WorldWideScience

Sample records for degassing

  1. Degassing a large LHe cryopump

    International Nuclear Information System (INIS)

    Denhoy, B.S.; Batzer, T.H.; Call, W.R.

    1977-01-01

    A method has been developed and successfully tested to degas a large LHe cryopump. Use of this method inhibits the normally excessive pressure rise during the degassing cycle when the degassing rate exceeds the external pumping capabilities of the system. A small appendage pump, installed close to the main cryopump, absorbs all the gas, as it is desorbed from the main cryopump, with no rise in the system pressure. The appendage pump can then be isolated from the main vacuum system and degassed at high pressure. We pumped 15 to 20 x 10 3 Torr . 1 of H 2 on a 1.25 m 2 panel. During the degassing cycle the system pressure never rose above 1 x 10 -4 Torr. In large vacuum systems for future fusion machines that contain cryopump panels as well as cryogenic magnets, this method is a unique and very useful tool. It will allow the degassing of cryopumps without affecting the temperature equilibrium of cryogenic magnets

  2. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  3. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  4. Spatial variability in degassing at Erebus volcano, Antarctica

    Science.gov (United States)

    Ilanko, Tehnuka; Oppenheimer, Clive; Kyle, Philip; Burgisser, Alain

    2015-04-01

    Erebus volcano on Ross Island, Antarctica, hosts an active phonolitic lava lake, along with a number of persistently degassing vents in its summit crater. Flank degassing also occurs through ice caves and towers. The longevity of the lake, and its stable convection, have been the subject of numerous studies, including Fourier transform infrared (FTIR) spectroscopy of the lava lake. Two distinct gas compositions were previously identified in the main lava lake plume (Oppenheimer et al., 2009; 2011): a persistent 'conduit' gas with a more oxidised signature, ascribed to degassing through a permeable magma conduit; and a H2O- and SO2- enriched 'lake' composition that increases and decreases cyclically due to shallow degassing of incoming magma batches. During the past decade of annual field seasons on Erebus, gas compositions have been measured through FTIR spectroscopy at multiple sites around Erebus volcano, including flank degassing through an ice cave (Warren Cave). We present measurements from four such vents, and compare their compositions to those emitted from the main lava lake. Summit degassing involves variable proportions of H2O, CO2, CO, SO2, HF, HCl, OCS. Cyclicity is evident in some summit vents, but with signatures indicative of shallower magmatic degassing than that of the lava lake. By contrast, flank degassing at Warren Cave is dominated by H2O, CO2, and CH4. The spatial variability in gas compositions within the summit crater suggests an alternative origin for 'conduit' and 'lake' degassing to previous models that assume permeability in the main conduit. Rather, the two compositions observed in main lake degassing may be a result of decoupled 'conduit' gas and pulses of magma rising through discrete fractures before combining in the lake floor or the main plume. Smaller vents around the crater thus emit isolated 'lake' or 'conduit' compositions while their combined signature is observed in the lava lake. We suggest that this separation between gas

  5. Update estimate emissions degassing inland tank vessels

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Hoen, M. ' t; Den Boer, E.

    2013-11-15

    At the exchange of cargos of petroleum or chemical products, ships can be degassed, resulting in emissions of VOCs (volatile organic compounds). CE Delft investigated the current size of degassing in the Netherlands. Results can serve as a basis for feasible and effective policies.

  6. Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire

    Science.gov (United States)

    Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian

    2018-03-01

    Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.

  7. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  8. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  9. Diffuse CO2 degassing at Vesuvio, Italy

    Science.gov (United States)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  10. Liquid metal degassing in electromagnetic mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomov, A I; EHL' -FAVAKHRI, KAMAL' -ABD-RABU MOKHAMED [LENINGRADSKIJ POLITEKHNICHESKIJ INST. (USSR)

    1977-01-01

    Experimental results for laboratory and industrial conditions are presented showing the favourable effect of electromagnetic mixing on hot metal degassing process. It has been found that the intensity and duration of the mixing process increase with the degree of iron and steel degassing. Initiation of cavitation phenomena during hot metal electromagnetic mixing is intensified because of the presence of alien inclusions in the metal reducing the tensile strength of the liquid metal. This is the most substantial factor contributing to the gas content in the process of electromagnetic mixing.

  11. Effect of Degassing Treatment on the Interfacial Reaction of Molten Aluminum and Solid Steel

    Directory of Open Access Journals (Sweden)

    Triyono T.

    2017-06-01

    Full Text Available The gas porosity is one of the most serious problems in the casting of aluminum. There are several degassing methods that have been studied. During smelting of aluminum, the intermetallic compound (IMC may be formed at the interface between molten aluminum and solid steel of crucible furnace lining. In this study, the effect of degassing treatment on the formations of IMC has been investigated. The rectangular substrate specimens were immersed in a molten aluminum bath. The holding times of the substrate immersions were in the range from 300 s to 1500 s. Two degassing treatments, argon degassing and hexachloroethane tablet degassing, were conducted to investigate their effect on the IMC formation. The IMC was examined under scanning electron microscope with EDX attachment. The thickness of the IMC layer increased with increasing immersion time for all treatments. Due to the high content of hydrogen, substrate specimens immersed in molten aluminum without degasser had IMC layer which was thicker than others. Argon degassing treatment was more effective than tablet degassing to reduce the IMC growth. Furthermore, the hard and brittle phase of IMC, FeAl3, was formed dominantly in specimens immersed for 900 s without degasser while in argon and tablet degasser specimens, it was formed partially.

  12. Influences of different degassing processes on refining effect and properties of 4004 Al alloy

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2013-03-01

    Full Text Available In order to improve the plasticity of 4004 Al alloy and subsequently the productivity of 4004 Al foil, the research studied in detail the influence of the rotary impeller degassing process on the refining effect of 4004 Al alloy, in which the impacts of four major parameters: gas flow, rotational speed, refining time, and stewing time, on degassing rate of 4004 Al alloy was systematically studied by using an orthogonal experiment methodology. Results show that the rotational speed has the greatest impact on the degassing of 4004 Al alloy, followed by gas flow and refining time; stewing time has the least impact. The optimum purification parameters obtained by current orthogonal analysis were: rotor speed of 500 r·min-1, inert gas flow of 0.4 mL·h-1, refining time of 15 min, and stewing time of 6 min. Degassing rate using the optimum parameters reaches 68%. In addition, the comparison experiments among C2Cl6 refining, rotary impeller degassing, and combined treatment of C2Cl6 refining and rotary impeller degassing for 4004 Al alloy were performed. The experimental data indicated that the combined treatment of C2Cl6 refining and rotary impeller degassing has the best degassing effect. Degassing rate of C2Cl6 refining, rotary impeller degassing and combined refining treatment is 39%, 69.1% and 76.9%, respectively. The mechanical properties of the specimen refined by rotary impeller degassing were higher than those by C2Cl6 refining, but lower than those by combined refining treatment.

  13. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  14. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  15. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.

    2018-01-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  16. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  17. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  18. Conduit degassing and thermal controls on eruption styles at Mount St. Helens

    Science.gov (United States)

    Schneider, Andrew; Rempel, Alan W.; Cashman, Katharine V.

    2012-12-01

    The explosivity of silicic eruptions depends on the interplay between magma rheology, exsolution kinetics, and degassing. Magma degassing is governed by the competing effects of vertical transport within the conduit and the lateral flux of gas out of the conduit (Diller et al., 2006; Jaupart and Allegre, 1991). We combine a simplified treatment of these degassing processes with thermodynamic modeling to examine the conditions present at Mount St. Helens during the spine extruding eruption from 2004 to 2008. We find that two parameters are primarily responsible for controlling the eruptive style: the magma chamber temperature, and a dimensionless parameter that gauges the efficiency of lateral degassing. Together, these parameters determine whether and where magma can solidify at depth to form a dense solid plug that is gradually extruded as a volcanic spine. We show that the small (50 oC) decrease in magma chamber temperature between eruptive activity in the 1980s and that of 2004-2008, combined with a modest increase in degassing efficiency associated with lower volumetric flux, can explain the observed change in erupted material from viscous lava flows to solidified spines. More generally, we suggest that similar threshold behavior may explain observed abrupt transitions in effusive eruptive styles at other intermediate composition volcanoes. Finally, we extrapolate our results to suggest that the increase in degassing efficiency accompanying decreasing magma supply rates may have caused the transition from explosive to effusive activity in late 1980.

  19. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  20. Improvement in a degassing chamber with continuous operation and arrangement for distillation sublimation, etc

    Energy Technology Data Exchange (ETDEWEB)

    Lurmann, F

    1881-05-25

    The degassing chambers shown in Patent 13,021 are combined with a receiver. Through arrangement of more roomy sucking openings for the distillation products, a continual partial recovery of the coke oven gases rich in different valuable constituents is attained. Arches lie over the degassing chamber and extend to the gas-burning rooms; to prevent their burning through. They remain directly in communication with the atmosphere and are on the top of the gasification room above the final arches. The charging of the various degassing rooms can be carried out by the usual charging apparatus, which runs lengthwise on rails on the degassing chambers.

  1. Diffuse soil CO_2 degassing from Linosa island

    Directory of Open Access Journals (Sweden)

    Dario Cellura

    2014-06-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 Herein, we present and discuss the result of 148 measurements of soil CO2 flux performed for the first time in Linosa island (Sicily Channel, Italy, a Plio-Pleistocene volcanic complex no longer active but still of interest owing to its location within a seismically active portion of the Sicily Channel rift system. The main purpose of this survey was to assess the occurrence of CO2 soil degassing, and compare flux estimations from this island with data of soil degassing from worldwide active volcanic as well as non-volcanic areas. To this aim soil CO2 fluxes were measured over a surface of about 4.2 km2 covering ~80% of the island. The soil CO2 degassing was observed to be mainly concentrated in the eastern part of the island likely due to volcano-tectonic lineaments, the presence of which is in good agreement with the known predominant regional faults system. Then, the collected data were interpreted using sequential Gaussian simulation that allowed estimating the total CO2 emissions of the island. Results show low levels of CO2 emissions from the soil of the island (~55 ton d-1 compared with CO2 emissions of currently active volcanic areas, such as Miyakejima (Japan and Vulcano (Italy. Results from this study suggest that soil degassing in Linosa is mainly fed by superficial organic activity with a moderate contribution of a deep CO2 likely driven by NW-SE trending active tectonic structures in the eastern part of the island.

  2. Pinatubo Lake Chemistry and Degassing 1991-2010

    Science.gov (United States)

    Schwandner, F. M.; Newhall, C. G.; Christenson, B. W.; Apfelbeck, C. A.; Arpa, M. C. B.; Vaquilar, R.; Bariso, E.

    2016-12-01

    We review the history of degassing, bathymetry and water chemistry of the crater lake of Mt. Pinatubo (Philippines) using data obtained during 1991-2001, and 2010. In late 1992, the initial small lake had a significant acid-sulfate component from a volcanic degassing through a hydrothermal system and the lake, and anhydrite dissolution. Subsequently, this component was "drowned" by rainfall (2-4 m/y), meteoric groundwater draining from the crater walls into the lake, and a few neutral chloride crater wall springs. Conductivity-Temperature-Depth (CTD) measurements in August 2000 found a strong inverted thermal gradient below 20m depth, reaching over 70°C at 50-60 m depth. By January 2001 the lake had homogenized and was much cooler (27°C at all depths), and it was again well-mixed and still cool when re-surveyed in June 2001 and November 2010. By 2010, the lake was well mixed, at neutral pH, with no significant vertical or horizontal structure. Bubbling of a predominantly carbon dioxide (CO2) gas phase persists throughout the lake's history, some from 1991-92 magma and some from degassing of the long-standing (pre-1991) hydrothermal system fed from a deeper magmatic or mantle source. Crater wall fumaroles emit boiling-point hydrothermal gases dominated by water, air, and CO2.

  3. Volatilization: a soil degassing coefficient for iodine

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Thibault, D.H.; Smith, P.A.; Hawkins, J.L.

    1994-01-01

    Iodine, an element essential to some animals, is ubiquitous in the biosphere. Unlike other metallic elements, molecular I is volatile, and other inorganic species present in aerated soils, such as I - and IO 3 - , may also volatilize as hydrides, hydrogen iodide (HI), or hydrogen iodates (HIO 3 , HIO 4 ). Methyl iodide has been measured in soils, and it is likely evolved from soils and plants. The long-lived radioisotope 129 I is abundant in nuclear wastes, and its high solubility in groundwater makes it an important element in the performance assessment of underground disposal facilities. Overestimates of soil I residence half-times by traditional foodchain models may be due to underestimation of volatilization. Field and lysimeter experiments over a 3-year period, and direct trapping experiments in the laboratory are reported. The results, combined with values from the literature, indicate the soil I degassing coefficient for a wide range of soil types, vegetated and bare, wet and dry, is lognormally distributed with a geometric mean of 2.1 x 10 -2 year -1 , a range of 1.8 x 10 -4 to 3.1 year -1 and a geometric standard deviation of 3.0. The results of a biosphere model simulation including degassing reduces soil I concentrations fivefold and increases air concentrations 25-fold at steady state, compared to simulations without degassing. (author)

  4. Carbon dioxide degassing in fresh and saline water I: Degassing performance of a cascade column

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure carbon dioxide degassing in a cascade column operating with both fresh (0‰) and saline water (35‰ NaCl) at 15 °C. The cascade column contained bio-block type packing material, was 1.7 m long in each dimension, and was tested both with and without countercurrent a...

  5. Effect of degassing temperature on the microstructure of a nanocrystalline Al-Mg alloy

    International Nuclear Information System (INIS)

    Ahn, Byungmin; Newbery, A. Piers; Lavernia, Enrique J.; Nutt, Steven R.

    2007-01-01

    The microstructural evolution of a nanocrystalline Al-Mg alloy was investigated to determine the effects of degassing temperature. Al 5083 powder was ball-milled in liquid nitrogen to obtain a nanocrystalline structure, then vacuum degassed to remove contaminants. The degassed powder was consolidated by cold isostatic pressing and then forged to produce bulk, low-porosity material. The material microstructure was analyzed at different stages using optical microscopy, transmission electron microscopy, and density measurements. The impurity concentration of the final product was also measured. The forged material exhibited a bimodal grain size distribution, consisting of both ultra fine and coarse grains. The bimodal distribution was attributed to the presence of residual coarse grains in the as-milled powder. Higher degassing temperatures resulted in higher density values and lower hydrogen content in the consolidated materials, although these materials also exhibited more extensive grain growth

  6. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C

    Science.gov (United States)

    Deng, Yuying; Li, Yingzhou; Li, Long

    2018-04-01

    Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.

  7. Denitrogenation model for vacuum tank degasser

    Science.gov (United States)

    Gobinath, R.; Vetrivel Murugan, R.

    2018-02-01

    Nitrogen in steel is both beneficial and detrimental depending on grade of steel and its application. To get desired low nitrogen during vacuum degassing process, VD parameters namely vacuum level, argon flow rate and holding time has to optimized depending upon initial nitrogen level. In this work a mathematical model to simulate nitrogen removal in tank degasser is developed and how various VD parameters affects nitrogen removal is studied. Ladle water model studies with bottom purging have shown two distinct flow regions, namely the plume region and the outside plume region. The two regions are treated as two separate reactors exchanging mass between them and complete mixing is assumed in both the reactors. In the plume region, transfer of nitrogen to single bubble is simulated. At the gas-liquid metal interface (bubble interface) thermodynamic equilibrium is assumed and the transfer of nitrogen from bulk liquid metal in the plume region to the gas-metal interface is obtained using mass transport principles. The model predicts variation of Nitrogen content in both the reactors with time. The model is validated with industrial process and the predicted results were found to have fair agreement with the measured results.

  8. Laboratory studies of groundwater degassing in replicas of natural fractured rock for linear flow geometry

    International Nuclear Information System (INIS)

    Geller, J.T.

    1998-02-01

    Laboratory experiments to simulate two-phase (gas and water) flow in fractured rock evolving from groundwater degassing were conducted in transparent replicas of natural rock fractures. These experiments extend the work by Geller et al. (1995) and Jarsjo and Geller (1996) that tests the hypothesis that groundwater degassing caused observed flow reductions in the Stripa Simulated Drift Experiment (SDE). Understanding degassing effects over a range of gas contents is needed due to the uncertainty in the gas contents of the water at the SDE. The main objectives of this study were to: (1) measure the effect of groundwater degassing on liquid flow rates for lower gas contents than the values used in Geller for linear flow geometry in the same fracture replicas of Geller; (2) provide a data set to develop a predictive model of two-phase flow in fractures for conditions of groundwater degassing; and (3) improve the certainty of experimental gas contents (this effort included modifications to the experimental system used by Geller et al. and separate gas-water equilibration tests). The Stripa site is being considered for a high-level radioactive waste repository

  9. A model of diffuse degassing at three subduction-related volcanoes

    Science.gov (United States)

    Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik

    Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.

  10. Loss of shutdown cooling during degassing in Doel 1

    International Nuclear Information System (INIS)

    1996-01-01

    The presentation describes loss of shutdown cooling event during degassing in Doel 1 reactor, including description of Doel 1 features,status of plant prior to incident, event sequence and incident causes

  11. Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy).

    Science.gov (United States)

    Cardellini, C; Chiodini, G; Frondini, F; Avino, R; Bagnato, E; Caliro, S; Lelli, M; Rosiello, A

    2017-07-28

    In volcanoes with active hydrothermal systems, diffuse CO 2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO 2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO 2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO 2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO 2 tripled its extent. This expansion was accompanied by an increase of the background CO 2 flux, over most of the surveyed area (1.4 km 2 ), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO 2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d -1 ). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.

  12. Effects of Degassing on the Microstructure, Chemistry, and Estimated Mechanical Properties of a Cryomilled Al-Mg Alloy

    Science.gov (United States)

    Hofmeister, Clara; Zhou, Le; Kellogg, Frank; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2018-04-01

    Nanostructured aluminum alloys produced through cryomilling have generated interest due to their potential to create consolidated parts with high strength and low density. Degassing prior to consolidation minimizes adsorbed and absorbed volatiles, but is accompanied by microstructural changes such as grain growth, dislocation annihilation, and formation of dispersoids. These changes can influence the mechanical behavior of consolidated components. Cryomilled AA5083 was degassed at temperatures from 473 K to 773 K (200 °C to 500 °C) with a vacuum at or below 2.7 × 10-3 Pa. Grain size in the as-cryomilled powder (ranging from 21 to 34 nm) increased with higher degassing temperature and reached a maximum size of up to 70 to 80 nm. The dislocation density of 1.11 × 1015 m-2 in as-cryomilled powder decreased to 1.56 × 1014 m-2 for powder degassed at 773 K (500 °C). The Al6(MnFeCr) dispersoid formed when powders were degassed at or above 573 K (300 °C). Oxygen and nitrogen concentrations were unaffected by degassing; however, hydrogen concentration decreased with increasing degassing temperature to a minimum of 45 ± 3.16 ppm. Evolutions in composition and microstructure in cryomilled AA5083 were correlated to the strengthening mechanisms of grain size reduction (i.e., Hall-Petch), dislocation forest, and Orowan. However, strengthening by grain size reduction was the dominant strengthening mechanism.

  13. Degassing measurement for beryllium exposed to D{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Markin, A.V.; Zakharov, A.P. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1998-01-01

    A possibility of the correct determination of deuterium solubility and diffusivity in Be on the basis of degassing experiments is demonstrated. It has been found that the main fraction (above 90%) of deuterium retained under D{sub 2} exposure is removed under slight electropolishing (descaling of {approx} 2-5 {mu}m) of the samples before TDS measurement. This deuterium seems to be located in the near surface oxide layers formed during the exposure as a result of interaction of beryllium with oxygen containing molecules of residual gas. In all degassing runs the diffusion of deuterium in the bulk of beryllium samples was not a limited-stage of gas release. (author)

  14. Pengaruh Degasser Dan Grain Refiner Terhadap Sifat Mekanik Paduan Al-Si Produk Cor

    OpenAIRE

    Yohanes, Glenn; Djamil, Sofyan

    2008-01-01

    Paduan aluminium banyak digunakan pada industri otomotif, seperti pada pembuatan velg dan komponen-komponen mesin. Studi pengaruh degasser dan grain refiner terhadap kekuatan tarik, kekuatan luluh, elongasi dan kekerasan, pada proses peleburan dibandingkan dengan atau tanpa menggunakan degasser dan grain refiner. Benda uji didapat dengan melebur blok mesin Mitsubishi L.300, menggunakan tungku listrik dan proses cor sistem cetakan terbuka. Hasil penelitian, meliputi kekuatan tarik, luluh, elon...

  15. Pengaruh Degasser dan Grain Refiner terhadap Sifat Mekanik Paduan Al-Si Produk Cor

    OpenAIRE

    Yohanes, Glenn; Djamil, Sofyan

    2009-01-01

    Paduan aluminium banyak digunakan pada industri otomotif, seperti pada pembuatan velg dan komponen-komponen mesin. Studi pengaruh degasser dan grain refiner terhadap kekuatan tarik, kekuatan luluh, elongasi dan kekerasan, pada proses peleburan dibandingkan dengan atau tanpa menggunakan degasser dan grain refiner. Benda uji didapat dengan melebur blok mesin Mitsubishi L.300, menggunakan tungku listrik dan proses cor sistem cetakan terbuka. Hasil penelitian, meliputi kekuatan tarik, luluh, elon...

  16. CO2, SO2, and H2S Degassing Related to the 2009 Redoubt Eruption, Alaska

    Science.gov (United States)

    Werner, C. A.; Kelly, P. J.; Evans, W.; Doukas, M. P.; McGimsey, R. G.; Neal, C. A.

    2012-12-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions with 35 airborne measurements of CO2, SO2, and H2S that span from October 2008 to August 2010. Increases in CO2 degassing were detected up to 5 months prior to the eruption and varied between 3630 and 9020 tonnes per day (t/d) in the 6 weeks prior to the eruption. Increased pre-eruptive CO2 degassing was accompanied by comparatively low S emission, resulting in molar C/S ratios that ranged between 30-60. However, the C/S ratio dropped to 2.4 coincident with the first phreatic explosion on March 15, 2009, and remained steady during the explosive (March 22 - April 4, 2009), effusive dome-building (April 5 - July 1, 2009), and waning phases (August 2009 onward) of the eruption. Observations of ice-melt rates, melt water discharge, and water chemistry in the months leading up to the eruption suggested that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. While the surface waters were capable of scrubbing many thousands of t/d of SO2, sampling of these fluids revealed that only a few hundred tonnes of SO2 was reacting to a dissolved component each day. This is also much less than the ~ 2100 t/d SO2 expected from degassing of magma in the upper crust (3-6.5 km), where petrologic analysis shows the final magma equilibration occurred. Thus, the high pre-eruptive C/S ratios observed could reflect bulk degassing of upper-crustal magma followed by nearly complete loss of SO2 in a magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption; modeling suggests that mixing of this magma with pre-existing high silica andesite magma or mush would have caused a reduction of the C/S ratio to a value consistent with that measured during the eruption. Monitoring emissions regularly

  17. Intense magmatic degassing through the lake of Copahue volcano, 2013-2014

    Science.gov (United States)

    Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.

    2015-09-01

    Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.

  18. Reconciling Gases With Glasses: Magma Degassing, Overturn and Mixing at Kilauea Volcano, Hawai`i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T. M.

    2006-12-01

    Our understanding of the volatile budget at Kilauea Volcano is based on measurements of the abundance of volatile elements in volcanic glasses and gases. Observations of volcanic gases gave rise to a fundamental model describing volatile fractionation between the summit and rift zone during the current eruption [Gerlach and Graeber, 1985]. Other workers' analysis of glasses from the Puna Ridge, Kilauea Iki and Pu`u `O`o indicate that magma degassing, drain-back, mixing and assimilation are important processes at Kilauea Volcano. Volcanic gases have not illustrated these kinds of processes clearly in the past, owing to infrequent and poorly resolved data. New, detailed studies of volcanic gas emissions have refined our understanding of volatile degassing and magma budgets at Kilauea Volcano. Open Path Fourier Transform Infra-Red spectroscopy measurements carried out during 2004-2005 allow retrieval of the relative abundances of the major volatile species H2O, CO2 and SO2, which together make up >99 vol% of the magmatic vapor phase. The proportions of these gases vary over time and space and can be used to infer magma transport, ascent, degassing, overturn and mixing and gas segregation processes within the plumbing system of Kilauea Volcano. Gases from Pu`u `O`o in 2004-2005 display a range in composition. A trend relates molar C/S to the total H2O content of the gases over time and space; total H2O ranges from 60-98 mol %, while molar C/S ranges from 50. The range in volcanic gas composition over time and space is caused by magma degassing, overturn and mixing of partially degassed magma with fresh primary magma beneath Pu`u `O`o. Measurements of the mean rate of magma degassing (from SO2 emissions) and mean lava effusion rate (from geophysical measurements of lava tube flux) suggest that a larger volume (DRE) of magma is degassing than is being erupted, on average. This analysis suggests that magma storage in the Rift Zone might be important during eruptions as

  19. Soil degassing at the Los Humeros geothermal field (Mexico)

    Science.gov (United States)

    Peiffer, Loïc; Carrasco-Núñez, Gerardo; Mazot, Agnès; Villanueva-Estrada, Ruth Esther; Inguaggiato, Claudio; Bernard Romero, Rubén; Rocha Miller, Roberto; Hernández Rojas, Javier

    2018-05-01

    The Los Humeros geothermal field is the third most important producer of geothermal electricity (70 MW) in Mexico. Geothermal fluids are hosted in fractured andesitic lavas and mostly consist of high enthalpy steam with limited water content (vapor fraction > 0.9). Despite the high reservoir temperature ( 300-400 °C), thermal manifestations at the surface are scarce and locally appear as steaming grounds, weak steam vents and advanced argillic alteration. Geothermal fluid upflow from the reservoir towards the surface is limited by welded ignimbrite deposits that act as a low-permeability barrier. In this study, we present the first measurements of CO2, CH4 and H2S degassing rates from the soil performed at Los Humeros. Flux measurements were complemented with δ13C composition of degassing CO2 and soil temperatures to discuss gas origin and thermal anomalies. We measured high soil degassing rates (up to 7530 g m-2 d-1 CO2, 33 g m-2 d-1 CH4 and 22 g m-2 d-1 H2S) in three localized areas (Humeros North - HN, Humeros South - HS and Xalapazco - XA) as well as high soil temperatures reaching the boiling temperature at the local altitude (90.6 °C). The particular location of these three areas suggests that the steam-dominated reservoir degases to the surface through permeable faults crossing the ignimbritic deposits. The remaining surveyed areas are characterized by weak CO2 fluxes (≤44 g m-2 d-1), non-detectable CH4 and H2S fluxes, and lower soil temperatures (5-21 °C). The compositions in δ13CCO2 from HN-HS-XA areas (δ13CCO2 = -7.94 to -2.73‰) reflect a magmatic source with some possible contribution from the sedimentary basement, as well as fractionation induced by boiling and CO2 dissolution in shallow water bodies. We also discuss the processes causing the spread in CO2/CH4 flux ratios. Finally, we estimate the heat output from the three high degassing areas to a value of 16.4 MWt.

  20. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  1. Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya Volcano, Nicaragua

    Science.gov (United States)

    Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.

    2012-01-01

    We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.

  2. Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli

    Directory of Open Access Journals (Sweden)

    V. Shcherbakov

    2016-09-01

    Full Text Available Aerosols of the volcanic degassing plumes from Mt. Etna and Mt. Stromboli were probed with in situ instruments on board the Deutsches Zentrum für Luft- und Raumfahrt research aircraft Falcon during the contrail, volcano, and cirrus experiment CONCERT in September 2011. Aerosol properties were analyzed using angular-scattering intensities and particle size distributions measured simultaneously with the Polar Nephelometer and the Forward Scattering Spectrometer probes (FSSP series 100 and 300, respectively. Aerosols of degassing plumes are characterized by low values of the asymmetry parameter (between 0.6 and 0.75; the effective diameter was within the range of 1.5–2.8 µm and the maximal diameter was lower than 20 µm. A principal component analysis applied to the Polar Nephelometer data indicates that scattering features of volcanic aerosols of different crater origins are clearly distinctive from angular-scattering intensities of cirrus and contrails. Retrievals of aerosol properties revealed that the particles were "optically spherical" and the estimated values of the real part of the refractive index are within the interval from 1.35 to 1.38. The interpretation of these results leads to the conclusion that the degassing plume aerosols were porous with air voids. Our estimates suggest that aerosol particles contained about 18 to 35 % of air voids in terms of the total volume.

  3. Analysis of Ruptured Heater Tube of Degasser Condenser in Wolsong Unit 4

    International Nuclear Information System (INIS)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Kim, D. J.; Kim, S. W.; Jeong, M. K.; Hong, J. H.

    2007-08-01

    In a degasser condenser in Wolsong unit 4, the cracks were found in the heater tube no. 6 and no. 7. To avoid additional damages in the specimen during a decontamination process for the previous analysis, the cracks were analyzed without any decontamination process in this work. We performed the investigation of the ruptured surface morphology, the EDS analysis of the ruptured surface, the microstructural analysis of Alloy 800H sheath tube and literature survey to find the failure mechanism. From the results, it was expected that the sheath tube has been exposed in a steam condition as the coolant level was decreased in the degasser condenser, leading to the rupture of the sheath tube

  4. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Caliro, S. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy)]. E-mail: caliro@ov.ingv.it; Chiodini, G. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Avino, R. [Osservatorio Vesuviano sezione di Napoli dell' Istituto, Nazionale Geofisica Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy); Cardellini, C. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy); Frondini, F. [Dipartimento di Scienze della Terra, Universita di Perugia (Italy)

    2005-06-15

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO{sub 2} groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO{sub 2} transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO{sub 2} emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO{sub 2} diffusely degassed from the crater area.

  5. Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater

    International Nuclear Information System (INIS)

    Caliro, S.; Chiodini, G.; Avino, R.; Cardellini, C.; Frondini, F.

    2005-01-01

    A geochemical model is proposed for water evolution at Somma-Vesuvio, based on the chemical and isotopic composition of groundwaters, submarine gas emission and chemical composition of the dissolved gases. The active degassing processes, present in the highest part of the volcano edifice, strongly influence the groundwater evolution. The geological-volcanological setting of the volcano forces the waters infiltrating at Somma-Vesuvio caldera, enriched in volcanic gases, to flow towards the southern sector to an area of high pCO 2 groundwaters. Reaction path modelling applied to this conceptual model, involving gas-water-rock interaction, highlights an intense degassing process in the aquifer controlling the chemical and isotopic composition of dissolved gases, total dissolved inorganic C (TDIC) and submarine gas emission. Mapping of TDIC shows a unique area of high values situated SSE of Vesuvio volcano with an average TDIC value of 0.039 mol/L, i.e., one order of magnitude higher than groundwaters from other sectors of the volcano. On the basis of TDIC values, the amount of CO 2 transported by Vesuvio groundwaters was estimated at about 150 t/d. This estimate does not take into account the fraction of gas loss by degassing, however, it represents a relevant part of the CO 2 emitted in this quiescent period by the Vesuvio volcanic system, being of the same order of magnitude as the CO 2 diffusely degassed from the crater area

  6. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.

    Science.gov (United States)

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-12-15

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes.

  7. Using 81Kr-age of groundwater in the Guarani Aquifer, Brazil, to constrain estimates of continental degassing flux of 4He

    Science.gov (United States)

    Aggarwal, P. K.; Matsumoto, T.; Sturchio, N. C.; Chang, H. K.; Gastmans, D.; Lu, Z.; Jiang, W.; Müller, P.; Yokochi, R.; Han, L.; Klaus, P.; Torgersen, T.

    2013-12-01

    Continental degassing flux of helium is the dominant component of dissolved helium in deep groundwater together with that produced in-situ in the aquifer. A reliable estimate of the degassing flux is critical to the use of 4He as a dating tool in groundwater studies. The degassing flux is also important for understanding fluid and heat transport in the mantle and the rust. An independent tracer of groundwater age is required in order to deconvolute the two signals of the external, degassing flux and in situ production. Estimates of degassing flux mostly have relied upon shorter-lived radionuclides such as 14C and tritium and the resulting flux estimates have a significant variability (Torgersen, 2010). In the Guarani Aquifer in Brazil, an effective crustal 4He degassing flux into the aquifer was estimated from 81Kr ages ranging from about 70 Ka to 570 Ka. We then used the model framework of Toregesen and Ivey (1985), modified to include a diffusive reduction of originally uniform crustal helium flux from basement rocks through a thick sedimentary layer beneath the aquifer, to calculate a distribution of radiogenic 4He within the aquifer. With this framework, we obtain 4He ages that are consistent with ages based on 81Kr and 14C, and with a crustal degassing flux equivalent to that estimated from U and Th contents in the crust. The model framework for the Guarani Aquifer is also applied to data from other deep aquifers in Africa and Australia and our results suggest that the continental flux of 4He may be uniform, at least in stable continental areas. Additionally, a reliable estimate of the 4He degassing flux also helps to constrain the surficial discharge of deep groundwater.

  8. Preliminary simulation of degassing of natural gases dissolved in groundwater during shaft excavation in Horonobe underground research project

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Kunimaru, Takanori; Kurikami, Hiroshi

    2007-01-01

    In Neogene-Quaternary sedimentary basins, natural gases such as methane are often dissolved in groundwater significantly. In this paper, two-phase flow simulations incorporating the degassing of methane, and carbon dioxide, were performed for the shaft excavation in Horonobe underground research project. The results drawn from the simulations are summarized as follows. 1) As depth increases, degassing and gas inflow occurs significantly. 2) Degassing increases the compressibility of pore fluids, resulting in slow changes in groundwater pressures. 3) Although the occurrence of gas phase decreases water mobility, the influence of the dissolved gas on the groundwater inflow rate to the shaft was small. (author)

  9. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  10. Volcanic gas composition changes during the gradual decrease of the gigantic degassing activity of Miyakejima volcano, Japan, 2000-2015

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Matsushima, Nobuo; Saito, Genji; Kazahaya, Ryunosuke

    2017-02-01

    The composition of volcanic gases discharged from Miyakejima volcano has been monitored during the intensive degassing activity that began after the eruption in 2000. During the 15 years from 2000 to 2015, Miyakejima volcano discharged 25.5 Mt of SO2, which required degassing of 3 km3 of basaltic magma. The SO2 emission rate peaked at 50 kt/day at the end of 2000 and quickly decreased to 5 kt/day by 2003. During the early degassing period, the volcanic gas composition was constant with the CO2/SO2 = 0.8 (mol ratio), H2O/SO2 = 35, HCl/SO2 = 0.08, and SO2/H2S = 15. The SO2 emission rate decreased gradually to 0.5 kt/day by 2012, and the gas composition also changed gradually to CO2/SO2 = 1.5, H2O/SO2 = 150, HCl/SO2 = 0.15, and SO2/H2S = 6. The compositional changes are not likely caused by changes in degassing pressure or volatile heterogeneity of a magma chamber but are likely attributed to an increase of hydrothermal scrubbing caused by large decrease of the volcanic gas emission rate, suggesting a supply of gases with constant composition during the 15 years. The intensive degassing was modeled based on degassing of a convecting magma conduit. The gradual SO2 emission rate that decrease without changes in volcanic gas composition is attributed to a reduction of diameter of the convecting magma conduit.

  11. Investigation of Inner Vacuum Sucking method for degassing of molten aluminum

    International Nuclear Information System (INIS)

    Zeng, Jianmin; Gu, Ping; Wang, Youbing

    2012-01-01

    Hydrogen is a harmful gas element that is appreciably soluble in aluminum and its alloys. Removal of hydrogen from molten aluminum has been one of the most important tasks in aluminum melt processing. In this paper, a patented degassing process, which is based on principle of vacuum metallurgy, is proposed. A porous head that connects a vacuum system is immersed in the molten aluminum. The vacuum is created within the porous head and the dissolved hydrogen will diffuse unidirectionally towards the porous head according to Sievert's law. In this way, the hydrogen in the molten aluminum can be removed. The Fick's diffusion equation is used to explain hydrogen transfer in the molten aluminum. RPT experiments are carried out to evaluate the effectiveness of the new degassing process. The experiments indicate that the hydrogen content can be dramatically reduced by use of this process.

  12. Infrasonic harmonic tremor and degassing bursts from Halema'uma'u Crater, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Fee, David; Garcés, Milton; Patrick, Matt; Chouet, Bernard; Dawson, Phil; Swanson, Donald A.

    2010-01-01

    The formation, evolution, collapse, and subsequent resurrection of a vent within Halema'uma'u Crater, Kilauea Volcano, produced energetic and varied degassing signals recorded by a nearby infrasound array between 2008 and early 2009. After 25 years of quiescence, a vent-clearing explosive burst on 19 March 2008 produced a clear, complex acoustic signal. Near-continuous harmonic infrasonic tremor followed this burst until 4 December 2008, when a period of decreased degassing occurred. The tremor spectra suggest volume oscillation and reverberation of a shallow gas-filled cavity beneath the vent. The dominant tremor peak can be sustained through Helmholtz oscillations of the cavity, while the secondary tremor peak and overtones are interpreted assuming acoustic resonance. The dominant tremor frequency matches the oscillation frequency of the gas emanating from the vent observed by video. Tremor spectra and power are also correlated with cavity geometry and dynamics, with the cavity depth estimated at ~219 m and volume ~3 x 106 m3 in November 2008. Over 21 varied degassing bursts were observed with extended burst durations and frequency content consistent with a transient release of gas exciting the cavity into resonance. Correlation of infrasound with seismicity suggests an open system connecting the atmosphere to the seismic excitation process at depth. Numerous degassing bursts produced very long period (0.03-0.1 Hz) infrasound, the first recorded at Kilauea, indicative of long-duration atmospheric accelerations. Kilauea infrasound appears controlled by the exsolution of gas from the magma, and the interaction of this gas with the conduits and cavities confining it.

  13. Soil CO2 Degassing Path along Volcano-Tectonic Structures in the Pico-Faial-São Jorge Islands (Azores Archipelago, Portugal

    Directory of Open Access Journals (Sweden)

    Fátima Viveiros

    2017-06-01

    Full Text Available The Azores archipelago is composed of nine volcanic islands located at the triple junction between the North American, Eurasian, and Nubian plates. Nowadays the volcanic activity in the archipelago is characterized by the presence of secondary manifestations of volcanism, such as hydrothermal fumaroles, thermal and cold CO2-rich springs as well as soil diffuse degassing areas, and low magnitude seismicity. Soil CO2 degassing (concentration and flux surveys have been performed at Pico, Faial, and São Jorge islands to identify possible diffuse degassing structures. Since the settlement of the Azores in the fifteenth Century these three islands were affected by seven onshore volcanic eruptions and at least six destructive earthquakes. These islands are crossed by numerous active tectonic structures with dominant WNW-ESE direction, and less abundant conjugate NNW-SSE trending faults. A total of 2,855 soil CO2 concentration measurements have been carried out with values varying from 0 to 20.7 vol.%. Soil CO2 flux measurements, using the accumulation chamber method, have also been performed at Pico and Faial islands in the summer of 2011 and values varied from absence of CO2 to 339 g m−2 d−1. The highest CO2 emissions were recorded at Faial Island and were associated with the Pedro Miguel graben faults, which seem to control the CO2 diffuse degassing and were interpreted as the pathways for the CO2 ascending from deep reservoirs to the surface. At São Jorge Island, four main degassing zones have been identified at the intersection of faults or associated to WNW-ESE tectonic structures. Four diffuse degassing structures were identified at Pico Island essentially where different faults intersect. Pico geomorphology is dominated by a 2,351 m high central volcano that presents several steam emissions at its summit. These emissions are located along a NW-SE fault and the highest measured soil CO2 concentration reached 7.6 vol.% with a maximum

  14. Relationship between Diffuse CO2 Degassing and Volcanic Activity. Case Study of the Poás, Irazú, and Turrialba Volcanoes, Costa Rica

    Directory of Open Access Journals (Sweden)

    Matthieu Epiard

    2017-10-01

    Full Text Available Active volcanoes exhibit diffuse gas emanations through the ground, the most abundant species of which is CO2. However, the relationship between diffuse degassing and volcanic activity is not often clear and some volcanoes may have low diffuse degassing levels despite having strong volcanic activity. The main goals of this study are to quantify diffuse CO2 degassing and determine whether patterns exist in relation to volcanic activity through the study of Turrialba, Poás, and Irazú, three active volcanoes in Costa Rica which are at different stages of activity. Structural controls of spatial distribution of diffuse degassing were also investigated. Measurement campaigns were conducted using the accumulation chamber method coupled with 10 cm depth ground temperature sampling with the aim of estimating the total diffuse CO2 degassing budget. The total amount of CO2 emitted diffusely by each volcano is ~113 ± 46 t/d over ~0.705 km2 for Turrialba, 0.9 ± 0.5 t/d for Poás over ~0.734 km2, 3.8 ± 0.9 t/d over ~0.049 km2 for Irazú's main crater, and 15 ± 12 t/d over 0.0059 km2 for Irazú's north flank. Turrialba and Poás volcano diffuse degassing budget represent about 10% of the whole gas output. Both volcanoes were in a transitional stage and the opening of new conduits may cause a loss in diffuse degassing and an increase of active degassing. Numerous diffuse degassing structures were also identified. At Turrialba, one of which was closely associated with the collapse of a crater wall in 2014 during the initiation of a new period of heightened eruptive activity. Similar structures were also observed on the outer slopes of the west crater, suggesting strong alteration and perhaps destabilization of the upper outer cone. Irazú's north flank is highly permeable and has experienced intense hydrothermal alteration.

  15. Carbon dioxide degassing and thermal energy release at Vesuvio (Italy)

    Science.gov (United States)

    Frondini, F.; Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.

    2003-04-01

    At Vesuvio, basing on the data of the CO2 flux surveys carried out in April and May 2000, are discharged about 130 t d-1 of CO2 through soil diffuse degassing. In the crater area the distribution of the soil temperatures show a general correspondence between the CO2 flux anomalies and the high temperatures, suggesting that the heating of the soil is mainly due to the condensation of the rising volcanic-hydrothermal fluids. Considering that the original H2O/CO2 ratio of hydrothermal fluids is recorded by fumarolic effluents, the steam associated to the CO2 output has been computed and amount to is 475 t d-1. The energy produced by the steam condensation and cooling of the liquid phase is 1.26 1012 J d-1 (14.6 MW). The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodical CO2 flux surveys, can constitute a powerful tool to monitor the activity of the volcano.

  16. Process for water-gas generation from degassed combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1906-05-23

    A process for water-gas generation in a continuous operation from degassed combustibles in the lower part of a vertical exterior-heated retort, whose middle part can serve to degas the combustibles, is described. It is characterized in that the water vapor employed is obtained by vaporizing water in the upper part of the retort by means of the waste heat from the heating gases, which had effected the coking of the combustibles before the water-gas recovery or after the latter.

  17. MaGa, a web-based collaborative database for gas emissions: a tool to improve the knowledge on Earth degassing

    Science.gov (United States)

    Frigeri, A.; Cardellini, C.; Chiodini, G.; Frondini, F.; Bagnato, E.; Aiuppa, A.; Fischer, T. P.; Lehnert, K. A.

