certain, P. R.
1973-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.
Prevention of age-related macular degeneration.
Wong, Ian Yat Hin; Koo, Simon Chi Yan; Chan, Clement Wai Nang
2011-02-01
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula.
Progression of Fatty Muscle Degeneration in Atraumatic Rotator Cuff Tears.
Hebert-Davies, Jonah; Teefey, Sharlene A; Steger-May, Karen; Chamberlain, Aaron M; Middleton, William; Robinson, Kathryn; Yamaguchi, Ken; Keener, Jay D
2017-05-17
The purpose of this prospective study was to examine the progression of fatty muscle degeneration over time in asymptomatic shoulders with degenerative rotator cuff tears. Subjects with an asymptomatic rotator cuff tear in 1 shoulder and pain due to rotator cuff disease in the contralateral shoulder were enrolled in a prospective cohort. Subjects were followed annually with shoulder ultrasonography, which evaluated tear size, location, and fatty muscle degeneration. Tears that were either full-thickness at enrollment or progressed to a full-thickness defect during follow-up were examined. A minimum follow-up of 2 years was necessary for eligibility. One hundred and fifty-six shoulders with full-thickness rotator cuff tears were potentially eligible. Seventy shoulders had measurable fatty muscle degeneration of at least 1 rotator cuff muscle at some time point. Patients with fatty muscle degeneration in the shoulder were older than those without degeneration (mean, 65.8 years [95% confidence interval (CI), 64.0 to 67.6 years] compared with 61.0 years [95% CI, 59.1 to 62.9 years]; p tears at baseline was larger in shoulders with degeneration than in shoulders that did not develop degeneration (13 and 10 mm wide, respectively, and 13 and 10 mm long; p Tears with fatty muscle degeneration were more likely to have enlarged during follow-up than were tears that never developed muscle degeneration (79% compared with 58%; odds ratio, 2.64 [95% CI, 1.29 to 5.39]; p muscle degeneration occurred more frequently in shoulders with tears that had enlarged (43%; 45 of 105) than in shoulders with tears that had not enlarged (20%; 10 of 51; p tears with enlargement and progression of muscle degeneration were more likely to extend into the anterior supraspinatus than were those without progression (53% and 17%, respectively; p tear size (p = 0.56). The median time from tear enlargement to progression of fatty muscle degeneration was 1.0 year (range, -2.0 to 6.9 years) for the
Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.
Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann
2014-09-15
In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.
Formation of Degenerate Band Gaps in Layered Systems
Directory of Open Access Journals (Sweden)
Alexey P. Vinogradov
2012-06-01
Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.
[Lattice degeneration of the peripheral retina: ultrastructural study].
Bec, P; Malecaze, F; Arne, J L; Mathis, A
1985-01-01
The ultrastructural study of a case of snail track degeneration shows the presence of lipid inclusions in both the glial and the macrophage cells in every layer of the retina, and the existence of intraretinal fibers different from collagen fibers appearing to be glial filaments similar to those found in astrocytic gliomes and to the Rosenthal fibers observed in senile nervous cells. Other features were thinning of the retina and absence of blood vessels in the retina. There are no abnormalities of the vitreo-retinal juncture. All the lesions are in agreement with those observed by Daicker [Ophthalmologica, Basel 165: 360-365, 1972; Klin. Mbl. Augenheilk. 172: 581-583, 1978] with some differences, however. They are different from those found in lattice degeneration. They show that snail track degeneration is a specific form of peripheral retinal degeneration which is quite different from lattice degeneration and must not be considered similar.
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Electronically tunable RC sinusoidal oscillators
International Nuclear Information System (INIS)
Florescu, Valeriu
2008-01-01
This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)
Thermoelastic Loss in Microscale Oscillators
National Research Council Canada - National Science Library
Houston, B. H; Photiadis, D. M; Marcus, M. H; Bucaro, J. A; Liu, Xiao; Vignola, J. F
2001-01-01
...) and nanoelectromechanical (NEMS) oscillators. The theory defines a flexural modal participation factor, the fraction of potential energy stored in flexure, and approximates the internal friction by assuming the energy loss to occur solely via...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Transient voltage oscillations in coils
International Nuclear Information System (INIS)
Chowdhuri, P.
