WorldWideScience

Sample records for deg inclination orbit

  1. Excitation of the Orbital Inclination of Iapetus during Planetary Encounters

    CERN Document Server

    Nesvorny, David; Deienno, Rogerio; Walsh, Kevin J

    2014-01-01

    Saturn's moon Iapetus has an orbit in a transition region where the Laplace surface is bending from the equator to the orbital plane of Saturn. The orbital inclination of Iapetus to the local Laplace plane is ~8 deg, which is unexpected, because the inclination should be ~0 if Iapetus formed from a circumplanetary disk on the Laplace surface. It thus appears that some process has pumped up Iapetus's inclination while leaving its eccentricity near zero (e=0.03 at present). Here we examined the possibility that Iapetus's inclination was excited during the early solar system instability when encounters between Saturn and ice giants occurred. We found that the dynamical effects of planetary encounters on Iapetus's orbit sensitively depend on the distance of the few closest encounters. In four out of ten instability cases studied here, the orbital perturbations were too large to be plausible. In one case, Iapetus's orbit was practically unneffected. In the remaining five cases, the perturbations of Iapetus's incli...

  2. 47 CFR 25.280 - Inclined orbit operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inclined orbit operations. 25.280 Section 25... COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence operation in inclined orbit mode without obtaining prior Commission authorization provided that...

  3. Interaction between massive planets on inclined orbits and circumstellar discs

    CERN Document Server

    Xiang-Gruess, Meng

    2013-01-01

    We study the interaction between massive planets and a gas disc with a mass in the range expected for protoplanetary discs. We use SPH simulations to study the orbital evolution of a massive planet as well as the dynamical response of the disc for planet masses between 1 and $6\\ \\rmn{M_J}$ and the full range of initial relative orbital inclinations. Gap formation can occur for planets in inclined orbits. For given planet mass, a threshold relative orbital inclination exists under which a gap forms. At high relative inclinations, the inclination decay rate increases for increasing planet mass and decreasing initial relative inclination. For an initial semi-major axis of 5 AU and relative inclination of $i_0=80^\\circ,$ the times required for the inclination to decay by $10^\\circ$ is $\\sim10^{6}\\ \\rmn{yr}$ and $\\sim10^{5}\\ \\rmn{yr}$ for $1\\ \\rmn{M_J}$ and $6\\ \\rmn{M_J}$. Planets on inclined orbits warp the disc by an extent that is negligible for $1\\ \\rmn{M_J}$ but increases with increasing mass becoming quite s...

  4. CODIMENSION 3 BIFURCATIONS OF HOMOCLINIC ORBITS WITH ORBIT FLIPS AND INCLINATION FLIPS

    Institute of Scientific and Technical Information of China (English)

    SHUI SHULIANG; ZHU DEMING

    2004-01-01

    The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.

  5. Excitation of the orbital inclination of Iapetus during planetary encounters

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio; Walsh, Kevin J., E-mail: davidn@boulder.swri.edu [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-09-01

    Saturn's moon, Iapetus, has an orbit in a transition region where the Laplace surface is bending from the equator to the orbital plane of Saturn. The orbital inclination of Iapetus to the local Laplace plane is ≅ 8°, which is unexpected because the inclination should be ≅ 0 if Iapetus formed from a circumplanetary disk on the Laplace surface. It thus appears that some process has pumped up Iapetus's inclination while leaving its eccentricity near zero (e ≅ 0.03 at present). Here, we examined the possibility that Iapetus's inclination was excited during the early solar system instability when encounters between Saturn and ice giants occurred. We found that the dynamical effects of planetary encounters on Iapetus's orbit sensitively depend on the distance of the few closest encounters. In 4 out of 10 instability cases studied here, the orbital perturbations were too large to be plausible. In one case, Iapetus's orbit was practically unaffected. In the remaining five cases, the perturbations of Iapetus's inclination were adequate to explain its present value. In three of these cases, however, Iapetus's eccentricity was excited to >0.1-0.25, and it is not clear whether it could have been damped to its present value (≅ 0.03) by a subsequent process (e.g., tides and dynamical friction from captured irregular satellites do not seem to be strong enough). Our results therefore imply that only 2 out of 10 instability cases (∼20%) can excite Iapetus's inclination to its current value (∼30% of trials lead to >5°) while leaving its orbital eccentricity low.

  6. On the Orbital Inclination of Proxima Centauri b

    Science.gov (United States)

    Kane, Stephen R.; Gelino, Dawn M.; Turnbull, Margaret C.

    2017-02-01

    The field of exoplanetary science has seen discovery rates increase dramatically over recent years, due largely to the data from the Kepler mission. Even so, individual discoveries of planets orbiting nearby stars are very important for studies of characterization and near-term follow-up prospects. The recent discovery of a terrestrial planet candidate orbiting Proxima Centauri presents numerous opportunities for studying a super-Earth within our own stellar backyard. One of the remaining ambiguities of the discovery is the true mass of the planet since the discovery signature was obtained via radial velocities. Here, we describe the effect of orbital inclination on the Proxima Centauri planet, in terms of mass, radius, atmosphere, and albedo. We calculate the astrometric, angular separation, and reflected light properties of the planet including the effects of orbital eccentricity. We further provide dynamical simulations that show how the presence of additional terrestrial planets within the Habitable Zone varies as a function of inclination. Finally, we discuss these effects in the context of future space-based photometry and imaging missions that could potentially detect the planetary signature and resolve the inclination and mass ambiguity of the planet.

  7. Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.

    Science.gov (United States)

    Muller, R A; MacDonald, G J

    1997-08-05

    Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.

  8. How the inclination of Earth's orbit affects incoming solar irradiance

    Science.gov (United States)

    Vieira, L. E. A.; Norton, A.; Dudok de Wit, T.; Kretzschmar, M.; Schmidt, G. A.; Cheung, M. C. M.

    2012-08-01

    The variability in solar irradiance, the main external energy source of the Earth's system, must be critically studied in order to place the effects of human-driven climate change into perspective and allow plausible predictions of the evolution of climate. Accurate measurements of total solar irradiance (TSI) variability by instruments onboard space platforms during the last three solar cycles indicate changes of approximately 0.1% over the sunspot cycle. Physics-based models also suggest variations of the same magnitude on centennial to millennia time-scales. Additionally, long-term changes in Earth's orbit modulate the solar irradiance reaching the top of the atmosphere. Variations of orbital inclination in relation to the Sun's equator could potentially impact incoming solar irradiance as a result of the anisotropy of the distribution of active regions. Due to a lack of quantitative estimates, this effect has never been assessed. Here, we show that although observers with different orbital inclinations experience various levels of irradiance, modulations in TSI are not sufficient to drive observed 100 kyr climate variations. Based on our model we find that, due to orbital inclination alone, the maximum change in the average TSI over timescales of kyrs is ˜0.003 Wm-2, much smaller than the ˜1.5 Wm-2 annually integrated change related to orbital eccentricity variations, or the 1-8 Wm-2 variability due to solar magnetic activity. Here, we stress that out-of-ecliptic measurements are needed in order to constrain models for the long-term evolution of TSI and its impact on climate.

  9. Orbital Elements Evolution Due to a Perturbing Body in an Inclined Elliptical Orbit

    Science.gov (United States)

    Rahoma, W. A.

    2014-09-01

    This paper intends to highlight the effect of the third-body in an inclined orbit on a spacecraft orbiting the primary mass. To achieve this goal, a new origin of coordinate is introduced in the primary and the X-axis toward the node of the spacecraft. The disturbing function is expanded up to the second order using Legendre polynomials. A double-averaged analytical model is exploited to produce the evolutions of mean orbital elements as smooth curves.

  10. S-DARS broadcast from inclined, elliptical orbits

    Science.gov (United States)

    Briskman, Robert D.; Prevaux, Robert J.

    2004-04-01

    The first Sirius spacecraft was launched on July 1, 2000. Exactly 5 months later, on December 1, the third spacecraft was launched, completing the three satellite S-DARS (Satellite Digital Audio Radio Service) constellation. The three satellites are deployed in inclined, elliptical, geosynchronous orbits, which allow seamless broadcast coverage to mobile users in the contiguous US. Terrestrial broadcast repeaters provide service in urban cores. The system is in operation, providing the first ever S-DARS service. The constellation design results in satellite ground tracks over North America with two satellites always above the equator. High elevation look angles from the mobile ground terminals to the satellites minimize performance degradation due to blockage, foliage attenuation and multi-path. The spacecraft were built by Space Systems/Loral using the 1300 bus modified for operation in high inclination orbits. Each spacecraft was launched using a dedicated Russian Proton booster. The satellite payload is a bent pipe repeater using 7.1 GHz for the uplink and 2.3 GHz for the broadcast transmission. The repeater high-power amplification stage consists of 32 Traveling Wave Tube Amplifiers phase combined to yield a total radio frequency output power of nearly 4 kW at saturated operation. The satellite antennas are mechanically steered to maintain the transmit beam centered on the Contiguous United States and the receive beam centered on the uplink earth station located in Vernon Valley, New Jersey. The satellite payload design and performance are described. The principal spacecraft bus systems are described with emphasis on improvements made for operation in the inclined, elliptical geosynchronous orbits.

  11. Dipper disks not inclined towards edge-on orbits

    CERN Document Server

    Ansdell, M; Williams, J P; Kennedy, G; Wyatt, M C; LaCourse, D M; Jacobs, T L; Mann, A W

    2016-01-01

    The so-called "dipper" stars host circumstellar disks and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disk. Most of the proposed mechanisms explaining the dips---i.e., occulting disk warps, vortices, and forming planetesimals---assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals disks with a range of inclinations, most notably the face-on transition disk J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disk processes that regularly produce dusty structures far above the outer disk midplane in regions relevant to planet formation.

  12. Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips

    Institute of Scientific and Technical Information of China (English)

    SHUI; Shuliang; ZHU; Deming

    2005-01-01

    Homoclinic bifurcations in four-dimensional vector fields are investigated by setting up a local coordinate near a homoclinic orbit. This homoclinic orbit is principal but its stable and unstable foliations take inclination flip. The existence, nonexistence, and uniqueness of the 1-homoclinic orbit and 1-periodic orbit are studied. The existence of the two-fold 1-periodic orbit and three-fold 1 -periodic orbit are also obtained. It is indicated that the number of periodic orbits bifurcated from this kind of homoclinic orbits depends heavily on the strength of the inclination flip.

  13. Electromechanical constants and their anisotropy in LiNbO sub 3 -type crystals having 180 deg. inclined domain walls

    CERN Document Server

    Topolov, V Y

    1998-01-01

    The paper is devoted to the determination of effective electromechanical constants d sub i sub j sup p , e sub i sub j sup p , epsilon sub k sub l supsigma sup , sup p and s sub f sub g sup E sup , sup p of polydomain LiNbO sub 3 and LiNb sub 0 sub . sub 1 Ta sub 0 sub . sub 9 O sub 3 crystals at room temperature. 180 deg domain structures considered here contain inclined plane walls providing a significant anisotropy of piezoelectric constants e sub i sub j sup p. The effect of such domain structures is established for the first time and discussed. (author)

  14. Mapping Earth-analogs from Photometric Variability: Spin-Orbit Tomography for Planets in Inclined Orbits

    CERN Document Server

    Fujii, Yuka

    2012-01-01

    Aiming at obtaining detailed information of surface environment of Earth-analogs, Kawahara & Fujii 2011 proposed an inversion technique of annual scattered light curves named the spin-orbit tomography (SOT), which enables one to sketch a 2-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5um, 0.6-0.7um, and 0.8-0.9um) and show that the distribution of clouds, snow, and continents are retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally-locked Earth, and Earth-analogs with ancient continental configurations. The inversion is model-independent in the sense that we do not assume specific albedo models when mapping the surface, and hen...

  15. The Effects of Orbital Inclination on the Scale Size and Evolution of Tidally Filling Star Clusters

    CERN Document Server

    Webb, Jeremy J; Harris, William E; Hurley, Jarrod R

    2014-01-01

    We have performed N-body simulations of tidally filling star clusters with a range of orbits in a Milky Way-like potential to study the effects of orbital inclination and eccentricity on their structure and evolution. At small galactocentric distances Rgc, a non-zero inclination results in increased mass loss rates. Tidal heating and disk shocking, the latter sometimes consisting of two shocking events as the cluster moves towards and away from the disk, help remove stars from the cluster. Clusters with inclined orbits at large Rgc have decreased mass loss rates than the non-inclined case, since the strength the disk potential decreases with Rgc. Clusters with inclined and eccentric orbits experience increased tidal heating due to a constantly changing potential, weaker disk shocks since passages occur at higher Rgc, and an additional tidal shock at perigalacticon. The effects of orbital inclination decrease with orbital eccentricity, as a highly eccentric cluster spends the majority of its lifetime at a larg...

  16. Long-Term Dynamics and the Orbital Inclinations of the Classical Kuiper Belt Objects

    CERN Document Server

    Kuchner, M J; Holman, M; Kuchner, Marc J.; Brown, Michael E.; Holman, Matthew

    2002-01-01

    We numerically integrated the orbits of 1458 particles in the region of the classical Kuiper Belt (41 AU < a < 47 AU) to explore the role of dynamical instabilities in sculpting the inclination distribution of the classical Kuiper Belt Objects (KBOs). We find that the selective removal of low-inclination objects by overlapping secular resonances (nu_17 and nu_18) acts to raise the mean inclination of the surviving population of particles over 4 billion years of interactions with Jupiter, Saturn, Uranus and Neptune, though these long-term dynamical effects do not themselves appear to explain the discovery of KBOs with inclinations near 30 degrees. Our integrations also imply that after 3 billion years of interaction with the massive planets, high inclination KBOs more efficiently supply Neptune-encountering objects, the likely progenitors of short-period comets, Centaurs, and scattered KBOs. The secular resonances at low inclinations may indirectly cause this effect by weeding out objects unprotected by ...

  17. Optical spectroscopy and photometry of main-belt asteroids with a high orbital inclination

    Science.gov (United States)

    Iwai, Aya; Itoh, Yoichi; Terai, Tsuyoshi; Gupta, Ranjan; Sen, Asoke; Takahashi, Jun

    2017-02-01

    We carried out low-resolution optical spectroscopy of 51 main-belt asteroids, most of which have highly-inclined orbits. They are selected from D-type candidates in the SDSS-MOC 4 catalog. Using the University of Hawaii 2.2 m telescope and the Inter-University Centre for Astronomy and Astrophysics 2 m telescope in India, we determined the spectral types of 38 asteroids. Among them, eight asteroids were classified as D-type asteroids. Fractions of D-type asteroids are 3.0+/-1.1 for low orbital inclination main-belt asteroids and 7.3+/-2.0 for high orbital inclination main-belt asteroids. The results of our study indicate that some D-type asteroids were formed within the ecliptic region between the main belt and Jupiter, and were then perturbed by Jupiter.

  18. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  19. Compact planetary systems perturbed by an inclined companion. II. Stellar spin-orbit evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boué, Gwenaël; Fabrycky, Daniel C., E-mail: boue@imcce.fr [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-07-10

    The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ≅ 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.

  20. Circular periodic orbits, resonance capture and inclination excitation during type II migration

    Science.gov (United States)

    Antoniadou, K. I.; Voyatzis, G.

    2017-03-01

    We consider planetary systems evolving under the effect of a Stokes-type dissipative force mimicking the outcome of a type II migration process. As inward migration proceeds and the planets follow the circular family (they start on circular orbits) and even though they are initially almost coplanar, resonance capture can be realized. Then, at the vertical critical orbits (VCOs), that the circular family possesses, the inclination excitation can abruptly take place. The planets are now guided by the spatial elliptic families, which bifurcate from those critical orbits. We herein, perform a direct link of mutually inclined stable planetary systems on circular orbits trapped in mean-motion resonance (MMR) with the existence of VCOs of high values of multiplicity. It is shown that the more the multiplicity of the periodic orbits of the circular family increases, the more VCOs (corresponding to more MMRs) appear. In this way, we can provide a justification for the existence of resonant planets on circular orbits, which could, even further to that, evolve stably if they were mutually inclined.

  1. Long-lived Chaotic Orbital Evolution of Exoplanets in Mean Motion Resonances with Mutual Inclinations

    CERN Document Server

    Barnes, Rory; Greenberg, Richard; Quinn, Thomas R; Raymond, Sean N

    2015-01-01

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.9 degrees. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364 and HD 60532 systems may be in chaotically-evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1 and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several Gyr, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that 1) approximate methods for identifying unstable o...

  2. On the Apparent Orbital Inclination Change of the Extrasolar Transiting Planet TrES-2b

    CERN Document Server

    Scuderi, Louis J; Males, Jared R; Green, Elizabeth M; Close, Laird M

    2009-01-01

    On June 15, 2009 UT the transit of TrES-2b was detected using the University of Arizona's 1.55 meter Kuiper Telescope with 2.0-2.5 millimag RMS accuracy in the I-band. We find a central transit time of T_c = 2454997.76286 +/- 0.00035 HJD, an orbital period of P = 2.4706127 +/- 0.0000009 days, and an inclination angle of i = 83.92 +/- 0.05 degrees, which is consistent with our re-fit of the original I-band light curve of O'Donovan et al. (2006) where we find i = 83.84 +/- 0.05 degrees. We calculate an inclination change of Delta i = -0.08 +/- 0.071 degrees over the last 3 years, and as such, our observations rule out, at the ~11 sigma level, the apparent change of orbital inclination to i_predicted = 83.35 +/- 0.1 degrees as predicted by Mislis & Schmitt (2009) for our epoch. Indeed, we detect no significant changes in any of the orbital parameters of TrES-2b when comparing the original I-band light curve to our recent I-band light curve.