    2014-12-01

    The study of the main pathways of carbon flux from the deep Earth requires the analysis of a large quantity and variety of data on volcanic and non-volcanic gas emissions. Hence, there is need for common frameworks to aggregate available data and insert new observations. Since 2010 we have been developing the Mapping Gas emissions (MaGa) web-based database to collect data on carbon degassing form volcanic and non-volcanic environments. MaGa uses an Object-relational model, translating the experience of field surveyors into the database schema. The current web interface of MaGa allows users to browse the data in tabular format or by browsing an interactive web-map. Enabled users can insert information as measurement methods, instrument details as well as the actual values collected in the field. Measurements found in the literature can be inserted as well as direct field observations made by human-operated instruments. Currently the database includes fluxes and gas compositions from active craters degassing, diffuse soil degassing and fumaroles both from dormant volcanoes and open-vent volcanoes from literature survey and data about non-volcanic emission of the Italian territory. Currently, MaGa holds more than 1000 volcanic plume degassing fluxes, data from 30 sites of diffuse soil degassing from italian volcanoes, and about 60 measurements from fumarolic and non volcanic emission sites. For each gas emission site, the MaGa holds data, pictures, descriptions on gas sampling, analysis and measurement methods, together with bibliographic references and contacts to researchers having experience on each site. From 2012, MaGa developments started to be focused towards the framework of the Deep Earth Carbon Degassing research initiative of the Deep Carbon Observatory. Whithin the DECADE initiative, there are others data systems, as EarthChem and the Smithsonian Institution's Global Volcanism Program. An interoperable interaction between the DECADE data systems is being

  18. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed

    Science.gov (United States)

    Deirmendjian, Loris; Abril, Gwenaël

    2018-03-01

    Streams and rivers emit significant amounts of CO2 and constitute a preferential pathway of carbon transport from terrestrial ecosystems to the atmosphere. However, the estimation of CO2 degassing based on the water-air CO2 gradient, gas transfer velocity and stream surface area is subject to large uncertainties. Furthermore, the stable isotope signature of dissolved inorganic carbon (δ13C-DIC) in streams is strongly impacted by gas exchange, which makes it a useful tracer of CO2 degassing under specific conditions. For this study, we characterized the annual transfers of dissolved inorganic carbon (DIC) along the groundwater-stream-river continuum based on DIC concentrations, stable isotope composition and measurements of stream discharges. We selected a homogeneous, forested and sandy lowland watershed as a study site, where the hydrology occurs almost exclusively through drainage of shallow groundwater (no surface runoff). We observed the first general spatial pattern of decreases in pCO2 and DIC and an increase in δ13C-DIC from groundwater to stream orders 1 and 2, which was due to the experimentally verified faster degassing of groundwater 12C-DIC compared to 13C-DIC. This downstream enrichment in 13C-DIC could be modelled by simply considering the isotopic equilibration of groundwater-derived DIC with the atmosphere during CO2 degassing. A second spatial pattern occurred between stream orders 2 and 4, consisting of an increase in the proportion of carbonate alkalinity to the DIC accompanied by the enrichment of 13C in the stream DIC, which was due to the occurrence of carbonate rock weathering downstream. We could separate the contribution of these two processes (gas exchange and carbonate weathering) in the stable isotope budget of the river network. Thereafter, we built a hydrological mass balance based on drainages and the relative contribution of groundwater in streams of increasing order. After combining with the dissolved CO2 concentrations, we

  19. An experimental device for characterizing degassing processes and related elastic fingerprints: Analog volcano seismo-acoustic observations

    Science.gov (United States)

    Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego

    2018-05-01

    A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.

  20. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia; Kelly, Peter J.; Doukas, Michael; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert; Neal, Christina

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15-July 1, 2009) was 59 and 66% of the total CO2 and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27-0.56 wt.% S; whole-rock normalized values are slightly lower (0.8-1.7 wt.% CO2 and 0.22-0.47 wt.% S) and are similar to what was calculated for the 1989-90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the

  1. A degassing instrument for analysing CO2 dissolved in natural water

    Science.gov (United States)

    Durham, Brian; Pfrang, Christian

    2017-04-01

    Arising from our EGU 2017 presentation (http://meetingorganizer.copernicus.org/EGU2016/posters/20564, X2 352), interest has been expressed in its application to the analysis of the hydrocarbonate ion [HCO3-] in atmospheric water. Arising from the historic difficulty in analysing the aqueous [HCO3-] ion ('it is in all our reagents', pers. comm. UK laboratory) the classic determination has been to measure a suite of other anions and cations including [H+] via pH, and to treat the balance of negative charge as a measure of [HCO3-]. From this balance, dissolved CO2 can be inferred via the dissociation constant as published for pure water. CO2 + H2O ⇓♢[HCO3-] + [H+] K1 = 4.2 x 10-7 Our EGU 2016 presentation sought to determine how the ionic environment in 263 UK rain samples can influence the above equilibrium, which is work in progress. In the mean time we have received the following expression of interest from an atmospheric science advisory group. …….. is very interested in the role of H-carbonate in the ion balance of precipitation. They have had some discussions recently about the best approach to infer H-carbonate currently discussing the possibility of sending you samples from other locations for analysis. We have duly offered to use our degassing instrument to corroborate current analyses in a batch of 'blind' samples, and to provide a design for a basic degasser that water quality laboratories could evaluate in house. This paper therefore presents a circuit for degassing CO2 from water samples irrespective of whether in atmospheric equilibrium or supersaturated, including a prototype 4-way distribution and collection valve which it is hoped will make the analysis intuitive and therefore open to automation.

  2. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    Science.gov (United States)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  3. Diffuse magmatic soil degassing at Soufriere of Guadeloupe, Antilles

    International Nuclear Information System (INIS)

    Allard, P.; Parello, F.

    1998-01-01

    A soil gas profiling made along the southern basis of Soufriere summit lave dome, in Guadeloupe, reveals the existence of diffuse emanations of magma-derived CO 2 in coincidence with a major volcanic (Ty) fault, where CO 2 concentrations at 70 cm depth in the ground reach 35-96 % and are associated with a thermal convective cell. Outside, a few 'cold' gaseous anomalies of volcanic origin (lack of methane) provide reliable conditions for continuous radon monitoring of soil degassing. (authors)

  4. Comparison of diffuse CO2 degassing at Miravalles and Rincón de la Vieja volcanoes (Guanacaste Province, Costa Rica)

    Science.gov (United States)

    Liegler, A.; Bakkar Hindeleh, H.; Deering, C. D.; Fentress, S. E.

    2015-12-01

    Volcanic gas emissions are a key component for monitoring volcanic activity, magmatic input of volatiles to the atmosphere and the assessment of geothermal potential in volcanic regions. Diffuse soil degassing has been shown to represent a major part of volcanic gas emissions. However, this type of gas emission has not yet been quantified in the Guanacaste province of Costa Rica; a region of the country with several large, active or dormant volcanoes. We conducted the first study of diffuse CO2 degassing at Rincón de la Vieja and Miravalles volcanoes, both located in Guanacaste. Diffuse degassing was measured using the accumulation chamber method to quantify CO2 flux in regions where hydrothermal surface features indicate anomalous activity. The total diffuse carbon dioxide flux estimated at Miravalles in two areas, together roughly 2 km2 in size, was 135 t/day and in several areas at Rincón de la Vieja a minimum of 4 t/day. Comparatively low flux values and a very local concentration (few m2) of CO2 flux were observed at the active Rincón de la Vieja volcano, compared to the dormant Miravalles volcano, where significant soil flux was found over extended areas, not only around vents. Our assessment of the origin of these differences leads to two possibilities depending on if the surface features on the two volcanoes are fed by a common hydrothermal system or two separate ones. In the former case, the different intensity of diffuse CO2 flux could indicate a different degassing behavior and stronger concentration of gas emissions at the active vent areas at Rincon de la Vieja. In the latter case, where the hydrothermal systems are not linked, the amount of CO2 degassed through the flanks of the volcanoes could indicate that different physical and chemical conditions are governing the degassing of the two systems.

  5. Argon-40 as a Constraint on the Volcanic Degassing History and Thermal Evolution of Mars

    Science.gov (United States)

    Kiefer, W. S.

    2017-12-01

    Models for the thermal and magmatic evolution of Mars are strongly controlled by the volcanic degassing of water from the interior. Water affects the mantle's viscosity and hence the vigor of convective flow. It also affects the mantle's solidus temperature and hence the rate of magma generation. This set of coupled feedback loops affects both the volume of crustal production and the possible production of a magnetic field via a core dynamo (e.g., Sandu and Kiefer, GRL 2012, 2011GL050225). Volcanic degassing also affects other atmospheric components. Argon-40, which is a radioactive decay product of potassium-40, can potentially serve as an additional test of thermal evolution models. As a noble gas, 40Ar is highly incompatible in mantle and crustal rocks and thus tends to degas to the atmosphere during magmatic events. 40K has a half-life of 1.25 billion years and thus 40Ar measures volcanic degassing throughout martian history. It is relatively insensitive to atmospheric loss processes during the earliest part of solar system history, and long-term loss of 40Ar from the atmosphere can be estimated from fractionation of the 38Ar/36Ar ratio relative to solar (MAVEN results indicate that 66% of 36Ar has been lost from the martian atmosphere, Jakosky et al., Science 2017). The noble gas composition of the martian atmosphere has been measured both in situ using the SAM mass spectrometer on NASA's Curiosity rover and via measurements of trapped atmospheric gases in martian meteorites. One important application of 40Ar degassing models is as a constraint on the bulk silicate composition of Mars. The most widely accepted composition model for Mars has a potassium abundance of 305-310 ppm, slightly higher than the bulk silicate Earth. However, several other models assume a bulk silicate Mars K of up to 1040 ppm. Preliminary Ar degassing modeling favors K in the lower half of this range, consistent with results from long-term and present-day magma production models

  6. Effect of compacting pressure, powder degassing and thermobaric treatment on densification and properties of nanocrystalline titanium nitride

    Directory of Open Access Journals (Sweden)

    Andrei V. Kapylou

    2009-09-01

    Full Text Available The effects of compacting pressure, powder degassing and high pressure sintering temperature and time on the densification and properties of nanocrystalline titanium nitride have been investigated. For this reason, TiN powder with a mean particle size of 55 nm was pressed in the range of compacting pressure from 0.2 to 1.0 GPa and sintered under static pressure of 3.5 GPa in the temperature range of 900–1600°C for 45–120 s. Some of green bodies were degassed in vacuum before sintering. It was shown that samples compacted in the pressure range of 0.2–0.6 GPa have the highest density after the thermobaric treatment. The maximum density (about 97.3 %TD was obtained with degassed samples. Microhardness and microstructure investigations have shown that recrystallization of the TiN nanopowder begins at the sintering temperatures of 1100–1200°C and sintering time less than one minute. The maximum microhardness obtained was 23.2±1.0 GPa and themaximum Young modulus was 370 GPa.

  7. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia A.; Kelly, Peter; Doukas, Michael P.; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert G.; Neal, Christina

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15–July 1, 2009) was 59 and 66% of the total CO2and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27–0.56 wt.% S; whole-rock normalized values are slightly lower (0.8–1.7 wt.% CO2 and 0.22–0.47 wt.% S) and are similar to what was calculated for the 1989–90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional

  8. Apparatus and method for depressurizing, degassing, and affording decay of the radioactivity of weakly radioactive condensates in nuclear power plants

    International Nuclear Information System (INIS)

    Gross, R.; Plotz, J.

    1976-01-01

    Described is an apparatus for depressurizing, degassing and affording decay of weakly radioactive condensates in nuclear power plants having a turbine and a main condenser turbine wherein exhaust steam of the turbine is condensed and forms a main condensate, and includes a collecting tank for the condensate situated below the condenser. A plurality of horizontal degassing channels, each having a lateral overflow, are disposed in the upper part of the condensate collecting tank and are filled with the main condensate up to the level of the overflow. At least one feedwater preheater which is heated by bleeder steam from the turbine provides a secondary condensate. Below the overflow height of the degassing channels extend horizontal feed pipes for the secondary condensate. The feed pipes are connected to the output of pressure relieving expanding devices and are provided on their underside with discharge openings for the bubbling of the secondary condensate into the main condensate to thereby degass the main condensate. The condensate collecting tank has mutually offset partitions therein providing an adequately long path for the decay of the main and secondary condensates. The condensate which is discharged from the condensate collecting tank is returned into the cycle as feedwater. Also disclosed is a method of operating the foregoing apparatus

  9. Short lived radionuclides in gases and magmas: contribution to the study of degassing and of the dynamics of magmatic reservoirs

    International Nuclear Information System (INIS)

    Gauthier, P.J.

    1998-01-01

    Crystallization and magma degassing at Stromboli (Italy) and Merapi (Indonesia) volcanoes are studied through 230 Th- 226 Ra- 210 Pb and 210 Pb- 210 Bi- 210 Po disequilibria in lavas and gases. An attempt to date crystallization by internal isochrones in ( 226 Ra)/Ba - ( 230 Th)/Ba and ( 210 Pb)/Pb - ( 226 Ra)/Pb diagrams reveals the complex evolution of these arc magmas. Several models (instantaneous but non simultaneous crystallization of the different mineral phases; continuous crystallization) are proposed to explain the lack of simple isochrones. The influence of other magmatic processes (assimilation, magma reinjection, degassing...) is discussed. The role played by radon loss from magmas (controlled by the ex solution of major gas species) on 210 Pb- 226 Ra disequilibria in lavas is examined through a model of dynamic degassing. At Stromboli, the magma reservoir has reached a steady-state and is rapidly renewed, thus explaining (Pb/Ra) ratios close to 1. At Merapi, the evolution of the reservoir is controlled by a succession of low dynamics degassing periods ( 2 analyses in the volcanic plume. The contribution of Etna as a source of atmospheric pollution is estimated during periods of contrasted volcanic activity and is compared to the volcanic emissions worldwide. (author)

  10. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring

    Science.gov (United States)

    de Moor, J. Maarten; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V.; Galle, B.

    2016-08-01

    Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is 8-10 km deep, whereas the shallow magmatic gas source is at 3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

  11. Utilizing methane from degassing as a fuel for furnaces of drying systems. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, V.I.; Telegin, A.K.

    1984-10-01

    The use is evaluated of methane from coal seam degassing in the Severnaya mine as a fuel for dryers in the Severnaya coal preparation plant in the USSR. Dryers used in the plant are equipped with PMZ-4TsR furnaces. Middlings (type Zh18 coal) with 30% ash content and 0.25 MJ/kg calorific value were used as a fuel. When dryers were fired with middlings moisture content in coal concentrate declined from 10.1% to 5.1%, system output amounted to 133 t/h. After plant modernization middlings were replaced with methane from coal seam degassing (methane content in the mixture with air ranged from 40 to 60%). Replacing middlings with methane increased dryer output from 133 to 203 t/h. Moisture content in dried coal was reduced from 11.8 to 4.8%. Repair cost decreased, environmental pollution caused by combustion also declined. Payback period amounted to 6 months.

  12. Groundwater degassing and two-phase flow in fractured rock: Summary of results and conclusions achieved during the period 1994-2000

    International Nuclear Information System (INIS)

    Jarsjoe, J.; Destouni, G.

    2001-06-01

    Although water saturated conditions generally prevail several hundreds of metres below the ground water table, two-phase flow conditions, i.e. a mixed flow of gas and water, may develop in the vicinity of a repository situated in a regionally saturated rock mass. Deep groundwater naturally contains dissolved gases that may come out of solution if the water pressure is reduced to atmospheric pressure in the vicinity of boreholes and drifts, for instance, during hydraulic and tracer testing. Under certain conditions, this may lead to development of an unsaturated zone, affecting the local hydrology. Other possible sources of two-phase flow conditions in the vicinity of a deep repository include air entry in connection with tunnel ventilation and gas generation in the repository due to corrosion or biological processes. Quantitative two-phase flow models are needed in order to investigate the potential effects of all the above processes. However, traditional constitutive relations for two-phase/unsaturated flow were developed for porous media and are based on parameters that can be readily estimated in soil, but are difficult or impossible to determine independently in fractured rock. Despite the parameter estimation difficulties, several studies have indicated that these relations can be calibrated to reproduce observed unsaturated fracture flow behaviour. In this report, we show that a novel, fractured rock relation is at least equally capable of calibrated reproduction of unsaturated fracture flow as the widely used van Genuchten relation for porous media. Moreover, due to the fact that the novel relation is based on parameters that are physically relevant for (and independently measurable in) rock fractures in the field, it has the potential of independent prediction capabilities, which is not the case for the van Genuchten relation. We furthermore consider in detail the effects of groundwater degassing on measurements of hydraulic properties in boreholes and

  13. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    Science.gov (United States)

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  14. The 2012 Copahue eruption: magnitude of gas fluxes and time scale of degassing

    Science.gov (United States)

    Varekamp, J. C.; Camfield, L.

    2015-12-01

    Copahue volcano (Argentina, 37.5 S, 71.5 W) erupted in 2000 and 2012 with initial phreato-magmatic blasts, violent Strombolian eruptions of several hours duration, followed by open conduit activity for days to months. The 2012 basal deposits 10 km S of Copahue are mm-sized ashes with hydrothermally altered debris, followed by up to 10cm pancake pumices, while denser cinders fell near the crater in the waning stages. The strombolian plume was ~ 6 km high and satellite images show its trajectory up to 200 km S. The pumices have finely porous rims (0.3mm vesicles) that were probably quenched by hydrothermal fluids and coarse interiors (several mm vesicles) that inflated during eruption. All the products have identical chemical composition and mineralogy, and only vary in degree of vesiculation. The 2012 products are the most mafic of the whole volcanic history of Copahue, with MgO ~ 4.5 %. The quench rim pumice glass contains 1160 ppm Cl while glass inclusions have up to 1800 ppm Cl. Water concentrations are 0.5-2.0 % (by difference with EMPA) and plagioclase hygrometry. Pre-eruptive conditions were 1080 oC and 1-2.5 kb pressure. The magmato-hydrothermal system is leaking fluids into the overlying crater lake and into a river. The hot springs have pH <1 and these fluids are up to 60% magmatic in origin. Annual river flux measurements and non-steady state modeling between 1997 and 2013 constrain the mean hydrothermal Cl flux at 1170 tonnes/month. The 2012 erupted magma mass is about 1012 gr, and from the measured total Cl loss between 2000 and 2012 and mean degassed Cl in the magma the volume of degassing magma is estimated at 1014-1015 grams. Much more magma was degassing than was erupted. Analyses of 226Ra-210Pb constrained the maximum degassing time at 8-10 years prior to the 2012 eruption. Almost all rock samples have 210Pb deficits, and so most gas escaped from the magma into the hydrothermal system. Nonetheless, the top of the magma reservoir accumulated bubbles

  15. Diffuse CO_{2} degassing monitoring of the oceanic active volcanic island of El Hierro, Canary Islands, Spain

    Science.gov (United States)

    Hernández, Pedro A.; Norrie, Janice; Withoos, Yannick; García-Merino, Marta; Melián, Gladys; Padrón, Eleazar; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Pérez, Nemesio M.

    2017-04-01

    Even during repose periods, volcanoes release large amounts of gases from both visible (fumaroles, solfataras, plumes) and non-visible emanations (diffuse degassing). In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs, particularly in those volcanic areas where there are no visible volcanic-hydrothermal gas emissions. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. As CO2 travels upward by advective-diffusive transport mechanisms and manifests itself at the surface, changes in its flux pattern over time provide important information for monitoring volcanic and seismic activity. Since 1998, diffuse CO2 emission has been monitored at El Hierro Island, the smallest and south westernmost island of the Canarian archipelago with an area of 278 km2. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become the most useful geochemical tool to monitor the volcanic activity in this volcanic island. The island experienced a volcano-seismic unrest that began in July 2011, characterized by the location of a large number of relatively small earthquakes (MHierro at depths between 8 and 15 km. On October 12, 2011, a submarine eruption was confirmed during the afternoon of October 12, 2011 by visual observations off the coast of El Hierro, about 2 km south of the small village of La Restinga in the southernmost part of the island. During the pre-eruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep seated magmatic gases to the surface. The second

  16. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  17. Carbon monoxide degassing from seismic fault zones in the Basin and Range province, west of Beijing, China

    Science.gov (United States)

    Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo

    2017-11-01

    Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.

  18. The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing

    Directory of Open Access Journals (Sweden)

    А. Н. Шабаров

    2016-08-01

    Full Text Available The study considers a comprehensive technology (designed and patented by the authors of developing coal and methane deposits which combines in situ gasification of lower coalbeds in the suite of rock bump hazardous gassy beds, extraction of coal methane and mechanized mining of coal. The first stage of the technology consists in mining gaseous fuel that enables one to extract up to 15-20 % of total energy from the suite of coalbeds. Geodynamic zoning is used to select positions for boring wells. Using the suggested technology makes it possible to solve a number of tasks simultaneously. First of all that is extracting gaseous fuel from the suite of coalbeds without running any mining works while retaining principal coalbeds in the suite and preparing them for future processing (unloading and degassing. During the first phase the methane-coal deposit works as a gas deposit only, the gas having two sources – extracted methane (which includes its locked forms, absorbed and adsorbed and the products of partial incineration of thin coalbeds, riders and seams from thee suite. The second stage consists in deep degassing and unloading of coal beds which sharply reduces the hazards of methane explosion and rock bumps, thus increasing the productivity of mechanized coal mining. During the second stage coal is mined in long poles with the account of degassing and unloading of coal beds, plus the data on gas dynamic structure of coal rock massif.

  19. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes

    Directory of Open Access Journals (Sweden)

    Arie Lev Gilat

    2012-11-01

    Full Text Available Examples of the mightiest energy releases by great earthquakes and volcanic eruptions and hypotheses providing explanations for them are analyzed along with the results of some recently published researches and visualizations. The emerging conclusions are that the mechanism of the strong earthquake is a chemical explosion; that volcanic eruption is a special type of earthquake wherein the hypocenter rises to the earth-surface; and that there is an association between the seismic-volcanic processes and mantle “fluids” and the lack of energy for mantle plumes. A conceptual system of hypotheses is put forward to explain the conservation of energy during Earth’s accretion, its quasi-stable release by primordial H- and He-degassing and of the crucial role of the energy of degassing-comprising-reactions in endogenic processes. Specific mechanisms and chemical processes are proposed for the gas-liquid mantle plumes melting through the solid mantle using heat-energy released in reactions of their metamorphic and chemical transformation under gradual decrease of pressure and temperature; volcanic gases are put forward as energy carriers. 3He performance as a unique measuring transformer correlative to the internal heat flow was used for calculation of energy release by degassing; it equals to 5.12 × 1020 J/yr, an amount of energy five-fold greater than the entire energy loss involved in earthquake and volcanic activity. The hypotheses proposed are objectively testable.

  20. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO2 degassing

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2014-01-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO 2 degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO 2 degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO 2 degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  1. Integrative device and process of oxidization, degassing, acidity adjustment of 1BP from APOR process

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Zheng, Weifang, E-mail: wfazh@ciae.ac.cn; Yan, Taihong; He, Hui; Li, Gaoliang; Chang, Shangwen; Li, Chuanbo; Yuan, Zhongwei

    2016-02-15

    Graphical abstract: Previous (left) and present (right) device of oxidation, degassing, acidity adjustment of 1BP. - Highlights: • We designed an integrative device and process. • The utilization efficiency of N{sub 2}O{sub 4} is increased significantly. • Our work results in considerable simplification of the device. • Process parameters are determined by experiments. - Abstract: Device and process of oxidization, degassing, acidity adjustment of 1BP (The Pu production feed from U/Pu separation section) from APOR process (Advanced Purex Process based on Organic Reductants) were improved through rational design and experiments. The device was simplified and the process parameters, such as feed position and flow ratio, were determined by experiments. Based on this new device and process, the reductants N,N-dimethylhydroxylamine (DMHAN) and methylhydrazine (MMH) in 1BP solution could be oxidized with much less N{sub 2}O{sub 4} consumption.

  2. Isotopic insights into the degassing and secondary hydration of volcanic glass from the 1980 eruptions of Mount St. Helens

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya; Van Eaton, Alexa; Hoblitt, Richard

    2018-04-01

    Abstract The magmatic degassing history of newly erupted volcanic glass is recorded in its remaining volatile content. However, this history is subsequently overprinted by post-depositional (secondary) hydration, the rates and origins of which are not yet adequately constrained. Here, we present the results of a natural experiment using products of the 1980 eruptions of Mount St. Helens. We measured water concentration, δDglass, and δ18OBSG (δ18O of the bulk silicate glass) of samples collected during the dry summer months of 1980 and compared them with material resampled in 2015 from the same deposits. Samples collected from the subsurface near gas escape pipes show elevated water concentrations (near 2.0 wt%), and these are associated with lower δDglass (- 110 to - 130‰) and δ18OBSG (6.0 to 6.6‰) values than the 1980 glass (- 70 to - 100‰ and 6.8 to 6.9‰, respectively). Samples collected in 2015 from the surface to 10-cm subsurface of the 1980 summer deposits have a small increase in average water contents of 0.1-0.2 wt% but similar δ18OBSG (6.8-6.9‰) values compared to the 1980 glass values. These samples, however, show 15‰ higher δDglass values; exchange with meteoric water is expected to yield lower δDglass values. We attribute higher δDglass values in the upper portion of the 1980 deposits collected in 2015 to rehydration by higher δD waters that were degassed for several months to a year from the hot underlying deposits, which hydrated the overlying deposits with relatively high δD gases. Our data also contribute to magmatic degassing of crystal-rich volcanoes. Using the 1980 samples, our reconstructed δD-H2O trends for the dacitic Mount St. Helens deposits with rhyolitic groundmass yield a trend that overlaps with the degassing trend for crystal-poor rhyolitic eruptions studied previously elsewhere, suggesting similar behavior of volatiles upon exsolution from magma. Furthermore, our data support previous studies proposing that

  3. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S. [Department of Earth and Planetary Science, The University of Tokyo, Kiban Bldg. 408, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kiban Bldg. 409, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  4. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  5. Magmas in motion: Degassing in volcanic conduits and fabrics of pyroclastic density current

    Science.gov (United States)

    Burgisser, Alain

    Volcanoes are caused by the transport of magma batches from the Earth's crust to the surface. These magmas in motion undergo drastic changes of rheologic properties during their journey to the surface and this work explores how these changes affect volcanic eruptions. The first part of this study is devoted to the dynamic aspects of degassing and permeability in magmas with high pressure, high temperature experiments on natural volcanic rocks. Degassing is measured by the influence of decompression rate on the growth of the bubbles present in the magma while permeability is deduced from the temporal evolution of these bubbles. The parameterization of our results in a numerical model of volcanic conduit flow show that previous models based on equilibrium degassing overestimate the acceleration and the decompression rate of the magma. Assessing permeability effects derived form our results show that the transition between explosive and effusive eruptions is a strong function of the magma initial ascent rate. The second part of this work is a unification of two end-members of pyroclastic currents (highly concentrated pyroclastic flows and dilute, turbulent pyroclastic surges) using theoretical scaling arguments based on multiphase physics. Starting from the dynamics of the particle interactions with a fundamental eddy, we consider the full spectrum of eddies generated within a turbulent current. We demonstrate that the presence of particles with various sizes induces a density stratification of the current, leading to its segregation into a basal concentrated part overlain by a dilute cloud. To verify our predictions on the interactions of such a segregated pyroclastic current with its surroundings (hills and sea), we studied the products of the 2050 BP caldera-forming eruption of Okmok Volcano (Alaska). This field study allowed us to reconstruct the eruptive sequence and to validate the main aspects of our theoretical model, such as the superposition of a dense and

  6. Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys

    Science.gov (United States)

    García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  7. Studies of structural material degassing in cryogenic vacuum technique

    International Nuclear Information System (INIS)

    Koshmarov, Yu.A.; Kupriyanov, V.I.; Ivanov, A.E.; Chubarov, E.V.; Dryamov, V.A.

    1976-01-01

    The choice and design of cryogenic vacuum pumping equipment require a reliable knowledge of qualitative and quantitative gassing parameters characteristic of the structural materials now in use. The gassing study has been made on the plates of stainless steel, copper and aluminium at a pressure of 1.33 (10 -3 -10 -5 ) Pa (10 -5 -10 -7 mm Hg) at room temperature and degassing duration up to 50 hours. An approximate method is proposed for the determination of the diffusion coefficients initial concentration of dissolved in metals gases, and gaseous exchange coefficient for various components of the gas dissolved in steel copper and aluminium alloys. The data obtained permit the designing of pumping equipment for various vacuum systems

  8. Passive degassing at Nyiragongo (D.R. Congo and Etna (Italy volcanoes

    Directory of Open Access Journals (Sweden)

    Sergio Calabrese

    2015-02-01

    Full Text Available Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Etna (Italy and Nyiragongo (D.R. Congo are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater and their uptake by the surrounding vegetation, with the aim to compare and identify differences and similarities between these two volcanoes. Volcanic emissions were sampled by using active filter-packs for acid gases (sulfur and halogens and specific teflon filters for particulates (major and trace elements. The environmental impact of the volcanogenic deposition in the area surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors’ gauges were used to collect atmospheric bulk deposition, and biomonitoring was carried out to collect gases and particulates by using endemic plant species. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals into the atmosphere, especially considering their persistent state of passive degassing. The large amount of emitted trace elements is clearly reflected on the chemical composition of rainwater collected at the summit areas both for Etna and Nyiragongo. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and de- creases with the distance from the active craters.  

  9. Time-Resolved Gravimetric Method To Assess Degassing of Roasted Coffee.

    Science.gov (United States)

    Smrke, Samo; Wellinger, Marco; Suzuki, Tomonori; Balsiger, Franz; Opitz, Sebastian E W; Yeretzian, Chahan

    2018-05-30

    During the roasting of coffee, thermally driven chemical reactions lead to the formation of gases, of which a large fraction is carbon dioxide (CO 2 ). Part of these gases is released during roasting while part is retained inside the porous structure of the roasted beans and is steadily released during storage or more abruptly during grinding and extraction. The release of CO 2 during the various phases from roasting to consumption is linked to many important properties and characteristics of coffee. It is an indicator for freshness, plays an important role in shelf life and in packaging, impacts the extraction process, is involved in crema formation, and may affect the sensory profile in the cup. Indeed, and in view of the multiple roles it plays, CO 2 is a much underappreciated and little examined molecule in coffee. Here, we introduce an accurate, quantitative, and time-resolved method to measure the release kinetics of gases from whole beans and ground coffee using a gravimetric approach. Samples were placed in a container with a fitted capillary to allow gases to escape. The time-resolved release of gases was measured via the weight loss of the container filled with coffee. Long-term stability was achieved using a customized design of a semimicro balance, including periodic and automatic zero value measurements and calibration procedures. The novel gravimetric methodology was applied to a range of coffee samples: (i) whole Arabica beans and (ii) ground Arabica and Robusta, roasted to different roast degrees and at different speeds (roast air temperatures). Modeling the degassing rates allowed structural and mechanistic interpretation of the degassing process.

  10. The Evidence from Inclusions in Pumices for the Direct Degassing of Volatiles from the Magma to the Hydrothermal Fluids in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    YU Zenghui; ZHAI Shikui; ZHAO Guangtao

    2002-01-01

    This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatilesreleasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal strippingof volatiles from the volcanic rocks.Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of thevolatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hy-drothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variationtrend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents ofvolatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluidswith gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermalstripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.

  11. The influence of episodic shallow magma degassing on heat and chemical transport in volcanic hydrothermal systems

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin; Burns, Erick; Ingebritsen, Steven E.; Agrinier, Pierre

    2018-01-01

    Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square‐wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one‐dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.

  12. No effect of H2O degassing on the oxidation state of hydrous rhyolite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations in six obsidian samples from the Mexican and Cascade arcs

    Science.gov (United States)

    Waters, L.; Lange, R. A.

    2011-12-01

    The extent to which degassing affects the oxidation state of arc magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of magmas, and it has been proposed that degassing may induce either oxidation or reduction depending on the initial oxidation state. A commonly proposed oxidation reaction is related to H2O degassing: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt). Another mechanism by which H2O degassing can affect the iron redox state is if dissolved water affects the activity of ferrous and/or ferric iron in the melt. Although Moore et al. (1995) presented experiments showing no evidence of an affect of dissolved water on the activity of the ferric-ferrous ratio in silicate melts, other experimental results (e.g., Baker and Rutherford, 1996; Gaillard et al., 2001; 2003) indicate that there may be such an effect in rhyolite liquids. It has long been understood that rhyolites, owing to their low total iron concentrations, are more sensitive than other magma types to degassing-induced change in redox state. Therefore, a rigorous test of whether H2O degassing affects the redox state of arc magmas is best evaluated on rhyolites. In this study, a comparison is made between the pre-eruptive (pre-degassing) Fe2+ concentrations in six, phenocryst-poor (volatiles, as indicated by the low loss on ignition values (LOI ≤ 0.7 wt%). In order to test how much oxidation of ferrous iron occurred as a consequence of that degassing, we measured the ferrous iron concentration in the bulk samples by titration, using the Wilson (1960) method, which was successfully tested again three USGS and one Canadian Geological Survey standards. Our results indicate no detectable change within analytical error between pre- and post-eruptive FeO concentrations, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%. Our results show that H2O degassing has no effect on the redox state of

  13. Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels

    Science.gov (United States)

    Liang, Junsheng; Luo, Ying; Zheng, Sheng; Wang, Dazhi

    2017-05-01

    Capillary blocking caused by CO2 bubbles in anode flow field (AFF) is one of the bottlenecks for performance improvement of a micro direct methanol fuel cell (μDMFC). In this work, we present a novel AFF structure with nested layout of hydrophilic fuel channels and superhydrophobic degassing channels which can remove most of CO2 from AFF before it is released to the fuel channels. The new AFFs are fabricated on Ti substrates by using micro photochemical etching combined with anodization and fluorination treatments. Performance of the μDMFCs with and without superhydrophobic degassing channels in their AFF is comparatively studied. Results show that the superhydrophobic degassing channels can significantly speed up the exhaust of CO2 from the AFF. CO2 clogging is not observed in the new AFFs even when their comparison AFFs have been seriously blocked by CO2 slugs under the same operating conditions. 55% and 60% of total CO2 produced in μDMFCs with N-serpentine and N-spiral AFF can be respectively removed by the superhydrophobic degassing channels. The power densities of the μDMFCs equipped with new serpentine and spiral AFFs are respectively improved by 30% and 90% compared with those using conventional AFFs. This means that the new AFFs developed in this work can effectively prevent CO2-induced capillary blocking in the fuel channels, and finally significantly improve the performance of the μDMFCs.

  14. Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew; Wilson, David; Fee, David; Orr, Tim R.; Swanson, Donald A.

    2011-01-01

    The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.

  15. Cyclic thermal behavior associated to the degassing process at El Hierro submarine volcano, Canary Islands.

    Science.gov (United States)

    Fraile-Nuez, E.; Santana-Casiano, J. M.; González-Dávila, M.

    2016-12-01

    One year after the ceasing of magmatic activity in the shallow submarine volcano of the island of El Hierro, significant physical-chemical anomalies produced by the degassing process as: (i) thermal anomalies increase of +0.44 °C, (ii) pH decrease of -0.034 units, (iii) total dissolved inorganic carbon, CT increase by +43.5 µmol kg-1 and (iv) total alkalinity, AT by +12.81 µmol kg-1 were still present in the area. These evidences highlight the potential role of the shallow degassing processes as a natural ecosystem-scale experiments for the study of significant effects of global change stressors on marine environments. Additionally, thermal time series obtained from a temporal yo-yo CTD study, in isopycnal components, over one of the most active points of the submarine volcano have been analyzed in order to investigate the behavior of the system. Signal processing of the thermal time series highlights a strong cyclic temperature period of 125-150 min at 99.9% confidence, due to characteristic time-scales revealed in the periodogram. These long cycles might reflect dynamics occurring within the shallow magma supply system below the island of El Hierro.

  16. What goes up might come down: Backflow in the conduits of persistently degassing volcanoes and ramifications for melt-inclusion analysis

    Science.gov (United States)

    Suckale, J.; Qin, Z.; Picchi, D.; Keller, T.

    2017-12-01

    Many active volcanoes erupt significantly less magma than they degas, implying that large quantities of magma must descend back into the plumbing system after degassing. The resulting bidirectional flow field in the volcanic conduit is fundamentally unstable. These instabilities are important to understand, because they likely control the episodicity of eruptive behavior observed at persistently degassing volcanoes. Laboratory experiments have provided invaluable insights into the flow regimes that may arise in volcanic conduits, but are not straightforward to scale up to volcanic systems. The goal of this study is to use direct numerical simulations to virtually reproduce the analogue experiments by Stevenson and Blake, 1998, compare them to simple analytical models and gain insights into the different flow regimes and interface instabilities observed in actual volcanic conduits. Direct numerical simulations provide a compelling complement to analogue experiments, because they are not constrained by the scales or flow properties achievable in a laboratory setting. By linking virtual and analogue experiments, we show that the interface between ascending and descending fluid is not usually stationary in volcanic conduits (see fig). The intuition that buoyant, volatile-rich magma moves up while heavy, degassed magma moves down is hence not generally true in bidirectional conduit flow. Instead, our results show that a potentially significant portion of the volatile-rich magma flows downwards despite its positive buoyancy - a process commonly referred to as backflow. The existence of backflow in volcanic conduits has potentially important ramifications for understanding melt-inclusion trends, because it affects exsolved and dissolved volatile components differently. Our preliminary results suggest that carbon dioxide bubbles exsolved at depth tend to decouple from the backflow and escape into the upward moving portion of the fluid, while dissolved water is recycled

  17. Development of a discharge model for the Bopp and Reuther Degasser/Condenser relief valves for heat sink assessment

    International Nuclear Information System (INIS)

    Hasnaoui, C. . chiheb@hasnaoui.net; Huynh, M.

    2004-01-01

    A total loss of all sustained engineering heat sinks is considered as a severe accident with low probability of occurrence. Following a total loss of all sustained engineering heat sinks, the Degasser/Condenser relief valves (3332-RV11 and RV21) would then become the sole means available for the depressurization of the primary heat transport system. Accurate estimation of the discharge through these valves is required to assess the impact of this kind of accident on fuel cooling and the primary circuit integrity. This paper describes a model used to estimate the Degasser/Condenser relief valve discharge capacity. This model is used to predict the flow discharge under a range of conditions upstream of the relief valves; from sub-cooled to saturated liquid and up to vapor conditions. The defined model is then used to estimate the relief valve discharge rates under various hypothetical conditions of the PHTS using the Cathena code. (author)

  18. Calibration of a degassing-emanation line for 222Rn determination in seawater samples

    International Nuclear Information System (INIS)

    Farias, Luciana Aparecida

    2002-01-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine 222 Rn and 226 Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring 226 Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of 222 Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of 222 Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of 222 Rn in excess increases with depth, as expected. (author)

  19. Magma fracturing and degassing associated with obsidian formation: The explosive–effusive transition

    Science.gov (United States)

    Cabrera, Agustin; Weinberg, Roberto; Wright, Heather M.

    2015-01-01

    This paper explores the role of melt fracturing in degassing rhyolitic volcanic systems. The Monte Pilato-Rocche Rosse eruptions in Italy evolved from explosive to effusive in style, and H2O content in quenched glasses changed over time from relatively H2O-rich (~ 0.90 wt.%) to H2O-poor dense obsidian (~ 0.10–0.20 wt.%). In addition, healed fractures have been recorded in all different eruptive materials, from the glass of early-erupted tube pumice and rinds of breadcrusted obsidian pyroclasts, to the glass of late-erupted dense obsidian pyroclasts, and throughout the final effusive Rocche Rosse lava flow. These rocks show multiple fault sets, some with crenulated fault planes indicating resumption of viscous flow after faulting, complex obsidian breccias with evidence for post-brecciation folding and stretching, and centimetre- to metre-thick tuffisite preserved in pyroclasts and lava, representing collapsed foam due to fracturing of vesicle walls. These microstructural observations indicate that multiple fracturing and healing events occurred during both explosive and effusive eruptions. H2O content in glass decreases by as much as 0.14 wt.% towards healed fractures/faults and decreases in stretched obsidian breccias towards regions of intense brecciation. A drop in pressure and/or increase in temperature along fractures caused diffusive H2O migration through melt towards fracture surfaces. Repetitive and pervasive fracturing and healing thereby create conditions for diffusive H2O loss into fractures and subsequent escape through permeable paths. This type of progressive magma degassing provides a potential mechanism to explain the formation of dense obsidian and the evolution from explosive to effusive eruption style.

  20. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  1. The use of imagery of the earth to study the structure of degassing zones within oil and gas basins

    Energy Technology Data Exchange (ETDEWEB)

    Amurskii, G I; Bondareva, M S

    1981-05-01

    Space imagery is used to identify and trace the local faults and fracture zones of several anticlinal structures in Central Asia. These zones, favorable to the vertical migration of stratified fluids, exhibit an increased permeability, and are therefore subject to degassing and the accumulation of gaseous sulfur.

  2. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    Science.gov (United States)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from importance in supplying sulfur and metals to the atmosphere during eruption.

  3. Infrared remote sensing of Earth degassing - Ground study

    Directory of Open Access Journals (Sweden)

    P. Strobl

    2005-06-01

    Full Text Available Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM emanates.

  4. Mechanization of refractory relining and disintegration work for ladle and RH-degassing vessel; Toribe, RH datsu gas ro ni okeru seko oyobi kaitai sagyo no kikaika

    Energy Technology Data Exchange (ETDEWEB)

    Kuwayama, M; Yoshida, M [Kawasaki Steel Corp., Tokyo (Japan); Yamaguchi, T [Kawasaki Refractories Corp. Ltd., Hyogo (Japan)

    1996-02-01

    In iron and steel industry, automation and mechanization of furnace relining work are required as the measures of the environmental betterment therein which is extremely important for ensuring the factors in the future. In this paper, the inductions of the equipment for castable refractory relining at the bottom of the ladle, the equipment for handling slag line bricks of the ladle, the equipment for brick disintegration in the RH-degassing vessel which have been mechanized recently at the Mizushiminduction`s Kawasaki Steel Corporation as a part of the betterment of furnace relining work carried out hitherto are described. The main points of said betterment are indicated hereafter. The equipment for castable refractory relining at the bottom of the ladle is exploited and utilized. The hard works are lightened by the large scale of the bricks for the slag line of the ladle and the induction of the vacuum lifter. The equipment exclusive for disintegration in the RH-degassing vessel is exploited and utilized. Owing to the above-mentioned improvements, 27% and 60% of the operation time are reduced in the relining work for the ladle and disintegration work for the RH-degassing vessel respectively. 9 figs., 2 tabs.

  5. Environmental impact study on a degassing and scaling of cistern trucks for fuel transportation plant.

    OpenAIRE

    Tupia, Elmer

    2014-01-01

    The present Study of Environmental Impact (EIA) it is carried out by the Company Ecoplanet Group from the Peru CORP, to application of Servisya CORP, proprietor of a degassing plant and scaling of trucks cistern for transports of derived liquid fuels of the hydrocarbons, the environment of the location area undestood in the Country of Lima of the district of Villa El Salvador being. El presente estudio de Impacto Ambiental(EIA) es realizado por la empresa Ecoplanet group del Perú S.A. a s...

  6. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  7. Operative modes of the primary circuit degasser of Atucha II N.P.P

    International Nuclear Information System (INIS)

    Rodriguez, Ivanna; Contino, Maximiliano; Chocron, Mauricio; Duca, Jorge

    2012-09-01

    Atucha II (N.A.S.A., Buenos Aires Province, Argentina) is a Pressurized Vessel Heavy Water Reactor designed by Siemens with a capacity of 740 MWe. After a long delay in construction the plant is close to the commissioning and among the many task that are carried out, chemistry and operation of devices related to it are under consideration [1]. As it is known, Hydrogen or Deuterium dosing has the purpose of both: limitation of the water radiolysis and to provide an appropriate reductive media for the structural materials, mainly stainless steel, A800 and Zr-4. Dealing with a heavy water plant, it is critical to determine whether it is necessary to add D 2 or if it is feasible to dose H 2 , by considering heavy water degradation and heavy water upgrading system capability. Those aspects have been previously analyzed and presented [2]. It is also necessary to consider blankets and venting locations that address to losses of the expensive D 2 . In the present work several alternatives of hydrogenation are presented and evaluated, considering the Degasser (D), the Volume Control Tank (TCV) and the special features of the purification and volume control system of a pressurized vessel heavy water plant where the primary circuit and moderator are partially mixed. Also the influence of venting through the pressurizer is analyzed. Conclusions are obtained in connection to (i) the maintenance of a permanent blanket of H 2 /He, 4%, in the TCV dome at a given initial pressure, (ii) The same but constant pressure to reach 0.6 ppm of H 2 in the Primary and Moderator water circuit, (iii) transients while reducing pressure in the Degasser and considering contribution of pressurizer venting, (iv) estimated contribution of the general corrosion of the system and (iv) differences if D 2 is used. (authors)

  8. Shallow magmatic degassing into the hydrothermal system of Copahue, Argentina

    Science.gov (United States)

    Varekamp, J.; Ouimette, A.; Kreulen, R.; Delpino, D.; Bermudez, A.