1985-01-01
Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated
International Nuclear Information System (INIS)
Ozolins, V.; Wolverton, C.; Zunger, A.
1998-01-01
Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total-energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%), and Ni/Au (15%). We find that left-angle 001 right-angle is the elastically soft direction for biaxial expansion of Cu and Ni, but it is left-angle 201 right-angle for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along left-angle 111 right-angle and left-angle 001 right-angle behave like phase separating systems, while for left-angle 110 right-angle they behave like ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents. copyright 1998 The American Physical Society
Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky
2018-04-24
Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.
Energy Technology Data Exchange (ETDEWEB)
Santos, Ludovic; Vaeck, Nathalie [Laboratoire de Chimie Quantique et Photophysique, CP 160/09 Université Libre de Bruxelles, B-1050 Brussels (Belgium); Justum, Yves [Laboratoire de Chimie Physique, UMR 8000 and CNRS, Université Paris-Sud, F-91405 Orsay (France); Desouter-Lecomte, M. [Laboratoire de Chimie Physique, UMR 8000 and CNRS, Université Paris-Sud, F-91405 Orsay (France); Département de Chimie, Université de Liège, Bât B6c, Sart Tilman B-4000, Liège (Belgium)
2015-04-07
Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd{sup +} ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.
Modelling solar-like oscillators
Energy Technology Data Exchange (ETDEWEB)
Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be
2008-10-15
The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Some comparison of two fractional oscillators
International Nuclear Information System (INIS)
Kang Yonggang; Zhang Xiu'e
2010-01-01
The other form of fractional oscillator equation comparing to the widely discussed one is ushered in. The properties of vibration of two fractional oscillators are discussed under the influence of different initial conditions. The interpretation of the characteristics of the fractional oscillators using different method is illustrated. Based on two fractional oscillator equations, two linked bodies and the continuous system are studied.
Magnetically Coupled Magnet-Spring Oscillators
Donoso, G.; Ladera, C. L.; Martin, P.
2010-01-01
A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.; Salama, Khaled N.
2009-01-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.
2018-02-01
Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.
DEFF Research Database (Denmark)
Wiencke, Anne Katrine
2001-01-01
ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...
DEFF Research Database (Denmark)
Wiencke, Anne Katrine
2001-01-01
ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...
On the mechanism of oscillations in neutrophils
DEFF Research Database (Denmark)
Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke
2010-01-01
We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...
Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo
Energy Technology Data Exchange (ETDEWEB)
Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)
1961-12-15
Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.
Progress toward the maintenance and repair of degenerating retinal circuitry.
Vugler, Anthony A
2010-01-01
Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.
Age related macular degeneration and visual disability.
Christoforidis, John B; Tecce, Nicola; Dell'Omo, Roberto; Mastropasqua, Rodolfo; Verolino, Marco; Costagliola, Ciro
2011-02-01
Age-related macular degeneration (AMD) is the leading cause of central blindness or low vision among the elderly in industrialized countries. AMD is caused by a combination of genetic and environmental factors. Among modifiable environmental risk factors, cigarette smoking has been associated with both the dry and wet forms of AMD and may increase the likelihood of worsening pre-existing AMD. Despite advances, the treatment of AMD has limitations and affected patients are often referred for low vision rehabilitation to help them cope with their remaining eyesight. The characteristic visual impairment for both forms of AMD is loss of central vision (central scotoma). This loss results in severe difficulties with reading that may be only partly compensated by magnifying glasses or screen-projection devices. The loss of central vision associated with the disease has a profound impact on patient quality of life. With progressive central visual loss, patients lose their ability to perform the more complex activities of daily living. Common vision aids include low vision filters, magnifiers, telescopes and electronic aids. Low vision rehabilitation (LVR) is a new subspecialty emerging from the traditional fields of ophthalmology, optometry, occupational therapy, and sociology, with an ever-increasing impact on the usual concepts of research, education, and services for visually impaired patients. Relatively few ophthalmologists practise LVR and fewer still routinely use prismatic image relocation (IR) in AMD patients. IR is a method of stabilizing oculomotor functions with the purpose of promoting better function of preferred retinal loci (PRLs). The aim of vision rehabilitation therapy consists in the achievement of techniques designed to improve PRL usage. The use of PRLs to compensate for diseased foveae has offered hope to these patients in regaining some function. However, in a recently published meta-analysis, prism spectacles were found to be unlikely to be of
Localized thermonuclear runaways and volcanoes on degenerate dwarf stars
Energy Technology Data Exchange (ETDEWEB)
Shara, M.M.