  3. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    Science.gov (United States)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2017-02-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. To understand the underlying dynamics that affect the BDS IGSO, we study this problem from two aspects. In this paper, we first theoretically analyze the problem using the simplified models with 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  4. Jupiter - Friend or Foe? IV: The influence of orbital eccentricity and inclination

    CERN Document Server

    Horner, J

    2011-01-01

    For many years, it was assumed that Jupiter prevented the Earth from being subject to a punishing impact regime that would greatly hinder the development of life. Here, we present the 4th in a series of studies investigating this hypothesis. Previously, we examined the effect of Jupiter's mass on the impact rate experienced by Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate. We first consider scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a higher impact rate of asteroids than for more circular orbits. This is particularly pronounced at high "Jupiter" masses. For short-period comets, the same effect is clearly apparent, albeit to a lesser degree. The flux of short-period comets impacting the Earth is slightly h...

  5. The Effects of Moon¡¯s Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

    Science.gov (United States)

    Rahoma, Walid A.; Abd El-Salam, Fawzy A.

    2014-12-01

    The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth¡¯s satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can¡¯t be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

  6. Magnetic signatures of ion cyclotron waves during Cassini's high-inclination orbits of Saturn

    Science.gov (United States)

    Meeks, Zachary; Simon, Sven

    2017-02-01

    Based on magnetic field data from Cassini's high-inclination orbits of Saturn (radius RS = 60 , 268 km), we analyze the latitudinal distribution of ion cyclotron waves in the giant planet's magnetosphere. Our survey takes into account magnetic field data from all high-inclination orbits between 2004 and 2015. We analyze the dependency of the occurrence rate and amplitude of the ion cyclotron waves on radial distance ρ to Saturn's rotation axis, vertical distance z to Saturn's equatorial plane, and magnetic latitude λ. The occurrence rate of ion cyclotron waves is approximately 100% in Saturn's equatorial plane between the orbits of Enceladus and Dione and decreases to 50% at altitudes of | z | ≈ 0.6RS . Ion cyclotron waves were detected up to | z | = 2.0RS . The occurrence rate displays strong, non-monotonic variations with respect to ρ, z, and λ. The vertical amplitude profile of the waves exhibits an M-like pattern with two distinct peaks near z = ± 0.3RS and the central minimum at z=0. Compared to earlier observations, we find this M-like structure to be inflated in±z direction by a factor of three. The available magnetic field data provides only weak evidence for a local impact of Enceladus and Dione on the ion cyclotron wave field. Using the observed Doppler shift of the ion cyclotron wave frequency during Cassini's high-inclination orbits, we demonstrate the existence of a narrow band of bidirectional wave propagation. This band is centered around Saturn's equatorial plane and possesses a half-width of | z | = 0.15RS , which agrees well with the vertical scale height of Saturn's neutral cloud. To the north of this band, all ion cyclotron waves propagate towards the north (z > 0); and to the south, all waves propagate towards the south (z < 0). In companion with our previous study (Meeks et al., 2016), this survey provides the complete three-dimensional picture of the ion cyclotron wave field between the orbits of Enceladus and Rhea during the Cassini

  7. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    Science.gov (United States)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. Following up the study on the specific BDS IGSO satellites in the previous COSPAR Scientific Assembly, we now extend the study to understand the underlying dynamics and discuss the long-term evolution of such orbits from a more general perspective. In this paper, we first theoretically analyze the problem using simplified models of 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  8. Probing Saturn's ion cyclotron waves on high-inclination orbits: Lessons for wave generation

    Science.gov (United States)

    Leisner, J. S.; Russell, C. T.; Wei, H. Y.; Dougherty, M. K.

    2011-09-01

    Ion cyclotron waves have been observed at Saturn by all spacecraft that passed through the inner magnetosphere near the equatorial plane, typically from slightly inside Enceladus' orbit to outside of Dione's. In 2005 and 2006, the Cassini spacecraft made high-inclination crossings of the equatorial plane in this region. The magnetometer observed that the waves were characteristically not uniform with distance from the equatorial plane. Instead, waves with weak and constant amplitude were observed in a small region around the magnetic equator where they propagated bidirectionally. Above and below that plane, the wave amplitude varied strongly, and the wave propagated away from the equator. We draw comparisons between these waves and those at the Earth and ion cyclotron waves associated with neutral sources in the Jovian magnetosphere. These behaviors may be common and should be considered when using the wave amplitude to infer the neutral ionization rates at Saturn, in other planetary magnetospheres, and at bodies in the solar wind.

  9. The statistical analysis of the color—orbit parameters and color—inclination distributions of TNOs

    Science.gov (United States)

    Nabiyev, Shaig; Simonia, Irakli

    2016-10-01

    The research of the surface properties of the trans-Neptunian Objects (TNOs) is the key factor to obtain information about past and current status of our Solar System. Because of the far distance from the Sun the photometric investigations remain the most popular approaching way to study of physical conditions of TNOs. For this reason, we examine the correlation between 294 known B-R and 259 V-R color indexes and the orbital parameters of the trans-Neptunian Objects (TNOs) with by classification is giving in the literature: Cubewanos (Classical KBOs), Plutinos, Sentaurs, SDOs, Other TNOs, and Resonants, and subgroups by diameters greater than 80 km. Almost all inclinations of subgroups by classifications and diameters are strongly correlated with B-R and V-R indexes. Simultaneously, the remarkable and moderate correlations with high significance levels were found in 8 cases for B-R and other orbit parameters: semi-major axis, eccentricity, perihelion and diameters by diameter subgroups and 9 cases by classifications. Moreover, only 4 of 11 moderate correlation coefficients with high significance levels for V-R were calculated by classifications and 6 cases by diameters.

  10. HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Sudol, Jeffrey J. [Department of Physics, West Chester University, 720 S. Church Street, West Chester, PA 19383 (United States); Haghighipour, Nader, E-mail: jsudol@wcupa.edu, E-mail: nader@ifa.hawaii.edu [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-08-10

    Debates regarding the age and inclination of the planetary system orbiting HR 8799, and the release of additional astrometric data following the discovery of the fourth planet, prompted us to examine the possibility of constraining these two quantities by studying the long-term stability of this system at different orbital inclinations and in its high-mass configuration (7-10-10-10 M{sub Jup}). We carried out {approx}1.5 million N-body integrations for different combinations of orbital elements of the four planets. The most dynamically stable combinations survived less than {approx}5 Myr at inclinations of 0 Degree-Sign and 13 Degree-Sign , and 41, 46, and 31 Myr at 18 Degree-Sign , 23 Degree-Sign , and 30 Degree-Sign , respectively. Given such short lifetimes and the location of the system on the age-luminosity diagram for low-mass objects, the most reasonable conclusion of our study is that the planetary masses are less than 7-10-10-10 M{sub Jup} and the system is quite young. Two trends to note from our work are as follows. (1) In the most stable systems, the higher the inclination, the more the coordinates for planets b and c diverge from the oldest archival astrometric data (released after we completed our N-body integrations), suggesting that either these planets are in eccentric orbits or have lower orbital inclinations than that of planet d. (2) The most stable systems place planet e closer to the central star than is observed, supporting the conclusion that the planets are more massive and the system is young. We present the details of our simulations and discuss the implications of the results.

  11. How planet-planet scattering can create high-inclination as well as long-period orbits

    CERN Document Server

    Chatterjee, Sourav; Rasio, Frederic A

    2010-01-01

    Recent observations have revealed two new classes of planetary orbits. Rossiter- Mclaughlin (RM) measurements have revealed hot Jupiters in high-obliquity orbits. In addition, direct-imaging has discovered giant planets at large (~ 100 AU) separations via direct-imaging technique. Simple-minded disk-migration scenarios are inconsistent with the high-inclination (and even retrograde) orbits as seen in recent RM measurements. Furthermore, forming giant planets at large semi-major axis (a) may be challenging in the core-accretion paradigm. We perform many N-body simulations to explore the two above-mentioned orbital architectures. Planet-planet scattering in a multi-planet system can naturally excite orbital inclinations. Planets can also get scattered to large distances. Large-a planetary orbits created from planet-planet scattering are expected to have high eccentricities (e). Theoretical models predict that the observed long-period planets, such as Fomalhaut-b have moderate e \\approx 0.3. Interestingly, these...

  12. Discovery of A New Retrograde Trans-Neptunian Object: Hint of A Common Orbital Plane for Low Semi-Major Axis, High Inclination TNOs and Centaurs

    CERN Document Server

    Chen, Ying-Tung; Holman, Matthew J; Payne, Matthew J; Fraser, Wesley C; Lacerda, Pedro; Ip, Wing-Huen; Chen, Wen-Ping; Kudritzki, Rolf-Peter; Jedicke, Robert; Wainscoat, Richard J; Tonry, John L; Magnier, Eugene A; Waters, Christopher; Kaiser, Nick; Wang, Shiang-Yu; Lehner, Matthew

    2016-01-01

    Although the majority of Centaurs are thought to have originated in the scattered disk, with the high-inclination members coming from the Oort cloud, the origin of the high inclination component of trans-Neptunian objects (TNOs) remains uncertain. We report the discovery of a retrograde TNO, which we nickname "Niku", detected by the Pan-STARRS 1 Outer Solar System Survey. Our numerical integrations show that the orbital dynamics of Niku are very similar to that of 2008 KV$_{42}$ (Drac), with a half-life of $\\sim 500$ Myr. Comparing similar high inclination TNOs and Centaurs ($q > 10$ AU, $a 60^\\circ$), we find that these objects exhibit a surprising clustering of ascending node, and occupy a common orbital plane. This orbital configuration has high statistical significance: 3.8-$\\sigma$. An unknown mechanism is required to explain the observed clustering. This discovery may provide a pathway to investigate a possible reservoir of high-inclination objects.

  13. A Study on the Relationship between the Orbital Lifetime and Inclination of Low Lunar Satellites

    Institute of Scientific and Technical Information of China (English)

    Hai-Hong Wang; Lin Liu

    2005-01-01

    A detailed theoretical analysis on the orbital lifetime and orbital inorbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.

  14. An optical survey for space debris on highly eccentric and inclined MEO orbits

    Science.gov (United States)

    Silha, J.; Schildknecht, T.; Hinze, A.; Flohrer, T.; Vananti, A.

    2017-01-01

    Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary region (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalog such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA's Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits were performed between January and August 2013. Eventually 255 surveys were performed during these thirteen nights corresponding to about 47 h of observations. In total 30 uncorrelated faint objects were discovered. On average one uncorrelated object was found every 100 min of observations. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.

  15. The Gravitational Interaction between Planets on Inclined Orbits and Protoplanetary Disks As the Origin of Primordial Spin–Orbit Misalignments

    Science.gov (United States)

    Matsakos, Titos; Königl, Arieh

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  16. Discovery of A New Retrograde Trans-Neptunian Object: Hint of A Common Orbital Plane for Low Semi-Major Axis, High Inclination TNOs and Centaurs

    Science.gov (United States)

    Chen, Ying-Tung; Lin, Hsing-Wen; Holman, Matthew J.; Payne, Matthew John; Fraser, Wesley Cristopher; Lacerda, Pedro; Ip, Wing-Huen; Pan-STARRS 1 Builders

    2016-10-01

    The origin of high inclination objects beyond Jupiter, including trans-Neptunian objects (TNOs) and Centaurs, remains uncertain. We report the discovery of a retrograde TNO, which we nickname "Niku", detected by the Pan-STARRS 1 Outer Solar System Survey. The numerical integrations show that the orbital dynamics of Niku are very similar to those of 2008 KV42 (Drac), with a half-life of ~ 500 Myr and analogous orbital evolution. Comparing similar high inclination members announced by the Minor-Planet Center (q > 10 AU, a 60), we find these objects exhibit a surprising clustering of ascending node, populating a common orbital plane. The statistical significance of 3.8-sigma suggests it is unlikely to be coincidental. An unknown mechanism is required to explain the observed clustering. This discovery may provide a pathway to investigating a possible reservoir of high-inclination objects.

  17. Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2007-01-01

    feedback designed for the controllable subspace of the system, a feedback linearization design and a sliding mode control. The controllers are evaluated by their ability to suppress variations in the B-field and their robustness with respect to the internal dynamics.......This paper applies different control design methods to a tethered satellite system (TSS) to investigate essential control properties of this under-actuated and nonlinear system. When the tether position in the orbit plane is controlled by the tether current, out of orbit plane motions occur...... as an unwanted side effect, due to nonlinear interaction with the Earth’s magnetic field. This paper focus on the uncontrollable out-of-plane motions and the robustness against B-field uncertainty associated with each of three popular controller design methodologies for nonlinear systems: linear quadratic...

  18. Measurements of Stellar Inclinations for Kepler Planet Candidates II: Candidate Spin-Orbit Misalignments in Single and Multiple-Transiting Systems

    CERN Document Server

    Hirano, Teruyuki; Takeda, Yoichi; Winn, Joshua N; Narita, Norio; Takahashi, Yasuhiro H

    2014-01-01

    We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the {\\it Kepler} spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the {\\it Kepler} photometric time series. The rotational line broadening was determined from high-resolution optical spectra with Subaru/HDS. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity) which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample with the 7 stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90$^\\circ$, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally these ...

  19. The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans

    CERN Document Server

    Chen, Yuan-Yuan; Zheng, Jiaqing

    2016-01-01

    We explore planetary migration scenarios for formation of high inclination Neptune Trojans (NTs) and how they are affected by the planetary migration of Neptune and Uranus. If Neptune and Uranus's eccentricity and inclination were damped during planetary migration, then their eccentricities and inclinations were higher prior and during migration than their current values. Using test particle integrations we study the stability of primordial NTs, objects that were initially Trojans with Neptune prior to migration. We also study Trans-Neptunian objects captured into resonance with Neptune and becoming NTs during planet migration. We find that most primordial NTs were unstable and lost if eccentricity and inclination damping took place during planetary migration. With damping, secular resonances with Neptune can increase a low eccentricity and inclination population of Trans-Neptunian objects increasing the probability that they are captured into 1:1 resonance with Neptune, becoming high inclination NTs. We sugg...

  20. The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans

    OpenAIRE

    Chen, Yuan-Yuan; Ma, Yuehua; Zheng, Jiaqing

    2016-01-01

    We explore planetary migration scenarios for formation of high inclination Neptune Trojans (NTs) and how they are affected by the planetary migration of Neptune and Uranus. If Neptune and Uranus's eccentricity and inclination were damped during planetary migration, then their eccentricities and inclinations were higher prior and during migration than their current values. Using test particle integrations we study the stability of primordial NTs, objects that were initially Trojans with Neptun...

  1. Constraining the Relative Inclinations of the Planets B and C of the Millisecond Pulsar PSR B1257+12

    Indian Academy of Sciences (India)

    Lorenzo Iorio

    2010-09-01

    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12. First, we show that the third Kepler’s law does represent an adequate model for the orbital periods of the planets, because other Newtonian and Einsteinian corrections are orders of magnitude smaller than the accuracy in measuring B/C. Then, on the basis of available timing data, we determine the ratio sin C/ sin B = 0.92 ± 0.05 of the orbital inclinations B and C independently of the pulsar’s mass . It turns out that coplanarity of the orbits of B and C would imply a violation of the equivalence principle. Adopting a pulsar mass range 1 ≲ ≲ 3, in solar masses (supported by present-day theoretical and observational bounds for pulsar’s masses), both face-on and edge-on orbital configurations for the orbits of the two planets are ruled out; the acceptable inclinations for B span the range 36 deg ≲ B ≲ 66 deg, with a corresponding relative inclination range 6 deg ≲ (C − B) ≲ 13 deg.

  2. Deriving stellar inclination of slow rotators using stellar activity

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  3. Doppler tomography of transiting exoplanets: A prograde, low-inclined orbit for the hot Jupiter CoRoT-11b

    CERN Document Server

    Gandolfi, Davide; Endl, Michael; Lanza, Antonino F; Damiani, Cilia; Alonso, Roi; Cochran, William D; Deleuil, Magali; Fridlund, Malcolm; Hatzes, Artie P; Guenther, Eike W

    2012-01-01

    We report the detection of the Doppler shadow of the transiting hot Jupiter CoRoT-11b. Our analysis is based on line-profile tomography of time-series, Keck/HIRES high-resolution spectra acquired during the transit of the planet. We measured a sky-projected, spin-orbit angle of 0.1 +/- 2.6 degrees, which is consistent with a very low-inclined orbit with respect to the stellar rotation axis. We refined the physical parameters of the system using a Markov chain Monte Carlo simultaneous fitting of the available photometric and spectroscopic data. An analysis of the tidal evolution of the system shows how the currently measured obliquity and its uncertainty translate into an initial absolute value of less than about 10 degrees on the zero-age main sequence, for an expected average modified tidal quality factor of the star Q'* > 4 x 10^6. This is indicative of an inward migration scenario that would not have perturbed the primordial low obliquity of CoRoT-11b. Taking into account the effective temperature and mass...

  4. Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period

    CERN Document Server

    Wang, Gang

    2014-01-01

    ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirals (EMRIs) and galactic compact binaries, together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecrafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD-GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about ...

  5. Excitation of inclinations in ring-satellite systems

    Science.gov (United States)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1984-01-01

    Resonant gravitational interactions between a ring and a satellite produce secular variations of their orbital inclinations. Interactions at vertical resonances, analogous to Lindblad resonances but involving inclinations instead of eccentricities, excite inclinations. There is no inclination analog of the corotation resonance. An equatorial ring changes the inclination of a nearby satellite in qualitatively the same way that a satellite in an equatorial orbit changes the inclination of a nearby ring. Viscous dissipation in a ring leads to an equilibrium value of its inclination. These results provide a basis for discussing the origins of the inclinations of planetary rings.

  6. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    Science.gov (United States)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  7. Critical inclinations in satellite theory

    Science.gov (United States)

    Deprit, A.