    2001-05-01

    Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 percent sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable isotope composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70 percent volcanic brine and 30 percent glacial meltwater. The crater lake waters have similar mixing proportions but added isotope effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur. We measured the sulfate fluxes in the Rio Agrio, and from these flux values and the stoichiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur. The isotopic signature of the magmatic sulfur can be reconstituted at about +7 per mille, which is a source signature with superposed effects of shallow degassing. Lead isotope and 129Iodine data from the fluids indicate that subducted components may have played a role in the Copahue magma formation. Primary glass inclusions in plagioclase and olivine have 1110-1670 ppm Cl, 90-400 ppm

  9. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  10. The November 2002 degassing event at Panarea Island (Italy: five months of geochemical monitoring

    Directory of Open Access Journals (Sweden)

    P. L. Rossi

    2005-06-01

    Full Text Available On 3rd November 2002, at about 3 km off-shore of Panarea Island (Aeolian Islands, Southern Italy, a series of gas vents suddenly and violently opened from the seafloor at the depth of 10-15 m, with an unusually high gas flux and superimposing on the already existing submarine fumarolic field. Starting from the 12th November 2002 a discontinuous geochemical monitoring program was carried out. The emissions consisted in an emulsion whose liquid phase derived from condensation of an uprising vapor phase occurring close to the fluid outlets without significant contamination by seawater. The whole composition of the fluids was basically H2O- and CO2-dominated, with minor amounts of typical «hydrothermal» components (such as H2S, H2, CO and light hydrocarbons, atmospheric-related compounds, and characterized by the occurrence of a significant magmatic gas fraction (mostly represented by SO2, HCl and HF. According to the observed temporal variability of the fluid compositions, between November and December 2002 the hydrothermal feeding system was controlled by oxidizing conditions due to the input of magmatic gases. The magmatic degassing phenomena showed a transient nature, as testified by the almost complete disappearance of the magmatic markers in a couple of months and by the restoration, since January 2003, of the chemical features of the existing hydrothermal system. The most striking feature of the evolution of the «Panarea degassing event» was the relatively rapid restoration of the typical reducing conditions of a stationary hydrothermal system, in which the FeO/Fe1.5O redox pair of the rock mineral phases has turned to be the dominating redox controlling system.

  11. Gas adsorption on commercial magnesium stearate: Effects of degassing conditions on nitrogen BET surface area and isotherm characteristics.

    Science.gov (United States)

    Lapham, Darren P; Lapham, Julie L

    2017-09-15

    Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of S BET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. S BET of a mono-hydrate sample is 5.6m 2 g -1 and 3.2m 2 g -1 at 40°C and 100°C degassing respectively but 23.9m 2 g 1 and 5.9m 2 g -1 for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show S BET >15m 2 g 1 , BET C-values adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Degassing behavior of Mt. Etna volcano (Italy) before and during the 2008-2009 eruption, inferred from crater plume and soil gas measurements

    Science.gov (United States)

    Salerno, Giuseppe; La Spina, Alessandro; Giammanco, Salvatore; Burton, Michael; Caltabiano, Tommaso; Murè, Filippo; Randazzo, Daniele; Lopez, Manuela; Bruno, Nicola; Longo, Vincenza

    2010-05-01

    The evolution of magmatic degassing that preceded and accompanied the 2008-2009 Mt. Etna eruption was monitored by using a combination of: i) near-daily SO2 flux measurements; ii) calculated HCl and HF fluxes, obtained combining the daily SO2 flux values with discrete FTIR measurements of SO2/HCl and SO2/HF molar ratios; iii) periodic soil CO2 flux measurements. Thanks to the differential release of magmatic gas species from an ascending magma body we were able to track the magma transfer process in the volcano plumbing system from depth (gas-rich magma ascending and degassing via the central conduit system prior to eruption at the peripheral SEC. Conversely, the 15 month long 2008-09 eruption event was characterized by quasi steady state magma supply. The calculated volume of magma required to produce the observed SO2 flux during the 2008-2009 eruption closely matches the volume of erupted magma. This "eruptive" steady-state would indicate an almost perfect process of magma migration and eruption at the surface, without substantial storage within the volcano plumbing system.

  13. Research regarding the vacuuming of liquid steel on steel degassing

    Science.gov (United States)

    Magaon, M.; Radu, M.; Şerban, S.; Zgripcea, L.

    2018-01-01

    When the liquid steel comes in contact with the atmosphere of the elaboration aggregates, a process of gas diffusion into the metal bath takes place on the one hand, and on the other hand a process that allows them to pass from the metal bath into the atmosphere. The meaning of these processes is determined by a number of factors as follows: the quality of raw and auxiliary materials (moisture content, oils, etc.), the boiling intensity, the evacuation duration, the properties of used slags, the values of the casting ladle processing parameters (bubbling, vacuuming, etc.). The research was carried out at an electrical steelwork, equipped with an electric arc furnace type EBT (Electric Bottom Tapping) capacity 100t, LF (Ladle-Furnace) and VD (Vacuum Degassing) facilities, establishing some correlations between the vacuuming parameters from the V.D.facility and the amounts of hydrogen and nitrogen removed from the metal bath, as well as their removal efficiency, were taken into consideration. The obtained data was processed in MATLAB calculation program, the established correlations form was presented both in analytical and graphical form. The validity of these correlations was verified in practice, being particularly useful in research.

  14. Diffuse magmatic soil degassing at Soufriere of Guadeloupe, Antilles; Degazage magmatique diffus a la Soufriere de Guadeloupe, Antilles

    Energy Technology Data Exchange (ETDEWEB)

    Allard, P. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l`Environnement; Hammouya, G. [Observatoire Volcanologique de la Soufriere, IPGP, Le Houelmont, 97 - Gourbeyre, Guadeloupe (France); Parello, F. [Palermo Univ. (Italy). Dipt. di Chimica e Fisica della Terra ed Applicazioni

    1998-09-01

    A soil gas profiling made along the southern basis of Soufriere summit lave dome, in Guadeloupe, reveals the existence of diffuse emanations of magma-derived CO{sub 2} in coincidence with a major volcanic (Ty) fault, where CO{sub 2} concentrations at 70 cm depth in the ground reach 35-96 % and are associated with a thermal convective cell. Outside, a few `cold` gaseous anomalies of volcanic origin (lack of methane) provide reliable conditions for continuous radon monitoring of soil degassing. (authors) 14 refs.

  15. Isotopic Insights Into the Degassing and Secondary Hydration Rates of Volcanic Glass From the 1980 Eruptions of Mount St. Helens

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Van Eaton, A. R.; Hoblitt, R. P.

    2016-12-01

    Following eruption, volcanic glass undergoes hydration in its depositional environment, which overprints the history of magmatic degassing recorded in the glass. However, the rates of secondary hydration of volcanic glass used for paleoclimate studies are poorly constrained. Here, we present our results of a natural experiment using products of the 1980 eruptions of Mount St. Helens. We measured the δD of extracted water and the δ18O of the bulk glass of samples collected during the dry summer months of 1980 and compared them with material resampled in August of 2015. Results demonstrate that only samples collected from the subsurface near gas escape pipes show elevated water concentrationss (near 2.0 wt.%) and low δD (-110 to -130 ‰) and δ18O (6.0 to 6.6 ‰) values, and that the initial process of secondary hydration is not always a simple addition of low δD waters at ambient temperature. On average, the 2015 surface samples have slightly higher water contents (0.1-0.2 wt.%) and similar δ18O (6.8 - 6.9 ‰) to those collected in 1980. Given the moderate vesicularity of the samples and the slow rate of surface temperature diffusion, we attribute these observations to hydration during cooling, with only little exchange after. We also compare our results to rapidly quenched air fall pumice from the May 18th eruption, which shows moderate δD values (-74 ‰) and water concentrations (0.3 wt.%) that are closer to those for the 1980 samples. Surprisingly, the 2015 surface samples show higher δD values (+15 ‰), which we attribute to any of four possibilities: (1) evaporation or (2) degassing of underlying deposits; (3) exchange of hydrogen with local vegetation; and/or (4) microlite crystallization that aided diffusion of water. Reconstructed δD-H2O trends for the Mount St. Helens samples collected in 1980 support previous studies proposing that exsolved volatiles were trapped within a rapidly rising magma that degassed at shallow depths. The dacitic Mount

  16. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera

    Science.gov (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.

    2017-12-01

    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  17. Internally heated mantle convection and the thermal and degassing history of the earth

    Science.gov (United States)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  18. Continental smokers couple mantle degassing and distinctive microbiology within continents

    Science.gov (United States)

    Crossey, Laura J.; Karlstrom, Karl E.; Schmandt, Brandon; Crow, Ryan R.; Colman, Daniel R.; Cron, Brandi; Takacs-Vesbach, Cristina D.; Dahm, Clifford N.; Northup, Diana E.; Hilton, David R.; Ricketts, Jason W.; Lowry, Anthony R.

    2016-02-01

    The discovery of oceanic black (and white) smokers revolutionized our understanding of mid-ocean ridges and led to the recognition of new organisms and ecosystems. Continental smokers, defined here to include a broad range of carbonic springs, hot springs, and fumaroles that vent mantle-derived fluids in continental settings, exhibit many of the same processes of heat and mass transfer and ecosystem niche differentiation. Helium isotope (3He/4He) analyses indicate that widespread mantle degassing is taking place in the western U.S.A., and that variations in mantle helium values correlate best with low seismic-velocity domains in the mantle and lateral contrasts in mantle velocity rather than crustal parameters such as GPS, proximity to volcanoes, crustal velocity, or composition. Microbial community analyses indicate that these springs can host novel microorganisms. A targeted analysis of four springs in New Mexico yield the first published occurrence of chemolithoautotrophic Zetaproteobacteria in a continental setting. These observations lead to two linked hypotheses: that mantle-derived volatiles transit through conduits in extending continental lithosphere preferentially above and at the edges of mantle low velocity domains. High CO2 and other constituents ultimately derived from mantle volatiles drive water-rock interactions and heterogeneous fluid mixing that help structure diverse and distinctive microbial communities.

  19. Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Directory of Open Access Journals (Sweden)

    A. Paonita

    2005-06-01

    Full Text Available Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility.

  20. A multidisciplinary and multi-sensor assessment of continuous degassing at Turrialba volcano, Costa Rica; insights and their application to hazard management

    Science.gov (United States)

    van Manen, S. M.; Tortini, R.; Burson, B.; Carn, S. A.

    2013-12-01

    Turrialba is an active stratovolcano located in the Central Cordillera of Costa Rica with an elevation of 3,340 m. Located just 35 km northeast of Costa Rica's capital city San Jose it looms over Costa Rica's Central Valley, the social and economic hub of the country. After more than 100 years of quiescence Turrialba resumed activity in 1996, marked by progressive increases in degassing and seismic activity with gas emissions becoming continuous in 2007. Intermittent phreatic explosions accompanied by ash emissions that have reached the capital have been occurring since 2010. The activity has resulted in the evacuation of two villages, closure of the National Park that comprises the summit region of the volcano and devastation of the local ecosystem. In this work we present a multi-disciplinary and multi-sensor assessment of the persistent degassing and its impacts on the local ecosystem. Combining a variety of high temporal and high spatial resolution satellite-based time series with ground-based measurements of ambient gas concentrations, element deposition and surveys of species richness, enables a comprehensive assessment of SO2 emissions and changes in vegetation. Satellite-based time-series were obtained from Landsat TM and ETM+, Terra ASTER and MODIS, Aqua MODIS, EO-1 and Aura OMI, with some of the data dating back to 2000. Preliminary results show exposure to the volcanic plume results in high soil acidity and significant uptake of certain heavy metals (e.g. Cd, Co, Cu, Hg and Pb) by vegetation, in contrast other elements such as Ba, Ca and Sr are leached from the soil as a result of the acid deposition. These factors are likely to be responsible for decreased species richness and physiological damage observed downwind of Turrialba. Ambient SO2 concentrations that exceed WHO guideline values have been recorded, which has potentially important consequences for human health in the area. Analyzing and relating the remote observations to conditions and impacts

  1. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state

    Science.gov (United States)

    Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean

    2016-01-01

    During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976

  2. An aqueous physical and mathematical modelling of ultrasonic degassing of molten metals

    International Nuclear Information System (INIS)

    Meidani, A.R.N.; Hasan, M.

    1999-01-01

    A comprehensive mathematical model, combined with an aqueous physical modelling, have been developed to simulate the ultrasonic degassing of a gassy liquid. The mathematical model forms a set of coupled, highly nonlinear and stiff differential equations. Therefore, the modified Gear method, which is a good numerical scheme for solving extremely fast moving boundary problems is applied. The threshold pressure and the effects of ultrasonic specifications on rectified diffusion of the dissolved air in water with different initial concentrations are studied. The results show that the air bubble grows when the ultrasonic pressure amplitude is more than the threshold pressure. In this case, the bubble volume reaches several times of its initial value in a fraction of second and the gas bubble may float to the surface due to the buoyancy force. A parametric study on the present model is carried out. The results of aqueous physical modelling for bubble growth are compared to the results of the mathematical model which show a reasonable agreement between the experiments and the predictions. (author)

  3. On possibility of using E, H - crossed fields and gas-dynamic flowing of argon in the processes of degassing by the method of ion-stimulated desorption of residual gas in the KUTI-20

    International Nuclear Information System (INIS)

    Sharapov, V.E.

    1985-01-01

    In the project considered if the possibility to use the degassing of an adhezatior chamber inner walls, using the method of ion-stimulated desorption (ISD) of residual gas in the glow discharge is considered. It is suggested that the experiment should be realized using the model or the KUTI (PKUTI) prototype to decrease operation pressure to p -7 Pa (2x10 -9 Tor) at the expense of introduction of the technology described and certain modifications in the processes of leak-in and pumping. The use of crossed E,H-fields and gasodynamic regime of argon flow in the process of preliminary degassing of the adhezator chamber by the glow discharge is the main idea of the project

  4. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  5. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China.

    Science.gov (United States)

    Zhou, Xiaocheng; Chen, Zhi; Cui, Yueju

    2016-10-01

    The concentrations and flux of CO2, (222)Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean [Formula: see text] of -20.4 ‰ and by a mean CO2 flux of 88.1 g m(-2) day(-1), which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m(-2) day(-1) in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m(-2) s(-1); (3) the soil Hg flux was lower, ranging from -2.5 to 18.7 n g m(-2) h(-1) and increased from south to north. The mean flux over the all profiles was 4.2 n g m(-2) h(-1). The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km(2) were approximately 0.57 Mt year(-1) and 688.19 g year(-1). It is recommended that land-use planners should

  6. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    Science.gov (United States)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  7. First measurements of the neutrals pressure and of the degassing level of the lower hybrid antenna induced by the HF power

    International Nuclear Information System (INIS)

    Goniche, M.; Berger-By, G.; Bibet, P.; Bonnel, P.; Bruneau, J.L.; Capitain, J.J.; Gil, C.; Hertout, P.; Rodriguez, L.; Magne, R.

    1989-12-01

    Previous experiments have shown that large amounts of gas may be desorbed from the waveguides walls of a lower hybrid antenna. To reduce the pressure rise, a getter pump has been connected to the LH vessel of Tore Supra. The effective neutrals pumping speed of the LH launcher during a plasma shot has been measured for different configurations of the getter pump (inactive, low conductance and high conductance duct). For deuterium, an effective pumping speed of 33 m 3 /s was obtained. During short conditioning pulses and 2-s plasma shots, degassing rates were measured for RF power level up to 1.2 MW. With different filling gas (He, H 2 , D 2 ), degassing rates are documented and effects of conditioning are discussed. This neutrals influx contributes to the particles balance of the plasma discharge: a significant increase of the total number of particles (10-20%) and a flattening of the density profile are inferred. Large increase of the neutrals pressure in the pumped limitor (up to 32%) was also observed. For 2-s shots, this pressure rise was held below 3 mPa at an average LH power density of 1.5 kW/cm 2 . However, this pressure rise may be, to some extent, larger in the reduced-section part of the launcher which has a low conductance. It is expected that this pressure rise should not exceed 5 mPa at full power (5 KW/cm 2 ) after conditioning [fr

  8. Diffuse He degassing from Cumbre Vieja volcano, La Palma, Canary Islands

    Science.gov (United States)

    Asensio-Ramos, María; De Jongh, Marli E.; Lamfers, Kristen R.; Alonso, Mar; Amonte, Cecilia; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Helium is considered as an ideal geochemical tracer due to its geochemical properties: chemical inertness, physical stability and practical insolubility in water under normal conditions. These characteristics, together with its high mobility on the crust, make the presence of helium anomalies on the surface environment of a volcanic system to be related to deep fluid migration controlled by volcano-tectonic features, also providing valuable information about the location and characteristics of the gas source and the fracturing of the crust. The recent results reported by Padrón et al. (2013) clearly show importance of helium emission studies for the prediction of major volcanic events and the importance of continuous monitoring of this gas in active volcanic regions. La Palma Island (708.32 km2) is located at the northwestern end of the Canarian Archipelago. Subaerial volcanic activity on this island started ˜2.0 My ago and has taken place exclusively at the southern part in the last 123 ka. Cumbre Vieja volcano, the most active basaltic volcano of the Canary Islands, was built in this zone, including a main north-south rift area 20 km long and up to 1,950 m in elevation, with vents located also at the northwest and northeast. Padrón et al., (2012) showed that helium is mainly emitted along both N-S and N-W rift of Cumbre Vieja, being, therefore, zones of enhanced permeability for deep gas migration and preferential routes for degassing. This work represents a continuation of the results obtained by Padrón et al. (2012) until the year 2016. Each study covered the 220 km2 of Cumbre Vieja with an average of 570 homogenously distributed sampling points. At each sampling site, soil gas samples were collected at 40 cm depth by withdrawing the gas aliquots into 60 cc hypodermic syringes. He content in the soil gases was analyzed by means of quadrupole mass spectrometry (QMS). Atmospheric gas was used periodically to calibrate the instrument. To estimate the helium

  9. Preliminary assessment of the state of CO2 soil degassing on the flanks of Gede volcano (West Java, Indonesia)

    Science.gov (United States)

    Kunrat, S. L.; Schwandner, F. M.

    2013-12-01

    Gede Volcano (West Java) is part of an andesitic stratovolcano complex consisting of Pangrango in the north-west and Gede in the south-east. The last recorded eruptive activity was a phreatic subvolcanian ash eruption in 1957. Current activity is characterized by episodic swarms at 2-4 km depth, and low-temperature (~160°C) crater degassing in two distinct summit crater fumarolic areas. Hot springs occur in the saddle between the Gede and Pangrango edifice, as well as on the NE flank base. The most recent eruptive events produced pyroclastic material, their flow deposits concentrate toward the NE. A collaborative effort between the Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency and the Earth Observatory of Singapore (EOS) is since 2010 aimed at upgrading the geophysical and geochemical monitoring network at Gede Volcano. To support the monitoring instrumentation upgrades under way, surveys of soil CO2 degassing have been performed on the flanks of Gede, in circular and radial traverses.The goal was to establish a spatial distribution of flank CO2 fluxes, and to allow smart siting for continuous gas monitoring stations. Crater fluxes were not surveyed, as its low-temperature hydrothermal system is likely prone to large hydraulic changes in this tropical environment, resulting in variable permeability effects that might mask signals from deeper reservoir or conduit degassing. The high precipitation intensity in the mountains of tropical Java pose challenges to this method, since soil gas permeability is largely controlled by soil moisture content. Simultaneous soil moisture measurements were undertaken. The soil CO2 surveys were carried out using a LI-8100A campaign flux chamber instrument (LICOR Biosciences, Lincoln, Nebraska). This instrument has a very precise and highly stable sensor and an atmospheric pressure equilibrator, making it highly sensitive to low fluxes. It is the far superior choice for higher precision low

  10. New evidence of CO2 soil degassing anomalies on Piton de la Fournaise volcano and the link with volcano tectonic structures

    Science.gov (United States)

    Liuzzo, M.; Di Muro, A.; Giudice, G.; Michon, L.; Ferrazzini, V.; Gurrieri, S.

    2015-12-01

    Piton de la Fournaise (PdF) is recognized as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short-lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (e.g., rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while δ13C are between -26.6 and -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a δ13C signature clearly related to a magmatic origin.

  11. 210Pb, 230Th, and 10Be in Central Indian Basin seamount sediments: Signatures of degassing and hydrothermal alteration of recent origin

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Borole, D.V.; Aldahan, A.; Patil, S; Mascarenhas-Pereira, M.B.L.; Possnert, G.; Ericsson, T.; Ramaswamy, V.; Gupta, S

    , 230 Th, and 10 Be in Central Indian Basin seamount sediments: Signatures of degassing and hydrothermal alteration of recent origin B. N. Nath, 1 D. V. Borole, 1 A. Aldahan, 2 S. K. Patil, 3 M. B. L. Mascarenhas-Pereira, 1 G. Possnert, 4 T. Ericsson, 2... V. Ramaswamy, 1 and S. M. Gupta 1 Received 4 March 2008; revised 17 March 2008; accepted 8 April 2008; published 14 May 2008. [1] Isotopic ( 210 Pb, 238 U- 230 Th, 10 Be), major and trace elements, and micromorphological and microchemical data, were...

  12. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  13. In situ baking method for degassing of a kicker magnet in accelerator beam line

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu; Yasuda, Yuichi

    2016-01-01

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small

  14. In situ baking method for degassing of a kicker magnet in accelerator beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu [Japan Atomic Energy Agency, J-PARC Center, Ooaza Shirakata 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan); Yasuda, Yuichi [SAKAGUCHI E.H VOC CORP., Sakura Dai-san Kogyodanchi 1-8-6, Osaku, Sakura, Chiba 285-0802 (Japan)

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  15. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  16. Graben structure in the Las Cañadas edifice (Tenerife, Canary Islands): implications for active degassing and insights on the caldera formation

    Science.gov (United States)

    Galindo, Inés; Soriano, Carles; Martí, Joan; Pérez, Nemesio

    2005-06-01

    A graben structure has been identified at the western area of the Las Cañadas caldera wall, here referred as the Los Azulejos Graben. This graben is 1 km wide and is bounded by two major normal faults trending NE-SW, the Los Azulejos Fault and the Ucanca Fault. The graben was active for at least 0.5 Ma, from the end of the Ucanca Fm to the end of the Guajara Fm, and before the collapse of the Las Cañadas edifice that formed the western caldera. A right-lateral transtension regime operated in the graben as suggested by small fault orientations and kinematics. The prolongation of the NE rift zone of Tenerife to the Cañadas edifice is the most likely volcano-tectonic scenario for the graben. In this context, inflation of phonolitic shallow magma chambers may have produced reverse faults and reactivation of normal faults. An intense and widespread hydrothermal alteration, here called Azulejos-type, occurred mainly before the graben formation, while a fault-related hydrothermal alteration occurred during and after the graben. Diffuse carbon dioxide and hydrogen degassing in and around the Las Cañadas caldera show relatively enriched values along a NE-SW trend suggesting that faults in the Los Azulejos Graben act as a pathway for deep-seated gases to the surface. Diffuse degassing and hydrothermalism indicate that the graben area has been a zone of intense fluid circulation during the evolution of the Las Cañadas edifice.

  17. A New Sulfur and Carbon Degassing Inventory for the Southern Central American Volcanic Arc: The Importance of Accurate Time-Series Data Sets and Possible Tectonic Processes Responsible for Temporal Variations in Arc-Scale Volatile Emissions

    Science.gov (United States)

    de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.

    2017-12-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  18. Level of carbon dioxide diffuse degassing from the ground of Vesuvio: comparison between extensive surveys and inferences on the gas source

    Directory of Open Access Journals (Sweden)

    Domenico Granieri

    2013-11-01

    Full Text Available An extensive campaign of diffuse CO2 soil flux was carried out at the cone of Vesuvio in October 2006 with two main objectives: 1 to provide an estimation of CO2 diffusely discharged through the soils in the summit area and 2 to evidence those sectors of the volcano where structural and morphological conditions could favour the gas output. The survey consisted of 502 measurements of soil CO2 flux homogenously distributed over an area of about 1.8 km2. Results of this survey were compared with those obtained during a similar campaign carried out by Frondini et al. in 2000, from which we have taken and reinterpreted a subset of data belonging to the common investigated area. Graphical statistical analysis showed three overlapping populations in both surveys, evidencing the contribution of three different sources feeding the soil CO2 degassing process. The overall CO2 emission pattern of 2006 is coherent with that observed in 2000 and suggests that a value between 120 and 140 t/day of CO2 is representative of the total CO2 discharged by diffuse degassing from the summit area of Vesuvio. The preferential exhaling area lies in the inner crater, whose contribution resulted in 45.3% of the total CO2 emission in 2006 (with 62.8 t/day and in 57.4% (with 70.3 t/day in 2000, although its extension is only 13% of the investigated area. This highly emissive area correlated closely with the structural discontinuities of Vesuvio cone, mainly suggesting that the NW-SE trending tectonic line is actually an active fault leaking deep gas to the bottom of the crater. The drainage action of the fault could be enhanced by the “aspiration” effect of the volcanic conduit.

  19. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series datasets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions

    Science.gov (United States)

    de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias

    2017-01-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  20. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    Science.gov (United States)

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  1. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Science.gov (United States)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  2. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  3. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    Science.gov (United States)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible

  4. Evolution of the chemistry of Fe bearing waters during CO2 degassing

    Science.gov (United States)

    Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.

    2012-01-01

    The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.

  5. Diffuse CO2 degassing studies to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    Science.gov (United States)

    Rodríguez, F.; Perez, N. M.; García-Merino, M.; Padron, E.; Melián, G.; Asensio-Ramos, M.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Cótchico, M. A.

    2016-12-01

    The Canary Islands, owing to their recent volcanism, are the only Spanish territory with potential high enthalpy geothermal resources. The final goal of geothermal exploration in a specific area is to locate and define the size, shape, structure of hidden geothermal resources, and determine their characteristics (fluid type, temperature, chemical composition an ability to produce energy). At those areas where there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system) the geochemical methods for geothermal exploration must include soil gas surveys. This is the case of five mining licenses for geothermal exploration in the Canay Islands, four in Tenerife and one in Gran Canaria Island. We report herein the results of diffuse CO2 emission studies in the five mining licenses during 2011-2014. The primary objective of the study was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The criterion used to sort the different areas was the contribution of volcano-hydrothermal CO2 in the degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each study area. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100% respectively) and isotopic compositions (-20, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 2-19%.The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal

  6. Numerical simulation of resin degassing unit in gas-phase fluidized bed polyethylene process and its application%气相法PE装置脱挥单元的数值模拟及应用

    Institute of Scientific and Technical Information of China (English)

    吴文清

    2014-01-01

    基于费克扩散定理、亨利定律、质量守恒定律等,结合气相法工艺聚乙烯(PE)装置脱挥单元中脱气仓的运行情况,建立了脱气仓的数学模型。运用该模型定量分析了N2流量、停留时间、压力等操作条件对脱气仓操作曲线和脱挥性能的影响,模拟分析了300kt/a气相法PE装置脱挥单元,确定了优选操作条件:操作点应同时位于出口处组分的质量分数与N2流量关系曲线的转折点,以及N2流量与停留时间关系曲线的转折点附近;N2流量与PE流量之比为0.010~0.040。%The resin degassing unit mathematical model of gas-phase fluidized bed polyethylene process was established based on Fick's diffusion law, Henry's law, mass conservation equation and so on. Then the model was applied to quantitatively analyzing the impact of the operating conditions such as nitrogen flow rate, residence time and pressure on the operation curve of purge bin and degassing performance curve, and simulation analysis of resin degassing unit in a 300 kt/a gas-phase polyethylene installations was performed to determine the preferred operating conditions. Specific conditions: operating point should be located at the turning point on outlet mass percentage of the components-nitrogen flow curve and at the turning point on nitrogen flow-residence time curve, and the flow ratio of nitrogen to polyethylene ranged from 0.010 to 0.040.

  7. Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)

    Science.gov (United States)

    Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.

    2014-12-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.

  8. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    Science.gov (United States)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  9. Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu

    Science.gov (United States)

    Lefèvre, Jérôme; Menkes, Christophe; Bani, Philipson; Marchesiello, Patrick; Curci, Gabriele; Grell, Georg A.; Frouin, Robert

    2016-08-01

    The Melanesian Volcanic Arc (MVA) emits about 12 kT d- 1 of sulfur dioxide (SO2) to the atmosphere from continuous passive (non-explosive) volcanic degassing, which contributes 20% of the global SO2 emission from volcanoes. Here we assess, from up-to-date and long-term observations, the SO2 emission of the Ambrym volcano, one of the dominant volcanoes in the MVA, and we investigate its role as sulfate precursor on the regional distribution of aerosols, using both satellite observations and model results at 1° × 1° spatial resolution from WRF-Chem/GOCART. Without considering aerosol forcing on clouds, our model parameterizations for convection, vertical mixing and cloud properties provide a reliable chemical weather representation, making possible a cross-examination of model solution and observations. This preliminary work enables the identification of biases and limitations affecting both the model (missing sources) and satellite sensors and algorithms (for aerosol detection and classification) and leads to the implementation of improved transport and aerosol processes in the modeling system. On the one hand, the model confirms a 50% underestimation of SO2 emissions due to satellite swath sampling of the Ozone Monitoring Instrument (OMI), consistent with field studies. The OMI irregular sampling also produces a level of noise that impairs its monitoring capacity during short-term volcanic events. On the other hand, the model reveals a large sensitivity on aerosol composition and Aerosol Optical Depth (AOD) due to choices of both the source function in WRF-Chem and size parameters for sea-salt in FlexAOD, the post-processor used to compute offline the simulated AOD. We then proceed to diagnosing the role of SO2 volcanic emission in the regional aerosol composition. The model shows that both dynamics and cloud properties associated with the South Pacific Convergence Zone (SPCZ) have a large influence on the oxidation of SO2 and on the transport pathways of

  10. Spatial and temporal variations of diffuse CO_{2} degassing at the Tenerife North-South Rift Zone (NSRZ) volcano (Canary Islands) during the period 2002-2016

    Science.gov (United States)

    Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.

    2017-04-01

    Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple

  11. The slender bubble model for very slow degassing in porous media and cold production

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, M. [Total, Paris (France); Zaleski, S. [Society of Petroleum Engineers, London (United Kingdom)]|[Paris Univ., Paris (France); Franco, F. [Society of Petroleum Engineers, London (United Kingdom)]|[Total, Paris (France)

    2008-10-15

    Cold oil production leads to degassing of the light species and the formation of a bubbly phase. This is often referred to as the foamy oil effect and is particularly observed with heavy oils, combining high viscosity and asphaltenes. The presence and behaviour of a foamy-oil effect is critical to the cold production process. However, because a wide range of different petrophysical parameters and experimental factors interact in a complex manner, this process is not a well-understood production mechanism. This study focused on improving the understanding of the solution gas drive mechanism in primary heavy oil recovery. A Darcy-scale model was developed that took into account the basic physical phenomena of bubble nucleation, bubble growth by solute diffusion and expansion, and bubble mobilization. The relative permeability of the gas phase was replaced by an expression for the gas mobility with new physical effects related to capillarity, viscosity, gravity, and bubble geometry. The purpose was to fit the productions with a limited number of parameters, having physical meaning, independently from the depletion rate. The paper also presented several simplifications of the basic Darcy-scale equations, that enabled the production prediction in a much simpler manner than through full simulations. The full set of Darcy-scale equations were solved using a numerical solution. The formation of strong gradients of the gas phase saturation were shown to depend on gravity and viscosity. 12 refs., 4 figs.

  12. Using titanite petrochronology to monitor CO2-degassing episodes from the Himalayas

    Science.gov (United States)

    Rapa, Giulia; Groppo, Chiara; Rolfo, Franco; Petrelli, Maurizio; Mosca, Pietro

    2017-04-01

    Metamorphic degassing from active collisional orogens supplies a significant fraction of CO2 to the atmosphere, playing a fundamental role in the long-term (> 1 Ma) global carbon cycle (Gaillardet & Galy, 2008). The petro-chronologic study of the CO2-source rocks (e.g. calc-silicate rocks) in collisional settings is therefore fundamental to understand the nature, timing, duration and magnitude of the orogenic carbon cycle. So far, the incomplete knowledge of these systems hindered a reliable quantitative modelling of metamorphic CO2 fluxes. A detailed petrological modelling of a clinopyroxene + scapolite + K-feldspar + plagioclase + biotite + zoisite ± calcite calc-silicate rock from central Nepal Himalaya allowed us to identify and fully characterize - for the first time - different metamorphic reactions that led to the simultaneous growth of titanite and production of CO2. These reactions involve biotite (rather than rutile) as the Ti-bearing reactant counterpart of titanite. The results of petrological modelling combined with Zr-in-Ttn thermometry and U-Pb geochronology suggest that in the studied sample, most titanite grains grew during two nearly continuous episodes of titanite formation: a near-peak event at 730-740°C, 10 kbar, 25.5±1.5 Ma, and a peak event at 740-765°C, 10.5 kbar, 22±3 Ma. Both episodes of titanite growth are correlated to specific CO2-producing reactions, thus allowing to constrain the timing, duration and P-T conditions of the main CO2-producing events, as well as the amounts of CO2 produced. Assuming that fluids released at a depth of ca. 30 km are able to reach the Earth's surface 10 Ma after their production, it is therefore possible to speculate on the role exerted by the Himalayan orogenesis on the climate in the past. Gaillardet J. & Galy A. (2008): Himalaya-carbon sink or source? Science, 320, 1727-1728.

  13. Human impact on the historical change of CO2 degassing flux in River Changjiang

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2007-08-01

    Full Text Available Abstract The impact of water quality changes in River Changjiang (formally known as the Yangtze River on dissolved CO2 and silicate concentrations and seasonal carbon flux in the past several decades (1960s–2000 was evaluated, based on monitoring data from hydrographic gauge. It was found that dissolved CO2 and silicate in Changjiang decreased dramatically during this decades, as opposed to a marked increase in nutrient (e.g. NO3- concentrations. Our analyses revealed that dissolved CO2 in Changjiang was over-saturated with the atmosphere CO2, and its concentration had showed a declining trend since the 1960s, despite that fluvial DIC flux had maintained stable. Analysis results also suggested that the decrease in dissolved CO2 concentration was attributed to changes on the riverine trophic level and river damming activities in the Changjiang drainage basin. Due to the economic innovation (e.g. agriculture and industry development across the Changjiang watershed, fertilizers application and river regulations have significantly altered the original state of the river. Its ecosystem and hydrological condition have been evolving toward the "lacustrine/reservoir" autotrophic type prevailing with plankton. Accordingly, average CO2 diffusing flux to the atmosphere from the river had been reduced by three-fourth from the 1960s to 1990s, with the flux value being down to 14.2 mol.m-2.yr-1 in the 1990s. For a rough estimate, approximately 15.3 Mt of carbon was degassed annually into the atmosphere from the entire Changjiang drainage basin in the 1990s.

  14. Calibration of a degassing-emanation line for 222Rn determination in seawater samples; Calibracao de uma linha de emanacao para determinacao de {sup 222}Rn em amostras de agua do mar

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Luciana Aparecida

    2002-07-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine {sup 222}Rn and {sup 226}Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring {sup 226}Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of {sup 222}Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of {sup 222}Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of {sup 222}Rn in excess increases with depth, as expected. (author)

  15. Diffuse degassing He/CO2 ratio before and during the 2011-12 El Hierro submarine eruption, Canary Islands

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Padilla, Germán; Pérez, Nemesio M.; Dionis, Samara; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David

    2015-04-01

    El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island, culminating with the eruption onset in October 12. Since at El Hierro Islands there are not any surface geothermal manifestation (fumaroles, etc), we have focused our studies on soil degassing surveys. Between July 2011 to March 2012, seventeen diffuse CO2 and He emissions soil gas surveys were undertaken at El Hierro volcanic system (600 observation sites) with the aim to investigate the relationship between their temporal variations and the volcanic activity (Padrón et al., 2013; Melián et al., 2014). Based on the diffuse He/CO2 emission ratio, a sharp increase before the eruption onset was observed, reaching the maximum value on September 26 (6.8×10-5), sixteen days before the occurrence of the eruption. This increase coincided with an increase in seismic energy release during the volcanic unrest and occurred together with an increase on the 3He/4He isotopic ratio in groundwaters from a well in El Hierro Island (Padrón et al., 2013; from 2-3 RA to 7.2 RA where RA = 3He/4He ratio in air), one month prior to the eruption onset. Early degassing of new gas-rich magma batch at depth could explain the observed increase on the He/CO2 ratio, causing a preferential partitioning of CO2 in the gas phase with respect to the He, due to the lower solubility of CO2 than that of He in basaltic magmas. During the eruptive period (October 2011-March 2012) the prevalence of a magmatic CO2-dominated component is evident, as indicated by the generally lower He/CO2 ratios and high 3He/4He values (Padrón et al., 2013). The onset of the submarine eruption might have produced a sudden release of volcanic gases, and consequently, a decrease in the volcanic gas pressure of the magma bodies moving beneath the island, reflected by a drastic decrease in

  16. Monitoring diffuse degassing in monogentic volcanic field during a quiescent period: the case of Cumbre Vieja (La Palma,Canary Islands, Spain)

    Science.gov (United States)

    Burns, F.; Cole, M.; Vaccaro, W.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padron, E.; Hernandez Perez, P. A.; Perez, N. M.

    2017-12-01

    Volcanic activity at La Palma (Canary Islands) in the last 123 ka has taken place exclusively at the southern part of the island, where Cumbre Vieja volcano, which is characterized by a main north-south rift zone 20 km long and up to 1950 m in elevation and covering an area of 220 km2 with vents located also at the northwest and northeast. Cumbre Vieja is the most active basaltic volcano in the Canaries with 7 historical eruptions being San Juan (1949) and Teneguía (1971) the most recent ones. Since no visible degassing (fumaroles, etc.) at Cumbre Vieja occurs, our geochemical program for the volcanic surveillance of Cumbre Vieja is mainly focused on diffuse degassing monitoring. Diffuse CO2 emission surveys are yearly performed in summer to minimize the influence of meteorological variations. About 570 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 47.7 g m-2 d-1. Statistical-graphical analysis of the data show two different geocheleemical populations; background (B) and peak (P) represented by 98.2% and 1.8% of the total data, respectively. The geometric means of the B and P populations are 2.9 and 36.5 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed both flanks of the main N-S volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Cumbre Vieja (220 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by Cumbre Vieja was at 801 ± 27 t d-1, value relatively higher than the background average of CO2 emission estimated on 374 t d-1 and within the background range of 132 t d-1

  17. Statistical tools applied for the reduction of the defect rate of coffee degassing valves

    Directory of Open Access Journals (Sweden)

    Giorgio Olmi

    2015-04-01

    Full Text Available Coffee is a very common beverage exported all over the world: just after roasting, coffee beans are packed in plastic or paper bags, which then experience long transfers with long storage times. Fresh roasted coffee emits large amounts of CO2 for several weeks. This gas must be gradually released, to prevent package over-inflation and to preserve aroma, moreover beans must be protected from oxygen coming from outside. Therefore, one-way degassing valves are applied to each package: their correct functionality is strictly related to the interference coupling between their bodies and covers and to the correct assembly of the other involved parts. This work takes inspiration from an industrial problem: a company that assembles valve components, supplied by different manufacturers, observed a high level of defect rate, affecting its valve production. An integrated approach, consisting in the adoption of quality charts, in an experimental campaign for the dimensional analysis of the mating parts and in the statistical processing of the data, was necessary to tackle the question. In particular, a simple statistical tool was made available to predict the defect rate and to individuate the best strategy for its reduction. The outcome was that requiring a strict protocol, regarding the combinations of parts from different manufacturers for assembly, would have been almost ineffective. Conversely, this study led to the individuation of the weak point in the manufacturing process of the mating components and to the suggestion of a slight improvement to be performed, with the final result of a significant (one order of magnitude decrease of the defect rate.

  18. Satellite and ground-based analysis of the effects on vegetation of continuous SO2 degassing at Turrialba volcano (Costa Rica) and its application to hazard management

    Science.gov (United States)

    Tortini, R.; van Manen, S. M.; Burson, B.; Carn, S. A.

    2014-12-01

    Turrialba is an active stratovolcano located 35 km northeast of San Jose, Costa Rica's capital city and socioeconomic hub. After over 100 years of quiescence Turrialba resumed activity in 1996 progressively increasing its degassing and seismic activity, showing continuous gas emissions since 2007. Intermittent phreatic explosions with ash emissions that have reached the capital have occurred since 2010. This activity has resulted in the temporary evacuation of two villages, closure of the National Park that comprises the summit region of the volcano and devastation of the local ecosystem. We combined a variety of satellite-based time series with ground-based measurements of ambient gas concentrations, element deposition and surveys of species richness to enable a comprehensive assessment of SO2 emissions and changes in vegetation. Satellite-based time-series were obtained from Landsat ETM+, Terra ASTER, Terra/Aqua MODIS and Aura OMI, with some of the data dating back to 2000. From 2007-2010 we observed emissions of SO2 and loss of vegetation healthiness (i.e. decrease of EVI2) downwind of the vents. From 2010 onwards these stabilized, but we observe an apparent decrease in agriculture. Other multi-temporal products, such as the ALOS PALSAR FNF data, confirm our observations. The exposure to the volcanic plume resulted in high soil acidity and significant uptake of certain heavy metals by vegetation; in contrast other elements are leached from the soil as a result of the acid deposition. These factors are likely to be responsible for decreased species richness and physiological damage observed at Turrialba. Our study shows ecological impacts, in terms of soil characteristics, vegetation composition and diversity and physiological damage of vegetation, which all correlate to fumigation by Turrialba's plume. Analyzing and relating the remote observations to conditions and impacts on the ground provides a better understanding of volcanic degassing, its impacts on

  19. Monitoring diffuse degassing in monogenetic volcanic field during seismic-volcanic unrest: the case of Tenerife North-West Rift Zone (NWRZ), Canary Islands, Spain

    Science.gov (United States)

    García, E.; Botelho, A. H.; Regnier, G. S. G.; Rodríguez, F.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    Tenerife North-West Rift-Zone (NWRZ) is the most active volcano of the oceanic active volcanic island of Tenerife and the scenario of three historical eruptions (Boca Cangrejo S. XVI, Arenas Negras 1706 and Chinyero 1909). Since no visible degassing (fumaroles, etc.) at Tenerife NWRZ occurs, a geochemical monitoring program at Tenerife NWRZ was established mainly consisting on performing soil CO2 efflux surveys (50 surveys since 2000) to evaluate the temporal and spatial variations of soil CO2 efflux measurements and the diffuse CO2 emission rate. To do so, about 340 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 46.6 g m-2 d-1. Statistical-graphical analysis of the 2017 data show two different geochemical populations; background (B) and peak (P) represented by 93.3% and 1.9% of the total data, respectively. The geometric means of the B and P populations are 2.4 and 19.1 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the N-W side of the volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Tenerife NWRZ (75 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by the Tenerife NWRZ volcano was 297 ± 13 t d-1. This 2017 diffuse CO2 emission rate value is relatively higher than the estimated background value (144 t d-1) and falls within the estimated background range (72 - 321 t d-1) observed for Tenerife NWRZ volcano during the 2000-2017 period. The observed temporal variation in the diffuse CO2 degassing output during this period does not seem to be driven by external

  20. Eruption and Degassing Processes in a Supervolcanic System: The Volatile Record Preserved in Melt Inclusions from the 3.49Ma Tara Ignimbrite in the Central Andes

    Science.gov (United States)

    Grocke, S.; de Silva, S. L.; Schmitt, A. K.; Wallace, P. J.