1982-10-15
Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.
Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.
Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I
2009-11-01
Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.
Acquired Nonpigmented Vitreous Cyst Associated With Lattice Degeneration.
Lu, Jing; Mai, Guiying; Liu, Ruyuan; Luo, Yan; Lu, Lin
2017-10-01
A 63-year-old male presented with a round-shaped floater and visual obscuration in the right eye. Clinical evaluation showed a nonpigmented vitreous cyst connected to a lattice degeneration by a stalk. Immunostaining of the vitreous cyst obtained from vitrectomy showed its origin of retinal neuroepithelium. The cyst was formed by continuous vitreous traction, which might tear up the disrupted retina at the area of lattice degeneration. This report added the lattice degeneration to the list of causes for the acquired vitreous cyst. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:856-858.]. Copyright 2017, SLACK Incorporated.
[Clinical features and prognosis of retinal lattice degeneration].
Guo, X R
1990-07-01
110 cases (110 eyes) of retinal lattice degeneration were clinically observed and followed up for 3-8 years. Most lesions were located in the superotemporal quadrant, band-shaped, and parallel to the ora serrata. 80.9% of the lesions presented various degrees of pigmentation, 67.1% yellowish white spots, and 83.6% white lines. 32.9% of the eyes developed retinal holes. Most lattice degenerations were accompanied by vitreous degeneration and vitreoretinal traction. The disease progressed only slowly, though in a few cases it tended to expand.
[Current concepts in pathogenesis of age-related macular degeneration].
Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena
2014-01-01
Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.
Flashing oscillation in pool water
International Nuclear Information System (INIS)
Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya
1996-01-01
This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis
Neutrino oscillations at proton accelerators
International Nuclear Information System (INIS)
Michael, Douglas
2002-01-01
Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments
Neutrino Oscillations at Proton Accelerators
Michael, Douglas
2002-12-01
Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.
THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III
International Nuclear Information System (INIS)
Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Éric; Bautista, Julian E.; Barkhouser, Robert H.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Bovy, Jo; Brandt, W. N.
2013-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg 2 to measure BAO to redshifts z A to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D A (z) and H –1 (z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
Coupled Langmuir oscillations in 2-dimensional quantum plasmas
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.
2014-01-01
In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits
A Gemini snapshot survey for double degenerates
Kilic, Mukremin; Brown, Warren R.; Gianninas, A.; Curd, Brandon; Bell, Keaton J.; Allende Prieto, Carlos
2017-11-01
We present the results from a Gemini snapshot radial-velocity survey of 44 low-mass white-dwarf candidates selected from the Sloan Digital Sky Survey (SDSS) spectroscopy. To find sub-hour orbital period binary systems, our time-series spectroscopy had cadences of 2-8 min over a period of 20-30 min. Through follow-up observations at Gemini and the MMT, we identify four double-degenerate binary systems with periods ranging from 53 min to 7 h. The shortest period system, SDSS J123549.88+154319.3, was recently identified as a sub-hour period detached binary by Breedt and collaborators. Here, we refine the orbital and physical parameters of this system. High-speed and time-domain survey photometry observations do not reveal eclipses or other photometric effects in any of our targets. We compare the period distribution of these four systems with the orbital period distribution of known double white dwarfs; the median period decreases from 0.64 to 0.24 d for M = 0.3-0.5 M⊙ to M < 0.3 M⊙ white dwarfs. However, we do not find a statistically significant correlation between the orbital period and white-dwarf mass.
Correlations in a partially degenerate electron plasma
Energy Technology Data Exchange (ETDEWEB)
Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)
Radiation therapy: age-related macular degeneration.