    1978-01-01

    The main problem of satellite theory is described in polar coordinates by a Hamiltonian function. It is proposed to find a solution of the Hamiltonian function with the following properties: (1) the reference orbit is Keplerian; (2) no restriction is imposed on the eccentricity; in particular, it is exempt of singularities - real or apparent - for small eccentricities; and (3) no restriction is imposed on the inclination; in particular, it is exempt of singularities - real or apparent - for small inclinations; also it is valid even in the neighborhood of inclinations at which the perigee is stationary.

  8. Dynamics of Neptune's Trojans: II. Eccentric orbits and observed ones

    CERN Document Server

    Zhou, Li-Yong; Sun, Yi-Sui

    2010-01-01

    In a previous paper, we have presented a global view of the stability of Neptune Trojan (NT hereafter) on inclined orbit. We discuss in this paper the dependence of stability of NT orbits on the eccentricity. High-resolution dynamical maps are constructed using the results of extensive numerical integrations of orbits initialized on the fine grids of initial semimajor axis (a0) versus eccentricity (e0). The extensions of regions of stable orbits on the (a0, e0) plane at different inclinations are shown. The maximum eccentricities of stable orbits in three most stable regions at low (0, 12deg.), medium (22,36deg.) and high (51, 59deg.) inclination, are found to be 0.10, 0.12 and 0.04, respectively. The fine structures in the dynamical maps are described. Via the frequency analysis method, the mechanisms that portray the dynamical maps are revealed. The secondary resonances, concerning the frequency of the librating resonant angle and the frequency of the quasi 2:1 mean motion resonance between Neptune and Uran...

  9. On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks

    CERN Document Server

    Cresswell, Paul; Kley, Willy; Nelson, Richard P

    2007-01-01

    Young planets embedded in their protoplanetary disk interact gravitationally with it leading to energy and angular momentum exchange. This interaction determines the evolution of the planet through changes to the orbital parameters. We investigate changes in the orbital elements of a 20 Earth--mass planet due to the torques from the disk. We focus on the non-linear evolution of initially non-vanishing eccentricity $e$ and/or inclination $i$. We treat the disk as a two- or three-dimensional viscous fluid and perform hydrodynamical simulations with an embedded planet. We find rapid exponential decay of the planet orbital eccentricity and inclination for small initial values of $e$ and $i$, in agreement with linear theory. For larger values of $e > 0.1$ the decay time increases and the decay rate scales as $\\dot{e} \\propto e^{-2}$, consistent with existing theoretical models. For large inclinations ($i$ > 6 deg) the inclination decay rate shows an identical scaling $di/dt \\propto i^{-2}$. We find an interesting ...

  10. Generation of highly inclined protoplanetary discs through single stellar flybys

    CERN Document Server

    Xiang-Gruess, Meng

    2015-01-01

    We study the three-dimensional evolution of a viscous protoplanetary disc which is perturbed by a passing star on a parabolic orbit. The aim is to test whether a single stellar flyby is capable to excite significant disc inclinations which would favour the formation of so-called misaligned planets. We use smoothed particle hydrodynamics to study inclination, disc mass and angular momentum changes of the disc for passing stars with different masses. We explore different orbital configurations for the perturber's orbit to find the parameter spaces which allow significant disc inclination generation. Prograde inclined parabolic orbits are most destructive leading to significant disc mass and angular momentum loss. In the remaining disc, the final disc inclination is only below $20^\\circ$. This is due to the removal of disc particles which have experienced the strongest perturbing effects. Retrograde inclined parabolic orbits are less destructive and can generate disc inclinations up to $60^\\circ$. The final disc...

  11. Processing of A New Digital Orthoimage Map of The Martian Western Hemisphere Using Data Obtained From The Mars Orbiter Camera At A Resolution of 256 Pixel/deg

    Science.gov (United States)

    Wählisch, M.; Niedermaier, G.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.

    We present a new digital orthoimage map of Mars using data obtained from the CCD line scanner Mars Orbiter Camera (MOC) of the Mars Global Surveyor Mis- sion (MGS) [1,2]. The map covers the Mars surface from 0 to 180 West and from 60 South to 60 North with the MDIM2 resolution of 256 pixel/degree and size. Image data processing has been performed using multiple programs, developed by DLR, Technical University of Berlin [3], JPL, and the USGS. 4,339 Context and 183 Geodesy images [2] were included. After radiometric corrections, the images were Mars referenced [4], geometrically corrected [5] and orthoprojected using a global Martian Digital Terrain Model (DTM) with a resolution of 64 pixel/degree, developed at DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) data [6]. To elim- inate major differences in brightness between the individual images of the mosaics, high- and low-pass filter processing techniques were applied for each image. After filtering, the images were mosaicked without registering or using block adjustment techniques in order to improve the geometric quality. It turns out that the accuracy of the navigation data has such a good quality that the orthoimages fit very well to each other. When merging the MOC mosaic with the MOLA data using IHS- trans- formation, we recognized very good correspondence between these two datasets. We create a topographic image map of the Coprates region (MC­18) adding contour lines derived from the global DTM to the mosaic. These maps are used for geological and morphological interpretations in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.mssss.com, [2] Caplinger, M. and M. Malin, "The Mars Or- biter Camera Geodesy Campaign, JGR, in press, [3] Scholten, F., Vol XXXI, Part B2, Wien 1996, p.351-356, [4] naïf.jpl.nasa.gov, [5] R.L.Kirk. et al. (2001), "Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter

  12. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  13. Synergetic plane-change capability of a conceptual aeromaneuvering-orbital-transfer vehicle

    Science.gov (United States)

    Menees, Gene P.; Wilson, John F.; Adelman, Henry G.

    1987-01-01

    The flight strategy for a general low-earth orbit plane-change is analyzed for a conceptual, high-lift, aeromaneuvering-orbital-transfer vehicle, and applied to the important case of the 45 deg plane-inclination change. The study focuses on two principal methods: (1) the procedure to obtain a change in the inclination of the vehicle's orbital plane, and (2) the full rendezvous procedure. Optimal trajectories for minimal propellant use during the synergetic aerotransit are developed, which incorporate best estimates of constraints imposed by reusable thermal-protection requirements and human tolerance to g-load levels. The performance capability for one-way payload delivery to the target orbit is analyzed in detail and the capability for return to the base orbit demonstrated.

  14. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    Science.gov (United States)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  15. Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO

    Science.gov (United States)

    Chao, C.; Gick, R.

    Earlier studies conducted a The Aerospace Corporation discovered that the GPSt Block II satellites placed in disposal orbits can eventually, perhaps in 20 to 40 years, reenter into the operating constellation. This is because the disposal orbits, while circular initially, evolve int o orbits with significant eccentricity mostly as the result of sun-moon gravitational perturbations. Options of minimizing the eccentricity growth include reducing initial eccentricity of the disposal orbit and inserting into an orbit with a favorable argument of perigee. A recent study was performed to examine whether the same long-term eccentricity evolution exists for the disposal orbits of other navigation satellite systems such as GLONASS and GALILEO. The non-operational GPS Block I satellites are included in the study as well, because the orbits are at 63.4 deg inclination, which is different from that of the GPS Block II satellites. Similar to the earlier studies, long-term perturbations and stability of these orbits were understood through analytical and numerical investigations. Two-hundred-year semi-analytic integration revealed interesting facts about the orbit stability. Initially near circular, these types of orbits may evolve into orbits with large eccentricity (as much as 0.7 over 150 years). Analytical approximations through doubly-averaged equations reveal that the cause is due to the resonance induced by Sun/moon and J2 secular perturbations. A total of 113 non-operational GLONASS satellites and upper stages and 10 GPS/Block I satellites were propagated for 200 years using a high-precision semi-analytical propagator (MEANPROP). Results show that the GLONASS satellites will start to enter the operating GPS constellation after 40 years. The uncovered resonance effect is strongly dependent on o bit inclination and altitude. The effect becomes morer pronounced for GALILEO orbits due to a higher altitude, 3000 km above GPS. Strategies to minimize the significant

  16. Il teatro degli spiriti.

    Directory of Open Access Journals (Sweden)

    Chiara Pussetti

    2013-07-01

    Full Text Available Questo saggio è dedicato a un culto di possessione, in cui tutte ledonne, investite dagli spiriti degli uomini morti prima dell’iniziazione, compiono un percorso iniziatico parallelo a quello maschile, consentendo a queste anime, potenzialmente pericolose, di completare il cammino che non hanno potuto percorrere da vivi e quindi di raggiungere serenamente il mondo dei morti, come antenati protettori del villaggio

  17. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  18. Three Orbital Burns to Molniya Orbit via Shuttle Centaur G Upper Stage

    Science.gov (United States)

    Williams, Craig H.

    2014-01-01

    An unclassified analytical trajectory design, performance, and mission study was done for the 1982-86 joint NASA-USAF Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57deg inclined orbit: 9,545 lb vs. 9,552 lb of separated spacecraft weight respectively. There was a significant reduction in the need for propellant launch time reserve for a one hour window: only 78 lb for the three burn transfer vs. 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three vs. two burn transfer (12 vs. 11/4 hrs), but could be accommodated by modest modifications to Centaur systems. Future applications were

  19. Three Orbital Burns to Molniya Orbit Via Shuttle_Centaur G Upper Stage

    Science.gov (United States)

    Williams, Craig H.

    2015-01-01

    An unclassified analytical trajectory design, performance, and mission study was done for the 1982 to 1986 joint National Aeronautics and Space Administration (NASA)-United States Air Force (USAF) Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37 deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57 deg inclined orbit: 9,545 versus 9,552 lb of separated spacecraft weight, respectively. There was a significant reduction in the need for propellant launch time reserve for a 1 hr window: only 78 lb for the three burn transfer versus 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three versus two burn transfer (12 vs. 1-1/4 hr), but could be

  20. Comparison of the buccolingual inclination in alveolar bone and tooth using dental CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Kim, Jin Soo; Kim, Jae Duk [Chosun University, Gwangju (Korea, Republic of)

    2008-03-15

    It is important to determine the bucco-lingual inclination of implants on radiographs before the implant surgery. The purpose of this study was to compare the buccolingual inclination in alveolar bone and the tooth with dental cone beam CT and to prepare the standard for the buccolingual inclination of implant. Axial, panoramic, and buccolingually sectioned images of 80 implant cases with stent including straight marker using CB Mercuray{sup TM} (Hitachi, Japan) were evaluated. The comparison of the buccolingual inclination of remained alveolar bone with the tooth and the marker on buccolingually sectioned views was performed statistically. The average buccolingual inclination of remained alveolar bone and tooth was 82.8 {+-} 4.6 .deg. C and 85.8 {+-} 4.7 .deg. C (p<0.05, r=0.96) at the 1st molar area and 76.4 {+-} 1.7 .deg. C and 82.7 {+-} 1.7 .deg. C respectively (p>0.05, r=0.12) at the 2nd premolar area in upper jaw. The average buccolingual inclination of remained alveolar bone and tooth was 81.3 {+-} 8.3 .deg. C and 87.5 {+-} 6.3 .deg. C (p>0.05, r=0.85) at the lower 2nd premolar area and 94.3 {+-} 6.6 .deg. C and 93.3 {+-} 7.2 .deg. C respectively (p>0.05, r=0.91) at the 1st molar area in lower jaw. The inclinations of markers were very different from those of remained bone at the most of areas except the upper 2nd premolar area (r=0.79). We recommend dental CBCT analysis for determining the buccolingual inclination of dental implant, because of significant difference, in average, between the buccolingual inclination of remained alveolar bone and tooth.

  1. Evolution of inclined planets in three-dimensional radiative discs

    CERN Document Server

    Bitsch, Bertram

    2011-01-01

    While planets in the solar system only have a low inclination with respect to the ecliptic there is mounting evidence that in extrasolar systems the inclination can be very high, at least for close-in planets. One process to alter the inclination of a planet is through planet-disc interactions. Recent simulations considering radiative transport have shown that the evolution of migration and eccentricity can strongly depend on the thermodynamic state of the disc. We extend previous studies to investigate the planet-disc interactions of fixed and moving planets on inclined and eccentric orbits. We also analyse the effect of the disc's thermodynamic properties on the orbital evolution of embedded planets in detail. The protoplanetary disc is modelled as a viscous gas where the internally produced dissipation is transported by radiation. For locally isothermal discs, we confirm previous results and find inclination damping and inward migration for planetary cores. For low inclinations i < 2 H/r, the damping is...

  2. Oscillations of Relative Inclination Angles in Compact Extrasolar Planetary Systems

    CERN Document Server

    Becker, Juliette C

    2015-01-01

    The Kepler Mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. A large fraction of the observational sample contains limited multiplicity, begging the question whether there is a true diversity of multi transiting systems, or if some systems merely possess high mutual inclinations, allowing them to appear as single-transiting systems in a transit-based survey. This paper begins an exploration of the effectiveness of dynamical mechanisms in exciting orbital inclination within exoplanetary systems of this class. For these tightly packed systems, we determine that the orbital inclination angles are not spread out appreciably through self-excitation. In contrast, the two Kepler multi-planet systems with additional non-transiting planets are susceptible to oscillations of their inclination angles, which means their currently...

  3. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. II. A SHORT-PERIOD COMPANION ORBITING AN F STAR WITH EVIDENCE OF A STELLAR TERTIARY AND SIGNIFICANT MUTUAL INCLINATION

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan; Jiang Peng; Lee, Brian; Nelson, Ben [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 2611-2055 (United States); Barnes, Rory [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Beatty, Thomas G.; Gaudi, B. Scott; Shappee, Benjamin J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Crepp, Justin R. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ferreira, Leticia; Porto de Mello, Gustavo F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Gary, Bruce; Hebb, Leslie; Stassun, Keivan [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ghezzi, Luan, E-mail: scfleming@psu.edu [Laboratorio Interinstitucional de e-Astronomia, LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ-20921-400 (Brazil); and others

    2012-09-15

    }, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism may have driven the dynamical evolution of this system.

  4. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. II. A Short-period Companion Orbiting an F Star with Evidence of a Stellar Tertiary and Significant Mutual Inclination

    Science.gov (United States)

    Fleming, Scott W.; Ge, Jian; Barnes, Rory; Beatty, Thomas G.; Crepp, Justin R.; De Lee, Nathan; Esposito, Massimiliano; Femenia, Bruno; Ferreira, Leticia; Gary, Bruce; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Jiang, Peng; Lee, Brian; Nelson, Ben; Porto de Mello, Gustavo F.; Shappee, Benjamin J.; Stassun, Keivan; Thompson, Todd A.; Tofflemire, Benjamin M.; Wisniewski, John P.; Wood-Vasey, W. Michael; Agol, Eric; Allende Prieto, Carlos; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A.; Coban, Louis; Costello, Korena S.; da Costa, Luis N.; Good, Melanie L.; Hua, Nelson; Kane, Stephen R.; Lander, Gary R.; Liu, Jian; Ma, Bo; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Elena; Malanushenko, Viktor; Muna, Demitri; Nguyen, Duy Cuong; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Roebuck, Eric J.; Santiago, Basilio X.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; Snedden, Stephanie; Vincent, Chelsea L. M.; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A.; Weaver, Gwendolyn M.; Zhao, Bo

    2012-09-01

    We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420 ± 0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields T eff = 6427 ± 33 K, log g = 4.52 ± 0.14, and [Fe/H] = -0.04 ± 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M 1 = 1.21 ± 0.08 M ⊙ and R 1 = 1.09+0.15 - 0.13 R ⊙. The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small vsin I suggest that the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity-rotation relation matches the orbital period of the inner companion to within 1.5 σ, suggesting that the primary and inner companion are tidally locked. If the inner companion's orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of ~0.3-0.4 M ⊙. Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M {2, 3} <~ 1.0 M ⊙, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of ~0.5-0.6 M ⊙, and its orbit is likely significantly inclined from that of the secondary, suggesting that the Kozai-Lidov mechanism

  5. Ingegneria degli acquiferi

    CERN Document Server

    Molfetta, Antonio

    2012-01-01

    Il testo fornisce le conoscenze necessarie per affrontare, con un approccio quantitativo, i molteplici aspetti connessi al flusso delle risorse idriche sotterranee (acque di falda) e alla propagazione e bonifica di contaminanti nei sistemi acquiferi. Vengono illustrate le proprietà fondamentali che definiscono la capacità di immagazzinamento, trasporto e rilascio dell’acqua negli acquiferi, e successivamente, descritte le metodiche per la determinazione di tali parametri tramite l’esecuzione e l’interpretazione di prove di falda, di pozzo e di laboratorio. A partire dalla classificazione chimico fisica-tossicologica dei contaminanti vengono, quindi, analizzati i meccanismi di propagazione e illustrate le soluzioni analitiche dell’equazione del trasporto di massa nei mezzi porosi. L’ultima parte del testo è dedicata alla caratterizzazione e bonifica degli acquiferi contaminati. Il testo è rivolto sia agli studenti universitari, sia ai professionisti che debbano affrontare con un approccio quantit...

  6. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  7. Size Distribution of Main-Belt Asteroids with High Inclination

    CERN Document Server

    Terai, Tsuyoshi

    2010-01-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) to explore asteroid collisional evolution under hypervelocity collisions of around 10 km/s. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg^2 with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17 +/- 0.02 for low-inclination ( 15 deg) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with inclinatio...

  8. On the inclination and habitability of the HD 10180 system

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Gelino, Dawn M., E-mail: skane@sfsu.edu [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  9. Accurate characterization of the stellar and orbital parameters of the exoplanetary system WASP-33 b from orbital dynamics

    CERN Document Server

    Iorio, Lorenzo

    2016-01-01

    By using the most recently published Doppler tomography measurements and accurate theoretical modeling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination $i_{\\rm p}$ to the plane of the sky and of the sky-projected spin-orbit misalignment $\\lambda$ at two epochs six years apart allowed for the determination of the longitude of the ascending node $\\Omega$ and of the orbital inclination $I$ to the apparent equatorial plane at the same epochs. As a consequence, average rates of change $\\dot\\Omega_{\\rm exp},~\\dot I_{\\rm exp}$ of this two orbital elements, accurate to a $\\approx 10^{-2}~\\textrm{deg}~\\textrm{yr}^{-1}$ level, were calculated as well. By comparing them to general theoretical expressions $\\dot\\Omega_{J_2},~\\dot I_{J_2}$ for their precessions induced by an arbitrarily oriented quadrupole mass moment, we were able to dete...