    2010-12-01

    Analysis of H2O and CO2 in quartz and sanidine-hosted melt inclusions from one of the youngest supervolcanic eruptions in the Altiplano Puna Volcanic Complex (APVC) in the Central Andes provides information on crystallization depths and eruption and degassing processes. At least 740 km3 of high-K, metaluminous, rhyodacite to rhyolite magma erupted from the Guacha Caldera in southwest Bolivia, producing three phases of the 3.49 Ma Tara Ignimbrite: a Plinian fall-deposit, an extensive ignimbrite, and several post-caldera domes. Infrared spectroscopic analyses of quartz-hosted melt inclusions from Tara Plinian pumice have H2O contents of ~4.5 wt % and variable CO2 contents (110-300 ppm), corresponding to vapor saturation pressures up to 180 MPa. In contrast, sanidine-hosted melt inclusions from the Plinian-fall deposit contain bubbles, lower water contents (1.4-2.2 wt %) and lower CO2 (87-143 ppm). These vesiculated melt inclusions and low volatile contents suggest that the sanidine crystals leaked on their ascent to the surface and therefore do not record accurate pre-eruptive melt volatile contents. In contrast, quartz-hosted melt inclusions from post-caldera dome samples contain lower H2O contents of 2.5-3.5 wt % (average 2.9 wt %) and no detectable CO2, corresponding to vapor saturation pressures of 50-90 MPa. These data indicate that the preeruptive plinian stage Tara magma was vapor saturated at the time of melt inclusion entrapment and stored between 5-6 km, while those from the post-caldera domes were trapped at 2-3 km. Differences in CO2 between Plinian and dome melt inclusions require that the post-caldera dome quartzes represent a different generation of crystals that grew as the magma slowly rose and progressively degassed at 2-3 km. During this shallow crystallization, the magma evolved further and eventually fed the post-caldera domes, one of which is a high-Si rhyolite. Consistent with this interpretation, melt inclusions from post-caldera dome samples

  1. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems

    Science.gov (United States)

    Mittal, T.; Richards, M. A.

    2017-12-01

    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for

  2. Helium evidences for mantle degassing in the groundwater of Madeira Island – Portugal

    International Nuclear Information System (INIS)

    Amaral, Helena I.F.; Midões, Carla; Kipfer, Rolf

    2017-01-01

    The Madeira Island is fed by an active hotspot, but there are no evidences of current volcanism and geothermal activity or, of a heat source at depth, which probably justifies why only low temperature and low TDS groundwater is found in Madeira. Nonetheless, Madeira is a relatively young island (≤7 Ma old), and a connection to the upper mantle through geological conduits, is likely to occur. To investigate whether such a connection exists, noble gases and stable isotopes were, so far as we know, for the first time measured in groundwater samples of the main (basal) aquifer of Madeira Is. Groundwater is the main supply of drinking water in Madeira Is., and the hydrogeology of the island has been well characterized in previous studies. In this study, groundwater was generically divided into ‘cold’ waters (<20 °C, near the coast) and ‘warm’ waters (20–25 °C, central part of the island). This division was based on field temperature, water chemistry and stable isotopic composition. Four ‘hot’ waters (23–25 °C) showed partly distinct characteristics. A bubbling spring was also sampled. Very low tritium values indicate groundwater recharged recently and/or mix with free-tritium waters. Groundwater is fed by rain recharged during autumn as indicated by δ"1"8O and δ"2H signatures. During infiltration, the waters dissolved soil CO_2 that according to the back-calculated δ"1"3C-CO_2 compositions corresponds mainly to CO_2 of biogenic origin. Nonetheless, a mantle CO_2 component cannot be excluded from samples from the inner part of the island. The noblegas helium was the sole tracer indicating a deep gas contribution to the groundwater. A strong mantle signal was detected in the ‘hot’ and bubbling waters, as indicated by their He-Ra values of 8 (being Ra the atmospheric "3He/"4He ratio), typical of the MORB. Thus, even if the last volcanic eruption occurred ca. 0,006 Ma, degassing of the upper-mantle was detected in the shallow cold waters of

  3. Sulfur diffusion in dacitic melt at various oxidation states: Implications for volcanic degassing

    Science.gov (United States)

    Lierenfeld, Matthias Bernhard; Zajacz, Zoltán; Bachmann, Olivier; Ulmer, Peter

    2018-04-01

    The diffusivity of S in a hydrous dacitic melt (4.5-6.0 wt.% H2O) has been investigated in the temperature (T) and pressure (P) range of 950 °C to 1100 °C and 200 to 250 MPa, respectively. Three series of experiments were conducted at relatively low oxygen fugacity (fO2) conditions [0.8 log units below fayalite-magnetite-quartz equilibrium (FMQ -0.8); referred to as "low fO2"] and high fO2 conditions (FMQ +2.5; referred to as "high fO2") to determine if the diffusivity of S is affected by its oxidation state and speciation. Sulfur concentration profiles were measured by electron microprobe and the diffusion coefficient (D) was calculated by fitting these profiles. Sulfur diffusion is approximately one order of magnitude faster when S is dominantly present as sulfide species (low fO2) in comparison to the sulfate dominated experiments (high fO2). The following Arrhenian equations were obtained for high and low fO2 conditions at 200 MPa: high fO2: D = 10-5.92±0.86 * exp ({-137.3±21.5 kJ/mol}/{RT}) low fO2: D = 10-5.18±1.39 * exp ({-125.7±34.4 kJ/mol}/{RT}) where D is the average diffusion coefficient in m2 s-1, R is the gas constant in 8.3144 J mol-1 K-1 and T is the temperature in K. Our results demonstrate for the first time in natural melts that S diffusion is strongly sensitive to fO2. Our S diffusivities under low fO2 conditions are only slightly slower of those found for H2O, suggesting that S can be rather efficiently purged from reduced dacitic melts during volcanic eruptions. However, for more oxidized systems (e.g. subduction zones), S diffusion will be much slower and will hinder equilibrium syn-eruptive degassing during rapid decompression. Therefore, we conclude that the "excess" measured during many explosive volcanic eruptions in arcs is dominantly derived from S-rich bubble accumulation in the eruptible portion of the magma reservoir.

  4. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    Science.gov (United States)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  5. Experimental evidence for carbonate precipitation and CO 2 degassing during sea ice formation

    Science.gov (United States)

    Papadimitriou, S.; Kennedy, H.; Kattner, G.; Dieckmann, G. S.; Thomas, D. N.

    2004-04-01

    -chemical processes are considered, we expect CO 2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.

  6. Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands

    Science.gov (United States)

    Longpré, Marc-Antoine; Stix, John; Klügel, Andreas; Shimizu, Nobumichi

    2017-02-01

    Basaltic volcanoes transfer volatiles from the mantle to the surface of the Earth. The quantification of deep volatile fluxes relies heavily on estimates of the volatile content of primitive magmas, the best archive of which is provided by melt inclusions. Available data from volcanoes producing mafic alkaline lavas in a range of tectonic settings suggest high volatile fluxes, but information remains sparse, particularly for intraplate ocean islands. Here we present measurements of volatile and trace element concentrations, as well as sulphur speciation, in olivine-hosted melt inclusions and matrix glasses from quenched basanite lava balloon samples from the 2011-2012 submarine eruption at El Hierro, Canary Islands. The results reveal remarkably high concentrations of dissolved volatiles and incompatible trace elements in this magma, with ∼80 ppm Nb and up to 3420 ppm CO2, 3.0 wt.% H2O and 5080 ppm S. Reconstructed primitive CO2 contents, considering CO2/Nb systematics and possible CO2 sequestration in shrinkage bubbles, reach weight percent levels, indicating that carbon is a major constituent of Canary Island magmas at depth and that exsolution of a CO2-rich fluid begins in the mantle at pressures in excess of 1 GPa. Correlations between sulphur concentration, sulphur speciation and water content suggest strong reduction of an initially oxidised mantle magma, likely controlled by coupled H2O and S degassing. This late-stage redox change may have triggered sulphide saturation, recorded by globular sulphide inclusions in clinopyroxene and ulvöspinel. The El Hierro basanite thus had a particularly high volatile-carrying capacity and released a minimum of 1.3-2.1 Tg CO2 and 1.8-2.9 Tg S to the environment, causing substantial stress on the local submarine ecosystem. These results highlight the important contribution of alkaline ocean island volcanoes, such as the Canary Islands, to volatile fluxes from the mantle.

  7. Structural controls on diffuse degassing in the Las Cañadas caldera, Tenerife, Canary Islands

    Science.gov (United States)

    Galindo, I.; Soriano, C.; Martí, J.; Pérez, N.

    2003-04-01

    The Las Cañadas caldera is an elliptical depression located in the central part of the Tenerife Island. The active Teide stratovolcano stands in the centre of the depression, which is limited to the south by the caldera wall, up to 500 m high above the caldera floor. Mapping most of the caldera wall at 1:5000 has provided new insights on its stratigraphy, structure, and geological evolution. Three major ENE-WSW normal faults have been mapped on the caldera wall in the area comprised between El Llano de Ucanca and Los Azulejos, where an intense hydrothermal alteration affects the lower stratigraphic levels of the caldera wall. Hydrothermal alteration is rather distinctive in this area, showing bluish to greenish colours. Most of the phonolitic cone sheets and radial dykes of the caldera wall do not show distinctive hydrothermal features, as do show the phonolitic pyroclastic rocks and lavas of the lower parts of the caldera wall. This suggests the main episodes of dyke intrusion in the Las Cañadas caldera postdate hydrothermal alteration. ENE-WSW normal faults involve dyke swarms and rocks of the upper stratigraphic levels of the caldera wall, and show displacements of up to 100 m. Unfortunately the upper possible age of these faults is poorly constrained since no contact relationship has been observed between fault planes and the rocks of the uppermost stratigraphic levels of the caldera wall. The rocks of the caldera wall adjacent to the faults are intensely fractured at the macro and mesoscale. In addition to field mapping, a soil gas survey was carried out at the caldera depression. Soil CO2 efflux and H2 concentration were measured reaching values of 12 gm-2d-1 and 4 ppmV, respectively. Spatial distribution of these species showed that positive anomalies coincide with the surface expression of the three major faults and their adjacent intensely fractured zone. The high CO2 and H2 values and their coincidence with major normal faults suggests that degassing in

  8. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  9. Monitoring of fumarole discharge and CO2 soil degassing in the Azores: contribution to volcanic surveillance and public health risk assessment

    Directory of Open Access Journals (Sweden)

    C. Faria

    2005-06-01

    Full Text Available Fluid geochemistry monitoring in the Azores involves the regular sampling and analysis of gas discharges from fumaroles and measurements of CO2 diffuse soil gas emissions. Main degassing areas under monitoring are associated with hydrothermal systems of active central volcanoes in S. Miguel, Terceira and Graciosa islands. Fumarole discharge analysis since 1991 show that apart from steam these gas emissions are CO2 dominated with H2S, H2, CH4 and N2 in minor amounts. Mapping of CO2 diffuse soil emissions in S. Miguel Island lead to the conclusion that some inhabited areas are located within hazard-zones. At Furnas village, inside Furnas volcano caldera, about 62% of the 896 houses are within the CO2 anomaly, 5% being in areas of moderate to high risk. At Ribeira Seca, on the north flank of Fogo volcano, few family houses were evacuated when CO2 concentrations in the air reached 8 mol%. To assess and analyse the CO2 soil flux emissions, continuous monitoring stations were installed in S. Miguel (2, Terceira and Graciosa islands. The statistical analysis of the data showed that some meteorological parameters influence the CO2 flux. The average of CO2 flux in S. Miguel stations ranges from 250 g/m2/d at Furnas volcano to 530 g/m2/d at Fogo volcano. At Terceira Island it is about 330 g/m2/d and at Graciosa 4400 g/m2/d.

  10. Soil temperature and CO2 degassing, SO2 fluxes and field observations before and after the February 29, 2016 new vent inside Nyiragongo crater

    Science.gov (United States)

    Balagizi, Charles M.; Yalire, Mathieu M.; Ciraba, Honoré M.; Kajeje, Vicky B.; Minani, Abel S.; Kinja, Annie B.; Kasereka, Marcellin M.

    2016-09-01

    Nyiragongo volcano threatens ˜1.5 million inhabitants of Goma (DR Congo) and Gisenyi (Rwanda) cities and people living in the surrounding villages. In 2002, the volcano produced lava flows which invaded Goma and destroyed the economic district of the city, forced a mass exodus of the population and caused the loss of several lives. Nyiragongo volcanic activity is therefore closely followed by the inhabitants, and any news related to increased activity agitates people in the area, especially those in Goma. Here, we report a short time series of soil temperature and carbon dioxide degassing for four locations, and plume sulphur dioxide fluxes preceding and following the opening of a new vent inside the main Nyiragongo crater on February 29, 2016. The observed sudden and unexpected changes in Nyiragongo activity raised the fear of a new volcanic eruption and led to panic in Goma and the surroundings, inducing some people to leaving the city. We use the dataset and field observations before and after the opening of the new vent, in conjunction with published information about Nyiragongo's eruptive mechanism and of the volcano's plumbing system geometry (mainly the crater), to show that the new vent was fed by magma intruded from the lava lake or the upper conduit.

  11. Transcriptome analysis of beer-spoiling Lactobacillus brevis BSO 464 during growth in degassed and gassed beer.

    Science.gov (United States)

    Bergsveinson, Jordyn; Friesen, Vanessa; Ziola, Barry

    2016-10-17

    Lactobacillus brevis BSO 464 (Lb464) is a beer-spoilage-related (BSR) isolate of interest given its unique physiological attributes; specifically, it is highly hop-tolerant and exhibits very rapid growth in pressurized/gassed beer. RNA sequencing was performed on Lb464 grown in pressurized and non-pressurized beer to determine important genetic mechanisms for growth in these environments. The data generated were compared against data in a previous transcriptional study of another lactic acid bacterium (LAB) during growth in beer, namely, Pediococcus claussenii ATCC BAA-344(T) (Pc344). Results revealed that the most important genetic elements for Lb464 growth in beer are related to biogenic amine metabolism, membrane transport and fortification, nutrient scavenging, and efficient transcriptional regulation. Comparison with the previous transcriptional study of Pc344 indicated that the total coding capacity (plasmid profile and genome size) of a LAB isolate allows for beer-spoilage virulence and adaptation to different beer environments, i.e., the ability to grow in degassed beer (during production) or gassed beer (packaged product). Further, differences in gene expression of Lb464 and Pc344 during mid-exponential growth in beer may dictate how rapidly each isolate exhausts particular carbon sources during. The presence of headspace pressure/dissolved CO2 was found to drive Lb464 transcription during mid-exponential growth in beer towards increasing cell wall and membrane modification, transport, osmoregulation, and DNA metabolism and transposition events. This transcriptional activity resembles transcriptional patterns or signatures observed in a viable, but non-culturable state established by non-related organisms, suggesting that Lb464 overall uses complex cellular regulation to maintain cell division and growth in the stressful beer environment. Additionally, increased expression of several hypothetical proteins, the hop-tolerance gene horC, and DNA repair and

  12. Diffuse CO2 degassing monitoring for the volcanic surveillance of Tenerife North-East Rift Zone (NERZ) volcano, Canary Islands

    Science.gov (United States)

    Rodríguez, F.; Thomas, G. E.; Wong, T.; García, E.; Melián, G.; Padron, E.; Asensio-Ramos, M.; Hernández, P. A.; Perez, N. M.

    2017-12-01

    The North East Rift zone of Tenerife Island (NERZ, 210 km2) is one of the three major volcanic rift-zones of the island. The most recent eruptive activity along the NERZ took place in the 1704-1705 period with eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. Since fumarolic activity is nowadays absent at the NERZ, soil CO2 degassing monitoring represent a potential geochemical tool for its volcanic surveillance. The aim of this study is to report the results of the last CO2 efflux survey performed in June 2017, with 658 sampling sites. In-situ measurements of CO2 efflux from the surface environment of the NERZ were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) following the accumulation chamber method. To quantify the total CO2 emission, soil CO2 efflux spatial distribution maps were constructed using Sequential Gaussian Simulation (SGS) as interpolation method. The diffuse CO2 emission values ranged between 0 - 41.1 g m-2 d-1. The probability plot technique applied to the data allowed to distinguish two different geochemical populations; background (B) and peak (P) represented by 81.8% and 18.2% of the total data, respectively, with geometric means of 3.9 and 15.0 g m-2 d-1, respectively. The average map constructed with 100 equiprobable simulations showed an emission rate of 1,361±35 t d-1. This value relatively higher than the background average of CO2 emission estimated on 415 t d-1 and slightly higher than the background range of 148 t d-1 (-1σ) and 1,189 t d-1 (+1σ) observed at the NERZ. This study reinforces the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool in the NERZ.

  13. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  14. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-11

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  15. 238U–230Th–226Ra–210Pb–210Po disequilibria constraints on magma generation, ascent, and degassing during the ongoing eruption of Kīlauea

    Science.gov (United States)

    Girard, Guillaume; Reagan, Mark K.; Sims, Kenneth W. W.; Thornber, Carl; Waters, Christopher L.; Phillips, Erin H.

    2017-01-01

    The timescales of magma genesis, ascent, storage and degassing at Kīlauea volcano, Hawai‘i are addressed by measuring 238U-series radionuclide abundances in lava and tephra erupted between 1982 and 2008. Most analyzed samples represent lavas erupted by steady effusion from Pu‘u ‘Ō‘ō and Kūpahianaha from 1983 to 2008. Also included are samples erupted at the summit in April 1982 and March 2008, along the East Rift Zone at the onset of the ongoing eruption in January 1983, and during vent shifting episodes 54 and 56, at Nāpau crater in January 1997, and Kane Nui O Hamo in June 2007. In general, samples have small (∼4%) excesses of (230Th) over (238U) and ∼3 to ∼17% excesses of (226Ra) over (230Th), consistent with melting of a garnet peridotite source at melting rates between 1 × 10–3 and 5 × 10–3 kg m–3 a–1, and melting region porosity between ∼2 and ∼10%, in agreement with previous studies of the ongoing eruption and historical eruptions. A small subset of samples has near-equilibrium (230Th/238U) values, and thus were generated at higher melting rates. Based on U–Th–Ra disequilibria and Th isotopic data from this and earlier studies, melting processes and sources have been relatively stable over at least the past two centuries or more, including during the ongoing unusually long (>30 years) and voluminous (4 km3) eruption. Lavas recently erupted from the East Rift Zone have average initial (210Pb/226Ra) values of 0·80 ± 0·11 (1σ), which we interpret to be the result of partitioning of 222Rn into a persistently generated CO2-rich gas phase over a minimum of 8 years. This (210Pb) deficit implies an average magma ascent rate of ≤3·7 km a–1 from ∼30 km depth to the surface. Spatter and lava associated with vent-opening episodes erupt with variable (210Pb) deficits ranging from 0·7 to near-equilibrium values in some samples. The samples with near-equilibrium (210Pb/226Ra) are typically more

  16. Evidence for degassing of fresh magma during the 2004-2008 eruption of Mount St. Helens: Subtle signals from the hydrothermal system

    Science.gov (United States)

    Bergfeld, Deborah; Evans, William C.; Spicer, Kurt R.; Hunt, Andrew G.; Kelly, Peter

    2017-01-01

    Results from chemical and isotopic analyses of water and gas collected between 2002 and 2016 from sites on and around Mount St. Helens are used to assess magmatic degassing related to the 2004-2008 eruption. During 2005 the chemistry of hot springs in The Breach of Mount St. Helens showed no obvious response to the eruption, and over the next few years, changes were subtle, giving only slight indications of perturbations in the system. By 2010 however, water chemistry, temperatures, and isotope compositions (δD and δ18O) clearly indicated some inputs of volatiles and heat associated with the eruption, but the changes were such that they could be attributed to a pre-existing, gas depleted magma. An increase of ~ 1.5‰ in the δ13C values of dissolved carbon in the springs was noted in 2006 and continued through 2009, a change that was mirrored by a similar shift in δ13C-CO2 in bubble gas emissions. These changes require input of a new source of carbon to the hydrothermal system and provide clear evidence of CO2 from an undegassed body of magma. Rising trends in 3He/4He ratios in gas also accompanied the increases in δ13C. Since 2011 maximum RC/RA values are ≥ 6.4 and are distinctly higher than 5 samples collected between 1986 and 2002, and provide additional evidence for some involvement of new magma as early as 2006, and possibly earlier, given the unknown time needed for CO2 and He to traverse the system and arrive at the springs.

  17. Diffuse Carbon Dioxide Degassing Monitoring at Santa Ana-Izalco-Coatepeque Volcanic System, El Salvador, Central America

    Science.gov (United States)

    Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Notsu, K.; Lopez, D.

    2001-12-01

    Santa Ana volcanic complex (0.22 Ma), located 40 Km west of San Salvador, comprises Santa Ana, Izalco, and Cerro Verde stratovolcanoes, the Coatepeque collapse caldera, as well as several cinder cones and explosion craters. Most recent activity has occurred at Izalco (1966) and Santa Ana which shows a permanent acidic crater lake with an intense fumarolic activity. In addition, Santa Ana exhibits a SO2-rich rising plume though no local seismicity has been reported. Weak fumarolic activity is also present at two locations within the Santa Ana volcanic complex: the summit crater of Izalco and Cerro Pacho at Coatepeque caldera. Other important structural features of this volcanic complex are two fault/fissure systems running NNW-SSE that can be identified by the alignment of the stratovolcanoes and numerous cinder cones and explosion craters. In January 2001, a 7.6 magnitude earthquake occurred about 150 Km SE of Santa Ana volcano. A soil gas and CO2 efflux survey was performed to evaluate the impact of this seismic event upon the diffuse degassing rates in Santa Ana volcanic complex in March 2001. A total of 450 soil gas and diffuse CO2 efflux measurements were carried out covering an area of 209.5 Km2. CO2 efflux ranged from non-detectable values to 293 gm-2d-1, with a median of 8.9 gm-2d-1 and an upper quartile of 5.2 gm-2d-1. The CO2 efflux spatial distribution reveals the existence of areas with CO2 efflux higher than 60 gm-2d-1 associated to the fault/fissure systems of NNW-SSE orientation. One of these areas, Cerro Pacho, was selected for the continuous monitoring of diffuse CO2 efflux in late May 2001. Secular variations of diffuse CO2 efflux ranged from 27.4 to 329 gm-2d-1 with a median of 130 gm-2d-1 and a quartile range of 59.3 gm-2d-1. An increasing trend of 43 gm-2d-1 was observed between May and August 2001 overlapped to high-frequency minor fluctuations related to meteorological variables' changes. However, a larger observation time-span is needed to

  18. Monitoring diffuse He degassing from the summit crater of Pico do Fogo volcano, Cape Verde

    Science.gov (United States)

    Alonso, Mar; Dionis, Samara; Fernandes, Paulo; Melián, Gladys; Asensio-Ramos, María; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; Silva, Sonia

    2017-04-01

    released the highest value (up to 8 kg d-1), followed by a decrease after the eruption. The last emission value was measured in October 2016 and represents the lowest value of the series (1 kg d-1). This data suggest that monitoring of He degassing rate in volcanic areas is an excellent warning geochemical precursory signal for volcanic unrest. This work demonstrates and reinforces the importance of performing helium emission studies as an important promising volcano monitoring technique that might help to detect early warning signals of volcanic unrest in oceanic volcanic islands.

  19. Offshore degasser vessel capacity versus performance qualitative evaluation for waste water treatment; Avaliacao qualitativa da capacidade versus desempenho de vaso degaseificador em plataformas offshore visando tratamento de agua produzida para descarte

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Marcel V.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Silva, Daniel B.V.F. [Engineering Simulation and Scientific Software (ESSS), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Present work shows a qualitative evaluation of an offshore degasser vessel aiming the improvement of the water processing plant capacity. For such computational fluid dynamics (CFD) allowed the analysis of the flow pattern inside the vessel for different operational flow rates and internal geometries. This vessel is responsible for the process of water final polishing to be disposed into the sea. Original capacity of the vessel is 13.308 m{sup 3}/d, but after some changes in the outlet section, the processing capacity increased to 24.000 m{sup 3}/d, without changing its separation efficiency. However, as newer production predictions state that the new processing capacity should be increased to 26.000 m{sup 3}/d, there is some uncertainty on how would be this vessel behaviour, given the new operational condition. CFD analysis will be used to evaluate the flow characteristics inside the vessel (residence time distribution), therefore providing information on the separation performance for each one of the specified conditions and internal modifications. (author)

  20. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  1. Signals in water - the deep originated CO2 in the Peschiera-Capone acqueduct in relation to monitoring of seismic activity in central Italy

    Directory of Open Access Journals (Sweden)

    Claudio Martini

    2017-01-01

    Full Text Available Valuation of the analysis performed on groundwater of Central Lazio by ACEA ATO2 SpA from 2001 to 2016, according to the model proposed by Chiodini et al. in 2004 that identifies in the Tyrrhenian coast of central and southern Italy, two notable releasing areas of the CO2 produced by the sub-crustal magma activity, or two areas of natural degassing of the planet: the TRDS area (Tuscan Roman degassing structure and the CDS area (Campanian degassing structure. Reconstruction of the CO2 produced by degassing through the analysis of the components of inorganic carbon measured in groundwater of Central Lazio (Rome and Rieti districts between 2001 and 2016. Causal relationship of the activity of mantle degassing in the TRDS area with the disastrous earthquake occurred at L’Aquila in April 6, 2009. Current use of the dissolved inorganic carbon measurement in the Peschiera and Capore spring waters to monitor the activity of mantle degassing in the TRDS area, in order to have an early warning signal of possible seismic activity in the Central Apennines. Revision and data updating after the earthquake in August 24, 2016 at Amatrice.

  2. Volatiles and energy released by Puracé volcano

    Science.gov (United States)

    Maldonado, Luisa Fernanda Meza; Inguaggiato, Salvatore; Jaramillo, Marco Tulio; Valencia, Gustavo Garzón; Mazot, Agnes

    2017-12-01

    Total CO2 output of Puracé volcano (Colombia) was estimated on the basis of fluids discharged by fumaroles, soil gases, and dissolved carbon species in the aquifer. The soil CO2 emission was computed from a field survey of 512 points of CO2 soil flux measurements at the main degassing areas of Puracé volcano. The CO2 flux from Puracé's plume was estimated using an indirect method, that used the SO2 plume flux and CO2/SO2 ratio of the main high temperature fumarole. The total output of CO2 was estimated at ≅ 1500 t/day. The main contribution of CO2 comes from the plume (summit degassing) and from soil degassing that emit 673 and 812 t/day, respectively. The contributions of summit and soil degassing areas are comparable, indicating an intermediate degassing style partitioned between closed and open conduit systems. The estimated water vapor discharge (as derived from the chemical composition of the fumaroles, the H2O/CO2 ratio, and the SO2 plume flux) allowed calculation of the total thermal energy (fumarolic, soil degassing, and aquifer) released from the Puracé volcanic system. This was 360 MW.

  3. CO2 driven weathering vs plume driven weathering as inferred from the groundwater of a persistently degassing basaltic volcano: Mt. Etna

    Science.gov (United States)

    Liotta, Marcello; D'Alessandro, Walter

    2016-04-01

    volcanoes characterized by huge open-conduit degassing activity.

  4. Redox behavior of transition metal ions in zeolites 6. Reversibility of the reduction reaction in silver zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P A; Uytterhoeven, J B; Beyer, H K

    1977-01-01

    Degassing above 573/sup 0/K of Ag-Y or Ag-mordenite previously reduced by hydrogen at 623/sup 0/K resulted in hydrogen evolution, the amount of hydrogen increasing to a maximum at about 873/sup 0/K. No hydrogen was evolved when the zeolite was reduced by hydrazine or hydroxylamine, indicating that hydrogen is formed by reaction between silver metal and hydroxyl groups formed in the reduction step (i.e., the reverse of the reduction step). Consumption of hydroxyl groups was proven by IR studies of pyridine chemisorption which occurs entirely as pyridinium ions on Broensted sites or reduced samples but with increasing formation of pyridine on Lewis acid sites as the degassing temperature increases; formation of silver(I) ions was proven by carbon monoxide complexation. Silver metal outside the zeolite pores was not affected by the degassing, and the amount of hydrogen evolved upon degassing decreased with increasing number of reduction-degassing cycles, probably as a result of dehydroxylation or sintering. Spectra, graphs, tables, and 21 references.

  5. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  6. Ambient aging of rhenium filaments used in thermal ionization mass spectrometry: Growth of oxo-rhenium crystallites and anti-aging strategies

    Directory of Open Access Journals (Sweden)

    Joseph M. Mannion

    2017-01-01

    Full Text Available Degassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a “shelf-life” for degassed rhenium filaments, and methods to limit filament aging were investigated. Zone-refined rhenium filaments were degassed by resistance heating under high vacuum before exposure to ambient atmosphere for up to 2 months. After degassing the nucleation and preferential growth of oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was observed by atomic force microscopy and scanning electron microscopy (SEM. Compositional analysis of the crystallites was conducted using SEM-Raman spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the metal surface was investigated by electron back-scatter diffraction mapping. Spectra collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. The relative extent of growth and crystallite morphology were found to be grain dependent and affected by the dissolution of carbon into filaments during annealing (often referred to as carbonization or carburization. Crystallites were observed to nucleate in region specific modes and grow over time through transfer of material from the surface. Factors most likely to affect the rates of crystallite growth include rhenium substrate properties such as grain size, orientation, levels of dissolved carbon, and relative abundance of defect sites; as well as environmental factors such as length of exposure to oxygen and relative humidity. Thin (∼180 nm hydrophobic films of poly(vinylbenzyl chloride were found to slow the growth of oxo-rhenium crystallites on the filament

  7. Report on achievements in proliferation project to introduce environment harmonizing type coal utilization system in fiscal 1998. Joint demonstration project for CMG recovery and utilization system in fiscal 1998; Kankyo chowagata sekitan riyo system donyu shien nado fukyu taisaku jigyo. 1998 nendo CMG kaishu riyo system kyodo jissho jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This paper describes the discussion report for fiscal 1998 on the CMG (coal methane gas) recovery and utilization project to be implemented from fiscal 1998 through fiscal 2002 at Tiefa Mining Bureau of Liaoning Province in China. The Daixing mine was selected as the survey object. The introduced technologies and facilities include test drilling for degassing (medium measure horizontal degassing of 300-m class), induction from degassing holes, fly ash sealing, sealed gas degassing, surveillance and control technologies and facilities. The recovered gas is to be supplied to the cities of Tiefa and Tieling as town gas, for which compressed gas feeding and controlling technologies and facilities will be introduced. This paper lists the gush-out quantity (1,000 Nm{sup 3}), the recovery quantity (1,000 Nm{sup 3}), the recovered gas concentration (%), the utilization quantity (1,000 Nm{sup 3}), and the utilization rate (%). The figures for the respective items before and after the implementation are 128366, 32949, 44.5, 7000, 5, 123500, 43890, 49.1, 39826, and 32. The quantity of gas gushing out at facings decreases in association with increase in the recovered gas quantity, whereas the gas concentration at facings in the Daixing mine in 2003 is estimated to decrease to 0.1%, contributing to safe mining operation. The test drilling for medium measure horizontal degassing expands the degassing assured scope per one test drilling seat, and can reduce the total test drilling length and construction amount. (NEDO)

  8. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  9. Monitoring diffuse degassing in monogentic volcanic field during magmatic reactivation: the case of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Morales-Ocaña, C.; Feldman, R. C.; Pointer, Z. R.; Rodríguez, F.; Asensio-Ramos, M.; Melián, G.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    El Hierro (278 km2), the younger, smallest and westernmost island of the Canarian archipelago, is a 5-km-high edifice constructed by rapid constructive and destructive processes in 1.12 Ma, with a truncated trihedron shape and three convergent ridges of volcanic cones. It experienced a submarine eruption from 12 October, 2011 and 5 March 2012, off its southern coast that was the first one to be monitored from the beginning in the Canary Islands. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become a useful geochemical tool to monitor the volcanic activity in this volcanic island. Diffuse CO2 emission has been monitored at El Hierro Island since 1998 in a yearly basis, with much higher frequency in the period 2011-2012. At each survey, about 600 sampling sites were selected to obtain a homogeneous distribution. Measurements of soil CO2 efflux were performed in situ following the accumulation chamber method. During pre-eruptive and eruptive periods, the diffuse CO2 emission released by the whole island experienced significant increases before the onset of the submarine eruption and the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 53.1 g m-2 d-1. Statistical-graphical analysis of the data show two different geochemical populations; background (B) and peak (P) represented by 77.6% and 22.4% of the total data, respectively, with geometric means of 1.8 and 9.2 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the interception center of the three convergent ridges and the north of the island. To estimate the diffuse CO2 emission for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by El Hierro was at 1,150 ± 42 t d-1, value higher than the

  10. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

    Science.gov (United States)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-22

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity ( f O 2 ). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle f O 2 may influence the f O 2 at Earth's surface. However, degassing can impact magmatic f O 2 before or during eruption, potentially obscuring relationships between the f O 2 of the solid Earth and of emitted gases and their impact on surface f O 2 We show that low-pressure degassing resulted in reduction of the f O 2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher f O 2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower f O 2 than modern magmas. Estimates of f O 2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  11. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-07

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  12. Baking enables McLeod gauge to measure in ultrahigh vacuum range

    Science.gov (United States)

    Kreisman, W. S.

    1965-01-01

    Accurate measurements in the ultrahigh vacuum range by a conventional McLeod gage requires degassing of the gage's glass walls. A closed system, in which mercury is forced into the gage by gravity alone, and in which the gage components are baked out for long periods, is used to achieve this degassing.

  13. Continuous cryopump for steady state mirror fusion reactors

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    The characteristics of mirror fusion reactors, i.e., steady state operation, a low neutral gas density, and a large gas throughput require unique vacuum pumping capabilities. One approach that appears to meet these requirements is a liquid helium-cooled cryopump system in which a fixed portion can be isolated and degassed while the remainder continues to pump. The time to degas a rotating, fixed portion of the pumping area and the ratio of that area to the total area fixes the gas inventory in the chamber. It follows that the active pump area maintains the required neutral gas density and the time-averaged degassing rate equals the gas throughput. We have built such a cryopump whereby the gas condensed (deuterium) on the liquid helium-cooled panel can be transferred to a collector pump and subsequently to an exterior mechanical pump and exhausted. At panel loadings as high as 0.55 Torr-/lcm 2 the gas leakage during degassing is less than 8% and the degassing time is less than 10 min. Scaling to reactor size appears to be feasible

  14. Magma flow instability and cyclic activity at soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Voight; Sparks; Miller; Stewart; Hoblitt; Clarke; Ewart; Aspinall; Baptie; Calder; Cole; Druitt; Hartford; Herd; Jackson; Lejeune; Lockhart; Loughlin; Luckett; Lynch; Norton; Robertson; Watson; Watts; Young

    1999-02-19

    Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.

  15. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Arciniega-Ceballos, Alejandra

    2005-01-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15–70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3–5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500–1000 m3, pressure drop of 3–5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200–300 m3), with a corresponding pressure drop of 1–2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure

  16. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-02

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  17. Vyrmethane. Progress report stage 5. In situ production of methane gas from peat

    Energy Technology Data Exchange (ETDEWEB)

    Martinell, R

    1982-12-01

    The Vyrmethane process means that bog water containing methane gas is circulated in a closed system and degassed. By this procedure the microbiological activity in the bog stimulates and new methane is produced and dissolved in the water, which circulates to a degassing station. From the degassing station the methane gas can be used for different purposes and the degassed water is infiltrated back in the peat bog. The degradation process is described by McCarty (Stanford 1964). According to this description all COD (Chemical Oxygen Demand) is supposed to be converted to methane. The Vyrmethane method does not reach this ideal result. Consequently the produced gas also includes carbon dioxide. The running cost for the process is mainly depending on the water circulation e.g. the demand of energy for the pumps. Consequently the result is propotional to the methane, which can be degassed from the circulated water. The results reached, so far, indicate that one added unit of mechanical energy is giving five units of heat energy in the form of methane gas. Better results are in prospect. This report, which is a following up of the pilot plants started up after 1978, is discussing the technical and economical conditions for the process. Consequently it is suggested that a number of full-scale prototype plants are built, studied further and that preparations are made for a demonstration stage including about 200 plants with geographical spreading out.

  18. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  19. Simulation of a hypothetical liquid relief valve failure (open) at Embalse nuclear power plant when a reactor shutdown is considered; Simulacion de la evolucion de la CNE (central nuclear Embalse) en el caso hipotetico de la apertura espuria de una valvula de alivio liquido con disparo del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, G; Gersberg, S [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares

    1997-12-31

    The study of the spurious opening of the liquid relief valves is of great interest in CANDU nuclear power plants because this could lead to a loss of coolant through the degasser-condenser relief valves, and implies an undesirable intermittent opening/closure of them. In fact, there is a specific procedure to follow at Embalse nuclear power plant whenever this abnormal situation occurs. This procedure contains a section where a reactor trip is considered. Really, automatic reactor trip is not accepted to occur. No trip parameters set points are through to be reached (neutronic or process). However, the procedure considers the situation where the reactor does trip. We analyzed the plant behavior when a reactor shutdown is triggered. Our objective was to assess if after this trip, the procedure can lead the plant to a safe situation, preventing high pressures in the degasser-condenser and with the inventory recovered in the storage tank. The case was analyzed with Firebird III, Mod. 1.0 code. Two situations were considered: trip at 40 sec. and trip at 180 sec. after the liquid relief valve failed opened (the latter when the degasser-condenser fills up). Procedure analysis and code simulations showed that following the steps recommended, provided the liquid relief valve can be closed manually, the inventory that enters the degasser-condenser from the heat transport primary system through the failed valve could be recovered in the storage tank, leading the plant to shutdown in safe conditions, and preventing the degasser-condenser relief valves setpoint from being reached. (author). 3 refs., 10 figs.

  20. A "place n play" modular pump for portable microfluidic applications.

    Science.gov (United States)

    Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong

    2012-03-01

    This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.

  1. Modification of Al-Si (13%) alloy using different modifiers

    International Nuclear Information System (INIS)

    Ikram, N.; Raza, M.R.; Ahmad, R.

    2007-01-01

    During present research work LM 13 aluminium silicon alloy was prepared using high purity aluminium ingot and various master alloys of AI-Si, AI-Cu, AI-Ni, AIFe, AI-Mn and AI-Mg. A gas fired crucible pit type furnace was used to prepare various heats of LM 13 alloy. Degassing procedure was carried out by using perforated bell type plunger using the degassing tablet. Modification was performed by plunging the modifier at the bottom of the crucible containing the molten metal. Three types of modifiers sodium salt, metallic sodium and strontium in the form of AI-Sr master alloy were used in order to evaluate the microstructure and tensile properties of the alloy. Degassed, unmodified and modified test samples for metallurgical testing purposes were prepared according to the standard procedures. (author)

  2. Coupled evolution of the atmospheres and interiors of planets and satellites

    International Nuclear Information System (INIS)

    Schubert, G.; Turcotte, D.L.; Solomon, S.C.; Sleep, N.H.

    1989-01-01

    The evolution of a planetary atmosphere can be powerfully influenced by the planetary interior's function as both a source and a sink of atmospheric constituents; the interior can in turn be strongly influenced by the atmosphere because the mechanism of interior heat loss depends on a volatile content for which the atmosphere can serve both as sink and source. The dependence of mantle rheology on volatile content could furnish a feedback mechanism tending to keep regassing/degassing in balance, thereby maintaining a relatively constant atmospheric mass. Consideration of the abundances of radiogenic and nonradiogenic noble gases in the earth's atmosphere, and of the fluxes of these gases from the mantle, support a large degassing event early on, followed by a decrease in degassing efficiency with time and relatively inefficient outgassing over most of geologic time

  3. Radiation-induced degassing of cryopumps

    International Nuclear Information System (INIS)

    Graham, W.G.; Ruby, L.

    1978-06-01

    The pressure-gauge response of the system to the TRIGA pulses is shown. With an unloaded cryopump, an apparent pressure pulse is produced which is only slightly longer than the reactor pulse itself. In separate experiments, it was found that a similarly appearing pulse is produced by a completely sealed-off vacuum gauge. With a deuterium-loaded cryopump, a very much larger pressure pulse was produced, which had a long exponential tail, characteristic of a re-pumpdown of the system. The pumping speed, as computed from the exponential, is about half that observed previously when the cryopump was subjected to D 2 -gas pulses, in the absense of radiation. Additional experiments were run with the core of the reactor retracted somewhat into the pool, in order to change the mix of gamma rays, thermal neutrons, and fast neutrons so as to preferentially depress the latter

  4. Limitation of leakage rate measurement sensitivity; Limitation de la sensibilite des mesures de debit de fuite

    Energy Technology Data Exchange (ETDEWEB)

    Paigne, Jacques [Commissariat a l' energie atomique et aux energies alternatives - CEA, Services de Physique Appliquee (France)

    1964-08-15

    This note reports an experimental study which aimed at determining to which extent an enclosure degassing could affect the sensitivity of a helium detection cell because of an increased background noise. The author first describes the measurement method and the helium partial pressure measurement method. He then reports an application to leakage rate measurements, and discusses the influence of background noise (influence of degassing, and influence of atmospheric air)

  5. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  6. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  7. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  8. Management of slightly tritiated wastes and associated tests at the Study Center of Bruyeres le Chatel

    International Nuclear Information System (INIS)

    Paillard, P.; Clerc, H.

    1991-01-01

    Daily degassing rate of drums containing wastes with a low tritium content is a required parameter for removal towards a storage site. Methodology and techniques of increasing sensitivity used for this rate measurement are presented. For 200-liter drums, the degassing range is comprised between 0.1 MBq and 1.85 GBq per day. Equipment has been operating for several years allowing the dispatching of 443 drums and also the testing of on-site storage before disposal

  9. Sink- or Source-driven Phanerozoic carbon cycle?

    Science.gov (United States)

    Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.

    2017-12-01

    The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.

  10. Persistent explosive activity at Stromboli investigated with OP-FTIR and SO2 cameras

    Science.gov (United States)

    Burton, M. R.; La Spina, A.; Sawyer, G. M.; Harris, A. J.

    2012-12-01

    Stromboli volcano in Italy exhibits what is perhaps one of the most well-known examples of cyclic activity, in the form of its regular explosions, which send a few m3 of material 100-200 m into the air every 10-20 minutes. Recent developments in measurements of volatile release from Stromboli using a series of novel approaches have allowed this cyclic behaviour to be examined in detail. In particular, the use of an automated OP-FTIR has revealed unprecedented detail in the dynamics of degassing from individual craters at the summit of Stromboli. Furthermore, the variations in composition of explosive degassing from Stromboli demonstrate a deep source ~2 km for the gas slugs which produce explosions at this volcano, in contrast to the commonly-held view that gas coalescence at shallow depth is responsible for the behaviour. The SO2 camera has revealed fascinating new details on the dynamics of degassing at Stromboli, and has allowed direct quantification of the amount of gas released during explosions and through quiescent degassing. The remarkable observation that 99% of degassing takes place quiescently, and that the explosions, whilst apparently more significant, are in fact a secondary process compared with the mass and energy involved in background, quiet processes. The new insight that the explosions are actually only a relatively minor aspect of the activity (in terms of mass and energy) actually makes the regularity of the cyclic explosive activity still more remarkable. In this paper we present a detailed overview of the state of the art of our understanding of cyclic explosive activity at Stromboli volcano from the perspective of recent advances in geochemical monitoring of the gas emissions. We also report initial results from a multidisciplinary campaign on Stromboli which utilised both OP-FTIR and SO2 camera techniques.

  11. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  12. The development of a new database of gas emissions: MAGA, a collaborative web environment for collecting data

    Science.gov (United States)

    Cardellini, C.; Chiodini, G.; Frigeri, A.; Bagnato, E.; Aiuppa, A.; McCormick, B.

    2013-12-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various spatial and temporal scales. Building on the Googas experience we are now extending its capability, particularly on the user side, by developing a new web environment for collecting and publishing data. We have started to create a new and detailed web database (MAGA: MApping GAs emissions) for the deep carbon degassing in the Mediterranean area. This project is part of the Deep Earth Carbon Degassing (DECADE) research initiative, lunched in 2012 by the Deep Carbon Observatory (DCO) to improve the global budget of endogenous carbon from volcanoes. MAGA database is planned to complement and integrate the work in progress within DECADE in developing CARD (Carbon Degassing) database. MAGA database will allow researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and a complete literature survey on publications on volcanic gas fluxes, by including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores. For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of the site. Data can be accessed on the network from a web interface or as

  13. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    Science.gov (United States)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  14. One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    Science.gov (United States)

    Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco

    2010-05-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L'Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the

  15. Geochemical variation of groundwater in the Abruzzi region: earthquakes related signals?

    Science.gov (United States)

    Cardellini, C.; Chiodini, G.; Caliro, S.; Frondini, F.; Avino, R.; Minopoli, C.; Morgantini, N.