Mendez, Carlos A Medina; Ehlers, Justis P
2013-01-01
Age-related macular degeneration (AMD) is the leading cause of severe irreversible vision loss in patients over the age of 50 years in the developed world. Neovascular AMD (NVAMD) is responsible for 90% of the cases with severe visual loss. In the last decade, the treatment paradigm for NVAMD has been transformed by the advent of anti-vascular endothelial growth factor therapy. Despite the excellent results of anti-vascular endothelial growth factor therapy, frequent injections remain a necessity for most patients. The burden of these frequent visits as well as the cumulative risks of indefinite intravitreal injections demand continued pursuit of more enduring therapy that provides similar functional results. Radiotherapy has been studied for two decades as a potential therapy for NVAMD. Because of its antiangiogenic properties, radiation therapy remains a promising potential adjunctive resource for the treatment of choroidal neovascularization secondary to NVAMD. This review considers the past, present and future of radiation as a treatment or combination treatment of NVAMD. Copyright © 2013 S. Karger AG, Basel.
On degenerate metrics, dark matter and unification
Searight, Trevor P.
2017-12-01
A five-dimensional theory of relativity is presented which suggests that gravitation and electromagnetism may be unified using a degenerate metric. There are four fields (in the four-dimensional sense): a tensor field, two vector fields, and a scalar field, and they are unified with a combination of a gauge-like invariance and a reflection symmetry which means that both vector fields are photons. The gauge-like invariance implies that the fifth dimension is not directly observable; it also implies that charge is a constant of motion. The scalar field is analogous to the Brans-Dicke scalar field, and the theory tends towards the Einstein-Maxwell theory in the limit as the coupling constant tends to infinity. As there is some scope for fields to vary in the fifth dimension, it is possible for the photons to have wave behaviour in the fifth dimension. The wave behaviour has two effects: it gives mass to the photons, and it prevents them from interacting directly with normal matter. These massive photons still act as a source of gravity, however, and therefore they are candidates for dark matter.
Animal models of age related macular degeneration
Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.
2013-01-01
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444
Radiotherapy in age-related macula degeneration
International Nuclear Information System (INIS)
Gripp, Stephan; Stammen, Johannes; Petersen, Claudia; Hartmann, Axel; Willers, Reinhart; Althaus, Christoph
2002-01-01
Purpose: To ascertain the benefit from radiotherapy in age-related macula degeneration in a single-arm longitudinal study. Methods and Materials: From 1997 to 1998, 39 patients with occult and 33 patients with classic choroidal neovascularization (CNV) were irradiated with 16 Gy. Fluorescein angiography and measurements of visual acuity were performed before and 3, 6, and 12 months after irradiation. Results: Complete follow-up data for 1 year were available from 69 patients. The mean patient age was 72 years (range 49-92). Vision decreased in 43, was stable in 18, and improved in 8 cases. The mean vision deteriorated significantly (p=0.02, Wilcoxon test), particularly within the first 3 months. Patients with occult CNV did significantly better than did those with classic CNV (p=0.03). The proportion of patients retaining vision ≥0.2 fell from 65% to 42% (p <0.01), for classic and occult CNV from 50% to 23%, and for occult CNV from 77% to 56% (p<0.02), respectively. CNV size increased in 30 patients and was stable in 38. Neither age (p=0.17) nor gender (p=0.21, chi-square test) influenced prognosis. Four patients reported transitional complaints. Conclusion: Low-dose fractionated radiotherapy with 16 Gy is well tolerated. However, vision and reading ability were not preserved in most patients
Coulomb Logarithm in Nonideal and Degenerate Plasmas
Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.
2018-03-01
Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.
Double Degenerates among DA white dwarfs
International Nuclear Information System (INIS)
Bragaglia, A.; Greggio, L.; Renzini, A.; D'odorico, S.