  10. The Orbits of Saturn's Small Satellites

    Science.gov (United States)

    Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M.; Charnoz, S.

    2005-05-01

    We report on the orbits of the small, inner Saturnian satellites, either recovered or newly-discovered in recent Cassini imaging observations (excluding Helene, Telesto and Calypso, which will be discussed by another group). Using combined Cassini and Voyager observations, the mean motions of Pan and Atlas have been refined by several orders of magnitude. The Atlas orbit is based on a numerical integration perturbed by all of the massive Saturnian satellites including Prometheus, Pandora, Janus, and Epimetheus. We find that the dominant perturber is Prometheus. Cassini, Voyager, HST, and Earth-based data have been used to refine the orbits of Janus, Epimetheus, Prometheus and Pandora. The orbits of the co-orbitals, Janus and Epimetheus, remain stable; their orbital swap does not occur until Februrary, 2006. The orbits of Prometheus and Pandora remain close to recent values (Jacobson and French 2004, Icarus, 172, 382). Six new objects have been discovered to date -- three (S/2004 S3, S4, S6) in close proximity to the F ring, two (S/2004 S1(Methone), S/2004 S2(Pallene)) between the orbits of Mimas and Enceladus, and one (S/2004 S5(Polydeuces)) co-orbital with Dione, trailing by ˜60 deg (Porco et al., Science 307, 25 Feb 2005). One of the F-ring objects -- S/2004 S3 -- was seen over a 118-day interval, but none of those objects, including S/2004 S3, were subsequently recovered in an F-ring movie acquired on 15 November 2004 (29 days after the last sighting of S/2004 S3) with an image scale of 4 km/pixel, in which all were expected to appear. Consequently, we are confident only that Methone, Pallene and Polydeuces are solid satellites; S/2004 S3, S4 and S6 may be transient clumps. Our orbital fits, both precessing ellipse models and orbital integrations, suggest that Pallene is the same object as S/1981 S14, imaged by Voyager 2 on 23 August 1981, contrary to our initial reports (IAU circular 8389). The orbital inclination and eccentricity of Methone are considerably

  11. Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis

    CERN Document Server

    Xie, Ji-Wei; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, P; Fu, J N; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-01-01

    The nearly circular (mean eccentricity ~0.06) and coplanar (mean mutual inclination ~3 deg) orbits of the Solar System planets motivated Kant and Laplace to put forth the hypothesis that planets are formed in disks, which has developed into the widely accepted theory of planet formation. Surprisingly, the first several hundred extrasolar planets (mostly Jovian) discovered using the Radial Velocity (RV) technique are commonly on eccentric orbits ( ~ 0.3). This raises a fundamental question: Are the Solar System and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the LAMOST observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), while the other half are multiple-t...

  12. Inclinations of small quiet-Sun magnetic features based on a new geometric approach

    CERN Document Server

    Jafarzadeh, S; Lagg, A; Rubio, L R Bellot; van Noort, M; Feller, A; Danilovic, S

    2014-01-01

    High levels of horizontal magnetic flux have been reported in the quiet-Sun internetwork, often based on Stokes profile inversions. Here we introduce a new method for deducing the inclination of magnetic elements and use it to test magnetic field inclinations from inversions. We determine accurate positions of a set of small, bright magnetic elements in high spatial resolution images sampling different photospheric heights obtained by the Sunrise balloon-borne solar observatory. Together with estimates of the formation heights of the employed spectral bands, these provide us with the inclinations of the magnetic features. We also compute the magnetic inclination angle of the same magnetic features from the inversion of simultaneously recorded Stokes parameters. Our new, geometric method returns nearly vertical fields (average inclination of around 14 deg with a relatively narrow distribution having a standard deviation of 6 deg). In strong contrast to this, the traditionally used inversions give almost horizo...

  13. Transit Timing Variations for Eccentric and Inclined Exoplanets

    Science.gov (United States)

    Nesvorný, David

    2009-08-01

    The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorný & Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.

  14. Direct Detection and Orbit Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data

    Science.gov (United States)

    Currie, Thayne; Fukagawa, Misato; Thalmann, Christian; Matsumura, Soko; Plavchan, Peter

    2012-01-01

    We present previously unpublished July 2005 H-band coronagraphic data of the young, planet-hosting star HR 8799 from the newly-released Keck/NIRC2 archive. Despite poor observing conditions, we detect three of the planets (HR 8799 bcd), two of them (HR 8799 bc) without advanced image processing. Comparing these data with previously published 1998-2011 astrometry and that from re-reduced October 2010 Keck data constrains the orbits of the planets. Analyzing the planets' astrometry separately, HR 8799 d's orbit is likely inclined at least 25 deg from face-on and the others may be on in inclined orbits. For semimajor axis ratios consistent with a 4:2:1 mean-motion resonance our analysis yields precise values for HR 8799 bcd's orbital parameters and strictly constrains the planets' eccentricities to be less than 0.18-0.3. However, we find no acceptable orbital solutions with this resonance that place the planets in face-on orbits; HR 8799 d shows the largest deviation from such orbits. Moreover, few orbits make HR 8799 d coplanar with b and c, whereas dynamical stability analyses used to constrain the planets' masses typically assume coplanar and/or fare.on orbits. This paper illustrates the significant science gain enabled with the release of the NIRC2 archive.

  15. Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia).

    Science.gov (United States)

    Mora, Cordula V; Acerbi, Merissa L; Bingman, Verner P

    2014-12-01

    It has been well established that homing pigeons are able to use the Earth's magnetic field to obtain directional information when returning to their loft and that their magnetic compass is based, at least in part, on the perception of magnetic inclination. Magnetic inclination has also been hypothesized in pigeons and other long-distance navigators, such as sea turtles, to play a role providing positional information as part of a map. Here we developed a behavioral paradigm which allows us to condition homing pigeons to discriminate magnetic inclination cues in a spatial-orientation arena task. Six homing pigeons were required to discriminate in a circular arena between feeders located either in a zone with a close to 0 deg inclination cue or in a zone with a rapidly changing inclination cue (-3 deg to +85 deg when approaching the feeder and +85 deg to -3 deg when moving away from the feeder) to obtain a food reward. The pigeons consistently performed this task above chance level. Control experiments, during which the coils were turned off or the current was running anti-parallel through the double-wound coil system, confirmed that no alternative cues were used by the birds in the discrimination task. The results show that homing pigeons can be conditioned to discriminate differences in magnetic field inclination, enabling investigation into the peripheral and central neural processing of geomagnetic inclination under controlled laboratory conditions.

  16. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  17. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  18. Spectroscopic search for new SW Sextantis stars in the 3-4 hour orbital period range -- I

    CERN Document Server

    Rodríguez-Gil, P; Gänsicke, B T

    2006-01-01

    [Abridged] We report on time-resolved optical spectroscopy of ten non-eclipsing nova-like cataclysmic variables in the orbital period range between 3 and 4 hours. Of the ten systems so far observed, HL Aqr, BO Cet, AH Men, V380 Oph, AH Pic, and LN UMa are identified as new members of the SW Sex class. We present improved orbital period measurements for HL Aqr (Porb = 3.254 +- 0.001 h) and V380 Oph (Porb = 3.69857 +- 0.00002 h). BO Cet and V380 Oph exhibit emission-line flaring with periodicities of 20 min and 47 min, respectively. The Halpha line of HL Aqr shows significant blueshifted absorption modulated at the orbital period. Similarly to the emission S-wave of the high-inclination SW Sex stars, this absorption S-wave has its maximum blue velocity at orbital phase ~0.5. We estimate an orbital inclination for HL Aqr in the range 19 < i < 27 deg, which is much lower than that of the emission-dominated, non-eclipsing SW Sex stars (i ~ 60-70 deg). This gives rise to the interesting possibility of many lo...

  19. Strong Erosion-Driven Nongravitational Effects in Orbital Motions of the Kreutz Sungrazing System's Dwarf Comets

    CERN Document Server

    Sekanina, Zdenek

    2014-01-01

    We investigate the relationship among the angular orbital elements --- the longitude of the ascending node, Omega, the inclination, i, and the argument of perihelion, omega --- of dwarf sungrazing comets of the Kreutz system, whose catalogued orbits were derived using a parabolic gravitational approximation. While in a plot of omega against Omega the major and dwarf sungrazers follow a similar law, in a plot of i against Omega they behave differently. The major sungrazers fit a curve of invariable (reference) apsidal orientation, whereas the dwarf comets lie along a curve that makes with it 15 deg. While the perihelion longitude of dwarf sungrazers is statistically constant, the perihelion latitude increases systematically with Omega. A perturbation analysis indicates that this is due to an acceleration normal to the orbit plane. The culprit is neglect of an erosion-driven acceleration in the motions of the dwarf sungrazers, as illustrated by computing, for several test SOHO/STEREO sungrazers, orbital solutio...

  20. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  1. Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination.

    Science.gov (United States)

    Lefeldt, Nele; Dreyer, David; Schneider, Nils-Lasse; Steenken, Friederike; Mouritsen, Henrik

    2015-01-15

    Migratory birds are known to use the Earth's magnetic field as an orientation cue on their tremendous journeys between their breeding and overwintering grounds. The magnetic compass of migratory birds relies on the magnetic field's inclination, i.e. the angle between the magnetic field lines and the Earth's surface. As a consequence, vertical or horizontal field lines corresponding to 0 or 90 deg inclination should offer no utilizable information on where to find North or South. So far, very little is known about how small the deviations from horizontal or vertical inclination are that migratory birds can detect and use as a reference for their magnetic compass. Here, we asked: what is the steepest inclination angle at which a migratory bird, the Eurasian blackcap (Sylvia atricapilla), can still perform magnetic compass orientation in Emlen funnels? Our results show that blackcaps are able to orient in an Earth's strength magnetic field with inclination angles of 67 and 85 deg, but fail to orient in a field with 88 deg inclination. This suggests that the steepest inclination angle enabling magnetic compass orientation in migratory blackcaps tested in Emlen funnels lies between 85 and 88 deg.

  2. Commentary to "LARES successfully launched in orbit: Satellite and mission description" by A. Paolozzi and I. Ciufolini

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    We comment on some statements in a recent paper by Paolozzi and Ciufolini concerning certain remarks raised by us on the realistic accuracy obtainable in testing the general relativistic Lense-Thirring effect in the gravitational field of the Earth with the newly launched LARES satellite together with the LAGEOS and LAGEOS II spacecraft in orbit for a long time. The orbital configuration of LARES is different from that of the originally proposed LAGEOS-3. Indeed, while the latter one should have been launched to the same altitude of LAGEOS (i.e. about $h_{\\rm L}=5890$ km) in an orbital plane displaced by $180$ deg with respect to that of LAGEOS ($I_{\\rm L}=110$ deg, $I_{\\rm L3}=70$ deg), LARES currently moves at a much smaller altitude (about $h_{\\rm LR}=1440$ km) and at a slightly different inclination ($I_{\\rm LR} = 69.5$ deg). As independently pointed out in the literature by different authors, the overall accuracy of a LARES-LAGEOS-LAGEOS II Lense-Thirring test may be unfavorably \\textcolor{black}{impacte...

  3. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    Science.gov (United States)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  4. Spin-orbit inclinations of the exoplanetary systems HAT-P-8b, HAT-P-9b, HAT-P-16b, and HAT-P-23b

    Science.gov (United States)

    Moutou, C.; Díaz, R. F.; Udry, S.; Hébrard, G.; Bouchy, F.; Santerne, A.; Ehrenreich, D.; Arnold, L.; Boisse, I.; Bonfils, X.; Delfosse, X.; Eggenberger, A.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Martinez, P.; Pepe, F.; Perrier, C.; Queloz, D.; Santos, N. C.; Ségransan, D.; Toublanc, D.; Troncin, J. P.; Vanhuysse, M.; Vidal-Madjar, A.

    2011-09-01

    We report the measurement of the spin-orbit angle of the extra-solar planets HAT-P-8 b, HAT-P-9 b, HAT-P-16 b, and HAT-P-23 b, based on spectroscopic observations performed at the Observatoire de Haute-Provence with the SOPHIE spectrograph on the 1.93-m telescope. Radial velocity measurements of the Rossiter-McLaughlin effect show the detection of an apparent prograde, aligned orbit for all systems. The projected spin-orbit angles are found to be λ = -17°+9.2-11.5, -16° ± 8°, -10° ± 16°, and +15° ± 22° for HAT-P-8, HAT-P-9, HAT-P-16, and HAT-P-23, respectively, with corresponding projected rotational velocities of 14.5 ± 0.8, 12.5 ± 1.8, 3.9 ± 0.8, and 7.8 ± 1.6 km s-1. These new results increase to 37 the number of accurately measured spin-orbit angles in transiting extrasolar systems. We conclude by drawing a tentative picture of the global behaviour of orbital alignement, involving the complexity and diversity of possible mechanisms. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 10A.PNP.CONS).

  5. Planet formation in slightly inclined binary systems

    Directory of Open Access Journals (Sweden)

    Ge J.

    2011-07-01

    Full Text Available One of the major problems of planet formation in close binary systems, such as α Centauri AB, is the formation of planetary embryos or cores by mutual accretion of km-sized planetesimals. In this contribution, we test the planetesimal accretion in such close binary systems but with small inclinations iB = 0.1–10° between the binary orbital plane and the gas disk plane. Compared to previous studies (coplanar case with iB = 0, we find that (1 planetesimal disk is stratified in the vertical direction and planetesimals are redistributed on different orbit groups with respect to their sizes, thus (2 collisions between similar-sized bodies dominate, leading to low dV and favoring planetesimal accretion (3 the planetesimal collision timescale at 1–2 AU is estimated as: T ∼ (1 + 100iB × 103 yrs, where 0 ≤ iB ≤ 10°. As a conclusion, although planetesimal accretion are much more favored in slightly inclined binary systems, it is significantly less efficient and slowed-down as compared to the single-star case.

  6. Deriving stellar inclination of slow rotators using stellar activity

    CERN Document Server

    Dumusque, X

    2014-01-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclinationt for fast rotators, it becomes much more difficult when stars are rotating slower than $\\sim2$-2.5 \\kms. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD189733, we estimate the stellar inclination to be $i=84^{+6}_{-20}$ degrees, which implies a star-planet obliquity of $\\psi=4^{+18}_{-4}$ considering previous measurements of the spin-orbit angle. For $\\alpha$ Cen B, we derive an inclination of $i=45^{+9}_{-19}$, which implies that the rotational spin of the star is not aligned with the orbital spin of the $\\alpha$ Cen binary system. In addition, assuming that $\\alpha$ Cen Bb is aligned with its host star, no transit would occur. The inclination of $\\alpha$ Cen B can be measured using 40...

  7. Orbiter entry trajectory corridors: 32000 pound payload, 67.5 percent center of gravity. [glide path data compilation

    Science.gov (United States)

    Treybig, J. H.

    1975-01-01

    Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.

  8. Inclination and relativistic effects in the outburst evolution of black hole transients

    CERN Document Server

    Muñoz-Darias, T; Plant, D S; Ponti, G; Fender, R P; Dunn, R J H

    2013-01-01

    We have systematically studied the effect of the orbital inclination in the outburst evolution of black hole transients. We have included all the systems observed by the Rossi X-ray timing explorer in which the thermal, accretion disc component becomes strongly dominant at some point of the outburst. Inclination is found to modify the shape of the tracks that these systems display in the colour/luminosity diagrams traditionally used for their study. Black hole transients seen at low inclination reach softer spectra and their accretion discs look cooler than those observed closer to edge-on. This difference can be naturally explained by considering inclination dependent relativistic effects on accretion discs.

  9. Cloning and sequencing the degS-degU operon from an alkalophilic Bacillus-brevis

    CSIR Research Space (South Africa)

    Louw, M

    1994-10-01

    Full Text Available at the amino acid level to the B. subtilis degS-degU genes showed 74% and 84% similarity, respectively. On a multicopy vector the B. brevis degS-degU genes were found to cause hypersecretion of several extracellular enzymes in a B. subtilis rec (-) strain...

  10. Precession of the Orbital Plane of Binary Pulsars and Significant Variabilities

    Institute of Scientific and Technical Information of China (English)

    Bi-Ping Gong

    2005-01-01

    There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i =87.7+17 -29 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.

  11. Boiling heat transfer in horizontal and inclined rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.M.; Mobarak, A.; Hilal, M.; Mohareb, M.R. (Cairo Univ. (Egypt))

    1987-05-01

    The present experimental investigation is concerned with boiling heat transfer of water inside both horizontal and inclined rectangular channels under a relatively low heat flux. These configurations simulate the absorber channel of line-focus solar concentrations under boiling conditions. The experimental facility includes electrically heated aluminum rectangular channels with aspect ratios of 2.67 and 0.37. The experimental results of the two-phase Nusselt number for the two aspect ratios and for the inclination angles 0, 15, 30, and 45 deg were correlated in terms of a ratio of the two-phase to the liquid-phase Reynolds number for the forced-convection vaporization region. The proposed correlations agree well with previous investigations. In the present work, classifications of the various flow patterns were made by direct observation through a glass window at the end of the test section.