    2009-12-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures affect the Tyrrhenian side of the Italian peninsula. The northern degassing structure (TRDS, Tuscan Roman degassing structure) includes Tuscany, Latium and part of Umbria regions (~30000 km2) and releases > 6.1 Mt/y of deeply derived CO2. The southern degassing structure (CDS, Campanian degassing structure) affects the Campania region (~10000 km2) and releases > 3.1 Mt/y of deeply derived CO2. The total CO2 released by TRDS and CDS (> 9.2 Mt/y) is globally significant, being ~10% of the estimated present-day total CO2 discharge from sub aerial volcanoes of the Earth. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS plumes, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes, by reducing fault strength and potentially controlling the nucleation, arrest, and recurrence of both micro and major (M>5) earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. In order to investigate this process, detailed hydro-geochemical campaigns started immediately after the main shock of the 6th of April 2009. The surveys include the main springs of the area which were previously studied in

  16. Total (fumarolic?+?diffuse soil) CO2 output from Furnas volcano

    OpenAIRE

    Pedone, M.; Viveiros, F.; Aiuppa, A.; Giudice, G.; Grassa, F.; Gagliano, A. L.; Francofonte, V.; Ferreira, T.

    2015-01-01

    Furnas volcano, in S?o Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO2) release by diffuse degassing and fumaroles. While the diffusive CO2 output has long (since the early 1990s) been characterized by soil CO2 surveys, no information is presently available on the fumarolic CO2 output. Here, we performed (in August 2014) a study in which soil CO2 degassing survey was combined for the first time with the measurement ...

  17. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    Science.gov (United States)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  18. Micropurity in stainless steel making

    International Nuclear Information System (INIS)

    Motloch, Z.

    1981-01-01

    New technologies were developed by the Vitkovice research institutes in response to high requirements for the quality of high-alloy steels for nuclear power, viz., duplex technology with double vacuum degassing at the DH unit and oxidation vacuum degassing using the VAKUVIT equipment. The steel produced shows low contents of impurities and high micropurity. A study was conducted into changes in carbon content and the formation of titanium nitrides and carbonitrides in austenitic steels during their production, and optimum technological parameters were found for eliminating their formation in forgings. (author)

  19. Degassing of different magma batches as the main controlling factor for fumarolic fluid chemistry at the Planchón-Peteroa-Azufre Volcanic Complex (Argentina-Chile) in 2010-2015

    Science.gov (United States)

    Tassi, Franco; Aguilera, Felipe; Benavente, Oscar; Paonita, Antonio; Chiodini, Giovanni; Caliro, Stefano; Agusto, Mariano; Gutierrez, Francisco; Capaccioni, Bruno; Vaselli, Orlando; Caselli, Alberto

    2016-04-01

    fumaroles in 2010-2015 and is consistent with the volcanic products of PPAVC, such an intriguing hypothesis is expected to be supported by geophysical investigations aimed to locate the two magma sources invoked to construct the proposed degassing model.

  20. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  1. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  2. Development of a prototype for dissolved CO2 rapid measurement and preliminary tests

    Science.gov (United States)

    Li, Meng; Guo, Jinjia; Zhang, Zhihao; Luo, Zhao; Qin, Chuan; Zheng, Ronger

    2017-10-01

    The measurements of dissolved CO2 in seawater is of great significance for the study of global carbon cycle. At present, the commercial sensors used for dissolved CO2 measurements are mostly equipped with permeable membranes for the purpose of gas-liquid separation, with the advantages of easy operation, low cost, etc.. However, most of these devices measure CO2 after reaching gas equilibrium, so it takes a few minutes to respond, which limited its applications in rapid measurements. In this paper, a set of prototype was developed for the rapid measurements of dissolved CO2. The system was built basing the direct absorption TDLAS. To detect the CO2 absorption line located at 4991.26 cm-1 , a fiber-coupled DFB laser operating at 2004 nm was selected as the light source. A Herriott type multi-pass cavity with an effective optical path length of 10 m and an inner volume of 90 mL was used for absorption measurements. A detection limit of 26 μatm can be obtained with this compact cavity. To realize the rapid measurements of dissolved CO2, a degasser with high degassing rate was necessary. A hollow fiber membrane with a large permeable area used in this paper can achieve degassing rate up to 2.88 kPa/min. Benefitted from the high degassing rate of the degasser and high sensitivity of the compact TDLAS system, a rapid measurement of dissolved CO2 in water can be achieved within 1s time, and the response time of the prototype when the dissolved CO2 concentration changed abruptly in actual measurement was 15 s. To evaluate the performance of the prototype, comparison measurements were carried out with a commercial mass spectrometer. The dissolved CO2 in both seawater and tap-water was measured, and the experimental results showed good consistent trends with R2 of 0.973 and 0.931. The experimental results proved the feasibility of dissolved CO2 rapid measurement. In the near future, more system evaluation experiments will be carried out and the system will be further

  3. Obsidian Pyroclasts: Where Do They Come From and What Can They Tell Us?

    Science.gov (United States)

    Watkins, J. M.; Gardner, J. E.; Befus, K.

    2016-12-01

    Models for how volcanic gases behave during volcanic eruptions are constructed from measurements of volatiles (δD, H2O and CO2) in melt that has been quenched to glass. Volatile measurements on obsidian pyroclasts from Mono Craters, California, have been central to the development of open- versus closed-system and equilibrium versus non-equilibrium degassing models, and these models have been applied to the interpretation of volatile data from volcanic centers worldwide. Even for the well-studied Mono Craters system, however, there are several different degassing models that are compatible with existing data, and the origin of the vesicle-poor obsidian pyroclasts (upon which the degassing models have been built) remains ambiguous. To better establish the link between the volatiles in the pyroclasts and volcanic eruption processes, we combine textural analysis with area maps of CO2 and H2O. We show that obsidian pyroclasts are heterogeneous with respect to dissolved CO2 and H2O, and that many clasts have multiple textural and chemical domains that are sutured together. The observations suggest that clasts are assembled from non-equilibrated juvenile melt and ash during repeated melt fracturing and healing, ash sintering, and shearing along conduit margins. Melt fracturing promotes gas extraction from magma, whereas healing promotes gas resorption and glass densification. Some of the clasts have bands or patches of elevated CO2 associated with cuspate vesicles, which are evidence for CO2-rich vapor fluxing through the magmatic system. Collectively, the data support a model of open-system, non-equilibrium degassing with intermittent regassing caused by increases in pressure and exposure to different vapor compositions.

  4. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  5. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  6. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  7. The role of Late Veneer impacts in the evolution of Venus

    Science.gov (United States)

    Gillmann, C.; Golabek, G.; Tackley, P.; Raymond, S.

    2017-09-01

    We study how different mechanisms contribute to changes in long term evolution. In particular, the primitive history (the first Gy) of terrestrial planets is heavily influenced by collisions. We investigate how the coupled evolution of Venus' atmosphere and mantle is modified by those impacts. We focus on volatile fluxes: atmospheric escape and mantle degassing. We observe that large impacts are unlikely to erode the atmosphere significantly. They are, on the contrary, an important source of volatiles for the primitive planet. Collisions also generate a lot of melting and rapidly dries the mantle through degassing. Without recycling of volatiles into the mantle (like in plate tectonics regime), the mantle is efficiently depleted.

  8. MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.

    Science.gov (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro

    2014-05-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and

  9. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  10. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    Science.gov (United States)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  11. Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand

    International Nuclear Information System (INIS)

    Werner, Cynthia; Cardellini, Carlo

    2006-01-01

    During 2002 and 2003, carbon dioxide fluxes were measured across the Rotorua geothermal system in the Taupo Volcanic Zone (TVZ), New Zealand. The results of a 956-measurement survey and of modeling studies show that CO 2 fluxes could be used to determine the main hot fluid upflow areas in Rotorua, and perhaps in undeveloped geothermal regions. Elevated degassing was observed along inferred fault traces and structures, lending confidence to their existence at depth. Degassing was also observed along lineaments that were consistent with the alignment of basement faulting in the TVZ. Areas where elevated degassing was spatially extensive typically overlapped with known regions of hot ground; however, elevated CO 2 fluxes were also observed in isolated patches of non-thermal ground. The total emission rate calculated from sequential Gaussian simulation modeling of CO 2 fluxes across the geothermal system was 620td -1 from an 8.9-km 2 area. However, because approximately one-third of the geothermal system is known to extend beneath Lake Rotorua, we expect the emissions could be minimally on the order of 1000td -1 . Comparing the emission rate with geochemical analyses of geothermal fluids and estimated upflows suggests that the majority of deep carbon reaches the surface in the form of carbon dioxide gas, and that less than one tenth of the CO 2 emissions is dissolved in, or released from, the fluids at depth. Thus, the geothermal reservoir exerts very little control on deep degassing of CO 2 . Carbon isotopic analyses of soil gases suggest a primarily magmatic source for the origin of the CO 2 . The total Rotorua emission rate is comparable to those from active volcanoes such as at White Island, New Zealand, and, when normalized by geothermal area, is comparable to other volcanic and hydrothermal regions worldwide. (author)

  12. Theoretical and experimental investigations into rare earth oxides behaviour during out of furnace treatment

    International Nuclear Information System (INIS)

    Vishkarev, A.F.; Smirnov, B.V.; Krup, Yu.M.

    1987-01-01

    Theoretical model is developed and technology of metal desulfuration and modification by rear earth metals is tested during out of furnace vacuum treatment, the testing of which has demonstrated its high efficiency. 16KhN3MA steel was melted in 120-t open-hearth furnaces under tapping with treatment by synthetic lime-aluminous slag and subsequent ladle degassing by circulation technique. At the early stage of degassing process cerium oxides together with aluminium were introduced into the vacuum chamber in the quantities of 2.0 and 0.2 kg/t respectively. Two meltings ere performed. Sulfur content in steel reduced from 0.017 and 0.018 up to 0.007 and 0.006%

  13. A review of noble gas geochemistry in relation to early Earth history

    Science.gov (United States)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  14. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas

    International Nuclear Information System (INIS)

    Guo, Qi; Pang, Zhonghe; Wang, Yingchun; Tian, Jiao

    2017-01-01

    High-temperature geothermal systems hold an enormous capacity for generating geothermal energy. The Kangding area is a typical high-temperature geothermal field in the Himalayan Geothermal Belt. Hydrogeochemical, gas geochemical and isotopic investigations were performed to identify and qualify the main hydrogeochemical processes affecting thermal water composition, including mixing and degassing, and then to estimate a reliable reservoir temperature. Nine water samples and four geothermal gas samples were collected and analysed for chemical and isotopic components. The results demonstrate the alkaline deep geothermal water is the mixtures of approximately 75% snow-melt water and 25% magmatic water. It is enriched in Na, K, F, Li and other trace elements, indicating the granite reservoir nature. The shallow geothermal water is the mixtures of approximately 30% upward flow of deep geothermal water and 70% meteoric cold water. High concentrations of Ca, Mg and HCO_3 indicate the limestone reservoir nature. There is no remarkable oxygen isotope shift in the geothermal water since the rapid circulation is difficult to trigger off strong water-rock interaction. CO_2 is the predominant geothermal gas, accounting for more than 97% of total gases in volume percentage. The concentration of CO_2 degassing ranged from 0.4 mol L"−"1 to 0.8 mol L"−"1 via geothermometrical modelling. As a result, the geothermal water pH increased from 6.0 to 9.0, and approximately 36% of the total SiO_2 re-precipitate. The sources of CO_2 are the metamorphism of limestone and magmatic degassing based on the composition of carbon isotope. The appropriate geothermometers of Na-K and Na-Li yield reservoir temperature of 280 °C. The geothermometrical modelling, developed to eliminate the effects of CO_2 degassing, yields temperature of 250 °C. The silica-enthalpy mixing model yields temperature of 270 °C with no steam separation before mixing. - Highlights: • Water and gas

  15. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    Science.gov (United States)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  16. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  17. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  18. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  19. 40 CFR 63.1007 - Pumps in light liquid service standards.

    Science.gov (United States)

    2010-07-01

    ... malfunction) greater than the pump stuffing box pressure; or (B) Equipped with a barrier fluid degassing... system that purges the barrier fluid into a process stream. (iii) The barrier fluid is not in light...

  20. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    Science.gov (United States)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014

  1. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    Science.gov (United States)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  2. Some Cavitation Properties of Liquids

    Directory of Open Access Journals (Sweden)

    K. D. Efremova

    2016-01-01

    Full Text Available Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel enabled

  3. The effect of the gas factor on selecting the thickness of a layer during two-layer getting of thick seams. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Varekha, Zh P; Kurkin, A S; Vechera, V N

    1979-01-01

    For technico-economic verification of the selection of the efficient removed thickness of upper and lower layers under conditions of high gas abundance of seams, the KNIUI has developed an economic model of converted costs within a getting field, allowing for natural and technical factors. The calculation considers specific costs for stoping work when getting the upper and lower layers, digging and maintenance of development workings, coal transport, assembly-disassembly work, ventilation, labor costs, degassing, etc. The calculation dependences and nomogram obtained enable comparatively easy definition of efficient thicknesses of removed layers when designing stoping work at thick, gently sloping seams, as well as calculation converted costs using as the initial data the total thickness of the seam, its natural gas content, and the expected degree of preliminary degassing.

  4. Photochemical products causing fluorescence enhancement for 6H-benzo[cd]pyren-6-one in de-aerated and pre-irradiated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, M., E-mail: yagishita.mayuko@nies.go.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506 (Japan); Nakajima, D. [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506 (Japan); Ohshima, S. [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan)

    2016-11-15

    Polycyclic aromatic ketones emit very weak fluorescence, but their fluorescence is significantly enhanced by about one hundred times after preliminary irradiation of their degassed solution. To investigate the mechanism of such fluorescence enhancement, liquid chromatography/time-of-flight mass spectrometry measurements were performed for degassed methanol, ethanol, and acetonitrile solutions of 6H-benzo[cd]pyren-6-one (naphthanthrone), in which fluorescence enhancement had been induced. As a result, two kinds of photochemical products were identified as the substance causing fluorescence enhancement: they were produced by dehydrogenation and dehydration of adducts of a solvent molecule to naphthanthrone. On the basis of the findings, the mechanism of the fluorescence enhancement of naphthanthrone was discussed. Fluorescence enhancement; 6H-benzo[cd]pyren-6-one; Polycyclic aromatic ketones; Liquid chromatography-mass spectrometry; Photochemical reaction.

  5. Physical Modelling Of The Steel Flow In RH Apparatus

    Directory of Open Access Journals (Sweden)

    Pieprzyca J.

    2015-09-01

    Full Text Available The efficiency of vacuum steel degassing using RH methods depends on many factors. One of the most important are hydrodynamic processes occurring in the ladle and vacuum chamber. It is always hard and expensive to determine the flow character and the way of steel mixing in industrial unit; thus in this case, methods of physical modelling are applied. The article presents the results of research carried out on the water physical model of RH apparatus concerning the influence of the flux value of inert gas introduced through the suck legs on hydrodynamic conditions of the process. Results of the research have visualization character and are presented graphically as a RTD curves. The main aim of such research is to optimize the industrial vacuum steel degassing process by means of RH method.

  6. Photochemical products causing fluorescence enhancement for 6H-benzo[cd]pyren-6-one in de-aerated and pre-irradiated solutions

    International Nuclear Information System (INIS)

    Yagishita, M.; Nakajima, D.; Ohshima, S.

    2016-01-01

    Polycyclic aromatic ketones emit very weak fluorescence, but their fluorescence is significantly enhanced by about one hundred times after preliminary irradiation of their degassed solution. To investigate the mechanism of such fluorescence enhancement, liquid chromatography/time-of-flight mass spectrometry measurements were performed for degassed methanol, ethanol, and acetonitrile solutions of 6H-benzo[cd]pyren-6-one (naphthanthrone), in which fluorescence enhancement had been induced. As a result, two kinds of photochemical products were identified as the substance causing fluorescence enhancement: they were produced by dehydrogenation and dehydration of adducts of a solvent molecule to naphthanthrone. On the basis of the findings, the mechanism of the fluorescence enhancement of naphthanthrone was discussed. Fluorescence enhancement; 6H-benzo[cd]pyren-6-one; Polycyclic aromatic ketones; Liquid chromatography-mass spectrometry; Photochemical reaction

  7. Evaluation of the high-voltage high-frequency transformer insulating materials for satellites

    International Nuclear Information System (INIS)

    Kurita, Hiroshi; Hasegawa, Taketoshi; Hirasawa, Eiichi; Gonai, Toshio; Ohsuga, Hiroyuki.

    1987-01-01

    Environment resistance evaluation was made of the insulating materials of impregnated injection type for high-voltage high-frequency transformers mounted in satellites. (1) The stress occurring in the impregnated injection type resin is small in silicon resin and urethane resin and large in epoxy resin. (2) The dielectric characteristic at high frequency is good in silicone resin. In epoxy resin, when the transformer is operated at high temperature, its thermal runaway may take place. (3) The radiation deterioration at 1 Mrad - 10 Mrad is slight in urethane resin. (4) The degassing is not good in silicone resin. (5) The adhesive power is good in urethane resin. (6) From the above results, in silicone resin there is problem in degassing and adhesive power. In epoxy resin there is problem in stress and dielectric characteristic. (Mori, K.)

  8. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Science.gov (United States)

    2010-07-01

    ... agitator stuffing box pressure; or (B) Equipped with a barrier fluid degassing reservoir that is routed to... barrier fluid into a process stream. (ii) The barrier fluid is not in light liquid service. (iii) Each...

  9. 46 CFR 108.173 - Class I, Division 2 locations.

    Science.gov (United States)

    2010-10-01

    ... of the mud circulating system from the final degassing discharge to the mud suction connection at the mud pit. (b) A location in the weather that is— (1) Within the boundaries of the drilling derrick up...

  10. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    Science.gov (United States)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  11. 40 CFR 60.482-3 - Standards: Compressors.

    Science.gov (United States)

    2010-07-01

    ... box pressure; or (2) Equipped with a barrier fluid system degassing reservoir that is routed to a... requirements of § 60.482-10; or (3) Equipped with a system that purges the barrier fluid into a process stream...

  12. Push from the Pacific

    Science.gov (United States)

    Jaccard, Samuel L.; Galbraith, Eric D.

    2018-05-01

    Enhanced upwelling and CO2 degassing from the subpolar North Pacific during a warm event 14,000 years ago may have helped keep atmospheric CO2 levels high enough to propel the Earth out of the last ice age.

  13. Li et al., Afr J Tradit Complement Altern Med. (2016) 13(1):105-113 ...

    African Journals Online (AJOL)

    PROF ADEWUNMI

    sampler, a degasser, an automatic thermostatic column compartment ... 35°C. A linear gradient elution of A (0.1% formate acid water) and B (acetonitrile) was used with the gradient procedure as follows: 0 min, B .... Identification of Compounds.

  14. Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Garg, A.; Fernandes, L.; Citon, P.

    system (Shimazdu, Model 1) consisting of a quaternary solvent delivery pump, degasser, auto injector, column oven, fluorescence detector, ODS guard column (4.6 ID, 4.5 cm length, 10 mm particle size) and a reversed phase Shim-Pack HRC-ODS analytical...

  15. ABOUT FACTORS INFLUENCING ON ELIMINATION OF HYDROGEN IN CIRCULATING VACUUMATOR OF RUP “BMZ” FOR KILLED AND UNKILLED STEELS

    Directory of Open Access Journals (Sweden)

    A. A. Chichko

    2006-01-01

    Full Text Available The characteristics of the vacuum degassing process in RH-vacuumator of RUP are experimentally investigated. The profiles of vacuumator pressure, discharge of argon, metal temperatures and others for different melting processes of cord steel assortment are determined.

  16. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland

    International Nuclear Information System (INIS)

    Fridriksson, Thrainn; Kristjansson, Bjarni Reyr; Armannsson, Halldor; Margretardottir, Eygerour; Olafsdottir, Snjolaug; Chiodini, Giovanni

    2006-01-01

    Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO 2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO 2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO 2 concentration of steam in the Reykjanes area. The observed rates of CO 2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO 2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO 2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more

  17. Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago

    Science.gov (United States)

    Padron, E.; Hernandez Perez, P. A.; Perez, N.; Theofilos, T.; Melian, G.; Barrancos, J.; Virgil, G.; Sumino, H.; Notsu, K.

    2009-12-01

    The active shield-volcano Sierra Negra is part of the Galapagos hotspot. Sierra Negra is the largest shield volcano of Isabela Island, hosting a 10 km diameter caldera. Ten historic eruptions have occurred and some involved a frequently visited east caldera rim fissure zone called Volcan Chico. The last volcanic event occurred in October 2005 and lasted for about a week, covering approximately twenty percent of the eastern caldera floor. Sierra Negra volcano has experienced some significant changes in the chemical composition of its volcanic gas discharges after the 2005 eruption. This volcanic event produced an important SO2 degassing that depleted the magmatic content of this gas. Not significant changes in the MORB and plume-type helium contribution were observed after the 2005 eruption, with a 65.5 % of MORB and 35.5 % of plume contribution. In 2006 a visible and diffuse gas emission study was performed at the summit of Sierra Negra volcano, Galapagos, to evaluate degassing rate from this volcanic system. Diffuse degassing at Sierra Negra was mainly confined in three different DDS: Volcan Chico, the southern inner margin of the caldera, and Mina Azufral. These areas showed also visible degassing, which indicates highly fractured areas where volcano-hydrothermal fluids migrate towards surface. A total fumarole/plume SO2 emission of 11 ± 2 td-1 was calculated by mini-DOAS ground-based measurements at Mina Azufral fumarolic area. Molar ratios of major volcanic gas components were also measured in-situ at Mina Azufral with a portable multisensor. The results showed H2S/SO2, CO2/SO2 and H2O/SO2 molar ratios of 0.41, 52.2 and 867.9, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratio we have estimated other volatiles emission rates. The results showed that H2O, CO2 and H2S emission rates from Sierra Negra are 562, 394, and 2.4 t d-1, respectively. The estimated total output of diffuse CO2 emission from the summit of

  18. Cleaning lateral morphological features of the root canal: the role of streaming and cavitation.

    Science.gov (United States)

    Robinson, J P; Macedo, R G; Verhaagen, B; Versluis, M; Cooper, P R; van der Sluis, L W M; Walmsley, A D

    2018-01-01

    To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and

  19. It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots

    Science.gov (United States)

    Keller, T.; Suckale, J.

    2017-12-01

    Many volcanic eruptions are driven by volatiles - mostly H2O and CO2 - that degas from magmas rising up beneath the volcano. Gas expands during ascent, thus frequently creating lavas with upward of 50% vesicularity. That is a particularly compelling observation considering that volatiles are only present at concentrations of order 100 ppm in the mantle source. Yet, even at these small concentrations, volatiles significantly lower the peridotite solidus. That leads to the production of reactive volatile-rich melts at depth, which has important consequences for melt transport in the asthenosphere. Thus, volatiles have a pivotal role both at the beginning and the end of the magmatic storyline. A growing amount of observational evidence provides various perspectives on these systems. Volcanic products are characterised increasingly well by geochemical and petrological data. And, volcano monitoring now often provides continuous records of degassing flux and composition. What is missing to better interpret these data are coupled fluid mechanic and thermodynamic models that link melt production and reactive transport in the mantle and crust with degassing-driven volcanic activity at the surface. Such models need to describe the deformation and segregation of multiple material phases (liquids, solids, gases) and track the reactive transport of diverse chemical components (major elements, trace elements, volatiles). I will present progress towards a generalization of existing two-phase model for melt transport in the mantle, extending them to three-phase flows appropriate for magma circulation and degassing in volcanoes. What sets the two environments apart is the presence of a compressible vapor in volcanoes. Also, volcanic degassing may occur by convecting suspensions as well as porous segregation. The model framework we are developing for these processes is based on mixture theory. Uncovering the underlying physics that connects these diverse expressions of magma

  20. Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009

    Science.gov (United States)

    Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.

    2017-12-01

    The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early

  1. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  2. Secular Variations of Soil CO2 Efflux at Santa Ana-Izalco-Coatepeque Volcanic Complex, El Salvador, Central America

    Science.gov (United States)

    Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Lopez, D.

    2002-12-01

    The Santa Ana-Izalco-Coatepeque volcanic complex (2,365 m elevation), located 40 Km west of San Salvador, consists of the Coatepeque collapse caldera (a 6.5 x 10.5 Km elliptical depression), the Santa Ana and Izalco stratovolcanoes, as well as numerous cinder cones and explosion craters. The summit of the Santa Ana volcano contains an acid lake where hot springs, gas bubbling and intense fumarolic emissions occur. A volcanic plume, usually driven by the NE trades, may be seen rising up to 500 m from the summit crater of the Santa Ana volcano. The goal of this study is to provide a multidisciplinary approach for the volcanic surveillance by means of performing geochemical continuous monitoring of diffuse CO2 emission rate in addition to seismic monitoring. Temporal variations of soil CO2 efflux measured at Cerro Pacho dome, Coatepeque caldera, by means of the accumulation chamber method and using a CO2 efflux continuous monitoring station developed by WEST Systems (Italy). From May 2001 till May 2002, CO2 efflux ranged from 4.3 to 327 gm-2d-1, with a median value of 98 and a quartile range of 26 gm-2d-1. Two distinct diffuse CO2 degassing periods have been observed: (1) an increasing trend from May to July 2001, and (2) a stationary period from November 2001 to May 2002. The increasing-trend period may be due to the anomalous plume degassing at the Santa Ana volcano during 2001 and soon after the January and February 2001 earthquakes. Temporal variations of CO2 efllux during the second period seem to be coupled with those of barometric pressure and wind speed at different time scales, though most of the variance is contained at diurnal and semi-diurnal frequencies. These observations can help to explain the existence of a persistent behavior (Hurst exponent, H=0.934 +/- 0.0039) within the diffuse CO2 degassing phenomena. However, further observations are in progress to understand the long-term memory of diffuse CO2 degassing at the Santa Ana volcanic complex.

  3. 75 FR 15348 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Revision To Control...

    Science.gov (United States)

    2010-03-29

    ... to control volatile organic compound (VOC) emissions from storage tanks, transport vessels and marine... Promulgation of Air Quality Implementation Plans; Texas; Revision To Control Volatile Organic Compound..., Division 1 (Storage of Volatile Organic Compounds) and Subchapter F, Division 3 (Degassing or Cleaning of...

  4. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ...

  5. Influence of ultrasound on the electrical breakdown of transformer oil

    Science.gov (United States)

    Isakaev, E. Kh; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Demirov, N. A.; Akimov, P. L.

    2018-01-01

    When the transformer oil is exposed to low power ultrasonic waves (cavitation bubbles. With the increase of sonication time the breakdown voltage also increases, nonlinearly. The experimental data indicate the possibility of using ultrasonic waves of low power for degassing of transformer oil.

  6. High capacity argon extraction and purification system. [Suitable for age estimation of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, K; Morik, Gy [Magyar Tudomanyos Akademia Atommag Kutato Intezete, Debrecen

    1979-01-01

    A high capacity metal-glass argon extraction and purification system has been developed for K/Ar dating of geologic materials. A set of samples can be loaded simultaneously and degassed in turn in the system by high frequency induction heating in a molybdenum crucible. The argon purification is carried out by titanium sponge, molecular sieve, copper oxide and glass and charcoal filled traps cooled by liquid nitrogen. The /sup 38/Ar spike and the atmospheric argon used for calibrating the mass spectrometer are dispensed by a gas-pipette system. 80-120 minutes after starting the degassing of the sample, the purified argon can be introduced into the mass spectrometer; the gettering materials regenerate in 1-5 hours, thus 1-3 samples may be analysed a day. The atmospheric argon inflow during an experimental process is less than 5x10/sup -8/ cc STP.

  7. Inventories of organic materials and complexing agents in intermediate-level long-lived parcels (Report PNGMDR 2013-2015)

    International Nuclear Information System (INIS)

    2014-01-01

    This report presents an inventory of organic materials and of complexing agents they may produce within parcels of alpha wastes which are to be produced or are being currently produced. The report proposes the results of campaigns of measurements of degassing, and comparison with results of modelling studies. The assessment of degassing rates of parcels of alpha wastes is completed by an assessment of hydrogen produced by radiolysis of interstitial water within the concrete container. Thus, after a presentation of the main parcels used by the CEA for intermediate-level long-lived wastes, and of an inventory of wastes containing organic materials, this report describes the consequences of radiolysis on polymers, and describes the objectives of R and D studies. It reports measurements and presents simulation tools for heterogeneous wastes, homogeneous wastes, production of water-soluble degradation products, and transfer and adsorption of these products in the storage site argillite

  8. Factors governing the pH in a heterotrophic, turbid, tidal estuary

    Science.gov (United States)

    Hofmann, A. F.; Meysman, F. J. R.; Soetaert, K.; Middelburg, J. J.

    2009-01-01

    A method to quantify the influence of kinetically modelled biogeochemical processes on the pH of an ecosystem with time variable acid-base dissociation constants is presented and applied to the heterotrophic, turbid Scheldt estuary (SW Netherlands, N Belgium). Nitrification is identified as the main process governing the pH profile of this estuary, while CO2 degassing and advective-dispersive transport "buffer" the effect of nitrification. CO2 degassing accounts for the largest proton turnover per year in the whole estuary. There is a clear inverse correlation between oxygen turnover and proton turnover. The main driver of long-term changes in the mean estuarine pH from 2001 to 2004 is a changing freshwater flow which influences the pH "directly" via [∑CO2] and [TA] and to a significant amount also "indirectly" via [∑NH4+] and the nitrification rates in the estuary.

  9. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ......2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.......Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because...... the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable...

  10. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  11. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  12. Effect of sodium and strontium modifiers on microstructure and tensile properties of LM-13 Al-Si Alloy

    International Nuclear Information System (INIS)

    Tahir, Q.A.; Ikram, N.; Ahmed, R.

    2006-01-01

    During present research work LM 13 aluminium silicon alloy was prepared using high purity aluminium ingot and various master alloys of Al-Si, Al-Cu, Al-Ni, Al-Fe and Al-Mg. A gas fired crucible pit type furnace was used to prepare various heats of LM 13 alloy. Degassing procedure was carried out by using perforated bell type plunger using the degassing tablet. Modification was performed by plunging the modifier at the bottom of the crucible containing the molten metal. Three types of modifiers sodium salt, metallic sodium and strontium in the form of Al-Sr master alloy were used in order to evaluate the microstructure and tensile properties of the alloy. Degassed, unmodified and modified test samples for metallurgical testing purposes were prepared according to the standard procedures. An optical UFX-DX Nikon microscope and Hitachi S3400N scanning electron microscope were used for the observation of microstructural studies of the samples. Similarly tensile properties were determined using Autograph AG-IS series, 20KN Shimadzu Universal Tester. However hardness measurements were carried out using Shimadzu HMV micro hardness testing machine. Experimental results proved that the addition of modifiers improved the microstructures as well as the mechanical properties of the alloy. The present result also showed that sodium and strontium modifiers had almost similar beneficial effects on the microstructure but Sr-modifier showed improved tensile properties of LM 13 alloy. However, the salt method was not so effective if the same was compared to the metallic sodium and strontium modifiers. (author)

  13. Modeling of Asphaltene Precipitation from Crude Oil with the Cubic Plus Association Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2017-01-01

    In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state (EoS) are developed to calculate the asphaltene precipitation onset condition and asphaltene yield from degassed crude oil during the addition of n-paraffin. A single model parameter is fitted...

  14. K-T Transition into Chaos.

    Science.gov (United States)

    McLean, Dewey M.

    1988-01-01

    Discusses the destabilizing influences that affect feedback systems in the earth and trigger disorganization. Presents information that integrates mantle degassing with feed-back systems, and the Sun-Earth-Space energy flow system which is the primary source of energy that drives the Earth's biosphere. (RT)

  15. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    Chronic exposure to elevated levels of dissolved carbon dioxide (CO2) has been linked to reduced growth, physiological disturbances and negative health outcomes in intensively reared fish. Although pumping to a degassing tower can lower concentrations of dissolved CO2 in water recirculation aquacult...

  16. Diffuse He degassing from Furnas Volcano, Sao Miguel, Azores

    Science.gov (United States)

    Hernández, I.; Melian, G.; Nolasco, D.; Dionis, S.; Hernández, P.; Perez, N.; Noehn, D.; Nobrega, D.; Gonzalez, P.; Forjaz, V. H.; França, Z.

    2012-04-01

    Furnas is the easternmost of the three active central volcanoes on the island of Sâo Miguel in Azores archipielago. Unlike the other two main volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8 x 5 km across. It is built on the outer flanks of the Povoaçao - Nordeste lava complex that forms the eastern end of Sao Miguel. The caldera margins of Furnas reflect the regional-local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Helium is considered as an ideal geochemical tracer due to its properties: chemically inert, physically stable and practically insoluble in water under normal conditions. These properties together with its high mobility on the crust, make the presence of helium anomalies on the surface environment of a volcanic system to be related to deep fluid migration controlled by volcano-tectonic features of the area and provide valuable information about the location and characteristics of the gas source and the fracturing of the crust. On the summer of 2011, a diffuse helium emission survey was carried out on the surface environment of Furnas volcano, covering an area of 15.4 km2 with a total of 276 sampling site observations. To collect soil gases at each sampling point, a stainless steel probe was inserted 40 cm depth in the soil. Helium concentration was measured within 24 hours by means of a quadrupole mass spectrometer Pfeiffer Omnistar 422. DeltaHe (DeltaHe= Hesoil atmosphere - Heair) distribution map was constructed following Sequential Gaussian Simulation. DeltaHe distribution map shows that most of the study area presents values similar to those of air (Heair = 5,240 ppb). Soil gas helium enrichment was mainly observed at the areas affected by the discharge of hydrothermal fluids: the fumarole area on the north part of Furnas Lake (DeltaHe> 10,000 ppb) and the fumarole area on Furnas Village (DeltaHe> 5,000 ppb). No other significant enrichment DeltaHe were found which indicate the presence of a vertical permeability area for the migration of deep fluid to the surface.

  17. Electrospun MOF nanofibers as hydrogen storage media

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-06-01

    Full Text Available showed that the incorporation of vacuum degassing was able to create visible porosity in and/or on the PAN nanofibers and the MOF nanocrystals inside the polymeric nanofibers were fully accessible by N2 and H2 gases. With 20 wt.% loading of MOF...

  18. Satellite-based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat

    Science.gov (United States)

    Carn, Simon A.; Prata, Fred J.

    2010-09-01

    Numerous episodes of explosive degassing have punctuated the 1995-2009 eruption of Soufrière Hills volcano (SHV), Montserrat, often following major lava dome collapses. We use ultraviolet (UV) and infrared (IR) satellite measurements to quantify sulfur dioxide (SO2) released by explosive degassing, which is not captured by routine ground-based and airborne gas monitoring. We find a total explosive SO2 release of ˜0.5 Tg, which represents ˜6% of total SO2 emissions from SHV since July 1995. The majority of this SO2 (˜0.4 Tg) was vented following the most voluminous SHV dome collapses in July 2003 and May 2006. Based on our analysis, we suggest that the SO2 burden measured following explosive disruption of lava domes depends on several factors, including the instantaneous lava effusion rate, dome height above the conduit, and the vertical component of directed explosions. Space-based SO2 measurements merit inclusion in routine gas monitoring at SHV and other dome-forming volcanoes.

  19. Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles

    International Nuclear Information System (INIS)

    Lucchetti, Carlo; De Simone, Gabriele; Galli, Gianfranco; Tuccimei, Paola

    2016-01-01

    Polyethylene terephthalate (PET) and polylactic acid (PLA) bottles were tested to evaluate radon loss from water during 15 days of storage. PET bottles (lower surface/volume-ratio vials) lost 0.4–7.1% of initial radon, whereas PLA bottles lost 3.7% of it. PET bottles with volume of 0.5 L, lower surface/weight ratio, and hence higher thickness display proportionally reduced radon loss. Corrections for dissolved radium are needed during analyses. Formulas for calculating degassing efficiency and water interference on electrostatic collections are developed. - Highlights: • Radon loss from water during storage in polyethylene terephthalate (PET) and polylactic acid (PLA) bottles was evaluated. • Surface/volume ratio and thickness of plastic materials were studied. • A correction for dissolved radium concentration was applied to estimate gas loss. • Proper corrections for degassing efficiency of aerators were developed. • The interference of H 2 O on radon daughter electrostatic collection was quantified.

  20. Acoustic waves in the atmosphere and ground generated by volcanic activity

    International Nuclear Information System (INIS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-01-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  1. Spatially resolved SO2 flux emissions from Mt Etna

    Science.gov (United States)

    Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-01-01

    Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August. PMID:27773952

  2. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  3. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  4. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  5. Evolution of C-O-H-N volatile species in the magma ocean during core formation.

    Science.gov (United States)

    Dalou, C.; Le Losq, C.; Hirschmann, M. M.; Jacobsen, S. D.; Fueri, E.

    2017-12-01

    The composition of the Hadean atmosphere affected how life began on Earth. Magma ocean degassing of C, O, H, and N was a key influence on the composition of the Hadean atmosphere. To identify the nature of degassed C-O-H-N species, we determined their speciation in reduced basaltic glasses (in equilibrium with Fe-C-N metal alloy, synthetized at 1400 and 1600 ºC and 1.2-3 GPa) via Raman spectroscopy. We addressed the effect of oxygen fugacity (fO2) on C-O-H-N speciation between IW-2.3 and IW-0.4, representing the evolution of the shallow upper mantle fO2 during the Hadean. We observe H2, NH2, NH3, CH3, CH4, CO, N2, and OH species in all glasses. With increasing ƒO2, our results support the formation of OH groups at the expense of N-H and C-H bonds in the melt, implying the equilibria at IW-2: (1) 2OH- (melt) + ½ N2 (melt) ↔ NH2 (melt) + 2 O2- (melt) , (2) 2OH- (melt) + ½ N2 (melt) + ½ H2 (melt) ↔ NH3 (melt) + 2 O2- (melt) . With increasing fO2, eqs. (1) and (2) shift to the left. From IW-2 to IW, we also observe an increase in the intensity of the NH2 peak relative to NH3. Carbon is present as CH3, CH4, and CO in all our glasses. While CO is likely the main carbon specie under reduced conditions (e.g., Armstrong et al. 2015), CH species should remain stable from moderately (IW-0.4) to very reduced (IW-3; Ardia et al. 2014; Kadik et al. 2015, 2017) conditions in hydrous silicate glasses following the equilibria: (3) 3OH- (melt) + C (graphite) ↔ CH3 (melt) + 3O2- (melt) , (4) 4OH- (melt) + C (graphite) ↔ CH4 (melt) + 4O2- (melt) . With increasing fO2, eqs. (3) and (4) shift to the left. As metal segregation and core formation drove the ƒO2 of the magma ocean from IW-4 to IW during the Hadean (Rubie et al. 2011), the nature of species degassed by the magma ocean should have evolved during that time. The C-O-H-N species we observe dissolved in our reduced glasses may not directly correspond to those degassed (Schaeffer and Fegley, 2007), but a better

  6. 49 CFR 171.8 - Definitions and abbreviations.

    Science.gov (United States)

    2010-10-01

    ... chemical reaction between a fuel, such as hydrogen or hydrogen rich gases, alcohols, or hydrocarbons, and... reaction. This may be achieved by methods such as adding an inhibiting chemical, degassing the hazardous... requirements: (1) Has an engineering degree and one year of work experience in cargo tank structural or...

  7. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    cause of blistering is well-known, handling and finishing techniques have been developed to minimize this form of damage. Vacuum melting and degassing minimize the quantity of hydrogen in the steels. Acid pickling and other such processes that may introduce hydrogen are avoided when practical, and possible moisture ...

  8. Obtainment of lithium metal by electrolysis of molten salts

    International Nuclear Information System (INIS)

    Silva Costa, M.A.Z. da.

    1988-04-01

    The obtainment metallic lithium through KCL + LiCl, using a stainless steel cathode and a graphite anode is studied. The applications of lithium on nuclear energy, aerospatial program, metalurgy and as refining and degassing agent are also presented. The purification of lithium is still mentioned. (C.G.C.) [pt

  9. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  10. Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring - a model of chemical variations with inorganic CaCO3 precipitation

    International Nuclear Information System (INIS)

    Usdowski, E.; Hoefs, J.; Menschel, G.

    1979-01-01

    A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO 2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model, 13 C of the dissolved carbonate species changes systematically along the flow path. The difference in delta values between the upper and lower part of the stream is about 1%. The 13 C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO 3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4%. The 18 O composition of dissolved carbonate and H 2 O is constant along the stream. Calculated calcite-water temperatures differ by about +5 0 C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO 3 deposited from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes. Plant populations in the water have virtually no influence on CO 2 degassing, calcite saturation and isotopic fractionation. Measurements of Psub(CO 2 ), Ssub(C) and 13 C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO 2 degassing and calcite precipitation, caused by a continuously changing hydrodynamic conditions and carbonate nucleation rates. (Auth.)

  11. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico

    Science.gov (United States)

    Sathaye, Kiran J.; Smye, Andrew J.; Jordan, Jacob S.; Hesse, Marc A.

    2016-06-01

    Budgets of 4He and 40Ar provide constraints on the chemical evolution of the solid Earth and atmosphere. Although continental crust accounts for the majority of 4He and 40Ar degassed from the Earth, degassing mechanisms are subject to scholarly debate. Here we provide a constraint on crustal degassing by comparing the noble gases accumulated in the Bravo Dome natural CO2 reservoir, New Mexico USA, with the radiogenic production in the underlying crust. A detailed geological model of the reservoir is used to provide absolute abundances and geostatistical uncertainty of 4He, 40Ar, 21Ne, 20Ne, 36Ar, and 84Kr. The present-day production rate of crustal radiogenic 4He and 40Ar, henceforth referred to as 4He* and 40Ar*, is estimated using the basement composition, surface and mantle heat flow, and seismic estimates of crustal density. After subtracting mantle and atmospheric contributions, the reservoir contains less than 0.02% of the radiogenic production in the underlying crust. This shows unequivocally that radiogenic noble gases are effectively retained in cratonic continental crust over millennial timescales. This also requires that approximately 1.5 Gt of mantle derived CO2 migrated through the crust without mobilizing the crustally accumulated gases. This observation suggests transport along a localized fracture network. Therefore, the retention of noble gases in stable crystalline continental crust allows shallow accumulations of radiogenic gases to record tectonic history. At Bravo Dome, the crustal 4He*/40Ar* ratio is one fifth of the expected crustal production ratio, recording the preferential release of 4He during the Ancestral Rocky Mountain orogeny, 300 Ma.

  12. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  13. Apollo 12 ropy glasses revisited

    Science.gov (United States)

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  14. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  15. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA

    Science.gov (United States)

    Werner, Cynthia A.; Bergfeld, Deborah; Farrar, Chris; Doukas, Michael P.; Kelly, Peter; Kern, Christoph

    2014-01-01

    Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989–1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000–2001 and 2011–2012, both of which follow peaks in seismicity by 2–3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d− 1). CO2emissions at the four smaller tree-kill areas also increased by factors of 2–3 between 2006 and 2011–2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2–3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d− 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2–3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3

  16. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico

    Science.gov (United States)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-12-01

    Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the

  17. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  18. Our bubbling Earth

    NARCIS (Netherlands)

    Schuiling, R.D.

    2005-01-01

    In several places on earth large volumes of gas are seen to escape. These gases are usually dominated by CO2. The emissions are associated with volcanic activity, and are attributed to magma degassing. It will be shown that in the case of Milos this explanation is unacceptable for quantitative

  19. Determination of Synthetic Food Colors, Caffeine, Sodium Benzoate ...

    African Journals Online (AJOL)

    carried out by reverse phase liquid chromatography of an Agilent 1200 series liquid chromatograph equipped with a gradient pump capable of mixing four solvents, a vacuum membrane degasser, a 20 μL loop injector and a. UV Detector (Agilent Technologies, Santa Clara,. CA, USA). Analysis was performed on an Eclipse.