1990-01-01
The results of a spectroscopic survey of catalog white dwarfs in search of radial velocity variations indicative of a binary motion are reported. In a sample of 54 DA white dwarfs, one Double Degenerate (DD) system with a period of 1.15 days (the shortest period DD system yet discovered) is found. Two other excellent and two good DD candidates, and two white dwarf + red dwarf pairs were also found. If all the candidates should be confirmed, this would indicate a frequency of about 13 percent of interacting binaries in an unbiased sample of evolved stars, with a DD frequency of about 10 percent. These results suggest fairly large values for the common-envelope parameter alpha, implying that a source of energy other than orbital may be required to eject the envelope during common-envelope events. Finally, in combination with previous evidence our result implies that DDs with WD components of the DA variety are unlikely to be the precursors of Type I supernovae, but DDs with non-DA components remain very attractive candidates. 20 refs
CERKL knockdown causes retinal degeneration in zebrafish.
Directory of Open Access Journals (Sweden)
Marina Riera
Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.
Magnonic triply-degenerate nodal points
Owerre, S. A.
2017-12-01
We generalize the concept of triply-degenerate nodal points to non-collinear antiferromagnets. Here, we introduce this concept to insulating quantum antiferromagnets on the decorated honeycomb lattice, with spin-1 bosonic quasiparticle excitations known as magnons. We demonstrate the existence of magnonic surface states with constant energy contours that form pairs of magnonic arcs connecting the surface projection of the magnonic triple nodal points. The quasiparticle excitations near the triple nodal points represent three-component bosons beyond that of magnonic Dirac, Weyl, and nodal-line cases. They can be regarded as a direct reflection of the intrinsic spin carried by magnons. Furthermore, we show that the magnonic triple nodal points can split into magnonic Weyl points, as the system transits from a non-collinear spin structure to a non-coplanar one with a non-zero scalar spin chirality. Our results not only apply to insulating antiferromagnets, but also provide a platform to seek for triple nodal points in metallic antiferromagnets.
Restoration of oscillation in network of oscillators in presence of direct and indirect interactions
Energy Technology Data Exchange (ETDEWEB)
Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2016-10-23
The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.
Nonstationary oscillations in gyrotrons revisited
International Nuclear Information System (INIS)
Dumbrajs, O.; Kalis, H.
2015-01-01
Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper
Prediction of pilot induced oscillations
Directory of Open Access Journals (Sweden)
Valentin PANĂ
2011-03-01
Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.
Magnetically insulated transmission line oscillator
Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.
1987-05-19
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Determination of source terms in a degenerate parabolic equation
International Nuclear Information System (INIS)
Cannarsa, P; Tort, J; Yamamoto, M
2010-01-01
In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation
The degenerate-internal-states approximation for cold collisions
Maan, A.C.; Tiesinga, E.; Stoof, H.T.C.; Verhaar, B.J.
1990-01-01
The Degenerate-Internal-States approximation as well as its first-order correction are shown to provide a convenient method for calculating elastic and inelastic collision amplitudes for low temperature atomic scattering.
Magnetism and magnetostriction in a degenerate rigid band
International Nuclear Information System (INIS)
Kulakowski, K.; Barbara, B.
1990-09-01
We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs
Arbitrary electron acoustic waves in degenerate dense plasmas
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment.
Mathew, David J; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V
2016-07-01
Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.
An imbedding theorem and its applications in degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-06-01
We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs
Spontaneous oscillations in microfluidic networks
Case, Daniel; Angilella, Jean-Regis; Motter, Adilson
2017-11-01
Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.
Oscillating liquid flow ICF Reactor
International Nuclear Information System (INIS)
Petzoldt, R.W.
1990-01-01
Oscillating liquid flow in a falling molten salt inertial confinement fusion reactor is predicted to rapidly clear driver beam paths of residual liquid droplets. Oscillating flow will also provide adequate neutron and x-ray protection for the reactor structure with a short (2-m) fall distance permitting an 8 Hz repetition rate. A reactor chamber configuration is presented with specific features to clear the entire heavy-ion beam path of splashed molten salt. The structural components, including the structure between beam ports, are shielded. 3 refs., 12 figs
Neutrino oscillation measurements with reactors
Energy Technology Data Exchange (ETDEWEB)
McKeown, R.D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
2010-11-01
Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided important information on the neutrino masses and the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.