  12. Codimension 2 reversible heteroclinic bifurcations with inclination flips

    Institute of Scientific and Technical Information of China (English)

    XU YanCong; ZHU DeMing; DENG GuiFeng

    2009-01-01

    In this paper,the heteroclinic bifurcation problem with real eigenvalues and two inclination-flips is investigated in a four-dimensional reversible system.We perform a detailed study of this case by using the method originally established in the papers "Problems in Homoclinic Bifurcation with Higher Dimensions" and "Bifurcation of Heteroclinic Loops," and obtain fruitful results,such as the existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic loops,R-symmetric homoclinic orbit and R-symmetric periodic orbit.The double R-symmetric homoclinic bifurcation (i.e.,two-fold R-symmetric homoclinic bifurcation) for reversible heteroclinic loops is found,and the existence of infinitely many R-symmetric periodic orbits accumulating onto a homoclinic orbit is demonstrated.The relevant bifurcation surfaces and the existence regions are also located.

  13. The Spin-Orbit Misalignment of the XO-3 Exoplanetary System

    CERN Document Server

    Winn, Joshua N; Fabrycky, Daniel; Howard, Andrew W; Marcy, Geoffrey W; Narita, Norio; Crossfield, Ian J; Suto, Yasushi; Turner, Edwin L; Esquerdo, Gil; Holman, Matthew J

    2009-01-01

    We present photometric and spectroscopic observations of the 2009 Feb. 2 transit of the exoplanet XO-3b. The new data show conclusively that the planetary orbital axis and stellar rotation axis are misaligned. We thereby confirm the previous finding by Hebrard and coworkers, although we find a significantly smaller angle (37.3 +/- 3.7 deg) between the sky projections of the two axes. XO-3b is the first exoplanet known to have a highly inclined orbit relative to the equatorial plane of its parent star, and as such it may fulfill the predictions of some scenarios for the migration of massive planets into close-in orbits. We revisit the statistical analysis of spin-orbit alignment in hot-Jupiter systems. Assuming the stellar obliquities to be drawn from a Rayleigh distribution, we find the mode of the distribution to be 13^{+5}_{-2} deg. It remains the case that a model representing two different migration channels--in which some planets are drawn from a perfectly-aligned distribution and the rest are drawn from...

  14. $\\beta$ Pictoris' inner disk in polarized light and new orbital parameters for $\\beta$ Pictoris b

    CERN Document Server

    Millar-Blanchaer, Maxwell A; Pueyo, Laurent; Kalas, Paul; Dawson, Rebekah I; Wang, Jason; Perrin, Marshall; Moon, Dae-Sik; Macintosh, Bruce; Ammons, S Mark; Barman, Travis; Cardwell, Andrew; Chen, Christine H; Chiang, Eugene; Chilcote, Jeffrey; Cotten, Tara; De Rosa, Robert J; Draper, Zachary H; Dunn, Jennifer; Duchêne, Gaspard; Esposito, Thomas M; Fitzgerald, Michael P; Follette, Katherine B; Goodsell, Stephen J; Greenbaum, Alexandra Z; Hartung, Markus; Hibon, Pascale; Hinkley, Sasha; Ingraham, Patrick; Jensen-Clem, Rebecca; Konopacky, Quinn; Larkin, James E; Long, Douglas; Maire, Jérôme; Marchis, Franck; Marley, Mark S; Marois, Christian; Morzinski, Katie M; Nielsen, Eric L; Palmer, David W; Oppenheimer, Rebecca; Poyneer, Lisa; Rajan, Abhijith; Rantakyrö, Fredrik T; Ruffio, Jean-Baptiste; Sadakuni, Naru; Saddlemyer, Leslie; Schneider, Adam C; Sivaramakrishnan, Anand; Soummer, Remi; Thomas, Sandrine; Vasisht, Gautam; Vega, David; Wallace, J Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane J; Wolff, Schuyler G

    2015-01-01

    We present $H$-band observations of $\\beta$ Pic with the Gemini Planet Imager's (GPI's) polarimetry mode that reveal the debris disk between ~0.3" (~6 AU) and ~1.7" (~33 AU), while simultaneously detecting $\\beta$ Pic $b$. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best fit model indicates a disk inclined to the line of sight ($\\phi=85.27{\\deg}^{+0.26}_{-0.19}$) with a position angle $\\theta_{PA}=30.35{\\deg}^{+0.29}_{-0.28}$ (slightly offset from the main outer disk, $\\theta_{PA}\\approx29{\\deg}$), that extends from an inner disk radius of $23.6^{+0.9}_{-0.6}$ AU to well outside GPI's field of view. In addition, we present an updated orbit for $\\beta$ Pic $b$ based on new astrometric measurements taken in GPI's spectroscopic mode spanning 14 months. The planet has a semi-major axis of $a=9.2^{+1.5}_{-0.4}$AU, with an eccentricity $e\\leq 0.26$. The position angle of the ascending node is $\\Omega=31.75{\\deg}\\pm0.15$, offset from bot...

  15. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS II: A Short-period Companion Orbiting an F Star with Evidence of a Stellar Tertiary And Significant Mutual Inclination

    CERN Document Server

    Fleming, Scott W; Barnes, Rory; Beatty, Thomas G; Crepp, Justin R; De Lee, Nathan; Esposito, Massimiliano; Femenia, Bruno; Ferreira, Leticia; Gary, Bruce; Gaudi, B Scott; Ghezzi, Luan; Hernández, Jonay I González; Hebb, Leslie; Jiang, Peng; Lee, Brian; Nelson, Ben; de Mello, Gustavo F Porto; Shappee, Benjamin J; Stassun, Keivan; Thompson, Todd A; Tofflemire, Benjamin M; Wisniewski, John P; Wood-Vasey, W Michael; Agol, Eric; Prieto, Carlos Allende; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A; Coban, Louis; Costello, Korena S; da Costa, Luis N; Good, Melanie L; Hua, Nelson; Kane, Stephen R; Lander, Gary R; Liu, Jian; Ma, Bo; Mahadevan, Suvrath; Maia, Marcio A G; Malanushenko, Elena; Malanushenko, Viktor; Muna, Demitri; Nguyen, Duy Cuong; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Roebuck, Eric J; Santiago, Basilio X; Schneider, Donald P; Shelden, Alaina; Simmons, Audrey; Sivarani, Thirupathi; Snedden, Stephanie; Vincent, Chelsea L M; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A; Weaver, Gwendolyn M; Zhao, Bo

    2012-01-01

    We report the discovery via radial velocity of a short-period (P = 2.430420 \\pm 0.000006 days) companion to the F-type main sequence star TYC 2930-00872-1. A long-term trend in the radial velocities indicates the presence of a tertiary stellar companion with $P > 2000$ days. High-resolution spectroscopy of the host star yields T_eff = 6427 +/- 33 K, log(g) = 4.52 +/- 0.14, and [Fe/H]=-0.04 +/- 0.05. These parameters, combined with the broad-band spectral energy distribution and parallax, allow us to infer a mass and radius of the host star of M_1=1.21 +/- 0.08 M_\\odot and R_1=1.09_{-0.13}^{+0.15} R_\\odot. We are able to exclude transits of the inner companion with high confidence. The host star's spectrum exhibits clear Ca H and K core emission indicating stellar activity, but a lack of photometric variability and small v*sin(I) suggest the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary from an activity-rotation relation matches the orbital period of the inner...

  16. MEASUREMENTS OF STELLAR INCLINATIONS FOR KEPLER PLANET CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Teruyuki; Taruya, Atsushi; Suto, Yasushi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Sanchis-Ojeda, Roberto; Winn, Joshua N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Takeda, Yoichi; Narita, Norio, E-mail: hirano@utap.phys.s.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period P{sub s} inferred from the flux variation due to starspots and the projected rotational velocity Vsin I{sub s} and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination I{sub s} of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination I{sub s} can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations I{sub s} for eight systems. Among them, KOI-262 and 280 are in good agreement with I{sub s} 90 Degree-Sign suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small I{sub s} for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  17. Fisica degli atomi e dei nuclei

    CERN Document Server

    Bernardini, Carlo

    1965-01-01

    Evidenza della struttura atomica della materia ; le proprietà degli atomi e la meccanica atomica ; gli atomi e le radiazioni elettromagnetiche ; struttura microscopica dello stato gassoso ; struttura microscopica dello stato liquido ; struttura microscopica della stato solido ; proprietà elettriche e magnetiche delle sostanze ; proprietà dei nuclei degli atomi ; le particelle elementari.

  18. Measurements of Stellar Inclinations for Kepler Planet Candidates

    CERN Document Server

    Hirano, Teruyuki; Takeda, Yoichi; Narita, Norio; Winn, Joshua N; Taruya, Atsushi; Suto, Yasushi

    2012-01-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period $P_s$ inferred from the flux variation due to starspots and the projected rotational velocity $V\\sin I_s$ and stellar radius obtained by a high resolution spectroscopy, we attempt to estimate the inclination $I_s$ of the stellar spin axis with respect to the line-of-sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination $I_s$ can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 KOI systems, whose lightcurves show periodic flux variations. After detailed analyses of their lightcurves and spectra, it turned out that some of them are binaries, or the flux variations are too coherent to be caused by starspots, probably representing ellipsoidal variations, and consequently we could constrain stellar inclinations $I_s$ for eight systems. Am...

  19. Gap formation by inclined massive planets in locally isothermal three-dimensional discs

    Science.gov (United States)

    Chametla, Raúl O.; Sánchez-Salcedo, F. J.; Masset, F. S.; Hidalgo-Gámez, A. M.

    2017-07-01

    We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planet's orbit is circular and inclined relative to the mid-plane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is ≤30°. Using the fargo3d code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in the cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.

  20. Evolution of eccentricity and inclination of hot protoplanets embedded in radiative discs

    Science.gov (United States)

    Eklund, Henrik; Masset, Frédéric S.

    2017-07-01

    We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three-dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth towards values that depend on the luminosity-to-mass ratio of the planet, which are comparable to the disc's aspect ratio and which are reached over time-scales of a few thousand years. This growth is triggered by the appearance of a hot, underdense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long-term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.

  1. Dislocation Majorana zero modes in perovskite oxide 2DEG

    Science.gov (United States)

    Chung, Suk Bum; Chan, Cheung; Yao, Hong

    2016-05-01

    Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors.

  2. Spin-orbit alignment of exoplanet systems: ensemble analysis using asteroseismology

    CERN Document Server

    Campante, T L; Kuszlewicz, J S; Davies, G R; Chaplin, W J; Albrecht, S; Winn, J N; Bedding, T R; Benomar, O; Bossini, D; Handberg, R; Santos, A R G; Van Eylen, V; Basu, S; Christensen-Dalsgaard, J; Elsworth, Y P; Hekker, S; Hirano, T; Huber, D; Karoff, C; Kjeldsen, H; Lundkvist, M S; North, T S H; Aguirre, V Silva; Stello, D; White, T R

    2016-01-01

    The angle $\\psi$ between a planet's orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on $\\psi$ by measuring the stellar inclination $i_{\\rm s}$ via asteroseismology for an ensemble of 25 solar-type hosts observed with NASA's Kepler satellite. Our results for $i_{\\rm s}$ are consistent with alignment at the 2-$\\sigma$ level for all stars in the sample, meaning that the system surrounding the red-giant star Kepler-56 remains as the only unambiguous misaligned multiple-planet system detected to date. The availability of a measurement of the projected spin-orbit angle $\\lambda$ for two of the systems allows us to estimate $\\psi$. We find that the orbit of the hot-Jupiter HAT-P-7b is likely to be retrograde ($\\psi=116.4^{+30.2}_{-14.7}\\:{\\rm deg}$), whereas that of Kepler-25c seems to be well aligned with the stellar spin axis ($\\psi=12.6^{+6.7}_{-11.0}\\:{\\rm deg}$). While the latter result is in apparent...

  3. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Mai, N.; McIntyre, M.; Yost, B.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  4. Lightcurves of Stars & Exoplanets: Estimating Inclination, Obliquity, and Albedo

    CERN Document Server

    Cowan, Nicolas B; Haggard, Hal M

    2013-01-01

    [Abridged] It is possible to determine a star or planet's brightness markings by analyzing its disk-integrated brightness variations, in either thermal or reflected light. We compute the "harmonic lightcurves" resulting from spherical harmonic maps of intensity or albedo. These convolutions often contain a nullspace: a class of non-zero maps that have no lightcurve signature. We derive harmonic thermal lightcurves for both equatorial and inclined observers. The nullspace for these two viewing geometries is significantly different, with odd modes being present in the latter case, but not the former. We therefore suggest that the Fourier spectrum of a thermal lightcurve is sufficient to determine the orbital inclination of non-transiting short-period planets, the rotational inclination of stars and brown dwarfs, and the obliquity of directly imaged planets. In the best-case scenario of a nearly edge-on rotator, factor-of-two measurements of the amplitudes of odd modes in the thermal lightcurve provide an inclin...

  5. Collisionless encounters and the origin of the lunar inclination

    CERN Document Server

    Pahlevan, Kaveh

    2016-01-01

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Modeling of the impact process predicts that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value, a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals not yet accreted at the time of the Moon-forming event. The excited lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 ME eventually accreted to the Earth) carried by a few bodies, consistent with constraints and models of late accretion. Whi...

  6. How the inclination of Earth's orbit affects incoming solar irradiance

    OpenAIRE

    Vieira, L.E.A.; Norton, A; T. Dudok de Wit; Kretzschmar, M; Schmidt, G. A.; Cheung, M.C.M.

    2012-01-01

    International audience; [1] The variability in solar irradiance, the main external energy source of the Earth's system, must be critically studied in order to place the effects of human-driven climate change into perspective and allow plausible predictions of the evolution of climate. Accurate measurements of total solar irradiance (TSI) variability by instruments onboard space platforms during the last three solar cycles indicate changes of approximately 0.1% over the sunspot cycle. Physics-...

  7. Global radiation on inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.; Rattunde, R.; Krochmann, J.

    1981-02-01

    Radiation intensities and irradiances resulting from global radiation incident on inclined surfaces are important for solar energy use in heating and air conditioning of buildings. Both quantities are a function of astronomical, meteorological, and other parameters of the insolation geometry. Methods of calculation for cloudy, clear, and partly cloudy skies are described which may be carried out with the aid of programmable desk computers. Computer programs have been specially developed for this purpose. Their results are compared with other theoretical data and with data of the Hamburg Meteorological Observatory. Simplified results obtained with the aid of tables are found to be inaccurate while the computer programs provide satisfactory results.

  8. SEDIMENTATION BROKEN IN INCLINED SEOIMENTADORES

    OpenAIRE

    Lama-Ramirez, R.; Facultad de Química e Ingeniería Química, Departamento Académico de Operaciones Unitarias,Universidad Nacional Mayor de San Marcos,Lima,Perú.; Condorhuamán-Ccorimanya, C.; Facultad de Química e Ingeniería Química, Departamento Académico de Operaciones Unitarias,Universidad Nacional Mayor de San Marcos,Lima,Perú.

    2014-01-01

    We have studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulfate and lead oxide settlers inclined rectangular and circular cross section. The énguio tilt with respect to the horizontal between 35 ° and 75 °, to suspensions that vary in strength between 39.4 and 1070 g / l.Las obtained apparent sedimentation velocities ranging from 0.071 to 17.6 cm / min. the apparent sedimentation rate has been correlated using a modified version of the equation...

  9. Highly inclined and eccentric massive planets. II. Planet-planet interactions during the disc phase

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Bitsch, Bertram; Crida, Aurélien

    2017-02-01

    Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims: We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods: Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results: The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤ 10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, 5% of them end up with high mutual inclinations (≥ 10°). Half of these highly mutually inclined systems result from two- or three-body mean-motion resonance captures, the other half being

  10. Orbits, Distance, and Stellar Masses of the Massive Triple Star Sigma Orionis

    CERN Document Server

    Schaefer, G H; Gies, D R; Zavala, R T; Monnier, J D; Walter, F M; Turner, N H; Baron, F; Brummelaar, T ten; Che, X; Farrington, C D; Kraus, S; Sturmann, J; Sturmann, L

    2016-01-01

    We present interferometric observations of the sigma Orionis triple system using the CHARA Array, NPOI, and VLTI. Using these measurements, we spatially resolve the orbit of the close spectroscopic binary (Aa,Ab) for the first time and present a revised orbit for the wide pair (A,B). Combining the visual orbits with previously published radial velocity measurements and new radial velocities measured at CTIO, we derive dynamical masses for the three massive stars in the system of M_Aa = 16.99 +/- 0.20 Msun, M_Ab = 12.81 +/- 0.18 Msun, and M_B = 11.5 +/- 1.2 Msun. The inner and outer orbits in the triple are not coplanar, with a relative inclination of 120-127 deg. The orbital parallax provides a precise distance of 387.5 +/- 1.3 pc to the system. This is a significant improvement over previous estimates of the distance to the young sigma Orionis cluster.

  11. The Apsidal Precession for Low Earth Sun Synchronized Orbits

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2015-09-01

    Full Text Available By nodal regression and apsidal precession, the Earth flattering at satellite low Earth orbits (LEO is manifested. Nodal regression refers to the shift of the orbit’s line of nodes over time as Earth revolves around the Sun. Nodal regression is orbit feature utilized for circular orbits to be Sun synchronized. A sun¬-synchronized orbit lies in a plane that maintains a fixed angle with respect to the Earth-Sun direction. In the low Earth Sun synchronized circular orbits are suited the satellites that accomplish their photo imagery missions. Nodal regression depends on orbital altitude and orbital inclination angle. For the respective orbital altitudes the inclination window for the Sun synchronization to be attained is determined. The apsidal precession represents major axis shift, respectively the argument of perigee deviation. The apsidal precession simulation, for inclination window of sun synchronized orbital altitudes, is provided through this paper.