  20. Asymmetrical hydrothermal system below Merapi volcano imaged by geophysical data.

    Science.gov (United States)

    Byrdina, Svetlana; Friedel, Sven; Budi-Santoso, Agus; Suryanto, Wiwit; Suhari, Aldjarishy; Vandemeulebrouck, Jean; Rizal, Mohhamed H.; Grandis, Hendra

    2017-04-01

    A high-resolution image of the hydrothermal system of Merapi volcano is obtained using electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT inversions identify two distinct low-resistivity bodies, at the base of the south flank and in the summit area, that represent likely two parts of an interconnected hydrothermal system. In the summit area, the extension of the hydrothermal system is clearly limited by the main geological structures which are actual and ancient craters. A sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20 - 50 Ωm) from the resistive andesite lava flows and pyroclastic deposits (2000 - 50 000 Ωm). High diffuse CO2 degassing (with a median value of 400g m -2 d -1) is observed in a narrow vicinity of the active crater rim and close to the Pasar-Bubar. The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The total CO2 degassing across the accessible summit area with a surface of 1.4 · 10 5 m 2 is around 20 td -1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200 - 230 td -1). This drop in the diffuse degassing can be related to the decrease in the magmatic activity, to the change of the summit morphology or to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100 000 Ωm, resistivity as low as 10 Ωm has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. We suggest that a sandwich-like structure of stratified pyroclastic deposits on the flanks of Merapi screen and separate the flow of hydrothermal fluids with the degassing occurring mostly through the fractured crater rims

  1. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  2. Rare gases in Samoan xenoliths

    Science.gov (United States)

    Poreda, R. J.; Farley, K. A.

    1992-09-01

    The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.

  3. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    Science.gov (United States)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  4. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    Science.gov (United States)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  5. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes

    Science.gov (United States)

    Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve

    2018-03-01

    Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.

  6. A Stability Indicating HPLC Method for the Determination of ...

    African Journals Online (AJOL)

    Erah

    stability indicating reverse phase HPLC method for estimating meloxicam (MLX) in bulk ... acetonitrile-water-glacial acetic acid [55:40:5 (% v/v)] at a flow rate of 1ml/min and detection wavelength .... pore and degassed before use. ... determined to assess the effect of small but ... deviation, the standard error of slope, and the.

  7. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  8. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  9. Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy

    Directory of Open Access Journals (Sweden)

    M. Queißer

    2017-09-01

    Full Text Available The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d−1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.

  10. Development of an advanced static feed water electrolysis module. [for spacecraft

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  11. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  12. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  13. Feasibility study on recovery and utilization of coal mine gas (CMG) at Donetsk Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of getting petroleum substitution energy and reducing greenhouse effect gas emission, an investigational study was carried out of the project for methane gas recovery/utilization at the Donbassa coal mine in Ukraine. At the Donbassa coal mine, degassing by test boring is being conducted to reduce the gas emission at coal face for safety, but most of the gas is discharged into the air. In this project, the following were studied: degassing boring/gas induction from bore hole/measurement in gas induction pipe, gas recovery system combined with gas induction in flyash, and installation/operation of gas engine power generation facilities (1,710kW x 7 units) with exhaust heat recovery boiler using the recovered methane gas as fuel. The results obtained were the petroleum substitution amount of 31,000 toe/y and the amount of greenhouse effect gas reduction of 480,000 t/y. In the economical estimation, the initial investment amount was 3 billion yen, the profitability of the total investment used was 2.9%, and the internal earning rate was 6.5%. (NEDO)

  14. FY 2000 report on the basic survey to promote Joint Implementation, etc. Project on methane gas recovery use in the Donetsk coal field/coal mine; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Donetsk tanden tanko methane gas kaishu riyo keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of getting petroleum substitution energy and reducing greenhouse effect gas emission, an investigational study was carried out of the project for methane gas recovery/utilization at the Donbassa coal mine in Ukraine. At the Donbassa coal mine, degassing by test boring is being conducted to reduce the gas emission at coal face for safety, but most of the gas is discharged into the air. In this project, the following were studied: degassing boring/gas induction from bore hole/measurement in gas induction pipe, gas recovery system combined with gas induction in flyash, and installation/operation of gas engine power generation facilities (1,710kW x 7 units) with exhaust heat recovery boiler using the recovered methane gas as fuel. The results obtained were the petroleum substitution amount of 31,000 toe/y and the amount of greenhouse effect gas reduction of 480,000 t/y. In the economical estimation, the initial investment amount was 3 billion yen, the profitability of the total investment used was 2.9%, and the internal earning rate was 6.5%. (NEDO)

  15. Dehydrogenation in large ingot casting process

    International Nuclear Information System (INIS)

    Ubukata, Takashi; Suzuki, Tadashi; Ueda, Sou; Shibata, Takashi

    2009-01-01

    Forging components (for nuclear power plants) have become larger and larger because of decreased weld lines from a safety point of view. Consequently they have been manufactured from ingots requirement for 200 tons or more. Dehydrogenation is one of the key issues for large ingot manufacturing process. In the case of ingots of 200 tons or heavier, mold stream degassing (MSD) has been applied for dehydrogenation. Although JSW had developed mold stream degassing by argon (MSD-Ar) as a more effective dehydrogenating practice, MSD-Ar was not applied for these ingots, because conventional refractory materials of a stopper rod for the Ar blowing hole had low durability. In this study, we have developed a new type of stopper rod through modification of both refractory materials and the stopper rod construction and have successfully expanded the application range of MSD-Ar up to ingots weighting 330 tons. Compared with the conventional MSD, the hydrogen content in ingots after MSD-Ar has decreased by 24 percent due to the dehydrogenation rate of MSD-Ar increased by 34 percent. (author)

  16. Degassing during magma ascent in the Mule Creek vent (USA)

    Science.gov (United States)

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.

  17. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary sequences.

  18. Process for producing a fuel suitable for degassing from refuse

    Energy Technology Data Exchange (ETDEWEB)

    Sulzberger, J

    1975-11-20

    Utilization of the heat energy of refuse in waste incineration plants is time-consuming and expensive due to high investment and operation costs. The inventor recommends to process the refuse to a sterile, handy and storable fuel. For this propose the refuse should be crushed, kneaded and pressed. The briquettes produced in this way should be dried.

  19. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  20. Syntheses and solid state structures of zinc (II) complexes with Bi ...

    Indian Academy of Sciences (India)

    dimethylphenyl-BIAO)]2. (1c). In a dry degassed Schlenk tube, ligand 1 (200 mg, 0.70 mmol) was placed and about 10 mL of CH2Cl2 was added on to it. The solution was charged with anhy- drous ZnI2 (224 mg, 0.70 mmol) at ambient tempera- ture under ...

  1. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  2. Unconstrained Heterogeneous Colloidal Quantum Dots Embedded in GaAs/GaSb Nanovoids

    Science.gov (United States)

    2014-04-17

    hexadecylamine ( HDA ), and 5 mL of TOP were added to a three-neck flask, which was then degassed in a vacuum and heated to 130 C for 1.5 hours. Next...arsenide GaSb – gallium antimonide HDA – hexadecylamine HDD – hexadecanediol HR-SEM – high-resolution scanning electron microscope HR-TEM – high

  3. Geophysical image of the hydrothermal system of Merapi volcano

    Science.gov (United States)

    Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto

    2017-01-01

    We present an image of the hydrothermal system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models identify two distinct low-resistivity bodies interpreted as two parts of a probably interconnected hydrothermal system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. No evidence of the hydrothermal system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in

  4. Early and long-term mantle processing rates derived from xenon isotopes

    Science.gov (United States)

    Mukhopadhyay, S.; Parai, R.; Tucker, J.; Middleton, J. L.; Langmuir, C. H.

    2015-12-01

    Noble gases, particularly xenon (Xe), in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. The combination of extinct and extant radioactive species in the I-Pu-U-Xe systems shed light on the degassing history of the early Earth throughout accretion, as well as the long-term degassing of the Earth's interior in association with plate tectonics. The ubiquitous presence of shallow-level air contamination, however, frequently obscures the mantle Xe signal. In a majority of the samples, shallow air contamination dominates the Xe budget. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Thus, the extent of variability in mantle source Xe composition is not well-constrained. Here, we present new MORB Xe data and explore constraints placed on mantle processing rates by the Xe data. Ten step-crushes were obtained on a depleted popping glass that was sealed in ultrapure N2 after dredge retrieval from between the Kane-Atlantis Fracture Zone of the Mid Atlantic Ridge in May 2012. 9 steps yielded 129Xe/130Xe of 7.50-7.67 and one yielded 7.3. The bulk 129Xe/130Xe of the sample is 7.6, nearly identical to the estimated mantle source value of 7.7 for the sample. Hence, the sample is virtually free of shallow-level air contamination. Because sealing the sample in N2upon dredge retrieval largely eliminated air contamination, for many samples, contamination must be added after sample retrieval from the ocean bottom. Our new high-precision Xe isotopic measurements in upper mantle-derived samples provide improved constraints on the Xe isotopic composition of the mantle source. We developed a forward model of mantle volatile evolution to identify solutions that satisfy our Xe isotopic data. We find that accretion timescales of ~10±5 Myr are consistent with I-Pu-Xe constraints, and the last

  5. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  6. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    2012-03-08

    Mar 8, 2012 ... accelerated voltage of 20 kV after gold sputter coating. The pH ... at 105°C in N2 environment using a Micromeritics SmartVac degassing system. The pore size distribution and specific surface areas were determined ..... drop of 3.49% in adsorption and 5.07% in desorption up to the. 5th cycle of sorbent ...

  7. Sanitation and recultivation of the Endlhausen landfill. Experience and hints

    Energy Technology Data Exchange (ETDEWEB)

    Hoerich, O; Rieger, W

    1986-02-01

    A landfill located in a former gravel pit was covered once 300,000 t of domestic refuse had been dumped. Drain pipes were laid for degassing the landfill. A clay layer was used to prevent surface water inroads. The article explains details and approaches. The cost are some DM 900,000 at an area of 3 ha. Grassing and planting will follow.

  8. Adsorption of malachite green and iodine on rice husk-based porous carbon

    International Nuclear Information System (INIS)

    Guo Yupeng; Zhang Hui; Tao Nannan; Liu Yanhua; Qi Juirui; Wang Zichen; Xu Hongding

    2003-01-01

    Adsorption isotherms of I 2 and malachite green (MG) by rice husk-based porous carbons (RHCs) from aqueous medium have been studied. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. And the adsorption isotherms have been determined after modifying the carbon surfaces by oxidation with nitric acid and hydrogen peroxide and after degassing at 800 deg. C. The results have been found to follow the Freundlich adsorption isotherm. Three samples of N series have larger capacity for removing I 2 and MG from solution compared to that of the tested commercial carbons. The adsorption capacity of I 2 is similar for K series and commercial carbons. And the capacity of commercial carbons for MG is larger than K series. The adsorption capacity of I 2 on oxidation carbons has increased for hydrogen peroxide treatment and decreased for nitric acid, and that of MG is decreased. But the adsorption capacities of I 2 and MG increase on degassing. On the other hand, the adsorption of I 2 increases after modifying the carbon surfaces by HCl without oxidation. Suitable mechanisms have been proposed

  9. Analysis of liquid relief valves opening demand during pressure increase abnormal scenarios at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Bedrossian, Gustavo C.; Gersberg, Sara

    2000-01-01

    Two hypothetical scenarios have been analyzed where, after an initiating event, Embalse nuclear power plant primary heat transport system could undergo a pressure increase. These abnormal events are a loss of feedwater to the steam generators and a loss of Class IV power supply with Class III restoration. This analysis focuses on primary system liquid relief valves action, specially on their opening demand. Calculation results show that even when these valves are expected to open during the transient, primary system maximum allowable pressure would not be exceeded if they failed to open. System response was also studied in case that one of these relief valves did not close once primary system pressure decreases. For the scenario of loss of feedwater to steam generators, if the degasser-condenser could not be bottled-up, Emergency Cooling Injection conditions would be reached due to a continuos loss of coolant. In case of loss of Class IV -and assuming degasser-condenser bottling-up as service water would not be available- it was observed that primary system should remain pressurized, and with core cooled by thermo siphoning mechanism. (author)

  10. Effect of the Impeller Design on Degasification Kinetics Using the Impeller Injector Technique Assisted by Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Diego Abreu-López

    2017-04-01

    Full Text Available A mathematical model was developed to describe the hydrodynamics of a batch reactor for aluminum degassing utilizing the rotor-injector technique. The mathematical model uses the Eulerian algorithm to represent the two-phase system including the simulation of vortex formation at the free surface, and the use of the RNG k-ε model to account for the turbulence in the system. The model was employed to test the performances of three different impeller designs, two of which are available commercially, while the third one is a new design proposed in previous work. The model simulates the hydrodynamics and consequently helps to explain and connect the performances in terms of degassing kinetics and gas consumption found in physical modeling previously reported. Therefore, the model simulates a water physical model. The model reveals that the new impeller design distributes the bubbles more uniformly throughout the ladle, and exhibits a better-agitated bath, since the transfer of momentum to the fluids is better. Gas is evenly distributed with this design because both phases, gas and liquid, are dragged to the bottom of the ladle as a result of the higher pumping effect in comparison to the commercial designs.

  11. Radon concentration in spring and groundwater of Shillong agglomeration

    International Nuclear Information System (INIS)

    Walia, D.; Wahlang, P.; Lyngdoh, A.C.; Saxena, A.; Sharma, Y.; Maibam, D.

    2010-01-01

    Water samples in the month of February 2010 to April 2010 are collected from 06 springs (sample code S1-S6) and 18 wells (sample code W1-W18) of the Shillong agglomeration in radon-tight 1L bottles, considering the geological structures, nearness to the steep slopes and accessibility of the water sources. The measurement of radon in water samples is carried out using ionization chamber Alphaguard along with an accessory (fabricated in the laboratory). Initially, background radon of the empty set-up is measured for 30 minutes before every water-sample measurement. The water samples are placed in a closed gas cycle in degassing vessel and then radon is expelled using the pump and magnetic stirrer. The security vessel is connected with the degassing vessel to minimize the inflow of water vapour to the Alphaguard. The measuring cycle is repeated 3 times in order to obtain a better precision. The arithmetic mean of the radon concentrations are used for calculating the annual effective dose for ingestion of water from each bore well and spring. The pH, electrical conductivity and temperature are measured so as to correlate the meteorological parameters with the radon emanation

  12. The Start Of Ebullition In Quiescent, Yield-Stress Fluids

    International Nuclear Information System (INIS)

    Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo

    2012-01-01

    Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred

  13. Soil gas geochemistry in relation to eruptive fissures on Timanfaya volcano, Lanzarote Island (Canary Islands, Spain)

    Science.gov (United States)

    Padrón, Eleazar; Padilla, Germán; Hernández, Pedro A.; Pérez, Nemesio M.; Calvo, David; Nolasco, Dácil; Barrancos, José; Melián, Gladys V.; Dionis, Samara; Rodríguez, Fátima

    2013-01-01

    We report herein the first results of an extensive soil gas survey performed on Timanfaya volcano on May 2011. Soil gas composition at Timanfaya volcano indicates a main atmospheric source, slightly enriched in CO2 and He. Soil CO2 concentration showed a very slight deep contribution of the Timanfaya volcanic system, with no clear relation to the main eruptive fissures of the studied area. The existence of soil helium enrichments in Timanfaya indicates a shallow degassing of crustal helium and other possible deeper sources probably form cooling magma bodies at depth. The main soil helium enrichments were observed in good agreement with the main eruptive fissures of the 1730-36 eruption, with the highest values located at those areas with a higher density of recent eruptive centers, indicating an important structural control for the leakage of helium at Timanfaya volcano. Atmospheric air slightly polluted by deep-seated helium emissions, CO2 degassed from a cooling magma body, and biogenic CO2, might be the most plausible explanation for the existence of soil gas. Helium is a deep-seated gas, exhibiting important emission rates along the main eruptive fissure of the 1730-36 eruption of Timanfaya volcano.

  14. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  15. The Start Of Ebullition In Quiescent, Yield-Stress Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo

    2012-08-30

    Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.

  16. High precision locations of long-period events at La Fossa Crater (Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Salvatore Rapisarda

    2009-06-01

    Full Text Available Since the last eruption in 1888-90, the volcanic activity on Vulcano Island (Aeolian Archipelago, Italy has been limited to fumarolic degassing. Fumaroles are mainly concentred at the active cone of La Fossa in the northern sector of the island and are periodically characterized by increases in temperature as well as in the amount of both CO2 and He. Seismic background activity at Vulcano is dominated by micro-seismicity originating at shallow depth (<1-1.5 km under La Fossa cone. This seismicity is related to geothermal system processes and comprises long period (LP events. LPs are generally considered as the resonance of a fluid-filled volume in response to a trigger. We analyzed LP events recorded during an anomalous degassing period (August-October 2006 applying a high precision technique to define the shape of the trigger source. Absolute and high precision locations suggest that LP events recorded at Vulcano during 2006 were produced by a shallow focal zone ca. 200 m long, 40 m wide and N30-40E oriented. Their occurrence is linked to magmatic fluid inputs that by modifying the hydrothermal system cause excitation of a fluid-filled cavity.

  17. Polymer Based Molecular Composites. Volume 171. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on 27-30 November 1989

    Science.gov (United States)

    1990-09-01

    reactivity features promoted by the polymeric sulfonic acid moiety in contrast to HCI. Further work is being undertaken utilizing para toluene 21 sulfonic...styrene and isoprene block and homo- polymers were synthesized by anionic polymerization. Cyclohexane (Burdick and Jackson HPLC Grade) was degassed and...terephthalic acid and 21 mole-% 4 aminophenol , was purchased from Hoechst Celanese. Blends containing 70 weight-% PPE and 30 weight-% PS were kindly

  18. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    Science.gov (United States)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  19. Dynamics of an unusual cone-building trachyte eruption at Pu`u Wa`awa`a, Hualālai volcano, Hawai`i

    Science.gov (United States)

    Shea, Thomas; Leonhardi, Tanis; Giachetti, Thomas; Lindoo, Amanda; Larsen, Jessica; Sinton, John; Parsons, Elliott

    2017-04-01

    The Pu`u Wa`awa`a pyroclastic cone and Pu`u Anahulu lava flow are two prominent monogenetic eruptive features assumed to result from a single eruption during the trachyte-dominated early post-shield stage of Hualālai volcano (Hawaíi). Púu Wa`awa`a is composed of complex repetitions of crudely cross-stratified units rich in dark dense clasts, which reversely grade into coarser pumice-rich units. Pyroclasts from the cone are extremely diverse texturally, ranging from glassy obsidian to vesicular scoria or pumice, in addition to fully crystalline end-members. The >100-m thick Pu`u Anahulu flow is, in contrast, entirely holocrystalline. Using field observations coupled with whole rock analyses, this study aimed to test whether the Pu`u Wa`awa`a tephra and Pu`u Anahulu lava flows originated from the same eruption, as had been previously assumed. Crystal and vesicle textures are characterized along with the volatile contents of interstitial glasses to determine the origin of textural variability within Pu`u Wáawáa trachytes (e.g., magma mixing vs. degassing origin). We find that (1) the two eruptions likely originated from distinct vents and magma reservoirs, despite their proximity and similar age, (2) the textural diversity of pyroclasts forming Pu`u Wa`awa`a can be fully explained by variable magma degassing and outgassing within the conduit, (3) the Pu`u Wa`awa`a cone was constructed during explosions transitional in style between violent Strombolian and Vulcanian, involving the formation of a large cone and with repeated disruption of conduit plugs, but without production of large pyroclastic density currents (PDCs), and (4) the contrasting eruption styles of Hawaiian trachytes (flow-, cone-, and PDC-forming) are probably related to differences in the outgassing capacity of the magmas prior to reaching the surface and not in intrinsic compositional or temperature properties. These results further highlight that trachytes are "kinetically faster" magmas compared

  20. Emission of SO2, CO2, and H2S from Augustine Volcano, 2002-2008: Chapter 26 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    McGee, Kenneth A.; Doukas, Michael P.; McGimsey, Robert G.; Neal, Christina A.; Wessels, Rick L.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    Airborne surveillance of gas emissions from Augustine Volcano and other Cook Inlet volcanoes began in 1990 to identify baseline emission levels during noneruptive conditions. Gas measurements at Augustine for SO2, CO2, and H2S showed essentially no evidence of anomalous degassing through spring 2005. Neither did a measurement on May 10, 2005, right after the onset of low level seismicity and inflation. The following measurement, on December 20, 2005, showed Augustine to be degassing about 600 metric tons per day (t/d) of SO2, and by January 4, 2006, only 7 days before the first explosive event, SO2 emissions had climbed to ten times that amount. Maximum emission rates measured during the subsequent eruption were: 8,930 t/d SO2 (February 24, 2006), 1,800 t/d CO2 (March 9, 2006), and 4.3 t/d H2S (January 19, 2006). In total, 45 measurements for SO2 were made from December 2005 through the end of 2008, with 19 each for CO2 and H2S during the same period. Molar CO2/SO2 ratios averaged about 1.6. In general, SO2 emissions appeared to increase during inflation of the volcanic edifice, whereas CO2 emissions were at their highest during the period of deflation associated with the vigorous effusive phase of the eruption in March. High SO2 was probably associated with degassing of shallow magma, whereas high CO2 likely reflected deep (>4 km) magma recharge of the sub-volcanic plumbing system, For the 2005–6 period, the volcano released a total of about 1.5×106 tons of CO2 to the atmosphere, a level similar to the annual output of a medium-sized natural-gas-fired powerplant. Augustine also emitted about 8×105 tons of SO2, similar to that produced by the 1976 and 1986 eruptions of the volcano.

  1. In situ degassing of the kicker magnet in J-PARC RCS

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

    2015-01-01

    The usual way to reduce outgassing from a device in vacuum is to heat up a whole vacuum chamber containing the device. However, the situation, where this method can be applied, is limited due to the heat expansion of the chamber. Especially in accelerators, where the vacuum chambers are connected with nearby beam pipes, this normal bake-out method may not be applied. If a heat source and heat shields are appropriately installed inside the chamber, heat flux is directed to the device. Therefore the device can be baked out without raising the temperature of the vacuum chamber. One candidate for such bake-out method to be applied is kicker magnets in J-PARC RCS, which are installed in large vacuum chambers. We performed the heating tests with some types of heaters in order to examine the effectiveness of this method and to decide the material and configuration of the heater. As a result, the graphite heater was selected for in-situ bake-out of the kickers in the RCS beam line. Using the method, the each material of kicker magnet was heated up above 100degC with keeping the temperature rise of the vacuum chamber below 30degC. (author)

  2. Tempo of magma degassing and the genesis of porphyry copper deposits.

    Science.gov (United States)

    Chelle-Michou, Cyril; Rottier, Bertrand; Caricchi, Luca; Simpson, Guy

    2017-01-12

    Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Earth's crust. Finding new porphyry deposits is essential because they are our largest source of copper and they also contain other strategic metals including gold and molybdenum. However, the discovery of giant porphyry deposits is hindered by a lack of understanding of the factors governing their size. Here, we use thermal modelling and statistical simulations to quantify the tempo and the chemistry of fluids released from cooling magmatic systems. We confirm that typical arc magmas produce fluids similar in composition to those that form porphyry deposits and conclude that the volume and duration of magmatic activity exert a first order control on the endowment (total mass of deposited copper) of economic porphyry copper deposits. Therefore, initial magma enrichment in copper and sulphur, although adding to the metallogenic potential, is not necessary to form a giant deposit. Our results link the respective durations of magmatic and hydrothermal activity from well-known large to supergiant deposits to their metal endowment. This novel approach can readily be implemented as an additional exploration tool that can help assess the economic potential of magmatic-hydrothermal systems.

  3. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    Science.gov (United States)

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    Science.gov (United States)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.

  5. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  6. Radon measurement in Malaysia water samples

    International Nuclear Information System (INIS)

    Ibrahim, A.B.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    This paper reported the results of the measurement of radon in local water. The water samples collected were rainwater, river water, seawater, well water or ground water at area of State of Selangor and Kuala Lumpur. The samples were collected in scintillation cell ZnS(Ag) through Radon Degassing Unit RDU 200. Alpha activity was counted with scintillation counters RD 200 at energy 5.5 MeV. (author)

  7. Application of the microcalorimetry to the study of annealing and recrystallization phenomena during the sintering of metallic powders

    International Nuclear Information System (INIS)

    Cytermann, R.; Mazadier, M.; Auguin, B.; Defresne, A.; Gilles, P.

    1975-01-01

    Nickel powders compressed isostatically at pressures between 1 and 13 kbars were studied. The tests were all carried out under a current of hydrogen after vacuum degassing and at the same temperature increase rate. Cold-hardening of the powders was shown by the broadening of the X-ray diffraction lines. Microcalorimetry confirmed the separation of the compacting process into two stages: rearrangement with local deformation and bulk plastic deformation [fr

  8. Ultrasonication and food technology: A review

    OpenAIRE

    Ishrat Majid; Gulzar Ahmad Nayik; Vikas Nanda

    2015-01-01

    With increasing consumers demand and tightening of food and environmental regulations, traditional food-processing techniques have lost their optimum performance which gave rise to new and powerful technologies. Ultrasonic is a one of the fast, versatile, emerging, and promising non-destructive green technology used in the food industry from last few years. The ultrasound is being carried out in various areas of food technology namely crystallization, freezing, bleaching, degassing, extractio...

  9. Nickel and helium evidence for melt above the core-mantle boundary.

    Science.gov (United States)

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  10. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    Science.gov (United States)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  11. Effect of microwave irradiation on petrophysical characterization of coals

    International Nuclear Information System (INIS)

    Hong, Yi-du; Lin, Bai-quan; Zhu, Chuan-jie; Li, He

    2016-01-01

    Highlights: • Microwave energy increase porosity, pore size and numbers of coals. • Growth rates of porosity decreased at first then increased with microwave energy. • NMR can be reliable to measure coal samples. • Microwave energy may have the potential for degassing of coal seams. - Abstract: The experimental work described in this paper aims to study the effect of microwave irradiation on petrophysical characterization of coals. Twenty coal samples were irradiated at 2.45 GHz with variable power (2, 4, 6 kW). The temperature, mass and specific heat capacity of coal samples were measured and calculated. The effect of microwave irradiation on the porosity of coal samples was evaluated by the gravimetric method and nuclear magnetic resonance (NMR) measurements. The porosity obviously increases after microwave heating. Interestingly, growth rate of the porosity decreases at first then increases with microwave energy. The turning point is approximately 100 kJ. The influence of microwave irradiation on pore size, throat size and pore numbers of coal samples were also evaluated by NMR measurements. It suggest that the pore size, throat size and pore numbers are obviously increase with microwave energy. In a word, it appears likely that microwave energy may have the potential for the degassing coal seams.

  12. Understanding the monotonous life of open vent mafic volcanoes

    Science.gov (United States)

    Costa Rodriguez, F.; Ruth, D. C. S.; Bornas, M.; Rivera, D. J. V. I.

    2016-12-01

    Mafic open vent volcanoes display prominent degassing plumes during quiescence but also erupt frequently, every few months or years. Their small and mildly explosive eruptions (volatile contents indicate that the magma reservoir system extends at least to 5 km depth. Mg/Fe pyroxene zoning and diffusion modeling suggests that mafic magma intrusion in a shallow, crystal-rich and more evolved reservoir has occurred repeatedly. The time scale for this process is the same for all 9 events, starting about 2 years prior and continuing up to eruption. We estimate the relative proportions of injecting to resident magma that vary from about 0.2 to 0.7, probably reflecting the local crystal-melt interaction during intrusion. The near constant magma composition is probably the result of buffering of new incoming magma by a crystal-rich upper reservoir, and erupted magmas are physical mixtures. However, we do not find evidence of large-scale crystal recycling from one eruption to another, implying the resetting of the system after each event. The recurrent eruptions and intrusions could be driven by the near continuous degassing of the volcano that induces a mass imbalance which leads to magma movement from depth to the shallow system [e.g., 1]. [1] Girona et al. (2016). Science Reports doi:10.1038/srep18212

  13. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity

    Science.gov (United States)

    Granieri, D.; Avino, R.; Chiodini, G.

    2010-01-01

    Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.

  14. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  15. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  16. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  17. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  18. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.

    Science.gov (United States)

    Baubron, J C; Allard, P; Toutain, J P

    1990-03-01

    RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.

  19. Automated controlled-potential coulometric determination of uranium

    International Nuclear Information System (INIS)

    Knight, C.H.; Clegg, D.E.; Wright, K.D.; Cassidy, R.M.

    1982-06-01

    A controlled-potential coulometer has been automated in our laboratory for routine determination of uranium in solution. The CRNL-designed automated system controls degassing, prereduction, and reduction of the sample. The final result is displayed on a digital coulometer readout. Manual and automated modes of operation are compared to show the precision and accuracy of the automated system. Results are also shown for the coulometric titration of typical uranium-aluminum alloy samples

  20. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  1. Upper Bound for Neutron Emission from Sonoluminescing Bubbles in Deuterated Acetone

    International Nuclear Information System (INIS)

    Camara, C. G.; Putterman, S. J.; Hopkins, S. D.; Suslick, K. S.

    2007-01-01

    An experimental search for nuclear fusion inside imploding bubbles of degassed deuterated acetone at 0 degree sign C driven by a 15 atm sound field and seeded with a neutron generator reveals an upper bound that is a factor of 10 000 less than the signal reported by Taleyarkhan et al. The strength of our upper bound is limited by the weakness of sonoluminescence, which we ascribe to the relatively high vapor pressure of acetone

  2. Improved method of degassing of feed water at Heavy Water Plant, Kota

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G K; Agrawal, A K [Heavy Water Plant, Kota (India)

    1994-06-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author). 1 fig.

  3. Surface degassing and modifications to vesicle size distributions in active basalt flows

    Science.gov (United States)

    Cashman, K.V.; Mangan, M.T.; Newman, S.

    1994-01-01

    The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent samples, and thus represent volatile supersaturations considerably less than those of the conduit. We note also that the small total volume represented by this new bubble population does not: (1) measurably deplete the melt in volatiles; or (2) make up for the overall vesicularity decrease resulting from the loss of larger bubbles. Surface breakout samples have distinctive VSDs characterized by an extreme depletion in the small vesicle population. This results in samples with much lower number densities and larger mean vesicle sizes than corresponding tube samples. Similar VSD patterns have been observed in solidified lava flows and are interpreted to result from either static (wall rupture) or dynamic (bubble rise and capture) coalescence. Through comparison with vent and tube vesicle populations, we suggest that, in addition to coalescence, the observed vesicle populations in the breakout samples have experienced a rapid loss of small vesicles consistent with 'ripening' of the VSD resulting from interbubble diffusion of volatiles. Confinement of ripening features to surface flows suggests that the thin skin that forms on surface breakouts may play a role in the observed VSD modification. ?? 1994.

  4. Improved method of degassing of feed water at Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Krishnan, G.K.; Agrawal, A.K.

    1994-01-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author)

  5. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  6. Study of the oxide reduction and interstitial contents during sintering of different plain carbon steels by in situ mass spectrometry in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Momeni, Mohammad; Gierl, Christian; Danninger, Herbert

    2011-01-01

    Highlights: → Degassing phenomenon was studied in plain steels with different iron base powders. → The integrated area below the MS m12 graph can be used as an indicator of formed CO. → The integrated area is an indicator for in situ carbon loss in the specimen. → Carbon loss and area below the m12 graph can be correlated. - Abstract: Reduction of oxides covering powder particles is an important process during sintering and a prerequisite to form sintering contacts in PM parts. In the present research, degassing and reduction phenomena during sintering of plain carbon steels prepared from different atomised and sponge iron powders were studied by mass spectrometry (MS) in the dilatometer under protective N 2 atmosphere. Interstitial constituents were measured by carbon and oxygen analysis. According to the results, the major part of CO 2 is formed during carbothermic reduction of surface oxides in the low to moderate temperature range ( 600 deg. C, the main product of carbothermic reduction is CO and not CO 2 , but the former cannot be detected by MS in N 2 atmosphere. Signals m44 (CO 2 ) and m12 (C) were however found to be reliable indicators for CO. Similar intensity of mass 12 signals for both ASC and SC up to 1000 deg. C is consistent with equal carbon loss through carbothermic reaction. The integrated areas below the MS signal graphs, and thus the areas of the different degassing peaks obtained in the MS, were used as at least semi-quantitative estimation of the amount of gases formed, bearing in mind that MS is not really a quantitative analytical tool. Although a clearly defined relationship is not visible between oxygen loss and area below the m16 graph, the area for m12 can be used as an indicator for in situ carbon loss in the specimen. Increasing integrated areas for m12 and 16 between 800 and 1300 deg. C with only marginal enhancement of m44 indicates that the major part of oxides are removed as CO, in agreement with Boudouard equilibrium, at

  7. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    Science.gov (United States)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  8. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    Directory of Open Access Journals (Sweden)

    Elodie eSaubin

    2016-05-01

    Full Text Available The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types.Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation

  9. Estimating Sulfur Dioxide in Volcanic Plumes Using an Ultraviolet Camera. First Results from Lascar, Ollagüe and Irruputuncu Volcanoes

    Science.gov (United States)

    Geoffroy, C. A.; Amigo, A.

    2014-12-01

    Volcanic gas fluxes give important information on both the amount of degassing and magma reservoirs. In most of magmas, water vapor (H2O) and carbon dioxide (CO2) are major components of volcanic gas. However, sulfur dioxide (SO2) is one of the targets of remote sensing due to their low concentration in the environment and easy detection by ultraviolet spectroscopy. Accordingly, plume imaging using passive ultraviolet cameras is a relatively simple method to study volcanic degassing, expeditious manner and can be used up from distances of about 10 km from source of emissions. We estimated SO2 concentrations and fluxes in volcanic plumes with the ultraviolet camera Envicam-2, developed by Nicarnica Aviation, acquired by the Geological Survey of Chile (SERNAGEOMIN). The camera has filters that allow passage of ultraviolet radiation at wavelengths of interest. For determining whether there is absorption of radiation associated with the presence of SO2 the Beer-Lambert law was used for quantifying concentrations using appropriate calibration cells. SO2 emissions to the atmosphere were estimated using wind speed as an approximation to the plume transport. In this study we reported the implementation of a new methodology for using Envicam-2 and subsequent collection of SO2 concentrations and fluxes in passive degassing volcanoes. Measurements were done at Lascar, Ollagüe and Irruputuncu volcanoes, located in northern Chile. The volcanoes were chosen because of optimal atmospheric conditions for ultraviolet imaging. Results indicate concentrations within the expected ranges for three volcanoes generally between 400-1700 ppm•m. In the case of Láscar volcano, the emission rates of SO2 range from 250 to 500 tonnes/day for a same image of the plume. In particular, wind speed was determined from scaling images and are consistent with data from regional numerical models, as well as records of the meteorological stations installed at the ALMA astronomical center, located

  10. Volcanic volatile budgets and fluxes inferred from melt inclusions from post-shield volcanoes in Hawaii and the Canary Islands

    Science.gov (United States)

    Moore, L.; Gazel, E.; Bodnar, R. J.; Carracedo, J. C.

    2017-12-01

    Pre-eruptive volatile contents of volcanic melts recorded by melt inclusions are useful for estimating rates of deep earth ingassing and outgassing on geologic timescales. Ocean island volcanoes may erupt melts derived from recycled material and thus have implications regarding the degree to which volatile-bearing phases like magnesite can survive subduction and be recycled by intraplate magmatism. However, melt inclusions affected by degassing will not reflect the original volatile content of the primary melt. Post-shield ocean island volcanoes are thought to erupt volatile-rich melts that ascend quickly, crystallizing in deep reservoirs and are more likely to reflect the composition of the primary melt. In this study, we compare melt inclusions from post-shield volcanoes, Haleakala (East Maui, Hawaii) and Tenerife (Canary Islands), to estimate the volatile budgets of two presumably plume-related ocean-island settings. Melt inclusions from Haleakala contain up to 1.5 wt% CO2, up to 1.3 wt% H2O, and about 2000 ppm of S. The CO2 concentration is similar to estimates for primary CO2 concentrations for Hawaii, suggesting that the melt inclusions in this study trapped a melt that underwent minimal degassing. Assuming a melt production rate of 2 km3/ka for postshield Hawaiian volcanism, the average fluxes of CO2 and S are about 80 t/year and 10 t/year respectively. Melt inclusions from Tenerife contain up to 1 wt% CO2, up to 2 wt% H2O, and about 4000 ppm of S. Assuming a melt production rate of 0.8 km3/ka for the northeast rift zone of Tenerife, the average fluxes of CO2 and S are about 20 t/year and 8 t/year respectively. The concentration of CO2 is lower than estimates of the primary melt CO2 content based on CO2/Nb from El Hierro. This may indicate that the inclusions trapped a melt that had degassed significantly, or that some of the CO2 in the inclusions has been sequestered in carbonate daughter crystals, which were observed in abundance.

  11. Primordial domains in the depleted upper mantle identified by noble gases in MORBs

    Science.gov (United States)

    Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.

    2017-12-01

    The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR

  12. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation

    Science.gov (United States)

    Blake, S.; Self, S.; Sharma, K.; Sephton, S.

    2010-11-01

    A very likely cause of widespread environmental impacts of flood basalt eruptions is the emission of sulfur, chlorine, and possibly fluorine from the erupting magma. We present new data on the S contents of rare glass inclusions and matrix glasses preserved in quenched lava selvages from lava fields of the Columbia River Basalt Group (CRBG; Ginkgo, Sand Hollow and Sentinel Gap flows, Wanapum Basalt Formation). We compare these results with published data from Neral and Jawar Formation lavas (Deccan Traps, India) and the Roza flow (CRBG). CRBG glass inclusions have up to 2000 ppm S and 15-16 wt.% FeO total. By contrast, the Deccan examples have about 1400 ppm S and 10 wt.% FeO total. Several of the glass inclusions are partly degassed, indicating entrapment during magma rise, and matrix glasses are typically more evolved than glass inclusions due to small amounts of in situ crystallization. Using only the highest S inclusions and taking account of the effect of in situ crystallization and degassing on the S content of the residual matrix glasses indicates S yields of about 0.07 to 0.1 wt.% from Deccan eruptions and about 0.15 wt.% from Wanapum (CRBG) eruptions. The pre-eruptive S contents of these magmas correlate with weight% FeO total in the same way as undegassed sulfide-saturated mid-ocean ridge basalts. Using oceanic basalts to define a sulfide saturation line, and data on S contents of degassed basalts, we propose an equation to estimate the weight% S yield (ΔS) from initially sulfide-saturated basalt liquid without the need to find well-preserved, rare, undegassed glass inclusions and matrix glasses: ΔS=(0.01418×FeO-0.06381)±0.02635. This compares well with independent estimates derived from the petrologic method by taking the difference in S concentration of glass inclusions and matrix glass. Applying our method to the aphyric Grande Ronde Basalts of the CRBG implies a total yield of about 1000 Gt SO 2 delivered into the Miocene atmosphere in

  13. Influence of refining process on the porosity of high pressure die casting alloy Al-Si

    Directory of Open Access Journals (Sweden)

    A.W. Orlowicz

    2009-04-01

    Full Text Available This study presents research results of the influence that refining and transfer of AlSi12S alloy on the porosity of high pressure diecastings.Tests were conducted under production conditions of Die-casting Foundry META-ZEL Sp z o.o. The operation of refining was conducted in a melting furnace, with the use of an FDU Mini Degasser. Decay of the refining effect was assessed by evaluating the porosity content and metallographic examination.

  14. HPLC Analysis of nine corticosteroids in “natural creams” for atopic eczema

    OpenAIRE

    Ameti, Agim; Poposka, Zaklina; Memeti, Shaban; Shishovska, Maja; Mustafa, Zana; Starkoska, Katerina; Arsova-Sarafinovska, Zorica

    2013-01-01

    Purpose: The aim of the study was to determine whether “natural creams” sold for treatment of childhood atopic eczema illegally contain corticosteroids with a newly developed rapid and simple HPLC analysis with UV detection. Material and Methods: HPLC analysis was performed using a Schimadzu LC-2010 chromatographic system (Schimadzu, Kyoto, Japan) consisting of a LC-20AT Prominence liquid chromatography pump with DGU-20A5 Prominence degasser, a SPD-M20A Prominence Diode Array Detector, and...

  15. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    Science.gov (United States)

    2015-10-01

    synthesized as anthracene functional poly(tert-butyl acrylate )-Br (Anth-PtBA-Br) which not only carries the functionality for DA “click” reaction...hydrophilic poly( acrylic acid) (PAA) from PtBA by simply hydrolysis of tert-butyl groups using trifluoroacetic acid (TFA). In order to investigate the...inside a degassed water tank at 37 o C (Figure 5, Panel A). A high- speed, 1 megapixel CCD camera (Phantom V210, Vision Research) was positioned to

  16. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  17. Hydrological influences on long-term gas flow trends at locations in the Vogtland/NW Bohemian seismic region (German-Czech border

    Directory of Open Access Journals (Sweden)

    J. Heinicke

    2007-06-01

    Full Text Available One of the typical methods for the identification of seismo-hydrological effects is to monitor changes in the free gas flow throughout springs or mofettes. For several years, the gas flow regime of mineral springs at Bad Brambach (Germany and mofettes in the Nature Park Soos (Czech Republic and its dependence on hydro-/meteorological parameters have been studied. The mineral spring ‘Wettinquelle’, Bad Brambach, is a well-known seismo- hydrologically sensitive location for swarmquakes at a special epicentral area of NW Bohemia. Since 2000, a slight upward trend in the gas flow of three Bad Brambach mineral springs has been observed, which became stronger after the ‘Eisenquelle’ spring capture reconstruction (winter 2003/2004. Similar behaviour could be detected at a mofette in Soos. The results correspond to a 3He/4He mantle ratio increase in gases at mofettes in the Cheb Basin (CZ traced by other authors for more than 12 years, and could give hints for a higher degassing activity of the magma body below that area. Common and special properties in the degassing regimes of the Bad Brambach and Soos locations are discussed. It is demonstrated that the long-term gas flow trend was interrupted in 2003 because of very low groundwater levels. This effect was amplified by the artificial groundwater lowering during the ‘Eisenquelle’ spring capture reconstruction.

  18. High temperature outgassing tests on materials used in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Holtrop, K.L.; Hansink, M.J.

    2006-01-01

    This article is a continuation of previous work on determining the outgassing characteristics of materials used in the DIII-D magnetic fusion tokamak [K. L. Holtrop, J. Vac. Sci. Technol. A 17, 2064 (1999)]. Achievement of high performance plasma discharges in the DIII-D tokamak requires careful control of impurity levels. Among the techniques used to control impurities are routine bakes of the vacuum vessel to an average temperature of 350 deg. C. Materials used in DIII-D must release only very small amounts of impurities (below 2x10 -6 mole) at this temperature that could be transferred to the first wall materials and later contaminate plasma discharges. To better study the behavior of materials proposed for use in DIII-D at elevated temperatures, the initial outgassing test chamber was improved to include an independent heating control of the sample and a simple load lock chamber. The goal was to determine not only the total degassing rate of the material during baking, but to also determine the gas species composition and to obtain a quantitative estimate of the degassing rate of each species by the use of a residual gas analyzer. Initial results for aluminum anodized using three different processes, stainless steel plated with black oxide and black chrome, and a commercially available fiber optic feedthrough will be presented

  19. Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter

    Science.gov (United States)

    Vesper, Dorothy J.; Edenborn, Harry M.

    2012-05-01

    SummaryDissolved CO2 in groundwater is frequently supersaturated relative to its equilibrium with atmospheric partial pressure and will degas when it is conveyed to the surface. Estimates of dissolved CO2 concentrations can vary widely between different hydrochemical facies because they have different sources of error (e.g., rapid degassing, low alkalinity, non-carbonate alkalinity). We sampled 60 natural spring and mine waters using a beverage industry carbonation meter, which measures dissolved CO2 based on temperature and pressure changes as the sample volume is expanded. Using a modified field protocol, the meter was found to be highly accurate in the range 0.2-35 mM CO2. The meter provided rapid, accurate and precise measurements of dissolved CO2 in natural waters for a range of hydrochemical facies. Dissolved CO2 concentrations measured in the field with the carbonation meter were similar to CO2 determined using the pH-alkalinity approach, but provided immediate results and avoided errors from alkalinity and pH determination. The portability and ease of use of the carbonation meter in the field made it well-suited to sampling in difficult terrain. The carbonation meter has proven useful in the study of aquatic systems where CO2 degassing drives geochemical changes that result in surficial mineral precipitation and deposition, such as tufa, travertine and mine drainage deposits.