  12. Particle transport in inclined annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kurtzhals, Erik

    1993-12-31

    A new model for the formation and behaviour of deposits in inclined wellbores is formulated. The annular space is divided into two layers, separated by a distinct plane boundary. While the lower layer is taken to consist of closely packed cuttings, the upper layer is presumed to behave as a pure fluid. A force balance for the lower layer decides whether it is stationary or slides in the upwards- or downwards direction. The position of the deposit surface is governed by the fluid shear stress at the deposit surface. The proposed model represents a major improvement compared to an earlier model. The predictions from the SCSB-model are in good qualitative agreement with experimental results obtained by the author, and results published by research groups in the U.S.A., United Kingdom and Germany. The quantitative agreement is variable, presumably because the SCSB-model is a somewhat simplified description of particle behaviour in inclined annuli. However, the model provides a clearer understanding of the physical background for previously published experimental results. In order to couple the theoretical work with experimental observations, an annular flow loop has been constructed. A characteristic feature in the flow loop design is the application of load cells, which permits determination of the annular particle content at steady state as well as under transient conditions. Due to delays in the constructional work, it has only been possible to perform a limited number of investigations in the loop. However, the results produced are in agreement with results published by other research groups. (au)

  13. Compensated-power differential calorimeter -196 deg. C/400 deg. C; Calorimetre differentiel a puissance compensee -196 deg. C/400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Bonjour, E.; Pierre, J.; Agagliate, S.; Bertrand, P.; Faivre, J.; Lagnier, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Section physico-chimie et basses temperatures

    1967-06-01

    A differential calorimetric device of original design is described. Its allows direct measurements of thermal effects (adsorption or release) during a linear rise of temperature. The self compensated power method which is applied by means of a very sensitive control system, gives a direct value of the different heat capacity between the sample and a dummy of it. The detection threshold is about {+-} 100 micro-watts to {+-} 250 micro-watts. Applications: - Generally measurements of enthalpy changes of massive or powdered samples. - Measurement of Wigner energy after low temperature irradiation (77 deg. K). - Measurements of energy release in low temperature (77 deg. K) cold worked metals. (authors) [French] On decrit un dispositif de calorimetrie differentielle, de conception originale, qui permet de mesurer directement des effets thermiques en absorption ou en degagement de chaleur, au cours d'une montee en temperature lineaire. La methode de compensation automatique de puissance qui est mise en oeuvre au moyen de cha es d'asservissement tres sensibles, conduit a une determination directe de la capacite calorifique differencielle entre l'echantillon et sa reference. Le seuil de detection est de l'ordre de {+-} 100 a {+-} 250 microwatts. Applications: - D'une facon generale, mesure des variations enthalpiques, sur echantillons massifs ou en poudre. - Mesure de l'energie Wigner apres irradiation a basse temperature (77 deg. K). - Mesure de l'energie restauree apres deformation des metaux a basse temperature (77 deg. K). (auteurs)

  14. Testimonianze di vittime degli anni di piombo

    DEFF Research Database (Denmark)

    Cecchini, Leonardo

    Testimonianze di vittime degli anni di piombo In un articolo pubblicato nel 2008 sulla webzine Nazione indiana Christian Raimo criticava quello che poi Giovanni De Luna qualche anno dopo nel suo libro La Repubblica del dolore (2011) ha chiamato “paradigma vittimario”; cioè la presenza predominante...

  15. Giant magnetic quadrupole resonance studied with 180 deg. electron scattering

    CERN Document Server

    Neumann-Cosel, P V

    1999-01-01

    The nuclei sup 4 sup 8 Ca and sup 9 sup 0 Zr were investigated in 180 deg. high-resolution inelastic electron scattering for momentum transfers q approx =0.35-0.8 fm sup - sup 1. Complete M2 strength distributions could be extracted in both nuclei up to excitation energies of about 15 MeV utilizing a fluctuation analysis technique. Second-RPA calculations successfully describe the experimentally observed strong fragmentation of the M2 mode. The quenching of the spin part is found to be comparable to the M1 case, contrary to previous claims suggesting a stronger reduction. A quantitative reproduction of the data requires the presence of appreciable orbital strength which can be interpreted as a torsional elastic vibration (the so-called twist mode).

  16. Formation of terrestrial planets in eccentric and inclined giant-planet systems

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean

    2016-10-01

    The orbits of extrasolar planets are more various than the circular and coplanar ones of the Solar system. We study the impact of inclined and eccentric massive giant planets on the terrestrial planet formation process. The physical and orbital parameters of the giant planets considered in this study arise from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. At the dispersal of the gas disc, the two- and three-planet systems interact then with an inner disc of planetesimals and planetary embryos. We discuss the mass and orbital parameters of the terrestrial planets formed by our simulations, as well as their water content. We also investigate how the disc of planetesimals and planetary embryos modifies the eccentric and inclined orbits of the giant planets.

  17. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    Science.gov (United States)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  18. Slipping and Rolling on an Inclined Plane

    Science.gov (United States)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  19. Slipping and rolling on an inclined plane

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Cina [Department of Electrical Engineering, Sharif University of Technology, PO Box 11365-11155, Tehran (Iran, Islamic Republic of); Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran 19938-91176 (Iran, Islamic Republic of)

    2011-07-15

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ({mu}). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 {mu}. If {mu} > 2/7 tan {theta}, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  20. Slipping and Rolling on an Inclined Plane

    CERN Document Server

    Aghamohammadi, Cina; 10.1088/0143-0807/32/4/017

    2011-01-01

    In the first part of the article using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ($\\mu$). A parametric equation for the trajectory of the particle is also obtained. In the second part of the article the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is $2/7}\\ \\mu$. If $\\mu> 2/7 \\tan\\theta$, for any arbitrary initial velocity and angular velocity the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling center of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  1. Comparison of PCBBs and CTs irradiated at 250 deg. C, 300 deg. C, and 350 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Rensman, J.; Nolles, H.N. [ECN-Energy Research Foundation, Research Unit NRG, Westerduinweg, Petten (Netherlands); Lucon, E. [SCK-CEN, Institute of Nuclear Material Science, Boeretang, Mol (Belgium); Spatig, P. [EPFL-CRDP, Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH Villigen PSI (Switzerland)

    2007-07-01

    Full text of publication follows: The fracture toughness of irradiated Eurofer steel is difficult to characterise. Several limitations are identified in this paper with respect to the conventional treatment of fracture data of BCC steels in the transition region. It is uncertain that the RPV Master Curve is applicable to unirradiated Eurofer, and low temperature irradiation adds more to this uncertainty. The lack of strain hardening and the dose variation within each batch are two complicating factors. An irradiation has been carried out in the BFR up to a nominal dose of 2.5 dpa at 250 deg. C, 300 deg. C, and 350 deg. C in sodium. Twelve small size pre-cracked bend specimens and eight mini-CT specimens have been irradiated in each temperature section. We analyse the effect of constraint and censoring limit, and the specimen geometry and loading configuration. The fracture data are treated in several ways that are proposed in open literature to investigate the effect of irradiation on a reference temperature like the ASTM E1921 T0. In addition, the relation between the tensile hardening, which is presented in a companion paper, and the shift calculated with the various methods is studied. (authors)

  2. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    Science.gov (United States)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. PMID:21304896

  3. Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain.

    Directory of Open Access Journals (Sweden)

    Carsten Jers

    Full Text Available Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward "on/off" response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp and non-phosphorylatable (Ser76Ala mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.

  4. In-Orbit Performance of the MWRI Scanning Mechanisms

    Science.gov (United States)

    Schmid, Manfred; Jun, Miao; Shuang, Yu

    2014-01-01

    Scanning Equipment supporting the Millimeter Wave Radiometer Instrument (MWRI) are flying in a sunsynchronized orbit of 850-km altitude with an inclination of 98.8 deg on the FY-3 meteorological satellite (FY = Feng Yun, Wind and Cloud). MWRI is a linearly polarized, ten-channel passive Radiometer; it measures precipitation and water clouds, sea ice, snow/water equivalent, drought and flood index, land temperature and soil moisture. Following the FY3-A, the FY3-B Satellite was launched in autumn 2010. Since that time, the Scanning Equipment was continuously operated. During the last three and a half years in orbit, the Scanning Mechanism has executed about 65 million revolutions, while the Scan Compensation Mechanism (SCM) - used for momentum compensation - has already successfully executed more than one billion revolutions. During the commissioning phase of the instrument and during the first operation phase, random torque spikes, which manifested themselves as a motor current increase, were observed in the Scan Drive Mechanism, whereas the Scan Compensation drive operated nominally from the beginning. The result of the root cause investigations performed in order to isolate the issue, and the consequences for the follow-on MWRI equipment which was successfully launched by end of September 2013 (now flying on the FY 3-C Spacecraft), are discussed.

  5. Helioseismology with Solar Orbiter

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H; Solanki, Sami K

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3 x 10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. The full range of Earth-Sun-spacecraft angles provi...

  6. Jumping Jupiter can explain Mercury's orbit

    CERN Document Server

    Roig, Fernando; DeSouza, Sandro Ricardo

    2016-01-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).

  7. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  8. Inclination of Nations to Control Press and Attitudes on Professionalization.

    Science.gov (United States)

    Merrill, John C.

    1988-01-01

    Interviews official representatives of 58 nations to investigate their "inclination to control" the press. Finds the region most inclined to control the press is the Middle East, whereas regions least inclined are Western Europe and North America. (RS)

  9. The positions of secular resonance surfaces. [for major planet orbits

    Science.gov (United States)

    Williams, J. G.; Faulkner, J.

    1981-01-01

    The surfaces for the three strongest secular resonances have been located as a function of proper semimajor axis, eccentricity, and inclination for semimajor axes between 1.25 and 3.5 AU. The results are presented graphically. The nu5 resonance only occurs at high inclinations (approximately greater than 23 deg). The nu6 resonance passes through both the main belt and Mars-crossing space. The nu16 resonance starts near the inner edge of the belt and, at low inclinations at least, folds around a portion of the Mars-crossing space until it runs nearly parallel with the earth-crossing boundary.

  10. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  11. Numerical investigation of mapping orbits about Jupiter's icy moons

    Science.gov (United States)

    Aiello, John

    2005-01-01

    A proposed mission that would orbit Callisto, Ganymede, and Europa will require low altitude, high inclination orbits for gravity and surface mapping. This paper explores the dynamics of these orbits by direct propagation against an ephemeris model. Initial conditions within the context of a mapping mission's likely requirements are considered. The results complement the analytical studies and reveal additional dependencies.

  12. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    than 250 km) lithosphere is restrictedsolely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots donot extend deeper than 200–220 km.The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continentalupper mantle......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...

  13. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline;

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity...

  14. Tidal Truncation of Inclined Circumstellar and Circumbinary Discs in Young Stellar Binaries

    CERN Document Server

    Miranda, Ryan

    2015-01-01

    Recent observations have shown that circumstellar and circumbinary discs in young stellar binaries are often misaligned with respect to the binary orbital plane. We analyze the tidal truncation of such misaligned discs due to torques applied to the disc at the Lindblad resonances from the tidal forcings of the binary. We consider eccentric binaries with arbitrary binary-disc inclination angles. We determine the dependence of the tidal forcing strengths on the binary parameters and show that they are complicated non-monotonic functions of eccentricity and inclination. We adopt a truncation criterion determined by the balance between resonant torque and viscous torque, and use it to calculate the outer radii of circumstellar discs and the inner radii of circumbinary discs. Misaligned circumstellar discs have systematically larger outer radii than aligned discs, and are likely to fill their Roche lobes if inclined by more than $45^\\circ - 90^\\circ$, depending on the binary mass ratio and disc viscosity parameter...

  15. Angiopatia diabetica e amputazione degli arti inferiori: valutazioni preliminari degli episodi di ricovero ripetuti

    Directory of Open Access Journals (Sweden)

    P. Trerotoli

    2003-05-01

    Full Text Available

    Obiettivi: l’obiettivo principale dello studio è stata la valutazione dei ricoveri ripetuti nei soggetti con vasculopatia diabetica, rispetto ai soggetti con vasculopatia non diabetica.

    Materiali e Metodi: sono state selezionate le SDO del triennio 1998-2000 contenenti, in uno dei campi di diagnosi, i codici di diabete mellito, con e senza complicanze (codici ICD9 ed ICD9CM, 250.—, vasculopatia periferica (440.2 e 440.8, ulcera periferica (707.1, 707.8, 707.9, gangrena (785.4. Le SDO con diagnosi di vasculopatia diabetica sono state considerate come angiopatie diabetiche (AD; le altre sono state attribuite agli angiopatici non diabetici (AND. Le SDO con diabete non complicato e arteriopatia periferica sono state eliminate. L’intervento di amputazione è stato individuato dalla presenza del codice ICD9CM di procedura 84.—. La ripetitività degli episodi è stata valutata usando il codice fiscale come identificativo del paziente. Risultati: sono state rilevate 5814 dimissioni di AD e 9010 di AND. Le amputazioni sono state 285 (4,90% negli AD e 485 (5,38% negli AND. I ricoveri ripetuti sono stati 13 negli AD e 12 negli AND. Le amputazioni sono state osservate verso il 4°-5° episodio di ricovero negli AD, mentre già dal 2° episodio negli AND. Le ulcere erano presenti nel 36,05% (il 36,5% nel primo episodio di ricovero, che resta costante negli episodi successivi degli AND e nel 10,97% degli AD (9,84% nel primo episodio, con un incremento fino al 20% del 5° episodio. Un episodio in day-hospital (DH si osserva nel 12,32% degli AD, contro il 4,20% degli AND.

    Conclusioni: l’accesso degli AD all’assistenza intraospedaliera avviene più frequentemente in DH, i passi successivi sono caratterizzati dalla comparsa dell’ulcera o gangrena e infine dall’amputazione. Nel gruppo degli AD è stato osservato un eccesso di ospedalizzazione, probabilmente per ripetitività del

  16. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis.

    Science.gov (United States)

    Foster, Kathleen L; Higham, Timothy E

    2012-07-01

    The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion. To characterize how the forelimbs and hindlimbs differentially respond to changes in substrate diameter and incline, we obtained three-dimensional high-speed video of green anoles (Anolis carolinensis) running on flat (9 cm wide) and narrow (1.3 cm) perches inclined at 0, 45 and 90 deg. Changes in perch diameter had a greater effect on kinematics than changes in incline, and proximal limb variables were primarily responsible for these kinematic changes. In addition, a number of joint angles exhibited greater excursions on the 45 deg incline compared with the other inclines. Anolis carolinensis adopted strategies to maintain stability similar to those of other arboreal vertebrates, increasing limb flexion, stride frequency and duty factor. However, the humerus and femur exhibited several opposite kinematic trends with changes in perch diameter. Further, the humerus exhibited a greater range of motion than the femur. A combination of anatomy and behavior resulted in differential kinematics between the forelimb and the hindlimb, and also a potential shift in the propulsive mechanism with changes in external demand. This suggests that a better understanding of single limb function comes from an assessment of both forelimbs and hindlimbs. Characterizing forelimb and hindlimb movements may reveal interesting functional differences between Anolis ecomorphs. Investigations into the physiological mechanisms underlying the functional differences between the forelimb and the hindlimb are needed to fully understand how arboreal animals move in complex habitats.

  17. Generation of Highly Inclined Trans-Neptunian Objects by Planet Nine

    CERN Document Server

    Batygin, Konstantin

    2016-01-01

    The trans-Neptunian region of the solar system exhibits an intricate dynamical structure, much of which can be explained by an instability-driven orbital history of the giant planets. However, the origins of a highly inclined, and in certain cases retrograde, population of trans-Neptunian objects remain elusive within the framework of this evolutionary picture. In this work, we show that the existence of a distant, Neptune-like planet that resides on an eccentric and mildly inclined orbit fully accounts for the anomalous component the trans-Neptunian orbital distribution. Adopting the same parameters for Planet Nine as those previously invoked to explain the clustering of distant Kuiper belt orbits in physical space, we carry out a series of numerical experiments which elucidate the physical process though which highly inclined Kuiper belt objects with semi-major axes smaller than 100 AU are generated. The identified dynamical pathway demonstrates that enigmatic members of the Kuiper belt such as Drac and Nik...

  18. Ring formation on an inclined surface

    Science.gov (United States)

    Deegan, Robert; Du, Xiyu

    2015-11-01

    A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.

  19. Revealing the inclined circumstellar disk in the UX Ori system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-07-01

    We study the inner sub-AU region of the circumstellar environment of the UX Ori type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we will use this information to test the current standard picture for UX Ori stars. We recorded spectrally dispersed (R˜35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases and the SED of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ˜3.0 corresponding to an inclination of ˜70 degree. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ˜0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ˜70 degree and an additional dust envelope. The finding of an ˜70 degree inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.

  20. Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi

    Science.gov (United States)

    Kreplin, A.; Weigelt, G.; Kraus, S.; Grinin, V.; Hofmann, K.-H.; Kishimoto, M.; Schertl, D.; Tambovtseva, L.; Clausse, J.-M.; Massi, F.; Perraut, K.; Stee, Ph.

    2013-03-01

    Aims: We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars. Methods: We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC). Results: We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope. Conclusions: The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar. Based on observations made with ESO telescopes at Paranal Observatory under program ID: 083.D-0224(C) and 088.C-0575(A).

  1. Recognizing the threshold magnetic anisotropy for inclination shallowing: Implications for correcting inclination errors of sedimentary rocks

    Directory of Open Access Journals (Sweden)

    Yongxiang eLi

    2014-05-01

    Full Text Available Post-depositional compaction is an integral part of sedimentary rock formation and thus has been reasonably deemed as a major culprit for the long-recognized inclination-shallowing problem in sedimentary rocks. Although theoretical treatment elegantly envisions magnetic anisotropy (or oblate fabrics to correspond to the degree of compaction and the magnitude of inclination flattening, such correspondence has rarely been seen in nature quantitavely, which leaves the possibility of misidentification and/or over-correction for inclination shallowing using magnetic anisotropy. This is because the extent to which oblate magnetic fabrics are developed strongly enough for inclination to start becoming shallow is not yet known. Here, we present sedimentary paleomagnetic data from two ~6 m long gravity cores GHE24L and GHE27L from the northern slope of the South China Sea to examine the down-core changes in magnetic anisotropy and inclinations, and to explore the possible connection between the two parameters. The results show that oblate fabrics are dominantly developed at depths >~2m and the degree of anisotropy displays an overall gradual increase with depth. Inclination shallowing occurs in the > 5m segment of the relatively distal core GHE27L and the amount of shallowing largely correlates with the degree of anisotropy, suggesting a causal relation between the development of magnetic anisotropy and the degree of inclination shallowing. Examination of down-core changes in inclination and magnetic anisotropy suggests that a threshold anisotropy of PAMS~1.04 and PAAR~1.10 exists for inclination shallowing in the cores. For PAAR10° if particle anisotropy is <1.4. This study provides strong field evidence that complements and substantiates the theoretical model and suggests that the threshold anisotropy can be used as a first-order criterion to identify inclination errors of some sedimentary rocks.

  2. Classifying bed inclination using pressure images.

    Science.gov (United States)

    Baran Pouyan, M; Ostadabbas, S; Nourani, M; Pompeo, M

    2014-01-01

    Pressure ulcer is one of the most prevalent problems for bed-bound patients in hospitals and nursing homes. Pressure ulcers are painful for patients and costly for healthcare systems. Accurate in-bed posture analysis can significantly help in preventing pressure ulcers. Specifically, bed inclination (back angle) is a factor contributing to pressure ulcer development. In this paper, an efficient methodology is proposed to classify bed inclination. Our approach uses pressure values collected from a commercial pressure mat system. Then, by applying a number of image processing and machine learning techniques, the approximate degree of bed is estimated and classified. The proposed algorithm was tested on 15 subjects with various sizes and weights. The experimental results indicate that our method predicts bed inclination in three classes with 80.3% average accuracy.

  3. Optimizing snake locomotion on an inclined plane

    CERN Document Server

    Wang, Xiaolin; Alben, Silas

    2013-01-01

    We develop a model to study the locomotion of snakes on an inclined plane. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes---triangular and sinusoidal waves---across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficient, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling-wave motions with amplitudes given by the same scaling laws found in the numerics.

  4. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  5. Interplay of Rashba and sp-d exchange couplings in magnetic 2DEGs

    Science.gov (United States)

    Mireles, Francisco; Freire, Henrique H. P.; Egues, J. Carlos

    2006-03-01

    In diluted magnetic semiconductor (DMS) quantum wells the sp-d exchange interaction between the itinerant conduction electrons in the well and the localized electrons in the d orbitals of the Mn impurities gives rise to interesting spin-dependent physics [1]. Recently, the interplay of the Rashba spin-orbit and the sp-d exchange interactions in Mn-based wells has been recognized via Shubnikov-de-Haas measurements [2]. While the Rashba spin-orbit has been extensively studied in non-magnetic 2DEGs, its role in DMS systems with a competing sp-d exchange interaction has not yet been addressed theoretically. In this work we present a k.p derivation of an effective Hamiltonian for a Mn-based quantum well with competing Rashba and sp-d interactions, and show numerical results for the magnetoresistance ρxx of typical magnetic 2DEGs using our effective Hamiltonian model. Our results shows interesting beating patterns of the ρxx as a function of the temperature and carrier density which suggests a significant interplay between the spin-orbit and sp-d exchange interactions, as a recent experiment observes [2]. [1] J. C. Egues, PRL 78, 4578 (1998); H. J. P. Freire and J. C. Egues, cond-mat/0412491. [2] Y. S. Gui et al. EPL. 65, 393 (2004).

  6. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  7. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  8. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    than 250 km) lithosphere is restrictedsolely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots donot extend deeper than 200–220 km.The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continentalupper mantle......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... of the continents, the remaining areas (ca. 60% ofthe continents) are filled by the statistical numbers derived from the thermal model constrained by boreholedata. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospherictemperatures in continental regions...

  9. The Ballistic Cart on an Incline Revisited.

    Science.gov (United States)

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  10. Inclined test of nacelle wind lidar

    DEFF Research Database (Denmark)

    Courtney, Michael

    A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....

  11. Airborne LIDAR point cloud tower inclination judgment

    Science.gov (United States)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  12. The Ballistic Cart on an Incline Revisited.

    Science.gov (United States)

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  13. Liquid drops sliding down an inclined plane

    CERN Document Server

    Kim, Inwon

    2012-01-01

    We investigate a one-dimensional model describing the motion of liquid drops sliding down an inclined plane (the so-called quasi-static approximation model). We prove existence and uniqueness of a solution and investigate its long time behavior for both homogeneous and inhomogeneous medium (i.e. constant and non-constant contact angle). We also obtain some homogenization results.

  14. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  15. La poesia sabiana degli Anni Venti

    Directory of Open Access Journals (Sweden)

    Atilij Rakar

    1975-11-01

    Full Text Available Muovendo da un confronto fra il Saba del primo Canzoniere e le Figure e canti coi quali l'opera del poeta triestino continua negli anni venti, l'autore cerca di individuare i caratteri che meglio definiscono la poesia sabiana di questo secondo periodo. Messi in evidenza alcuni temi su cui verte il discorso sabiano fin delle Poesie dell'adolescenza e giovanili, le opere degli anni venti si rivelano come esiti di un poliforme compendio in cui il poeta vuol chiarire il senso del cammino percorso e comp:tendere quelle che sono le ragioni prime del suo poetare. Si manifestano qui, anche in maniera esplicita, alcuni motivi fondamentali del Canzionere: basti pensare, ad esempio, a Il borgo che offre la chiave per l'interprezazione di tutto un filone della tematica sabiana, o alle Fughe, con le quali il poeta vuol esprimere l'essenza del proprio sentire. La poetica delle »figure« e dei »canti« composti negli anni venti, non segnerebbe dunque una conversione di Saba ai »miti della forma«, come inducono a credere anche certe apostrofi del poeta stesso, rna può esser definita solo se vista in funzione dei contenuti che determinano il suo formarsi.

  16. Spin Interference in Rashba 2DEG Systems

    Science.gov (United States)

    Nitta, Junsaku

    The gate controllable SOI provides useful information about spin interference.1 Spin interference effects are studied in two different interference loop structures. It is known that sample specific conductance fluctuations affect the conductance in the interference loop. By using array of many interference loops, we carefully pick up TRS Altshuler-Aronov-Spivak (AAS)-type oscillation which is not sample specific and depends on the spin phase. The experimentally obtained gate voltage dependence of AAS oscillations indicates that the spin precession angle can be controlled by the gate voltage.2 We demonstrate the time reversal Aharonov-Casher (AC) effect in small arrays of mesoscopic rings.3 By using an electrostatic gate we can control the spin precession angle rate and follow the AC phase over several interference periods. We also see the second harmonic of the AC interference, oscillating with half the period. The spin interference is still visible after more than 20π precession angle. We have proposed a Stern-Gerlach type spin filter based on the Rashba SOI.4 A spatial gradient of effective magnetic field due to the nonuniform SOI separates spin up and down electrons. This spin filter works even without any external magnetic fields and ferromagnetic contacts. We show the semiconductor/ferromagnet hybrid structure is an effective way to detect magnetization process of submicron magnets. The problem of the spin injection from ferromagnetic contact into 2DEG is also disicussed. Note from Publisher: This article contains the abstract only.

  17. Evaluation of reconstruction arc in myocardial SPECT imaging using a cardiac phantom. Comparison between 360deg and 180deg arcs

    Energy Technology Data Exchange (ETDEWEB)

    Kashikura, Kenichi [Japan Science and Technology Corp., Tokyo (Japan); Kashikura, Akemi; Terada, Shinichirou; Kobayashi, Hideki

    1996-10-01

    In order to investigate the effect of reconstruction arc on myocardial SPECT images, a series of phantom studies was performed with and without plastic chambers simulating perfusion defects using {sup 201}Tl and {sup 99m}Tc. Coefficient of variations (CV) of the counts among the ROIs and defect contrast were evaluated in 360deg and 180deg images reconstructed from the same 360deg projection data. Reconstruction processes were identical for all images. In the absence of defects, the CV of the counts were approximately the same in 360deg and 180deg images. The CV of the counts in the 360deg {sup 201}Tl image, among 4 defects located on the anterior, lateral, inferoposterior, and septal walls, was superior to those in the 180deg images. In contrast, in the {sup 99m}Tc images, the CV of the counts among the 4 defects in the 180deg image was superior to those of the 360deg image. The defect contrast was changed both by the location of the defect and by the reconstruction arc ({sup 201}Tl, {sup 99m}Tc). The defect contrast of the 180deg images, in both {sup 201}Tl and {sup 99m}Tc experiments, was closer to the true contrast value as calculated by the count ratio between myocardium and defect. Although the defect contrast in the anterior, lateral and septal walls was more emphasized in the 180deg images, the defect contrast in the inferoposterior wall was less emphasized in the 180deg images compared to the 360deg ({sup 201}Tl, {sup 99m}Tc). (author)

  18. Orbital cellulitis

    Science.gov (United States)

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  19. Pool Boiling Heat Transfer on the Inside Surface of an Inclined Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong Gie [Andong National Univ., Andong (Korea, Republic of)

    2013-10-15

    The present study is aimed at the determination of heat transfer characteristics on the inside surface of a tube while changing the inclination angle. Changes in pool boiling heat transfer coefficients on the inside surface of a 16.2 mm internal diameter has been studied experimentally at atmospheric pressure. Experiments were performed at six different inclination angles to investigate variations in the heat transfer coefficients due to the inclination angle change. Results for 30 .deg.≤θ≤90 .deg. are almost same whereas the result for θ =15 .deg. is different from the other angles. To predict the heat transfer coefficients an empirical correlation has been developed as ℎ{sub b} 1/(A + Blnq{sup )}. The developed correlation can predict the measured experimental data within ±4% error bound. Pool boiling is closely related with the design of passive type heat exchangers, which have been investigated in nuclear power plants to achieve safety functions in case of no power supply. Since the space for the installation of a heat exchanger is usually limited, developing more efficient heat exchangers is important. Several researchers have published results for the pool boiling on the outside surface. Jung et al. experimented boiling heat transfer in R-11 to investigate heat transfer mechanisms on the inside surface of a circular cylindrical tank. They simulated the surface by a flat plate. Somewhat detailed study on the inclination angle itself was previously done by Nishikawa et al. by using the combination of a plate and water. Jabardo and Filho performed an experimental study of forced convective boiling of refrigerants in a 12.7 mm internal diameter tube to investigate effects of physical parameters over the variations in local surface temperature. However, mechanisms of pool boiling are much different from those of the forced convective boiling. Kang investigated pool boiling heat transfer of water on the inside surface of a horizontal tube at atmospheric

  20. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  1. A Mechanism of Exciting Planetary Inclination and Eccentricity through a Residual Gas Disk

    CERN Document Server

    Chen, Yuan-Yuan; Zhao, Gang; Zhou, Ji-Lin

    2013-01-01

    Accordling to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as $\\sim39.2^{\\circ}$ for pumping the eccentricity of the inner small body. Here we show that, with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced as low as a few degrees. The presence of disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance would occur so that mutual inclination of the two planets will be excited, which might trigger the Kozai resonance between the two planets further. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but be integrated within a much shorter time. By scanning the parameter spaces...

  2. The first winter solstice observed at the meridian line of Santa Maria degli Angeli in Rome

    CERN Document Server

    Sigismondi, Costantino

    2014-01-01

    The page written by the astronomer Francesco Bianchini (1662-1729) and containing the data of the 1701 winter solstice observed at Santa Maria degli Angeli is presented for the first time in figure 2 and widely discussed along this paper. The great meridian line in the Basilica of Santa Maria degli Angeli in Rome was built in 1701/1702 with the scope to measure the Obliquity of the Earth's orbit in the following eight centuries, upon the will of pope Clement XI. During the winter solstice of 1701 the first measurements of the obliquity have been realized by Francesco Bianchini, the astronomer who designed the meridian line, upgrading the similar instrument realized by Giandomenico Cassini in San Petronio, Bononia. In this paper the accuracy of the data observed by Francesco Bianchini is discussed and compared with up-to-date ephemerides. The modern situation of this historical instrument is also presented.

  3. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Gao, Feng [Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101 (China); Fan, Haitian; Shan, Xiaoyue [Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Sun, Renhua [Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Liu, Lin, E-mail: liulin@ibcas.ac.cn [Chinese Academy of Sciences, 20 Nanxincun, Haidian District, Beijing 100093 (China); Gong, Weimin, E-mail: liulin@ibcas.ac.cn [Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101 (China)

    2013-05-01

    The crystal structures of Arabidopsis Deg5 and Deg8 have been determined to resolutions of 2.6 and 2.0 Å, respectively, revealing novel structural features of HtrA proteases. Plant Deg5 and Deg8 are two members of the HtrA proteases, a family of oligomeric serine endopeptidases that are involved in a variety of protein quality-control processes. These two HtrA proteases are located in the thylakoid lumen and participate in high-light stress responses by collaborating with other chloroplast proteins. Deg5 and Deg8 degrade photodamaged D1 protein of the photosystem II reaction centre, allowing its in situ replacement. Here, the crystal structures of Arabidopsis thaliana Deg5 (S266A) and Deg8 (S292A) are reported at 2.6 and 2.0 Å resolution, respectively. The Deg5 trimer contains two calcium ions in a central channel, suggesting a link between photodamage control and calcium ions in chloroplasts. Previous structures of HtrA proteases have indicated that their regulation usually requires C-terminal PDZ domain(s). Deg5 is unique in that it contains no PDZ domain and the trimeric structure of Deg5 (S266A) reveals a novel catalytic triad conformation. A similar triad conformation is observed in the hexameric structure of the single PDZ-domain-containing Deg8 (S292A). These findings suggest a novel activation mechanism for plant HtrA proteases and provide structural clues to their function in light-stress response.

  4. Operationally optimal maneuver strategy for spacecraft injected into sub-geosynchronous transfer orbit

    Science.gov (United States)

    Kiran, B. S.; Singh, Satyendra; Negi, Kuldeep

    The GSAT-12 spacecraft is providing Communication services from the INSAT/GSAT system in the Indian region. The spacecraft carries 12 extended C-band transponders. GSAT-12 was launched by ISRO’s PSLV from Sriharikota, into a sub-geosynchronous Transfer Orbit (sub-GTO) of 284 x 21000 km with inclination 18 deg. This Mission successfully accomplished combined optimization of launch vehicle and satellite capabilities to maximize operational life of the s/c. This paper describes mission analysis carried out for GSAT-12 comprising launch window, orbital events study and orbit raising maneuver strategies considering various Mission operational constraints. GSAT-12 is equipped with two earth sensors (ES), three gyroscopes and digital sun sensor. The launch window was generated considering mission requirement of minimum 45 minutes of ES data for calibration of gyros with Roll-sun-pointing orientation in T.O. Since the T.O. period was a rather short 6.1 hr, required pitch biases were worked out to meet the gyro-calibration requirement. A 440 N Liquid Apogee Motor (LAM) is used for orbit raising. The objective of the maneuver strategy is to achieve desired drift orbit satisfying mission constraints and minimizing propellant expenditure. In case of sub-GTO, the optimal strategy is to first perform an in-plane maneuver at perigee to raise the apogee to synchronous level and then perform combined maneuvers at the synchronous apogee to achieve desired drift orbit. The perigee burn opportunities were examined considering ground station visibility requirement for monitoring the burn. Two maneuver strategies were proposed: an optimal five-burn strategy with two perigee burns centered around perigee#5 and perigee#8 with partial ground station visibility and three apogee burns with dual station visibility, a near-optimal five-burn strategy with two off-perigee burns at perigee#5 and perigee#8 with single ground station visibility and three apogee burns with dual station visibility

  5. Neutron irradiation of silicon diodes at temperatures of +20deg C and -20deg C

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, F.; Glaser, M.; Heijne, E.H.M.; Jarron, P.; Lemeilleur, F.; Occelli, E.; Poppleton, A. (CERN, Geneva (Switzerland)); Bardos, R.; Gorfine, G.; Moorhead, G.; Taylor, G.; Tovey, S. (School of Physics, Univ. Melbourne, Parkville (Australia)); Bates, S.J.; Munday, D.J.; Parker, M.A. (Cavendish Lab., Univ. Cambridge (United Kingdom)); Bonino, R.; Clark, A.G.; Wu, X. (DPNC, Univ. Geneva (Switzerland)); Claussen, N.; Fretwurst, E.; Lindstroem, G.; Papendick, B.; Schulz, T.; Wunstorf, R. (Inst. fuer Experimentalphysik, Univ. Hamburg (Germany)); Goessling, C.; Klingenberg, R.; Pagel, H.; Pollmann, D.; Rolf, A. (Inst. fuer Physik, Univ. Dortmund (Germany)); Scampoli, P. (Dipt. di Fisica, Univ. Perugia (Italy) INFN, Sezione Perugia (Italy)); Weidberg, A.R. (Dept. of Nuclear Physics, Oxford Univ. (United Kingdom)); RD2 Collaboration

    1993-03-01

    We report measurements of the behaviour of silicon diodes when exposed to integrated neutron doses of up to 5x10[sup 13] neutrons/cm[sup 2]. The measurements have been made at diode temperatures between room temperature and -20deg C. From measurements of the diode leakage current and depletion voltage, and consequent evaluations of the effective impurity concentration, the temperature dependence of these quantities is discussed in terms of the annealing behaviour of the diodes. Comments are made on the suitability of silicon as a detector medium for particle physics experiments at future accelerators. (orig.).