  20. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2018-03-01

    Recent studies of the chronology of Martian meteorites suggest that the growth of Mars was almost complete within a few Myr after the birth of the Solar system. During such rapid accretion, proto-Mars likely gravitationally maintained both the solar nebula component and the impact degassing component, containing H2O vapour and reduced gas species, as a proto-atmosphere to be called a hybrid-type proto-atmosphere. Here we numerically analyse the mass and composition of the degassed component and the atmospheric thermal structure sustained by accretional heating. Our results predict that a growing Mars possibly acquired a massive and hot hybrid-type proto-atmosphere with surface pressure and temperature greater than several kbar and 2000 K, respectively, which is sufficient to produce a deep magma ocean. In such a high-temperature and high-pressure environment, a significant amount of H2O, CH4, CO, and H2 is expected to be partitioned into the planetary interior, although this would strongly depend on the dynamics of the magma ocean and mantle solidification. The dissolved H2O may explain the wet Martian mantle implied from basaltic Martian meteorites. Along with the remnant reduced atmosphere after the hydrodynamic atmospheric escape, dissolved reduced gas species may have maintained an earliest Martian surface environment that allowed prebiotic chemical evolution and liquid H2O activities.

  1. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    Science.gov (United States)

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  2. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  3. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  4. Universal scaling of permeability through the granular-to-continuum transition

    Science.gov (United States)

    Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.

    2015-12-01

    Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.

  5. Early episodes of high-pressure core formation preserved in plume mantle

    Science.gov (United States)

    Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei

    2018-01-01

    The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.

  6. Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy—Direct Versus Inverse Bayesian Retrieval

    Directory of Open Access Journals (Sweden)

    Manuel Queißer

    2018-01-01

    Full Text Available CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy, a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.

  7. Inventory of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, B.; Arellano, S.; Norman, P.; Conde, V.

    2012-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.

  8. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    International Nuclear Information System (INIS)

    Hodnett, M; Zeqiri, B

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (≤ 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media

  9. Indoor radon pollution: Control and mitigation. June 1978-December 1989 (Citations from the NTIS data base). Report for June 1978-December 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning the control and mitigation of radon pollution in homes and commercial buildings. Citations cover radon transport studies in buildings and soils, remedial action proposals on contaminated buildings, soil venting, building ventilation, sealants, filtration systems, water degassing, reduction of radon sources in building materials, and evaluation of existing radon mitigation programs including their cost effectiveness. Analysis and detection of radon and radon toxicity are covered in separate published bibliographies. (Contains 129 citations fully indexed and including a title list.)

  10. The use of the methods of risk analysis for the appraisement of the encapsulation station of KBS II

    International Nuclear Information System (INIS)

    1981-01-01

    Several crucial occurrences have been identified. The release of radioactivity through the ventilation system has been analysed in detail. A fault tree was designed, and as a numerical example, two events were treated, namely (i) degassing of damaged fuel pins, 2 per year, and (ii) drop of a full size fuel load, 1 per year. When these events coincide with the loss of ventilation, radioactive aerosols may be released to the atmosphere. The probabilities and the amount of radioactivity were estimated. (G.B.)

  11. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics

    International Nuclear Information System (INIS)

    Bartolomeo, Antonio Di; Romeo, Francesco; Sabatino, Paolo; Carapella, Giovanni; Iemmo, Laura; Giubileo, Filippo; Schroeder, Thomas; Lupina, Grzegorz

    2015-01-01

    We fabricate back-gated field effect transistors using niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10 −4 mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface. (paper)

  12. Alkalisation agent measurement with differential conductivity method in secondary water system

    International Nuclear Information System (INIS)

    Wuhrmann, Peter; Lendi, Marco

    2012-09-01

    Besides ammonia hydroxide, also morpholine and ethanol-amine (ETA) are mainly used as a pH regulating agent on the secondary water side [1]. The concentration of the alkalisation agent can only be calculated if the chemical composition in the sample is known [2]. Therefore, for a reliable alkalisation agent measurement, there are three major steps to take: A reliable specific and (degassed) acid conductivity measurement, pH calculation and the selection of the chemical model for concentration calculation of the alkalisation agent (authors)

  13. Reactor feedwater system

    International Nuclear Information System (INIS)

    Hikabe, Katsumi.

    1978-01-01

    Purpose: In order to prevent thermal stresses of a core of PWR type reactor, described has been a method for feeding heated recirculating water to the core in the case of the reactor start-up or shut-down. Constitution: A recirculating water is degassed, cleaned up and heated in the steam condensers, and then feeds the water to the reactor, characterized in that heaters are provided in the bypasses of the turbine, so that heated water is constantly supplied to the reactor. (Nakamura, S.)

  14. Air distribution system with the discharge action in the working cavity of downhole air hammer drills

    Science.gov (United States)

    Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.

    2018-03-01

    It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.

  15. Static feed water electrolysis module

    Science.gov (United States)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  16. Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Emily; Aalseth, Craig; Brandenberger, Jill; Day, Anthony; Hoppe, Eric; Humble, Paul; Keillor, Martin; Kulongoski, Justin; Overman, Cory; Panisko, Mark; Seifert, Allen; White, Signe; Wilcox Freeburg, Eric; Williams, Richard

    2017-08-01

    Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50-1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. We present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.

  17. Semi-solid rheocasting of grain refined aluminum alloy 7075

    CSIR Research Space (South Africa)

    Curle, UA

    2010-09-01

    Full Text Available mm×6 mm. Fig.1 shows the whole casting including the runner and the biscuit. A batch of the 7075 alloy was melted in a 20 kg tilting furnace and degassed with argon. A sample was poured and cooled to analyze the starting chemical composition... of the liquid metal by optical emission spectroscopy (Thermo Quantris OES). Thermodynamic properties of the starting alloy were then calculated (Scheil solidification model) with an aluminum thermodynamic database (ProCast 2009.1) using the OES composition...

  18. Primative components, crustal assimilation, and magmatic degassing of the 2008 Kilauea summit eruption

    Science.gov (United States)

    Rowe, Michael C.; Thornber, Carl R.; Orr, Tim R.

    2015-01-01

    Simultaneous summit and rift zone eruptions at Kīlauea starting in 2008 reflect a shallow eruptive plumbing system inundated by a bourgeoning supply of new magma from depth. Olivine-hosted melt inclusions, host glass, and bulk lava compositions of magma erupted at both the summit and east rift zone demonstrate chemical continuity at both ends of a well-worn summit-to-rift pipeline. Analysis of glass within dense-cored lapilli erupted from the summit in March – August 2008 show these are not samplings of compositionally distinct magmas stored in the shallow summit magma reservoir, but instead result from remelting and assimilation of fragments from conduit wall and vent blocks. Summit pyroclasts show the predominant and most primitive component erupted to be a homogenous, relatively trace-element-depleted melt that is a compositionally indistinguishable from east rift lava. Based on a “top-down” model for the geochemical variation in east rift zone lava over the past 30 years, we suggest that the apparent absence of a 1982 enriched component in melt inclusions, as well as the proposed summit-rift zone connectivity based on sulfur and mineral chemistry, indicate that the last of the pre-1983 magma has been flushed out of the summit reservoir during the surge of mantle-derived magma from 2003-2007.

  19. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma

    Science.gov (United States)

    Yeung, Laurence Y.

    2017-12-01

    The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso

  20. CO 2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia

    Science.gov (United States)

    Shimizu, Kenji; Shimizu, Nobumichi; Komiya, Tsuyoshi; Suzuki, Katsuhiko; Maruyama, Shigenori; Tatsumi, Yoshiyuki

    2009-10-01

    The volatile content of komatiite is a key to constrain the thermal and chemical evolution of the deep Earth. We report the volatile contents with major and trace element compositions of ~ 80 melt inclusions in chromian spinels (Cr-spinels) from beach sands on Gorgona Island, Colombia. Gorgona Island is a ~ 90 Ma volcanic island, where picrites and the youngest komatiites known on the Earth are present. Melt inclusions are classified into three types on the basis of their host Cr-spinel compositions: low Ti (P type), high Ti with high Cr # (K1 type) and high Ti with low Cr # (K2 type). Chemical variations of melt inclusions in the Cr-spinels cover all of the island's lava types. P-type inclusions mainly occur in the picrites, K1-type in high-TiO 2 komatiites (some enriched basalts: E-basalts) and K2-type in low-TiO 2 komatiites. The H 2O and CO 2 contents of melt inclusions within Cr-spinels from the beach sand are highly variable (H 2O: 0.03-0.9 wt.%; CO 2: 40-4000 ppm). Evaluation of volatile content is not entirely successful because of compositional alterations of the original melt by degassing, seawater/brine assimilation and post-entrapment modification of certain elements and volatiles. However, the occurrence of many melt inclusions with low H 2O/K 2O ratios indicates that H 2O/K 2O of Gorgona komatiite is not much different from that of modern mid-oceanic ridge basalt (MORB) or oceanic island basalt. Trend of CO 2/Nb and Zr/Y ratios, accounted for by two-component mixing between the least degassed primary komatiite and low-CO 2/Nb evolved basalt, allow us to estimate a primary CO 2/Nb ratio of 4000 ± 2200 or a CO 2 content of 0.16 ± 0.09 wt.%. The determined CO 2/Nb ratio is unusually high, compared to that of MORB (530). Although the presence of CO 2 in the Gorgona komatiite does not affect the magma generation temperature, CO 2 degassing may have contributed to the eruption of high-density magmas. High CO 2/Nb and the relatively anhydrous nature of

  1. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    Science.gov (United States)

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron

  2. Classification of sea-floor features associated with methane seeps along the Gulf of Cádiz continental margin

    Science.gov (United States)

    León, Ricardo; Somoza, Luis; Medialdea, Teresa; Maestro, Adolfo; Díaz-del-Río, Victor; Fernández-Puga, María del Carmen

    2006-06-01

    Based on recently gathered swath-bathymetry, high- to ultra-high-resolution seismic, and underwater camera data, along with dredging and coring samples, this paper examines the relationship between sea-floor features and the nature of hydrocarbon-enriched fluid and gas leaks from degassing of deeply buried sediments along the continental margin of the Gulf of Cádiz (eastern Central Atlantic). A classification into three main groups is proposed on the basis of the morphology and nature of deposits: (1) mud volcanoes, (2) methane-derived authigenic carbonates (MDAC) mounds, and (3) crater-like pockmarks. Mud volcanoes are, topographically, cone-shaped sea-floor edifices, built up from catastrophic mud and fluid degassing, intercalated with periods of inactivity. So far more than 25 mud volcanoes have been discovered in the Gulf of Cádiz, named in memory of deceased colleagues (e.g., Ginsburg and Baraza), or researchers' birth places (e.g. Faro, Cibeles, Almazán, San Petersburgh, Yuma, Rabat, Bonjardim, Coruña, Gades). These structures range from 800 to 2500 m in diameter and tower 150-300 m above the seabed. The volcanoes consistently feature a well-defined outer ring or circular terrace and an inner dome. All mud volcanoes are built up of episodes of mud-breccia flows, intercalated with deep-current deposits, with evident indications of gas saturation: degassing structures, a strong H 2S smell, and chemosynthetic fauna (such as Pogonophora sp. tube worms and Calyptogena sp.). Commonly observed carbonate crusts and slabs overlying some mud volcanoes are thought to have been formed by slow, diffuse venting during periods of inactivity or slower rates of fluid venting following the ejection of mud. A "fermentation" process, the result of microbial-mediated oxidation of hydrocarbon-enriched fluids, seems to play an important role in the growth of large deep-water carbonate mounds and chimneys during periods of low methane-seep fluid pressure. More than 400 crater

  3. Consequences of magma eruption dynamics: Intraflow variations in petrography and mineral chemistry within a single eruptive unit from Whitewater Canyon, Oregon

    Science.gov (United States)

    Ustunisik, G. K.; Nielsen, R. L.

    2012-12-01

    Individual lava flows are sometimes characterized by progressive changes in petrography and mineral chemistry which have been attributed to progressive magma chamber evacuation. In the case of Whitewater Canyon flow, a glacially quenched andesite unit on the NW flank of Mt. Jefferson, significant changes have been observed in phenocryst content and mineral chemistry within a transect from the early erupted components (inferred by flow morphology to be quenched against glacial ice ~10000 ybp), to the top of the 30 m thick flow unit. With the increasing distance from the quenched interface, the matrix changes from glassy to microcrystalline. The matrix material is generally similar in composition to the glassy melt inclusions rhyolitic in composition yet relatively degassed (lower Cl, S). Based on their morphology, we have identified at least 4 populations of plagioclase phenocrysts within the single flow: (1) Relatively unzoned high An cores (>An80) with oscillatory overgrowth, (2) Lower An cores (An50-60), associated with dacitic melt inclusions, (3) Cellular low An cores (An50-60) with higher An overgrowths (~An65-75), and (4) Lath shaped, sometimes oscillatory zoned moderately high An phenocrysts (An65-75) -often associated with olivine:cpx:plagioclase glomerocrysts. Melt inclusions are present in orthopyroxene and plagioclase, but only in the earliest erupted samples (within 5-10 meters of the quenched interface). This mafic component, characterized by olivine, intermediate plagioclase (An60-75), clinopyroxene, orthopyroxene, and oxides, was present at a range of scales from glomerocrysts to 10 cm+ enclaves. Amphibole and quartz are present only in samples from the interior of the flow unit. The width of reaction rims on amphibole increase as one progress upwards towards the flow interior. Our initial conclusions are this eruptive unit represents the progressive evacuation of a shallow magma chamber where the upper parts of the chamber had already been partially

  4. Quantifying Sulphur Emissions and Atmospheric Aerosol Loading From the 1730-36 Lanzarote Eruption

    Science.gov (United States)

    Sharma, K.; Blake, S.; Self, S.

    2005-12-01

    The AD 1730-36 eruption of Lanzarote (Canary Islands) is the third largest basaltic fissure eruption known to have occurred in the last 1000 years, after the Icelandic events of Laki (AD 1783-84) and Eldgja (AD 934). Our new volume estimates suggest that the Lanzarote eruption produced ~6 km3 of alkali basalt magma along a 15-km long, E-W trending fissure. Eruptive activity occurred in five distinct phases. Each phase began with Strombolian fire fountain activity, building large spatter and scoria cones. This was accompanied and followed by effusive aa and pahoehoe lava flow emplacement. As studies in Iceland have shown, this type of sustained fissure eruption can release large amounts of SO2 to the upper atmosphere, leading to the formation of sulphate aerosol clouds and causing widespread environmental damage and human suffering. Matrix glasses in scoria and surface lava samples have 80-300 ppm S (EMPA) and 300-600 ppm H2O (FTIR), whereas glass inclusions in olivine have 420-2650 ppm S and 1000-5000 ppm H2O. Low sulphur inclusions are believed to be partially degassed, representing melt that was trapped during degassing-induced crystallization that occurred as a result of shallow decompression. The inclusions with the highest sulphur contents trap the original un-degassed melt, as indicated by their consistent S/K2O ratio (0.22). The high sulphur contents are also consistent with our finding, from olivine-spinel equilibria, that the magma was relatively oxidized (log fO2 -4.8) therefore favouring the formation of sulphate species and preventing sulphide saturation. Our glass analyses indicate that 40 Mt of SO2 was injected into the upper troposphere - lower stratosphere via 12-16-km-high eruption plumes and that over half this amount was released during the first year of activity. This figure correlates with published Greenland ice-core (GISP-2) data that shows an acidity spike in 1731, suggesting stratospheric transport of sulphate aerosol to the North during

  5. The start of ebullition in quiescent, yield-stress fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, David J., E-mail: djsherwo@bechtel.com [URS Corporation, Hanford Tank Waste Treatment and Immobilization Plant Project, 2435 Stevens Center Place, Richland, WA 99354 (United States); Eduardo Sáez, A. [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States)

    2014-04-01

    Highlights: • Nuclear waste slurries evolve gases from radiochemical reactions. • Evolved gases form bubbles that rise in the yield-stress slurry. • Bubble buoyancy leads to expansion and ebullition, processes modeled here. - Abstract: Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries to be processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries, expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become susceptible to degassing as the bubble concentration increases over a maximum value that depends on shear strength. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.

  6. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  7. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-01-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ±15°C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming ~5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  8. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    Science.gov (United States)

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  9. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  10. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  11. Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-01-01

    Full Text Available A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994–1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt; and (ii morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.. Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self-mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.

  12. Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence† †Electronic supplementary information (ESI) available. CCDC 1021492 and 1021493. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03914a

    Science.gov (United States)

    Henwood, Adam F.; Lesieur, Mathieu; Bansal, Ashu K.; Lemaur, Vincent; Beljonne, David; Thompson, David G.; Graham, Duncan; Slawin, Alexandra M. Z.

    2015-01-01

    We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L′)] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L′ = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh3)]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%. PMID:29142691

  13. Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence.

    Science.gov (United States)

    Henwood, Adam F; Lesieur, Mathieu; Bansal, Ashu K; Lemaur, Vincent; Beljonne, David; Thompson, David G; Graham, Duncan; Slawin, Alexandra M Z; Samuel, Ifor D W; Cazin, Catherine S J; Zysman-Colman, Eli

    2015-05-01

    We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L')] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L' = PCy 3 , or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh 3 )]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.

  14. The accelerator tube of ions of the generator Van de Graaff of the CEA. Survey of development. First results

    International Nuclear Information System (INIS)

    Bruck, H.; Prevot, F.

    1953-01-01

    Rare are the Van de Graaff supplies whose tube doesn't collapse electrically to tensions and currents very lower to those that the generator can provide. We chose the general measurements: length and diameter, and put the accent on the survey of the individual element, so much to the mechanical viewpoint (installation, solidity, tightness and degassing), that to the electric viewpoint (to increase the electric rigidity of it). After modification the breakdown voltage as well as the performances of the tube have been improved greatly. (M.B.) [fr

  15. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  16. Tore supra first wall conditioning

    International Nuclear Information System (INIS)

    Gauthier, E.; Achard, M.H.; Grosman, A.; Monier, P.

    1989-01-01

    The procedures and the results obtained concerning impurity and isotopic control in Tore Supra tokamak are summarized. The conditioning of the vessel, mainly achieved by glow discharges, is described. The impurity control of the discharge was monitored with a VUV-X spectrometer. The in situ blasting degassing procedure applied is explained. In the sequence of the conditioning process, the hydrogen and the helium glow discharges and the carbonization method are discussed. The He glow discharges allowed to limit the H content of the He plasma shot below 20%

  17. High-performance liquid chromatography of rat and mouse islet polypeptides

    DEFF Research Database (Denmark)

    Linde, S; Hansen, B; Welinder, B S

    1990-01-01

    After preparative high-performance liquid chromatography of mouse islet culture medium, concentrated on disposable C18 cartridges (Sep-Pak), an unexpected insulin immunoreactive peak eluting earlier than mouse insulin I and II was detected. Molecular mass determination by mass spectrometry...... on the buffer, the organic modifier and the procedure. In particular the use of methanol-trifluoroacetic acid resulted in extensive oxidation. The oxidation could be minimized by adding 2 mM dithiothreitol to the buffer and by degassing and/or nitrogen-bubbling of the buffer. Minimal formation of Met...

  18. Ultimate pressures achieved in TiZrV sputter-coated vacuum chambers

    CERN Document Server

    Benvenuti, Cristoforo; Ruzinov, V

    2001-01-01

    Two metre long, cylindrical vacuum chambers of diameter ranging from 34 to 100 mm, coated with TiZrV getter films by sputtering, have been baked for about 24 h at temperatures from 120 to 250 degrees C. The ultimate pressures achieved after bakeout were found to correspond to the ratio of the pressure gauge degassing to the effective pumping speed provided by the chamber at the location of the gauge. The results covering a pressure range from 10/sup -11/ Torr down to 10 /sup -13/ Torr are presented and discussed. (6 refs).

  19. From the solar system fo hidden cosmic structures

    Energy Technology Data Exchange (ETDEWEB)

    Benes, K

    1987-01-01

    The development of experimental astrophysics showed that in the evolution of planets, natural processes of a common nature take place. They include, e.g., radiogenic heat, the production of magmas, volcanic activity, degassing, etc. The solar system is a cosmic formation in an advanced stage of development and it is a realistic assumption that in the Galaxy other hidden planetary systems in various stages of development exist. The views on the possibility of the origination of life in other systems differ; life, however, is seen as a hidden property of cosmic matter. (M.D.).

  20. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems

    Science.gov (United States)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie

    2017-12-01

    The redox state of volcanic products determines their leverage on the oxidation of Earth's oceans and atmosphere, providing a long-term feedback on oxygen accumulation at the planet's surface. An archive of redox conditions in volcanic plumbing systems from a magma's mantle source, through crustal storage, to eruption, is carried in pockets of melt trapped within crystals. While melt inclusions have long been exploited for their capacity to retain information on a magma's history, their permeability to fast-diffusing elements such as hydrogen is now well documented and their retention of initial oxygen fugacities (fO2) could be similarly diffusion-limited. To test this, we have measured Fe3+/ΣFe by micro-XANES spectroscopy in a suite of 65 olivine-hosted melt inclusions and 9 matrix glasses from the AD 1783 Laki eruption, Iceland. This eruption experienced pre-eruptive mixing of chemically diverse magmas, syn-eruptive degassing at the vent, and post-eruptive degassing during lava flow up to 60 km over land, providing an ideal test of whether changes in the fO2 of a magma may be communicated through to its cargo of crystal-hosted melt inclusions. Melt inclusions from rapidly quenched tephra samples have Fe3+/ΣFe of 0.206 ± 0.008 (ΔQFM of +0.7 ± 0.1), with no correlation between their fO2 and degree of trace element enrichment or differentiation. These inclusions preserve the redox conditions of the mixed pre-eruptive Laki magma. When corrected for fractional crystallisation to 10 wt.% MgO, these inclusions record a parental magma [Fe3+/ΣFe](10) of 0.18 (ΔQFM of +0.4), significantly more oxidised than the Fe3+/ΣFe of 0.10 that is often assumed for Icelandic basalt magmas. Melt inclusions from quenched lava selvages are more reduced than those from the tephra, having Fe3+/ΣFe between 0.133 and 0.177 (ΔQFM from -0.4 to +0.4). These inclusions have approached equilibrium with their carrier lava, which has been reduced by sulfur degassing. The progressive re

  1. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  2. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy

    Science.gov (United States)

    Isaji, Yuta; Kawahata, Hodaka; Kuroda, Junichiro; Yoshimura, Toshihiro; Ogawa, Nanako O.; Suzuki, Atsushi; Shibuya, Takazo; Jiménez-Espejo, Francisco J.; Lugli, Stefano; Santulli, Andrea; Manzi, Vinicio; Roveri, Marco; Ohkouchi, Naohiko

    2017-07-01

    We investigated changes in the chemical characteristics of evaporating seawater under the influence of microbial activity by conducting geochemical analyses of the brines and evaporite sediments collected from solar salterns in Trapani, Italy. The microbial activity had a substantial effect on the carbonate system parameters. Dissolved inorganic carbon (DIC) was substantially removed from the brine during the course of evaporation from the seawater to the point where calcium carbonate precipitates, with an accompanying decrease in its carbon isotopic composition (δ13CDIC) to as low as -10.6‰. Although the removal of DIC was due to calcium carbonate precipitation, photosynthesis, and the degassing of CO2(aq) induced by evaporation, the presence of 13C-depleted δ13CDIC in ponds where calcium carbonate precipitates can be attributed to the dissolution of atmospheric CO2 because of intensive CO2(aq) uptake by photosynthesis, and/or mineralization of organic matter by sulfate reduction. In contrast, δ13CDIC increased up to 7.2‰ in the salinity range where halite precipitates, which can be ascribed to the domination of the effect of degassing of CO2(aq) under conditions with reduced microbial activity. A gradual decrease in microbial activity was also reflected in compound-specific δ13C of photosynthetic pigments; isotopic fractionation associated with DIC assimilation increased linearly as the evaporation proceeded, indicating DIC-limited conditions within the microbial mats and gypsum crusts because of restricted DIC diffusion from the overlying brine and/or suppression of primary production at higher salinity.

  3. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    International Nuclear Information System (INIS)

    Malara, C.; Casini, G.; Viola, A.

    1995-01-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.)

  4. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Faculty of Science Bldg. 1 #711, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  5. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    Science.gov (United States)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  6. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  7. Magma accumulation or second boiling - Investigating the ongoing deformation field at Montserrat, West Indies

    Science.gov (United States)

    Collinson, Amy; Neuberg, Jurgen; Pascal, Karen

    2016-04-01

    For over 20 years, Soufriere Hills Volcano, Montserrat has been in a state of volcanic unrest. Intermittent periods of dome building have been punctuated by explosive eruptions and dome collapse events, endangering the lives of the inhabitants of the island. The last episode of active magma extrusion was in February 2010, and the last explosive event (ash venting) in March 2012. Despite a lack of eruptive activity recently, the volcano continues to emit significant volumes of SO2 and shows an ongoing trend of island inflation. Through the aid of three-dimensional numerical modelling, using a finite element method, we explore the potential sources of the ongoing island inflation. We consider both magmatic (dykes and chamber) and tectonic sources. Whilst a magmatic source suggests the possibility for further eruption, a tectonic source may indicate cessation of volcanic activity. We show that a magmatic source is the most likely scenario, and illustrate the effect of different sources (shapes, characters and depths) on the surface displacement. Furthermore, through the inclusion of topographic data, we investigate how the topography may affect the displacement pattern at the surface. We investigate the conflicting scenarios of magma chamber resupply versus second boiling - crystallisation-induced degassing. Based on numerical modelling results, we suggest the required pressurisation is too high for crystallisation-induced degassing to be the dominant process - thereby suggesting magma accumulation may be ongoing. However, we show that second boiling may be a contributing factor, particularly when taking into account the local tectonics and regional stretching.

  8. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2016-01-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO_2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO_2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  9. Carbon dioxide in carbonated beverages induces ghrelin release and increased food consumption in male rats: Implications on the onset of obesity.

    Science.gov (United States)

    Eweis, Dureen Samandar; Abed, Fida; Stiban, Johnny

    The dangerous health risks associated with obesity makes it a very serious public health issue. Numerous studies verified a correlation between the increase in obesity and the parallel increase in soft drink consumption among world populations. The effects of one main component in soft drinks namely the carbon dioxide gas has not been studied thoroughly in any previous research. Male rats were subjected to different categories of drinks and evaluated for over a year. Stomach ex vivo experiments were undertaken to evaluate the amount of ghrelin upon different beverage treatments. Moreover, 20 male students were tested for their ghrelin levels after ingestion of different beverages. Here, we show that rats consuming gaseous beverages over a period of around 1 year gain weight at a faster rate than controls on regular degassed carbonated beverage or tap water. This is due to elevated levels of the hunger hormone ghrelin and thus greater food intake in rats drinking carbonated drinks compared to control rats. Moreover, an increase in liver lipid accumulation of rats treated with gaseous drinks is shown opposed to control rats treated with degassed beverage or tap water. In a parallel study, the levels of ghrelin hormone were increased in 20 healthy human males upon drinking carbonated beverages compared to controls. These results implicate a major role for carbon dioxide gas in soft drinks in inducing weight gain and the onset of obesity via ghrelin release and stimulation of the hunger response in male mammals. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  10. Spatio-temporal variation in δ13CDIC of a tropical eutrophic estuary (Cochin estuary, India) and adjacent Arabian Sea

    Science.gov (United States)

    Bhavya, P. S.; Kumar, Sanjeev; Gupta, G. V. M.; Sudharma, K. V.; Sudheesh, V.

    2018-02-01

    Carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the Cochin estuary, a tropical eutrophic estuary along the southwest coast of India, and the adjacent coastal Arabian Sea was measured to understand spatio-temporal variability in sources and processes controlling inorganic carbon (C) dynamics in this estuarine-coastal system. δ13CDIC in the Cochin estuary showed wide variation during three different seasons (premonsoon: - 12.2 to - 3.26‰; monsoon: - 13.6 to - 5.69‰; and postmonsoon: - 6.34 to + 0.79‰). Detailed mixing curve approximation modeling along with relationships of δ13CDIC with dissolved oxygen and nutrients suggest dominant role of freshwater mixing and degassing of CO2 on DIC dynamics during wet seasons (premonsoon and monsoon). Excess CO2 brought in by rivers and in situ production due to respiration in the Cochin estuary result into one of the highest pCO2 observed in estuarine systems, leading to its degassing. During postmonsoon, a relatively dry period with high salinity, calcite precipitation was a major process with calcite saturation index > 1 at few locations. Relatively lower average surface values of δ13CDIC in the coastal Arabian Sea (premonsoon: + 0.95‰; monsoon: + 0.88‰; and postmonsoon: + 0.66‰) compared to the predicted open ocean value along with mixing curve modeling suggest dominance of respiration/organic matter (OM) degradation over primary productivity. Estuarine influence on coastal DIC dynamics was observed in nearshore region ( 10 km), whereas evidence of upwelling was found at farther locations.

  11. Clean Metal Casting; FINAL

    International Nuclear Information System (INIS)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  12. Annex 1 to: Passive Degassing at Nyiragongo (D.R. Congo and Etna (Italy Volcanoes.

    Directory of Open Access Journals (Sweden)

    Sergio Calabrese

    2015-03-01

    Full Text Available Volcanic EmissionsThe technique for the assessment of the metal output from volcanoes was based on direct (in- plume collection of the plume on filter substrates. Gas and aerosols in the volcanic plume have been sampled from the rims of the active craters. [...

  13. Observation of SO2 degassing at Stromboli volcano using a hyperspectral thermal infrared imager

    Science.gov (United States)

    Smekens, Jean-François; Gouhier, Mathieu

    2018-05-01

    Thermal infrared (TIR) imaging is a common tool for the monitoring of volcanic activity. Broadband cameras with increasing sampling frequency give great insight into the physical processes taking place during effusive and explosive event, while Fourier transform infrared (FTIR) methods provide high resolution spectral information used to assess the composition of volcanic gases but are often limited to a single point of interest. Continuing developments in detector technology have given rise to a new class of hyperspectral imagers combining the advantages of both approaches. In this work, we present the results of our observations of volcanic activity at Stromboli volcano with a ground-based imager, the Telops Hyper-Cam LW, when used to detect emissions of sulfur dioxide (SO2) produced at the vent, with data acquired at Stromboli volcano (Italy) in early October of 2015. We have developed an innovative technique based on a curve-fitting algorithm to quickly extract spectral information from high-resolution datasets, allowing fast and reliable identification of SO2. We show in particular that weak SO2 emissions, such as inter-eruptive gas puffing, can be easily detected using this technology, even with poor weather conditions during acquisition (e.g., high relative humidity, presence of fog and/or ash). Then, artificially reducing the spectral resolution of the instrument, we recreated a variety of commonly used multispectral configurations to examine the efficiency of four qualitative SO2 indicators based on simple Brightness Temperature Difference (BTD). Our results show that quickly changing conditions at the vent - including but not limited to the presence of summit fog - render the establishment of meaningful thresholds for BTD indicators difficult. Building on those results, we propose recommendations on the use of multispectral imaging for SO2 monitoring and routine measurements from ground-based instruments.

  14. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    Science.gov (United States)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.

  15. Reduction of recycling in DIII-D by degassing and conditioning of the graphite tiles

    International Nuclear Information System (INIS)

    Jackson, G.L.; Taylor, T.S.; Allen, S.L.

    1988-05-01

    Reduced recycling, reduced edge neutral pressure, improved density control, and improved discharge reproducibility have been achieved in the DIII-D tokamak by in situ helium conditioning of the graphite tiles. An improvement in energy confinement has been observed in hydrogen discharges with hydrogen beam injection after helium preconditioning. After the graphite wall coverage in DIII-D was increased to 40%, helium glow wall conditioning, routinely applied before each tokamak discharge, has been necessary to reduce recycling and obtain H-mode. The utilization of helium glow wall conditioning was an important factor in the achievement of an ohmic H-mode, i.e. no auxillary heating, with significant improvement in ohmic energy confinement. 16 refs., 8 figs

  16. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    Science.gov (United States)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We suggest that this MORB-like metasomatism was capable of overprinting the noble gas composition of Gobernador Gregores due to recent metasomatism of the SCLM because of asthenospheric mantle upwelling in response to opening of the Patagonian slab window. The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 380 up to 6560, with mantle source 40Ar/36Ar between 8100-700+1400 and 17700-3100+4400. The lower 40Ar/36Ar ratio of the Gobernador Gregores mantle source, compared with that of Pali-Aike, attests that the Patagonia SCLM was affected significantly by atmospheric contamination associated with the recycled oceanic lithosphere.

  17. Non-volcanic CO2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy

    Science.gov (United States)

    Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G.

    2010-06-01

    Mefite d'Ansanto, southern Apennines, Italy is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth. The emission is fed by a buried reservoir, made up of permeable limestones and covered by clayey sediments. We estimated a total gas flux of ˜2000 tons per day. Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time people and animals. The application of a physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. The geometry of the Mefite gas reservoir is similar to those designed for sequestering CO2 in geological storage projects where huge amounts of CO2 should be injected in order to reduce atmospheric CO2 concentration. The approach which we have used at Mefite to define hazardous zones for the human health can be applied also in case of large CO2 leakages from storage sites, a phenomena which, even if improbable, can not be ruled out.

  18. Basic information about development and construction of a PWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1977-01-01

    1.0) Plant layout of a PWR; 2.0) principle design of a PWR and the reactor coolant system; 3.0) reactor auxiliary and ancillary systems; 3.1) volume control system; 3.2) boric acid control and chemical feeding system; 3.3) coolant purification and degassing system; 3.4) coolant storage and treatment system; 3.5) nuclear component cooling system; 3.6) liquid waste processing system; 3.7) gaseous waste processing system; 4.0) residual heat removal system; 5.0) emergency feedwater system; 6.0) containment design; 7.0) fuel handling, storage and transport system in a PWR. (orig.) [de

  19. Cavity Preparation/assembly Techniques and Impact on Q, Realistic Q - Factors in a Module, Review of Modules

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2005-03-19

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or postpurification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q - value and accelerating gradient E{sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY(TTF), Jlab (Upgrade) and SNS.

  20. Long term monitoring at Solfatara of Pozzuoli (Campi Flegrei, Italy): 1998-2014, fifteen years of soil CO2 flux measurement.

    Science.gov (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Rosiello, Angelo; Bagnato, Emanuela; Avino, Rosario; Frondini, Francesco; Donnini, Marco; Caliro, Stefano

    2015-04-01

    With a flux of deeply derived fluids of ~5000 t/d and an energetic release of ~100 MW Solfatara of Pozzuoli is one of the largest studied volcanic-hydrothermal system of the world. Since 1998, soil CO2 flux surveys where performed using the accumulation chamber method over a large area (1.45 km2), including the volcanic apparatus and its surroundings. The statistical elaboration of CO2 flux, also coupled with the investigation of the CO2 efflux isotopic composition, allowed to characterize both the CO2 flux connected to by biological activity in the soil and that feed to the degassing of the hydrothermal system. A geostatistical elaboration of CO2 fluxes based on sequential Gaussian simulations, allowed to define the spatial structure of the degassing area, pointing out the presence of a well defined diffuse degassing structure interested by the release of deeply derived CO2 (Solfatara DDS). Solfatara DDS results well correlated to volcanic and tectonic structures interesting the crater area and the eastern area of Pisciarelli. With the same approach the total amount of CO2 release was estimated to range between 754 t/d and 1530 t/d in the last fifteen year (with an error in the estimate varying between 9 and 15 %). Also the extension of the DDS experienced relevant variations varying between 4.5x105 m2 to 12.3 x105 m2. In particular two major changes occurred in the extension of the DDS, the first consisted in its doubling in 2003-2004 and the second in further enlargement of ~ 30% in 2011-2012, the last occurring after period of decreasing trend which interrupted 4-5 years of relative stability. These variations mainly occurred external to the crater area in correspondence of a NE-SW fault system where fluxes increased from background to values typical of the endogenous source. The first event was previously correlated with the occurrence in 2000 of a relatively deep seismic swarm, which was interpreted as the indicator of the opening of an easy-ascent pathway

  1. A massive hydrogen-rich Martian greenhouse recorded in D/H

    Science.gov (United States)

    Pahlevan, K.; Schaefer, L. K.; Desch, S. J.; Elkins-Tanton, L. T.

    2017-12-01

    The deuterium-to-hydrogen (D/H) ratio in Martian atmospheric water ( 6x standard mean ocean water, SMOW) [1,2] is higher than that of known sources [3,4] alluding to a planetary enrichment process. A recent measurement by the Curiosity rover of Hesperian clays yields a D/H value 3x higher than SMOW [5], demonstrating that most enrichment occurred early in planetary history, buttressing the conclusions of Martian meteorite studies [6,7]. Extant models of the isotopic evolution of the Martian hydrosphere have not incorporated primordial H2, despite its likely abundance on early Mars. Here, we report the first 1D climate calculations with an atmospheric composition determined via degassing from a reducing magma ocean to study Martian climate during an early water ocean stage. A reducing Martian magma ocean is expected based on experimental petrology [8], the degassing of which gives rise to an H2-rich steam atmosphere [9] with strong attendant greenhouse warming [10,11] even after the removal of steam via condensation. At the pressures and temperatures prevailing in such a degassed greenhouse, we find that isotopic exchange in the fluid envelope is rapid, strongly concentrating deuterium in water molecules over molecular hydrogen [12]. The subsequent loss of the isotopically light H2-rich atmosphere results in a 2x D/H enrichment in the oceans via isotopic equilibration alone. These calculations suggest that most of the D/H enrichment observed in the first billion years of Martian history is produced by the evolution of a massive ( 100 bar) H2-rich greenhouse in the aftermath of magma ocean crystallization. The proposed link between early planetary process and modern isotopic observable opens a new window into the earliest history of Mars. [1] Owen, T. et al. Science 240, 1767-1770 (1988). [2] Webster, C. R. et al. Science 341, 260-263 (2013). [3] Lunine, J. I. et al. Icarus 165, 1-8, (2003). [4] Marty, B. et al. EPSL 441, 91-102, (2016). [5] Mahaffy, P. et al

  2. Constraints on the timing of the Moon-forming giant impact from MORB Xe isotopes

    Science.gov (United States)

    Parai, R.; Mukhopadhyay, S.

    2014-12-01

    As Earth accreted, volatiles were delivered by accreting material and lost by degassing and impact-driven ejection to space. The Moon-forming giant impact initiated the final catastrophic outgassing and bulk volatile ejection event on the early Earth. I-Pu-U-Xe systematics provide a powerful tool to probe degassing of the early Earth. Radiogenic 129Xe was produced by β-decay of the extinct nuclide 129I (t1/2 = 15.7 Ma) in the first ~90 Myr of Earth history. Fissiogenic 131Xe, 132Xe, 134Xe, 136Xe were produced in distinct, characteristic proportions by the fission of extinct short-lived 244Pu (t1/2 = 80.0 Myr) and extant long-lived 238U (t1/2 = 4.468 Gyr). Here we present radiogenic and fission Xe data in basalts from the Southwest Indian Ridge, and discuss them with other mantle-derived samples to shed light on early Earth volatile accretion and loss. Based on the ratio of radiogenic 129Xe to plutogenic 136Xe determined for the MORB source, we calculate an I-Pu-Xe closure age for the upper mantle of ~44-70 Myr after the start of the Solar System. The closure age should correspond to the end of catastrophic mantle outgassing during accretion, and thus constrains the age of the last giant impact (LGI). Our closure age is significantly older than previous Xe closure age determinations of ~100 Myr, and is also older than some direct radiometric ages of lunar crustal samples. In order to explore the effects of accretion timescales, partial early retention of Xe, and degassing associated with long-term mantle processing on Xe closure age, we develop a new model of I-Pu-U-Xe systematics. We find that for LGI's between ~35 and 70 Myr after the start of the Solar System, we are able to satisfy constraints on I-Pu-U-Xe systematics simultaneously without invoking partial retention of Xe prior to the last giant impact. For LGI's after ~80 Myr, partial retention of Xe prior to the LGI is required. Non-zero early retention of Xe is necessary to explain the budgets of primordial

  3. Application of geoelectric methods for man-caused gas deposit mapping and monitoring

    Science.gov (United States)

    Yakymchuk, M. A.; Levashov, S. P.; Korchagin, I. N.; Syniuk, B. B.

    2009-04-01

    The rather new application of original geoelectric methods of forming of short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS technology) (Levashov et al., 2003; 2004) is discussed. In 2008 the FSPEF-VERS methods were used for ascertaining the reasons of serious man-caused accident on gas field. The emission of water with gas has occurred near an operational well on one gas field. The assumption was discussed, that some part of gas from producing horizons has got into the upper horizons, in aquiferous stratum layers. It promoted creation of superfluous pressure in aquiferous stratums which has led to accident on the field. Operative geophysical investigations within an accident site were carried out by FSPEF and VERS geoelectric methods on 07.10.08 and 13.10.08 on the first stage. The primary goal of executed works was detection and mapping of gas penetration zones in aquiferous stratums of cross-section upper part, and also the determination of bedding depths and a total area of distribution of gas in upper aquiferous stratums. The anomalous zone were revealed and mapped by FSPEF survey. It is caused by raised migration of water in upper horizons of a cross-section. The depths of anomalous polarized layers (APL) of "gas" and „aquiferous stratum" type were defined by VERS method. The VERS data are presented by sounding diagram's and columns, by vertical cross-sections lengthways and transversely of gas penetration zones, by map of thicknesses of man-caused gas "deposit". The perforation on depths of 450 and 310 m was spent in a producing borehole on the first day investigation data. Gas discharges were received from 450 and 310 m depths. Three degassing boreholes have been drilled on 08.11.08 working day. Depths of wells are about 340 m. Gas inflows were received from 330 m depth. Drilling of fourth well was conducted. The anomalous zone area has decreased twice in comparison with two previous surveys. So, the

  4. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  5. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  6. Use of gamma and UV radiation in grafting hydrogel polymers to membranes

    International Nuclear Information System (INIS)

    Baker, L.; Hill, D.J.T.; Whittaker, A.; Hunter, D.; Davis, T.P.

    1998-01-01

    Full text: Dimethylacrylamide and N-isopropylacrylamide hydrogels are useful for their ability to absorb large amounts of water and for their thermotropic response. However as membranes they do not have the mechanical properties to be applicable in industry. Therefore these hydrogels have been grafted to polyvinylidinedifluoride (PVDF) membranes using radiation. Both UV and gamma irradiation were used. In the first method the PVDF membranes were first hydroxylated by immersion in a aqueous solution of potassium peroxydisulfate (10% w/v), with nitrogen purging for two hours at 80 deg C. This was followed by immersion in an aqueous solution of riboflavine (4mg/L) and monomer (10% v/v), degassing with nitrogen and irradiation under a Mercury UV light (wavelength 240 nm) at room temperature for 15 minutes. Membranes were washed by soxhlet extraction in distilled water and oven dried. The second method of grafting hydrogels to membranes involved immersing the membrane in 10 mL of distilled water containing monomer and CuSO 4 to prevent homopolymerisation. The solution was degassed with N 2 for 3 minutes then irradiated under nitrogen using a 60 Co source for various time periods. The effect of varying monomer and CuSO 4 concentration as well as dose rate and dose were studied. Membranes were rinsed in distilled water for 24 hours and dried in an oven before characterisation. Grafting was characterised by mass change (Mettler AC 100 balance), XPS (PHI Model 560 XPS/SAM/SIMA1 multitechnique surface analysis system), SEM (Hitachi S-900 Field Emission SEM) and FTIR-ATR (Perkn Elmer System 2000 FTIR with MIRMCT detector)

  7. Diphenylcarbene Protected by Four ortho-Iodine Groups: An Unusually Persistent Triplet Carbene

    Directory of Open Access Journals (Sweden)

    Katsuyuki Hirai

    2016-11-01

    Full Text Available Diphenyldiazomethane with four iodine groups at the ortho positions and two tert-butyl groups at the para positions, i.e., bis(4-tert-butyl-2,6-diiodophenyldiazomethane (1a-N2, was synthesized as a sterically hindered triplet carbene precursor. Irradiation of 1a-N2 in solution effectively generated the corresponding triplet diphenylcarbene 31a, which was characterized by UV-vis spectroscopy at low temperature, along with laser flash photolysis techniques at room temperature. The UV-vis spectrum of 31a was obtained by irradiating 1a-N2 in a 2-methyltetrahydrofuran matrix at 77 K. The ESR spectrum showed no triplet carbene signals, while a radical species was observed at the anticipated temperature of the decomposition of triplet carbene 31a. Transient absorption bands ascribable to 31a were observed by laser flash photolysis of 1a-N2 in a degassed benzene solution and decayed very slowly with a second-order rate constant (2k/εl of 5.5 × 10−3·s−1. Steady-state irradiation of 1a-N2 in degassed benzene afforded 9,10-diarylphenanthrene derivative 2a in a 31% yield. Triplet carbene 31a was also trapped by either oxygen (kO2 = 6.5 × 105 M−1·s−1 or 1,4-cyclohexadiene (kCHD = 1.5 M−1·s−1 to afford the corresponding ketone 1a-O or the diarylmethane 1a-H2. The carbene was shown to be much less reactive than the triplet diphenylcarbene that is protected by two ortho-iodo and two ortho-bromo groups, 31b.

  8. Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic

    Directory of Open Access Journals (Sweden)

    Patryk Krauze

    2017-12-01

    Full Text Available The Cheb Basin (NW Bohemia, Czech Republic is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas and iron (e.g., Gallionella, Sideroxydans cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.

  9. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    Science.gov (United States)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  10. The implications of gas slug ascent in a stratified magma for acoustic and ground deformation source mechanisms in Strombolian eruptions

    Science.gov (United States)

    Capponi, Antonio; Lane, Stephen J.; James, Mike R.

    2017-06-01

    The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble

  11. Evolution of the 2015 Cotopaxi eruption revealed by combined geochemical & seismic observations

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Sierra, Daniel; Bernard, Benjamin; Parra, Rene; Kelly, Peter; Dinger, Florian; Barrington, Charlotte; Samaniego, Pablo

    2018-01-01

    Through integration of multiple data streams to monitor volcanic unrest scientists are able to make more robust eruption forecast and to obtain a more holistic interpretation of volcanic systems. We examined gas emission and gas geochemistry, seismic and petrologic data recorded during the 2015 unrest of Cotopaxi (Ecuador) in order to decipher the origin and temporal evolution of this eruption. Identification of families of similar seismic events and the use of seismic amplitude ratios reveals temporal changes in volcanic processes. SO2 (300 to 24000 t/d), BrO/SO2 (5-10 x10-5), SO2/HCl (5.8 ± 4.8 and 6.6 ± 3.0) and CO2/SO2 (0.6 to 2.1) measured throughout the eruption indicate a shallow magmatic source. Bulk ash and glass chemistry indicate a homogenous andesitic (SiO2 wt%=56.94 ± 0.25) magma having undergone extensive S-exsolution and degassing during ascent. These data lead us to interpret this eruption as a magma intrusion and ascend to shallow levels. The intrusion progressively interacted with the hydrothermal system, boiled off water, and produced hydromagmatic explosions. A small volume of this intrusion continued to fragment and produced episodic ash emissions until it was sufficiently degassed and rheologically stiff. Based on the 470 kt of measured SO2 we estimate that ~ 65.3 x106 m3 of magma were required to supply the emitted gases. This volume exceeds the volume of erupted juvenile material by a factor of 50. This result emphasizes the importance of careful monitoring of Cotopaxi to identify the intrusion of a new batch of magma, which could rejuvenate the non-erupted material.

  12. Intervention and decontamination of hardware contaminated by tritium

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile

    1964-10-01

    This report first describes the intervention process for teams intervening, either in case of accident or to modify or repair installations in which tritium is handled, i.e. in both cases in a contaminated atmosphere. Three main aspects are addressed: how to prepare and insulate the work place from the rest of the installation, how to protect the intervening personnel, and how to perform decontamination. The authors then present the various available decontamination techniques: decontamination bath at different temperatures and use of different chemical solutions at different temperatures, the degassing technique (temperature increase and vacuum, temperature hold during 30 to 45 minutes, return to atmospheric pressure), and mercury-based decontamination

  13. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  14. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  15. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  16. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  17. Characterization of novel W alloys produced by HIP

    International Nuclear Information System (INIS)

    Monge, M.A.; Auger, M.A.; Leguey, T.; Ortega, Y.; Bolzoni, L.; Gordo, E.; Pareja, R.

    2009-01-01

    W and W alloys containing 0.5 wt% Y 2 O 3 , x wt% Ti and (x wt% Ti + 0.5 wt% Y 2 O 3 ) have been prepared, x = 2 or 4. Elemental powders were blended or ball milled, canned, degassed and finally consolidated by a two-stage HIP process under a pressure of 195 MPa. It is found that Ti addition favours the densification attaining a fully dense material. XRD, SEM and EDX analyses of the material with Ti addition reveal the formation of a microstructure consisting of tungsten particles embedded in a W-Ti matrix. The microhardness of these materials increased noticeably with the titanium content.

  18. The 8th ICGG International Conference on Gas Geochemistry Preface: Fluids and tectonics

    Directory of Open Access Journals (Sweden)

    F. Italiano

    2007-06-01

    Full Text Available The 8th International Conference on Gas Geochemistry provided the opportunity for scientists from different countries to meet each other, exchange ideas on the state of the art in gas geochemistry, and discuss advance in fluid geochemistry. The 8th ICGG meeting focused on three main geologic environments currently interacting with the human life: volcanoes, earthquakes and hydrocarbons. Ninety-four presentations gave participants chance to cover a variety of important research topics on gas geochemistry in geosciences including: gas migration in terrestrial and marine environments, Earth degassing and its relation to seismicity, volcanic eruptions, rare gases and application of isotope techniques, measurement and analytical techniques.

  19. Analysis of decarburization in RH process of vacuum degasification; Analise da descarburacao do aco no processo rh de desgaseificacao a vacuo

    Energy Technology Data Exchange (ETDEWEB)

    Souza Costa, Sergio L. de; Oliveira Barros, Hudson N. de; Almeida, Claudio X [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisas

    1990-12-31

    USIMINAS has made significant progress in the development of technology to produce ultra low carbon steels using the RH vacuum degassing unit in its number 1 BOF Shop. The decarburization rate is controlled by the circulation rate of liquid steel. On substituting conventional legs with oval shaped legs the circulation rate increased from 40 t/min to 80 t/min with a consequent increase in the global decarburization constant from 0.13 min{sup -1} to 0.28 min{sup -1}. With those practice it has been possible to achieve carbon levels as low as 45 ppm in ten minutes. (author). 5 refs., 8 figs., 2 tabs.

  20. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    Science.gov (United States)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  1. Shallow conduit system at Kilauea Volcano, Hawaii, revealed by seismic signals associated with degassing bursts

    Science.gov (United States)

    Chouet, Bernard; Dawson, Phillip

    2011-01-01

    Eruptive activity at the summit of Kilauea Volcano, Hawaii, beginning in March, 2008 and continuing to the present time is characterized by episodic explosive bursts of gas and ash from a vent within Halemaumau Pit Crater. These bursts are accompanied by seismic signals that are well recorded by a broadband network deployed in the summit caldera. We investigate in detail the dimensions and oscillation modes of the source of a representative burst in the 1−10 s band. An extended source is realized by a set of point sources distributed on a grid surrounding the source centroid, where the centroid position and source geometry are fixed from previous modeling of very-long-period (VLP) data in the 10–50 s band. The source time histories of all point sources are obtained simultaneously through waveform inversion carried out in the frequency domain. Short-scale noisy fluctuations of the source time histories between adjacent sources are suppressed with a smoothing constraint, whose strength is determined through a minimization of the Akaike Bayesian Information Criterion (ABIC). Waveform inversions carried out for homogeneous and heterogeneous velocity structures both image a dominant source component in the form of an east trending dike with dimensions of 2.9 × 2.9 km. The dike extends ∼2 km west and ∼0.9 km east of the VLP centroid and spans the depth range 0.2–3.1 km. The source model for a homogeneous velocity structure suggests the dike is hinged at the source centroid where it bends from a strike E 27°N with northern dip of 85° west of the centroid, to a strike E 7°N with northern dip of 80° east of the centroid. The oscillating behavior of the dike is dominated by simple harmonic modes with frequencies ∼0.2 Hz and ∼0.5 Hz, representing the fundamental mode ν11 and first degenerate mode ν12 = ν21 of the dike. Although not strongly supported by data in the 1–10 s band, a north striking dike segment is required for enhanced compatibility with the model elaborated in the 10–50 s band. This dike provides connectivity between the east trending dike and the new vent within Halemaumau Pit Crater. Waveform inversions with a dual-dike model suggest dimensions of 0.7 × 0.7 km to 2.6 × 2.6 km for this segment. Further elaboration of the complex dike system under Halemaumau does not appear to be feasible with presently available data.

  2. Safety provision during heating of coal downcast shafts with gas heat generators using degassed methane

    Directory of Open Access Journals (Sweden)

    В. Р. Алабьев

    2017-06-01

    Together with heat generators of mixed type the article also describes a working principle of heat generator of indirect action type, which to the fullest extent possible meets requirements of Russian Federation legislation and regulation for application of this heat generators in coal mines conditions. The article has a principal working scheme of heat unit layout using this type of generator. It is shown that after development of corresponding normative documents regulating processes of design, construction and operation of heating units using heaters of indirect action, their application in Russian coal mines will be possible without breaking Safety standards and rules.

  3. Redox Interactions between Iron and Carbon in Planetary Mantles: Implications for Degassing and Melting Processes

    Science.gov (United States)

    Martin, A.; Righter, K.

    2009-01-01

    Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

  4. Diffusive Soil Degassing of Radon and Carbon Dioxide at Ilopango Caldera, El Salvador, Central America

    Science.gov (United States)

    Ransom, L.; Lopez, D. L.; Hernandez, P.

    2001-12-01

    Ilopango Caldera lies 10 Km east of San Salvador, El Salvador and holds Ilopango Lake, the largest body of fresh water in El Salvador. There is currently no observed fumarolic activity within the caldera system. However, the last eruption occurred in 1880. In November - December, 1999, radon gas concentrations (pCi/l) were measured using a Pylon AB5 radon monitor, and flux of CO2 (g/m2/day) was determined using the accumulation chamber method at 106 sampling stations around the lake, along and across the caldera walls. Gas samples were also collected to determine the isotopic composition of C in CO2. CO2 fluxes did not show high values characteristic of other volcanic systems, values ranged from 0.7 to 9.2 g/m2/day with an average value of 3.9. These values are similar to the low values of the background population observed in nearby San Salvador volcano. Highest values are observed to the east and west of the lake. Isotopic values for C in soil gases do not show an important magmatic component. Radon concentrations present three distinct populations with the highest values occurring to the southwest. Thoron concentrations are higher close to the caldera walls than inside the caldera due to the possible higher rock fracturing in that region. Measurements taken in March 2001, after the January 13 and February 13, 2001 earthquakes did not show significant variations in CO2 fluxes. However, radon concentrations varied due to the high seismicity that lasted several months after these earthquakes. These results suggest that the magmatic system of Ilopango Caldera is not emitting high fluxes of CO2 to the atmosphere throughout the caldera soils. Subaquatic emissions of CO2 have not been evaluated. However, subaquatic hydrothermal discharges have not been identified at this calderic lake.

  5. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements

    Science.gov (United States)

    Steenstra, E. S.; Seegers, A. X.; Eising, J.; Tomassen, B. G. J.; Webers, F. P. F.; Berndt, J.; Klemme, S.; Matveev, S.; van Westrenen, W.

    2018-06-01

    Sulfur concentrations at sulfide saturation (SCSS) were determined for a range of low- to high-Ti lunar melt compositions (synthetic equivalents of Apollo 14 black and yellow glass, Apollo 15 green glass, Apollo 17 orange glass and a late-stage lunar magma ocean melt, containing between 0.2 and 25 wt.% TiO2) as a function of pressure (1-2.5 GPa) and temperature (1683-1883 K). For the same experiments, sulfide-silicate partition coefficients were derived for elements V, Cr, Mn, Co, Cu, Zn, Ga, Ge, As, Se, Mo, Sn, Sb, Te, W and Pb. The SCSS is a strong function of silicate melt composition, most notably FeO content. An increase in temperature increases the SCSS and an increase in pressure decreases the SCSS, both in agreement with previous work on terrestrial, lunar and martian compositions. Previously reported SCSS values for high-FeO melts were combined with the experimental data reported here to obtain a new predictive equation to calculate the SCSS for high-FeO lunar melt compositions. Calculated SCSS values, combined with previously estimated S contents of lunar low-Ti basalts and primitive pyroclastic glasses, suggest their source regions were not sulfide saturated. Even when correcting for the currently inferred maximum extent of S degassing during or after eruption, sample S abundances are still > 700 ppm lower than the calculated SCSS values for these compositions. To achieve sulfide saturation in the source regions of low-Ti basalts and lunar pyroclastic glasses, the extent of degassing of S in lunar magma would have to be orders of magnitude higher than currently thought, inconsistent with S isotopic and core-to-rim S diffusion profile data. The only lunar samples that could have experienced sulfide saturation are some of the more evolved A17 high-Ti basalts, if sulfides are Ni- and/or Cu rich. Sulfide saturation in the source regions of lunar melts is also inconsistent with the sulfide-silicate partitioning systematics of Ni, Co and Cu. Segregation of

  6. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    Science.gov (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  7. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  8. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  9. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2016-11-01

    Two active spring vent pools at Shiqiang (Yunnan Province, China) are characterized by a complex array of precipitates that coat the wall around the pool and the narrow ledges that surround the vent pool. These precipitates include arrays of aragonite crystals, calcite cone-dendrites, red spar calcite, unattached dodecahedral and rhombohedral calcite crystals, and late stage calcite that commonly coats and disguises the earlier formed precipitates. Some of the microbial mats that grow on the ledges around the pools have been partly mineralized by microspheres that are formed of Si and minor amounts of Fe. The calcite and aragonite that are interspersed with each other at all scales are both primary precipitates. Some laminae, for example, change laterally from aragonite to calcite over distances of only a few millimetres. The precipitates at Shiqiang are similar to precipitates found in and around the vent pools of other springs found in Yunnan Province, including those at Gongxiaoshe, Zhuyuan, Eryuan, and Jifei. In all cases, the δDwater and δ18Owater indicate that the spring water is of meteoric origin. These are thermogene springs with the carrier CO2 being derived largely from the mantle and reaction of the waters with bedrock. Variations in the δ13Ctravertine values indicate that the waters in these springs were mixed, to varying degrees, with cold groundwater and its soil-derived CO2. Calcite and aragonite precipitation took place once the spring waters had become supersaturated with respect to CaCO3, probably as a result of rapid CO2 degassing. These precipitates, which were not in isotopic equilibrium with the spring water, are characterized by their unusual crystal morphologies. The precipitation of calcite and aragonite, seemingly together, can probably be attributed to microscale variations in the saturation levels that are, in turn, attributable to microscale variations in the rate of CO2 degassing.

  10. The K-PG boundary: how geological events lead to collapse of marine primary producers

    Science.gov (United States)

    Hir guillaume, Le; frederic, Fluteau; yves, Goddéris

    2017-04-01

    The cause(s) of Cretaceous/Paleogene (K-Pg) mass extinction event is a matter of debate since three decades. A first scenario connects the K-Pg crisis with the Chicxulub impact while the second scenario evokes the emplacement of the Deccan traps in India as the cause for the K-Pg biodiversity collapse. Pierazzo et al. (1998) estimated that the extraterrestrial bolide lead to an instantaneously CO2 degassing ranging from 880 Gt to 2,960 Gt into the atmosphere, together with a massive release of SO2 ranging from 150 to 460 Gt.. Self et al. (2006, 2008) and Chenet et al. (2009) suggested that the emplacement of the Deccan traps released 15,000 Gt to 35,000 Gt of CO2 and 6,800 Gt to 17,000 Gt of SO2 over a 250 kyr-long period (Schoene et al., 2015). To decipher and quantify the long term environmental consequences of both events, we tested different scenarios: a pulse-like magmatic degassing, a bolide impact, and a combination of both. To understand the environmental changes and quantify biodiversity responses, we improve GEOCLIM, a coupled climate-carbon numerical model, by implementing a biodiversity model in which marine species are described by specific death/born rates, sensitivity to abiotic factors (temperature, pH, dissolved O2, calcite saturation state) and feeding relationships, each of these characteristics is assigned randomly. Preliminary simulations accounting for the eruption of the Deccan traps show that successive cooling events (S-aerosols effect) combined with a progressive acidification of surface water (caused by CO2 and SO2 injections) cause a major collapse of the marine biomass. Additional simulations in which Chicxulub impact, different community structures of primary producers will be discussed.

  11. Diffuse Emission of Carbon Dioxide From Irazú Volcano, Costa Rica, Central America

    Science.gov (United States)

    Galindo, I.; Melian, G.; Ramirez, C.; Salazar, J.; Hernandez, P.; Perez, N.; Fernandez, M.; Notsu, K.

    2001-12-01

    Irazú (3,432 m) is a stratovolcano situated 50 Km east of San José, the capital of Costa Rica. Major geomorphological features at Irazú are five craters (Main Crater, Diego de La Haya, Playa Hermosa, La Laguna and El Piroclástico), and at least 10 satellitic cones which are located on its southern flank. Its eruptive history is known from 1723. Since then, have ocurred at least 23 eruptions. All known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the west towards the historically active crater from 1963 to 1965. Diffuse degassing studies are becoming an additional geochemical tool for volcanic surveillance. The purpose of this study is to evaluate the spatial distribution of diffuse CO2 emission as well as CO2 efflux from Irazú volcano. A soil CO2 flux survey of 201 sampling sites was carried out at the summit of Irazú volcano in March 2001. Sampling site distribution covered an area of 3.5 Km2. Soil CO2 efflux measurements were performed by means of a portable NDIR sensor LICOR-800. Soil CO2 efflux values ranged from non-detectable values to 316.1 gm-2d-1 Statistical-graphical analysis of the data showed three overlapping geochemical populations. The background mean is 3 gm-2d-1 and represents 91.3 % of the total data. Peak group showed a mean of 18 gm-2d-1 and represented 1.2 % of the data. Anomalous CO2 flux values are mainly detected in the South sector of the main crater, where landslides have previously occurred. Diffuse CO2 degassing rate of the study area yields 44.2 td-1.

  12. Vapour dynamics during magma-water interaction experiments: hydromagmatic origins of submarine volcaniclastic particles (limu o Pele)

    Science.gov (United States)

    Schipper, C. Ian; Sonder, Ingo; Schmid, Andrea; White, James D. L.; Dürig, Tobias; Zimanowski, Bernd; Büttner, Ralf

    2013-03-01

    Recent observations have shattered the long-held theory that deep-sea (>500 m) explosive eruptions are impossible; however, determining the dynamics of unobserved eruptions requires interpretation of the deposits they produce. For accurate interpretation to be possible, the relative abilities of explosive magmatic degassing and non-explosive magma-water interaction to produce characteristic submarine volcaniclastic particles such as `limu o Pele' (bubble wall shards of glass) must be established. We experimentally address this problem by pouring remelted basalt (1300 °C, anhydrous) into a transparent, water-filled reservoir, recording the interaction with a high-speed video camera and applying existing heat transfer models. We performed the experiments under moderate to high degrees of water subcooling (˜8 l of water at 58 and 3 °C), with ˜0.1 to 0.15 kg of melt poured at ˜10-2 kg s-1. Videos show the non-explosive, hydromagmatic blowing and bursting of isolated melt bubbles to form limu o Pele particles that are indistinguishable from those found in submarine volcaniclastic deposits. Pool boiling around growing melt bubbles progresses from metastable vapour film insulation, through vapour film retraction/collapse, to direct melt-water contact. These stages are linked to the evolution of melt-water heat transfer to verify the inverse relationship between vapour film stability and the degree of water subcooling. The direct contact stage in particular explains the extremely rapid quench rates determined from glass relaxation speedometry for natural limu. Since our experimentally produced limu is made entirely by the entrapping of ambient water in degassed basaltic melt, we argue that the presence of fast-quenched limu o Pele in natural deposits is not diagnostic of volatile-driven explosive eruptions. This must be taken into account if submarine eruption dynamics are to be accurately inferred from the deposits and particles they produce.

  13. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China

    Science.gov (United States)

    Li, Siyue; Ni, Maofei; Mao, Rong; Bush, Richard T.

    2018-03-01

    Rivers are an important source of CO2 to the atmosphere, however, mountainous rivers and streams with high emission rates are not well studied particularly in China. We report the first detailed investigation on monsoonal mountainous rivers in the Three Gorges Reservoir (TGR) region, with a focus on the riverine CO2 partial pressure (pCO2), CO2 degassing and their potential controls. The pCO2 levels ranged from 50 to 6019 μatm with averages of 1573 (SD. ±1060) in dry Autumn and 1276 (SD. ±1166) μatm in wet Summer seasons. 94% of samples were supersaturated with CO2 with respect to the atmospheric equilibrium (410 μatm). Monsoonal precipitation controlled pCO2 seasonality, with both the maximal and minimal levels occurring in the wet season, and showing the overall effects of dilution. Riverine pCO2 could be predicted better in the dry season using pH, DO% and DTP, whereas pH and DOC were better predictors in the wet season. We conclude that in-situ respiration of allochthonous organic carbon, rather than photosynthesis, resulted in negative relationships between pCO2 and DO and pH, and thus CO2 supersaturation. Photosynthetic primary production was effectively limited by rapid flow velocity and short residence time. The estimated water-to-air CO2 emission rate in the TGR rivers was 350 ± 319 in the Autumn and lower, yet more variable at 326 ± 439 mmol/m2/d in Summer. Our calculated CO2 areal fluxes were in the upper-level magnitude of published data, demonstrating the importance of mountainous rivers and streams as a global greenhouse gas source, and urgency for more detailed studies on CO2 degassing, to address a global data gap for these environments.

  14. Simulation of non-isothermal gas-water processes in complex fracture-matrix systems

    International Nuclear Information System (INIS)

    Jakobs, H.

    2004-01-01

    Degassing effects may occur in fractures in the vicinity of deep radioactive-waste-disposal sites as a result of a pressure drop. These effects play an important role in the investigation of the hydraulic conditions in the near field of the disposal sites. The assumption of single-phase conditions may lead to the misinterpretation of experimental data as degassing leads to two-phase conditions and to a reduction of the effective permeability. The aim of this work is to contribute to the simulation of non-isothermal behaviour of water-gas systems in the near field of atomic waste disposal sites in fractured porous media. We distinguish between sub-REV effects within single fractures and effects due to super-REV heterogeneities which result from the fracture matrix system. We assume to have undisturbed physical conditions as report from the AespoeHard Rock Laboratory in Sweden, i.e.: - a fully water saturated system - a hydrostatic pressure of 5 million Pa. For the simulation on the laboratory scale we use a percolation model. To transfer the information from the laboratory scale to the field scale we use a renormalisation scheme. On the field scale we use a numerical simulator which solves the multiphase flow equations based on the extended form of Darcy's law. In order to investigate the limits of our models we analyse the importance of the forces taken into account, i.e., capillary forces, gravity forces, and viscous forces. This method allows us to quantify the constraints of our models. Furthermore, we investigate the influence of strong parameter heterogeneities caused by the fracture-matrix system on the flow behaviour of gas and water. We consider in particular the influence of the large difference between the entry pressures of matrix and fracture on the migration of the gas phase from the fracture system into the matrix system. (orig.)

  15. Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Toulkeridis, Theofilos; Melián, Gladys; Barrancos, José; Virgili, Giorgio; Sumino, Hirochika; Notsu, Kenji

    2012-08-01

    Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11 ± 2 t day-1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3 t day-1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990 ± 85 t day-1, with 605 t day-1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6 mol% of H2O; the main noncondensable components amounted to 97.4 mol% CO2, 1.5 mol% SO2, 0.6 mol% H2S, and 0.35 mol% N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88 ± 0.25 R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47 %, respectively.

  16. Neon and xenon isotopes in MORB: Implications for the earth-atmosphere evolution

    International Nuclear Information System (INIS)

    Marty, B.

    1989-01-01

    The isotopic composition of neon and xenon measured in MORB glasses confirm significant deviations from atmospheric values. There are 1. 21 Ne excesses with are attributed to nucleogenic reactions in the mantle; 2. 20 Ne/ 22 Ne ratios higher than the air ratio interpreted as an evidence for the occurrence of solar-type Ne at depth; 3. 129 Xe and 131-136 Xe excesses, attributed to both extinct ( 129 I and 244 Pu) and present ( 238 U) radioactivities. Ne and Xe isotopic signatures in the mantle can hardly be explained in the framework of classical models for the atmospheric evolution (which postulate a mantle origin for atmospheric gases) and appeal for at least two sources of gases. Ne isotopic differences between air and MORB appear too large to be accounted for by any reasonable fractionation process in the mantle. They imply either fractionation of neon during hydrodynamic escape of a primary atmosphere or different degrees of mixing between primordial Ne components, which, in turn imply isolation of the surface reservoir (air) and deep reservoir (mantle) from the accretional period (except for mantle outgassing through volcanism, the contribution of which is 41% at best for 20 Ne). 129 I- 129 Xe, 244 Pu- 238 U- 136 Xe systematics for atmospheric and MORB-type xenon suggest that either atmospheric gases derived from a source whose formation was delayed (≥ 17 Ma) with respect to the mean accretion time of the mantle source and/or atmospheric gases and MORB-type gases derived from chemically distinct sources. These features are consistent with heterogeneous accretion models for the Earth. Volatile degassing was probably contemporaneous to accretional events, following impact degassing, and might have been most efficient during the late stages of Earth formation. (orig.)

  17. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  18. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  19. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  20. Experimental leaching of uranium from tuffaceous rocks

    International Nuclear Information System (INIS)

    Goodell, P.C.; Trentham, R.C.

    1980-07-01

    The premise to be tested in this work is that felsic volcanic rocks particularly ash-flow tuffs, can serve as source rocks for certain uranium deposits. The applicability of this idea to several geologic environments is investigated. A genetic model is developed dealing with the behavior of uranium during and subsequent to ash-flow tuff deposition. It is based upon previously described investigations, geologic logic, data presented here, and speculation. Ash-flow tuff sequences described in the literature show significant alkali element variation, particularly in thick tuff units. Some variation is attributed to initial magma variations, whereas additional change may be produced during cooling and degassing of the tuff. Uranium variations have been documented in tuff sequences which are assumed to represent magmatic compositions. Uranium may be released during the initial degassing, during hydrothermal alteration, and/or during later diagenesis. Experimental studies have been designed and carried out to simulate natural leaching conditions such as might occur during diagenesis. Synthetic ground waters have been pumped through pulverized uraniferous vitrophyres. Major and minor element contents have been determined. The most significant chemical changes take place quickly, within a matter of days. Several starting and product leachant solutions were analyzed fluorimetrically for uranium. They show significant increases in uranium contents, from less than 1 ppB at the start to greater than 10 ppB maximu. Such leachant solutions might be significant transport agents of uranium given geologic time. Leaching at low temperatures appears to involve a thin surface reaction and diffusion layer. Both dissolution and ion exchange influence the leachant composition. It is also concluded that glassy ash-flow tuffs may serve as uranium source rocks during low temperature diagenetic changes

  1. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  2. Carbon isotope systematics of Turrialba volcano, Costa Rica, using a portable cavity ring-down spectrometer

    Science.gov (United States)

    Malowany, K. S.; Stix, J.; de Moor, J. M.; Chu, K.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2017-07-01

    Over the past two decades, activity at Turrialba volcano, Costa Rica, has shifted from hydrothermal to increasingly magmatic in character, with enhanced degassing and eruption potential. We have conducted a survey of the δ13C signatures of gases at Turrialba using a portable field-based CRDS with comparison to standard IRMS techniques. Our δ13C results of the volcanic plume, high-temperature vents, and soil gases reveal isotopic heterogeneity in the CO2 gas composition at Turrialba prior to its recent phase of eruptive activity. The isotopic value of the regional fault system, Falla Ariete (-3.4 ± 0.1‰), is in distinct contrast with the Central crater gases (-3.9 ± 0.1‰) and the 2012 high-temperature vent (-4.4 ± 0.2‰), an indication that spatial variability in δ13C may be linked to hydrothermal transport of volcanic gases, heterogeneities in the source composition, or magmatic degassing. Isotopic values of CO2 samples collected in the plume vary from δ13C of -5.2 to -10.0‰, indicative of mixing between atmospheric CO2 (-9.2 ± 0.1‰), and a volcanic source. We compare the Keeling method to a traditional mixing model (hyperbolic mixing curve) to estimate the volcanic source composition at Turrialba from the plume measurements. The predicted source compositions from the Keeling and hyperbolic methods (-3.0 ± 0.5‰ and -3.9 ± 0.4‰, respectively) illustrate two potential interpretations of the volcanic source at Turrialba. As of the 29 October 2014, Turrialba has entered a new eruptive period, and continued monitoring of the summit gases for δ13C should be conducted to better understand the dominant processes controlling δ13C fractionation at Turrialba.

  3. Development and validation of a simple and robust method for arsenic speciation in human urine using HPLC/ICP-MS.

    Science.gov (United States)

    Sen, Indranil; Zou, Wei; Alvaran, Josephine; Nguyen, Linda; Gajek, Ryszard; She, Jianwen

    2015-01-01

    In order to better distinguish the different toxic inorganic and organic forms of arsenic (As) exposure in individuals, we have developed and validated a simple and robust analytical method for determining the following six As species in human urine: arsenous (III) acid (As-III), As (V) acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine (AsB), and arsenocholine. In this method, human urine is diluted using a pH 5.8 buffer, separation is performed using an anion exchange column with isocratic HPLC, and detection is achieved using inductively coupled plasma-MS. The method uses a single mobile phase consisting of low concentrations of both phosphate buffer (5 mM) and ammonium nitrate salt (5 mM) at pH 9.0; this minimizes the column equilibration time and overcomes challenges with separation between AsB and As-III. In addition, As-III oxidation is prevented by degassing the sample preparation buffer at pH 5.8, degassing the mobile phase online at pH 9.0, and by the use of low temperature (-70 °C) and flip-cap airtight tubes for long term storage of samples. The method was validated using externally provided reference samples. Results were in agreement with target values at varying concentrations and successfully passed external performance test criteria. Internal QC samples were prepared and repeatedly analyzed to assess the method's long-term precision, and further analyses were completed on anonymous donor urine to assess the quality of the method's baseline separation. Results from analyses of external reference samples agreed with target values at varying concentrations, and results from precision studies yielded absolute CV values of 3-14% and recovery from 82 to 115% for the six As species. Analysis of anonymous donor urine confirmed the well-resolved baseline separation capabilities of the method for real participant samples.

  4. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer.

    Science.gov (United States)

    Roehm, Kevin D; Madihally, Sundararajan V

    2017-11-30

    The primary bottleneck in bioprinting cell-laden structures with carefully controlled spatial relation is a lack of biocompatible inks and printing conditions. In this regard, we explored using thermogelling chitosan-gelatin (CG) hydrogel as a novel bioprinting ink; CG hydrogels are unique in that it undergoes a spontaneous phase change at physiological temperature, and does not need post-processing. In addition, we used a low cost (printer, and modified with a new extruder to print using disposable syringes and hypodermic needles. We investigated (i) the effect of concentration of CG on gelation characteristics, (ii) solution preparation steps (centrifugation, mixing, and degassing) on printability and fiber formation, (iii) the print bed temperature profiles via IR imaging and grid-based assessment using thermocouples, (iv) the effect of feed rate (10-480 cm min -1 ), flow rate (15-60 μl min -1 ) and needle height (70-280 μm) on fiber size and characteristics, and (v) the distribution of neuroblastoma cells in printed fibers, and the viability after five days in culture. We used agarose gel to create uniform print surfaces to maintain a constant gap with the needle tip. These results showed that degassing the solution, and precooling the solution was necessary for obtaining continuous fibers. Fiber size decreased from 760, to 243 μm as the feed rate increased from 10 to 100 cm min -1 . Bed temperature played the greatest role in fiber size, followed by feed rate. Increased needle height initially decreased fiber size but then increased showing an optimum. Cells were well distributed within the fibers and exhibited excellent viability and no contamination after 5 d. Overall we printed 3D, sterile, cell-laden structures with an inexpensive bioprinter and a novel ink, without post-processing. The bioprinter described here and the novel CG hydrogels have significant potential as an ink for bioprinitng various cell-laden structures.

  5. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Klepikov, A.Kh. E-mail: klepikov@ietp.alma-ata.su; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R. E-mail: gxl@inel.gov

    2000-11-01

    The present work is an attempt to obtain data concerning the influence of neutron and {gamma} irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10{sup 14} n/cm{sup 2} s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples.

  6. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R.

    2000-01-01

    The present work is an attempt to obtain data concerning the influence of neutron and γ irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10 14 n/cm 2 s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples

  7. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  8. Method to precipitate metals on zirconium articles without using current

    International Nuclear Information System (INIS)

    Donaghy, R.E.

    1978-01-01

    Tubes or other bodies made of zirconium or Zr alloys used for taking up nuclear fuels are coated without current with a metal film to improve the mechanical and corrosion properties. The article is activated in a solution of ammonium bifluoride and sulphuric acid where an electrical conducting fixed and loose layer are fermed. This loose film is removed chemically by reacting with fluoroboric acid or hydrofluorosilica acid by ultrasonic treatment or by stripping from organic material (cotton, polyester, nylon). The current-free plating with Cu and Ni is described. The article is washed with deionized water between the process steps and finally degassed at a temperature of 150-200 0 C. (IHOE) [de

  9. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  10. Mechanical Properties and Melt Quality Relationship of Sr-modified Al-12Si Alloy

    Directory of Open Access Journals (Sweden)

    Uludağa M.

    2015-12-01

    Full Text Available The formation of oxide film on the surface of aluminium melts, i.e. bifilms, are known to be detrimental when they are incorporated into the cast part. These defects causes premature fractures under stress, or aid porosity formation. In this work, Al-12 Si alloy was used to cast a step mould under two conditions: as-received and degassed. In addition, 10 ppi filters were used in the mould in order to prevent bifilm intrusion into the cast part. Reduced pressure test samples were collected for bifilm index measurements. Samples were machined into standard bars for tensile testing. It was found that there was a good agreement with the bifilm index and mechanical properties.

  11. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  12. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  13. Immersion microcalorimetry of a carbon black

    International Nuclear Information System (INIS)

    Mendelbaum, Georges

    1966-01-01

    This research thesis first reports a detailed bibliographical study on various topics (fabrication of carbon black, oxidation, immersion heat, adsorptions, main existing theories, and thermodynamics) and then the development of immersion and adsorption microcalorimetry apparatuses aimed at studying the surface of a carbon black and the influence of the oxidation of this carbon black on the adsorption of polar and non-polar solvents. Immersion heats of a raw or oxidised carbon black have been measured in water, in cyclohexane and in methanol. The adsorption of methanol at 20 C and that of nitrogen at -196 C have also been measured. The author outlines that degassing conditions had to be taken into account before performing measurements [fr

  14. Biogas from landfills: how to optimise its capture? To know in order to act - Guides and Technical Guidebooks

    International Nuclear Information System (INIS)

    Berger, Sylvaine; Bellenoue, Dominique; Budka, Arnaud; Bour, Olivier; Coste, Emmanuel; Chassagnac, Thierry; Dumas, Bruno; Ogor, Yoann; Le Fournis, Gwenael; Riquier, Laurent; Brunel, Nicolas; Gisbert, Thierry; Thiriez, Arnaud; Thomas, Stephane; Hebe, Isabelle; Heyberger, Agnes

    2007-01-01

    After having recalled problems faced by degassing systems, this guide aims at describing how to diagnose a site of biogas recovery from landfills, which improvements can be envisaged, how to choose among possible recovery and valorisation options, and how to integrate new regulations. Thus, it first gives an overview of stakes and challenges related to landfill gas management optimisation from different points of view (environment, safety, regulation, energy production), and then proposes a classification of storage installations depending on gas management modes (levelling down, destruction by combustion, energetic valorisation). It proposes an overview of technical means to be implemented either for all types of sites, or for different specific and typical cases

  15. Characterization of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: mmonge@fis.uc3m.es; Auger, M.A.; Leguey, T.; Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bolzoni, L.; Gordo, E. [Departamento de Ciencias de Materiales, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    W and W alloys containing 0.5 wt% Y{sub 2}O{sub 3}, x wt% Ti and (x wt% Ti + 0.5 wt% Y{sub 2}O{sub 3}) have been prepared, x = 2 or 4. Elemental powders were blended or ball milled, canned, degassed and finally consolidated by a two-stage HIP process under a pressure of 195 MPa. It is found that Ti addition favours the densification attaining a fully dense material. XRD, SEM and EDX analyses of the material with Ti addition reveal the formation of a microstructure consisting of tungsten particles embedded in a W-Ti matrix. The microhardness of these materials increased noticeably with the titanium content.

  16. Radiolysis of the polyethylene/water system: Studies on the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Billamboz, Nicolas [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Grivet, Manuel, E-mail: manuel.grivet@univ-fcomte.f [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Foley, Sarah [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Baldacchino, Gerard [CEA, IRAMIS, SIS2M, Laboratoire de Radiolyse, Bat. 546, F-91191 Gif-sur-Yvette (France); CNRS, Laboratoire Claude Frejacques, F-91191 Gif-sur-Yvette (France); Hubinois, Jean-Charles [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France)

    2010-01-15

    The role of hydroxyl radical on polyethylene degradation under aqueous conditions has been studied. The reactivity of HO{sup .} towards PE is highlighted by pulse radiolysis experiments on a PE powder suspension in water using the thiocyanate competition technique. Infrared analysis of PE films irradiated in the presence of water is performed. Solutions have been either degassed with Ar, in order to remove O{sub 2} which would react with the PE, or N{sub 2}O which enhances the production of HO{sup .} radicals. Oxygenated groups and double bond groups created at the surface of PE are characterized using IR analysis, and the results for both saturated solution systems are compared.

  17. A new bee species that excavates sandstone nests.

    Science.gov (United States)

    Orr, Michael C; Griswold, Terry; Pitts, James P; Parker, Frank D

    2016-09-12

    Humanity has long been fascinated by animals with apparently unfavorable lifestyles [1]. Nesting habits are especially important because they can limit where organisms live, thereby driving population, community, and even ecosystem dynamics [2]. The question arises, then, why bees nest in active termite mounds [3] or on the rim of degassing volcanoes, seemingly preferring such hardship [4]. Here, we present a new bee species that excavates sandstone nests, Anthophora (Anthophoroides) pueblo Orr (described in Supplemental Information, published with this article online), despite the challenges already inherent to desert life. Ultimately, the benefits of nesting in sandstone appear to outweigh the associated costs in this system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Effects of Varying Crustal Carbonate Composition on Assimilation and CO2 Degassing at Arc Volcanoes

    Science.gov (United States)

    Carter, L. B.; Holmes, A. K.; Dasgupta, R.; Tumiati, S.

    2015-12-01

    Magma-crustal carbonate interaction and subsequent decarbonation can provide an additional source of CO2 release to the exogenic system superimposed on mantle-derived CO2. Carbonate assimilation at present day volcanoes is often modeled by limestone consumption experiments [1-4]. Eruptive products, however, do not clearly display the characteristic ultracalcic melt compositions produced during limestone-magma interaction [4]. Yet estimated CO2outflux [5] and composition of volcanics in many volcanic systems may allow ~3-17% limestone- or dolostone-assimilated melt contribution. Crystallization may retain ultracalcic melts in pyroxenite cumulates. To extend our completed study on limestone assimilation, here we explore the effect of varying composition from calcite to dolomite on chemical and thermal decarbonation efficiency of crustal carbonates. Piston cylinder experiments at 0.5 GPa and 900-1200 °C demonstrate that residual mineralogy during interaction with magma shifts from CaTs cpx and anorthite/scapolite in the presence of calcite to Di cpx and Fo-rich olivine with dolomite. Silica-undersaturated melts double in magnesium content, while maintaining high (>30 wt.%) CaO values. At high-T, partial thermal breakdown of dolomite into periclase and CO2 is minimal (<5%) suggesting that in the presence of magma, CO2 is primarily released due to assimilation. Assimilated melts at identical P-T conditions depict similarly high volatile contents (10-20 wt.% by EMPA deficit at 0.5 GPa, 1150 °C with hydrous basalt) with calcite or dolomite. Analysis of the coexisting fluid phase indicates the majority of water is dissolved in the melt, while CO2 released from the carbonate is preferentially partitioned into the vapor. This suggests that although assimilated melts have a higher CO2 solubility, most of the CO2can easily degas from the vapor phase at arc volcanoes, possibly more so at volcanic plumbing systems traversing dolomite [8]. [1]Conte et al 2009 EuJMin (21) 763-782; [2]Iacono-Marziano et al 2008 CMP (155) 719-738; [3]Mollo et al 2010 Lithos (114) 503-514; [4]Carter and Dasgupta 2015 EPSL (427) 202-214; [5]Burton et al 2013 RevMinGeochem (75) 323-254; [6]Balassone et al 2013 Lithos (160-161) 84-97; [7]Di Rocco et al. 2012 JPet (53) 2307-2332; [8]Del Moro et al 2001 JVGR (112) 15-24.

  19. Turmoil at Turrialba volcano (Costa Rica): Degassing and eruptive behavior inferred from high-frequency gas monitoring

    OpenAIRE

    de Moor, J Maarten; Aiuppa, Alessandro; Avard, Geoffroy; Wehrmann, Heidi; Dunbar, Nelia W; Muller, Cyril; Tamburello, Giancarlo; Guidice, Gaetano; Liuzzo, Marco; Moretti, Roberto; Conde, A Vladimir; Galle, Bo

    2016-01-01

    Eruptive activity at Turrialba volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here, we use high frequency gas monitoring to track the behavior of the volcano between 2014 and 2015, and to decipher magmatic vs. hydrothermal contributions to the eruptions...

  20. Tracing Magmatic Degassing Timescales at Soufrière Hills Volcano using Short-Lived Uranium Series Isotopes

    Science.gov (United States)

    Turner, S.; McGee, L. E.; Handley, H. K.; Reagan, M. K.; Turner, M. B.; Berlo, K.; Barclay, J.; Sparks, R. S. J.

    2016-12-01

    Soufrière Hills Volcano, on the Caribbean island of Montserrat, is one of the most intensively studied and constantly monitored volcanic systems in the world. Since 1995, the island has seen five phases of eruption, interspersed with periods of quiescence of varying length. The last eruptive phase ended in 2010, and the current period of quiescence is the longest since 1995. Mafic recharge is thought to contribute volatiles which may lead to system overpressure and trigger a volcanic eruption. At Soufrière Hills Volcano, enclaves of mafic material are a notable feature within the andesitic dome collapse material from all five eruptive phases and have been the focus of several recent petrogenetic studies, meaning that they are extremely well-characterised. We present a 210Pb-226Ra isotope data of enclave-andesite pairs from all five recent eruption phases of Soufrière Hills to investigate the timescale on which volatile transfer occurs prior to eruptions. 210Pb-226Ra disequilibria is a powerful tool in tracing gas movement within recently erupted (<100 years) volcanic material, as one of the intermediary daughters involved in the chain (222Rn) is released in the gas phase of magmas. Subsequent deficits or excesses of 210Pb over 226Ra provide information on whether gas transfer occurred over a short time-frame or if gas fluxing from a mafic magma was maintained for some time previous to each eruption. This vital information may elucidate whether the system is recharging and preparing for a new eruptive phase or draining its current magma supply thus diminishing the possibility of further, explosive eruptions. Preliminary results suggest that gas fluxing from mafic magma was particularly effective in the first two eruptive phases, supporting the mafic-trigger hypothesis. However, we observe a possible change in this behaviour from phase 3 onwards. We complement these time-sensitive geochemical data with comparison to high resolution monitoring data with the hope that the coupling of these two techniques may aid in predicting how the system is likely to behave in the future.