  6. Evaporation dynamics of water droplets on inclined surfaces

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2016-11-01

    When a water droplet is gently placed on a flat substrate, particularly which is tilted at an inclined angle, usually there are advancing and receding angles inside the droplet formed by inclination under gravitational force. Evaporation dynamics of an nonspherical inclined droplet at inclinations would deviate from that of a spherical droplet. Here we study on evaporation dynamics rates of inclined droplets by measuring mass changes with time and their lifetimes. We find that the lifetime of an evaporating inclined droplets becomes longer as the gravitational influence becomes stronger. The lifetime depends on the pinning-depinning transitions and the depinning onset times, which are changed by the gravitational influence. This The dependence inclination-induced evaporation behavior would be useful important in understanding evaporation dynamics of inclined droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  7. Upper atmospheric rotation rate from orbit analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The rotation speed Λ of the upper atmosphere,mainly at heights of 180-360 km,was evaluated from the changes in orbital inclinations of GFZ. The results indicate that the value of Λ(in rev/d) decreases from 1.2 at 360 km to 0.9 at 180 km.

  8. Solar Orbiter Status Report

    Science.gov (United States)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  9. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates

    Science.gov (United States)

    Braselmann, Esther; Chaney, Julie L.; Champion, Matthew M.

    2016-01-01

    The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress. PMID:27626276

  10. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates.

    Science.gov (United States)

    Braselmann, Esther; Chaney, Julie L; Champion, Matthew M; Clark, Patricia L

    2016-01-01

    The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.

  11. Orbital Parameters for the Soft X-ray Transient 4U 1543-47 Evidence for a Black Hole

    CERN Document Server

    Orosz, J A; Bailyn, C D; McClintock, J E; Remillard, R A; Orosz, Jerome A.; Jain, Raj K.; Bailyn, Charles D.; Clintock, Jeffrey E. Mc; Remillard, Ronald A.

    1997-01-01

    (shortened) Spectroscopic observations of the soft X-ray transient 4U 1543-47 reveal a radial velocity curve with a period of P=1.123 +/- 0.008 days and a semi-amplitude of K_2 = 124 +/- 4 km/sec. The mass function is f(M) = 0.22 +/- 0.02 solar masses. We derive a distance of d = 9.1 +/-1.1 kpc if the secondary is on the main sequence. The V and I light curves exhibit two waves per orbital cycle with amplitudes of about 0.08 mag. We modeled the light curves as ellipsoidal variations in the secondary star and derive extreme inclination limits of 20 1. However, there are systematic effects in the data that the model does not account for, so the above constraints should be treated with caution. We argue that the secondary star is still on the main sequence and if the secondary star has a mass near the main sequence values for early A-stars (2.3 <= M_2 <= 2.6 solar masses), then the best fits for the 3 sigma inclination range (24 <= i <= 36 deg) and the 3 sigma mass function range (0.16 <= f(M) &l...

  12. Astrometric Confirmation and Preliminary Orbital Parameters of the Young Exoplanet 51 Eridani b with the Gemini Planet Imager

    CERN Document Server

    De Rosa, Robert J; Blunt, Sarah C; Graham, James R; Konopacky, Quinn M; Marois, Christian; Pueyo, Laurent; Rameau, Julien; Wang, Jason J; Bailey, Vanessa; Chontos, Ashley; Fabrycky, Daniel C; Follette, Katherine B; Macintosh, Bruce; Marchis, Franck; Ammons, S Mark; Arriaga, Pauline; Chilcote, Jeffrey K; Doyon, René; Duchêne, Gaspard; Esposito, Thomas M; Fitzgerald, Michael P; Gerard, Benjamin; Goodsell, Stephen J; Greenbaum, Alexandra Z; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul G; Lafrenière, David; Maire, Jerome; Metchev, Stanimir; Millar-Blanchaer, Maxwell A; Morzinski, Katie M; Oppenheimer, Rebecca; Patel, Rahul I; Patience, Jennifer L; Perrin, Marshall D; Rajan, Abhijith; Rantakyrö, Fredrik T; Ruffio, Jean-Baptiste; Schneider, Adam C; Sivaramakrishnan, Anand; Song, Inseok; Tran, Debby; Ward-Duong, Kimberly; Wolff, Schuyler G

    2015-01-01

    We present new GPI observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2\\times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semi-major axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ yr (assuming a mass of $1.75$ M$_{\\odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaini...

  13. Efficient defrosting of an inclined flat surface

    Energy Technology Data Exchange (ETDEWEB)

    Subrata Roy; Haribalan Kumar; Anderson, R. [Kettering University, Flint, MI (United States). Computational Plasma Dynamics Laboratory

    2005-06-01

    We present a deicing simulation for a practical three-dimensional geometry inside which hot air jets impinge upon a flat inclined glass surface with a layer of ice on the outside. The main goal is to study the unsteady two-phase melting process over the inclined flat surface, and to identify the traditional control parameters such as jet impingement angles for minimization of the defrosting time for given ice and glass thicknesses. A correlation for defrosting as functions of time, heat transfer parameters and impingement angles has been found. Also, in this study, the first Joule heating defroster using transparent electrodes are proposed and numerically simulated as a viable alternative. A correlation between the electrical Joule power requirement and the defrosting time is given. It is demonstrated that substantial improvements (roughly 70% reduction) in defrosting time may be achieved using Joule heating compared to the traditional jet impingement HVAC technology. (author)

  14. Analysis of inclined showers measured with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Saftoiu, A. [National Institute of Physics and Nuclear Engineering Bucharest (Romania)], E-mail: allixme@gmail.com; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    In the present study, we analyze the radio signal from inclined air showers recorded by LOPES-30 in coincidence with KASCADE-Grande. LOPES-30 consists of 30 East-West oriented digital antennas, which are amplitude calibrated by an external source. Radio emission from air showers is considered a geomagnetic effect. Inclined events provide a larger range of values for geomagnetic angle (angle between shower axis and geomagnetic field direction) than vertical showers and thus more information on the emission processes can be gathered. In order to have the geometry of the air shower we use the reconstruction provided by the KASCADE-Grande particle detectors array. Analyzing events observed by both LOPES and the extended part of the KASCADE array, Grande, gives the possibility to test in particular the capability and efficiency of radio detection of more distant events. The results are compared with a previous analysis of inclined events recorded by the initial 10 antenna set-up, LOPES-10, in coincidence with the Grande array.

  15. Energetics of ascent: insects on inclines.

    Science.gov (United States)

    Full, R J; Tullis, A

    1990-03-01

    Small animals use more metabolic energy per unit mass than large animals to run on a level surface. If the cost to lift one gram of mass one vertical meter is constant, small animals should require proportionally smaller increases in metabolic cost to run uphill. To test this hypothesis on very small animals possessing an exceptional capacity for ascending steep gradients, we measured the metabolic cost of locomotion in the cockroach, Periplaneta americana, running at angles of 0, 45 and 90 degrees to the horizontal. Resting oxygen consumption (VO2rest) was not affected by incline angle. Steady-state oxygen consumption (VO2ss) increased linearly with speed at all angles of ascent. The minimum cost of locomotion (the slope of the VO2ss versus speed function) increased with increasing angle of ascent. The minimum cost of locomotion on 45 and 90 degrees inclines was two and three times greater, respectively, than the cost during horizontal running. The cockroach's metabolic cost of ascent greatly exceeds that predicted from the hypothesis of a constant efficiency for vertical work. Variations in stride frequency and contact time cannot account for the high metabolic cost, because they were independent of incline angle. An increase in the metabolic cost or amount of force production may best explain the increase in metabolic cost. Small animals, such as P. americana, can easily scale vertical surfaces, but the energetic cost is considerable.

  16. Granular avalanches down inclined and vibrated planes

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  17. Energy calibration of very inclined air showers

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Roth, Markus [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Hebbeker, Thomas [III. Physikalisches Institut A, RWTH Aachen (Germany)

    2010-07-01

    The Pierre Auger Observatory detects extensive air showers which are initiated by ultra-high energy cosmic rays. The properties of the cosmic rays are derived indirectly from the air shower observation. The surface detector of the observatory is well suited to detect showers with zenith angles from 0 to 90 . Standard analyses focus on so called vertical showers with inclinations smaller than 60 . Showers with larger zenith angles are called very inclined showers. Both have distinct experimental signatures which require separate event reconstructions. The ground signal of very inclined air showers is muon dominated and the energy reconstruction uses the variable R{sub {mu}} as an estimator for the cosmic ray energy which is proportional to the total number of muons N{sub {mu}} on the ground. The talk will focus on the energy calibration of R{sub {mu}} with events observed simultaneously in the surface and fluorescence detector of the observatory. This calibration procedure also offers the unique opportunity to derive the shower-to-shower fluctuations of R{sub {mu}} which are sensitive to the cosmic ray mass composition.

  18. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    SUN XuWu; WANG LiYuan; ZHANG LiXin

    2007-01-01

    Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress,and the extent of this effect was greater in the double mutant,deg5deg8,than in the single mutants,deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore,the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus,our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.

  19. Introducing the Moon's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2014-01-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…

  20. The Prevalence of the 22 deg Halo in Cirrus Clouds

    Science.gov (United States)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  1. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  2. Levy Flights of Binary Orbits due to Impulsive Encounters

    CERN Document Server

    Collins, Benjamin F

    2008-01-01

    We examine the evolution of an almost circular Keplerian orbit interacting with unbound perturbers. We calculate the change in eccentricity and angular momentum that results from a single encounter, assuming the timescale for the interaction is shorter than the orbital period. The orbital perturbations are incorporated into a Boltzmann equation that allows for eccentricity dissipation. We present an analytic solution to the Boltzmann equation that describes the distribution of orbital eccentricity and relative inclination as a function of time. The eccentricity and inclination of the binary do not evolve according to a normal random walk but perform a Levy flight. The slope of the mass spectrum of perturbers dictates whether close gravitational scatterings are more important than distant tidal ones. When close scatterings are important, the mass spectrum sets the slope of the eccentricity and inclination distribution functions. We use this general framework to understand the eccentricities of several Kuiper b...

  3. A new method for orbit determination: Unit vector method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a method of orbit determination is presented according to the principle of unit vector method (UVM). The model and arithmetic are improved and it not only suits initial orbit determination with short arc data, it also suits orbit improvement with data longer. It is also suitable for orbit of any eccentricity and any inclination. It omits most partial derivatives of all the elements which must be calculated in classical differential orbit improvement (DOI), so, it is more efficient than DOI, and the accuracy of orbit determination and convergence of algorithm are also improved appreciably.

  4. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    Science.gov (United States)

    Darling, Jeremy

    2017-03-01

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocity that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07-0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120-039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.

  5. La formazione iniziale degli insegnanti in Italia

    Directory of Open Access Journals (Sweden)

    Carlo Cappa

    2013-07-01

    Full Text Available L’articolo è diviso in tre parti. La prima presenta gli elementi storici e di sfondo che occorre tenere presenti per comprendere l’evoluzione della formazione iniziale degli insegnanti verso gli attuali modelli, che pur essendo oggi tutti gestiti dalle università conservano una sensibile diversità a seconda che si tratti di formare maestri per la scuola dell’infanzia e primaria oppure professori di scuola secondaria di primo e secondo grado. La seconda parte analizza il passaggio, maturato tra la fine del secolo scorso e l’inizio del XXI secolo, della formazione dei maestri dalla scuola secondaria (Istituto magistrale all’università (Corso di laurea in Scienze della formazione primaria, e l’istituzione delle Scuole di Specializzazione per l’Insegnamento Secondario (SSIS fino alla soppressione di queste ultime, avvenuta nel 2009. La terza parte presenta il quadro attuale della formazione iniziale dei docenti in Italia con riguardo soprattutto agli insegnanti della scuola secondaria, per i quali – a differenza che per i maestri - sono intervenute dal 2010 importanti innovazioni legislative. Le SSIS sono state infatti sostituite con il Tirocinio Formativo Attivo (TFA, attualmente in fase di attuazione da parte delle università. Nella parte finale dell’articolo si traccia un primo bilancio dell’esperienza del TFA e si indicano alcuni problemi aperti. Il focus rimane sostanzialmente sulla formazione iniziale, in quanto in Italia la formazione in servizio, che pure non è del tutto assente, non è mai stata oggetto di una normativa né di una azione organica, ma avviene, quando avviene, sulla base di iniziative di specifici gruppi o associazioni.The article is organised in three parts. The first one illustrates the historical features and the institutional and political background that have to be taken into account in order to understand how initial teacher education and training has developed in Italy. Presently, all teacher

  6. An experimental study on the characteristics of evaporation heat transfer of carbon dioxide flowing upward in an inclined smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jin; Cho, Jin Min; Lee, Jae Seung; Kim, Min Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2008-07-01

    The ozone layer depletion and global warming has driven us to develop new alternative refrigerants. As the carbon dioxide is believed as a good alternative, evaporation heat transfer characteristics of carbon dioxide flowing upward in an inclined smooth tube(45? have been investigated by experiment. A pre-heater is installed to adjust the inlet quality of the refrigerant to get a desired value before the test section. An inclined smooth tube(45? with outer diameter of 5 mm and length of 1.44 m was selected as a test tube. The test was conducted at mass fluxes of 318 to 530 kg/m{sup 2}s, saturation temperatures of -5 to 20 .deg. C, and heat fluxes of 15 to 45 kW/m{sup 2}. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are slightly decreased, and the heat transfer coefficients increase with the heat fluxes and saturation temperatures elevated.

  7. Support grid with integral inclined waves

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, W.H.

    1991-06-18

    This paper describes improvement in a fuel element support grid for supporting a plurality of nuclear fuel elements intermediate their ends in spaced relation for fluid flow therebetween. The grid including a polygonal perimeter and a plurality of fuel element compartments defined by pairs of first and second intersecting and slottedly interlocked wave defining grid-forming strips attached to the perimeter and to each other. The improvement comprises: at least some of the strips having its waves defined by bends at spring bases inclined from the vertical and at least some of the strips having spring cantilevered into the compartments from the strips.

  8. Doughnut shape atom traps with arbitrary inclination

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez y Masegosa, R.; Moya C, H.; Chavez C, S. [INAOE, A.P. 51 y 216, 72000 Puebla (Mexico)

    2006-07-01

    Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90diam. with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT. (Author)

  9. Legged-locomotion on inclined granular media

    Science.gov (United States)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  10. Tenebrio beetles use magnetic inclination compass

    Science.gov (United States)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  11. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  12. Numerical studies of convective heat transfer in an inclined semi-annular enclosure

    Science.gov (United States)

    Wang, L.-W.; Chai, A.-T.; Yung, C.-N.; Rashidnia, N.

    1989-01-01

    Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.

  13. Numerical studies of convective heat transfer in an inclined semiannular enclosure

    Science.gov (United States)

    Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser

    1989-01-01

    Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.

  14. On wind turbine power performance measurements at inclined airflow

    Science.gov (United States)

    Pedersen, T. F.

    2004-07-01

    The average airflow inclination in complex terrain may be substantial. The airflow inclination affects wind turbine performance and also affects the cup anemometer being used in power performance measurements. In this article the overall dependence of the power curve on inclined airflow is analysed for its influence on both the wind turbine and the cup anemometer. The wind turbine performance analysis is based on results of measurements and theoretical calculations with the aeroelastic code HAWC coupled to a 3D actuator disc model for varying yaw angle. The cup anemometer analysis at inclined flow is based on an averaging of measured angular characteristics in a wind tunnel with the distribution of airflow inclination angles over time. The relative difference in annual energy production in terrain with inclined airflow compared with flat terrain is simulated for cup anemometers with theoretical optimal angular characteristics for two different definitions of wind speed, as well as for five commercial cup anemometers with measured angular characteristics. Copyright

  15. A technique to determine a desired preparation axial inclination.

    Science.gov (United States)

    Parker, M Harry; Ivanhoe, John R; Blalock, John S; Frazier, Kevin B; Plummer, Kevin D

    2003-10-01

    The guidelines recommended in the literature for the convergence angle of a crown preparation vary from 3 to 24 degrees. There is a lack of guidelines on techniques to achieve a specific axial inclination. The purpose of this article was to present a practical technique, with a diamond rotary cutting instrument of known axial inclination, to determine the diamond rotary cutting instrument angulations required to achieve the desired axial inclination of a preparation.

  16. The harmonic structure of generic Kerr orbits

    CERN Document Server

    Grossman, Rebecca; Perez-Giz, Gabe

    2011-01-01

    Generic Kerr orbits exhibit intricate three-dimensional motion. We offer a classification scheme for these intricate orbits in terms of periodic orbits. The crucial insight is that for a given effective angular momentum $L$ and angle of inclination $\\iota$, there exists a discrete set of orbits that are geometrically $n$-leaf clovers in a precessing {\\it orbital plane}. When viewed in the full three dimensions, these orbits are periodic in $r-\\theta$. Each $n$-leaf clover is associated with a rational number, $1+q_{r\\theta}=\\omega_\\theta/\\omega_r$, that measures the degree of perihelion precession in the precessing orbital plane. The rational number $q_{r\\theta}$ varies monotonically with the orbital energy and with the orbital eccentricity. Since any bound orbit can be approximated as near one of these periodic $n$-leaf clovers, this special set offers a skeleton that illuminates the structure of all bound Kerr orbits, in or out of the equatorial plane.

  17. The Gothic arch (needle point) tracing and condylar inclination.

    Science.gov (United States)

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  18. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  19. Granular flow over inclined channels with constrictions

    Science.gov (United States)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  20. The formation of retrograde planetary orbits by close stellar encounters

    Directory of Open Access Journals (Sweden)

    Ford E. B.

    2011-02-01

    Full Text Available We consider the growing number of observations of the RossiterMcLaughlin effect in transiting planets, which seem to suggest that ~30% of transiting planets are in highly inclined or retrograde orbits. We consider the dense cluster environment in which stars are born and investigate whether perturbations from passing stars can drive planetary systems into retrograde configurations. We find that fly-bys can result in significantly more inclination excitation than might naively be expected from impulse approximations, leading to several percent of stellar systems possessing planets in retrograde orbits.

  1. Simulation of Canopy Leaf Inclination Angle in Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-cui; LU Chuan-gen; HU Ning; YAO Ke-min; ZHANG Qi-jun; DAI Qi-gen

    2013-01-01

    A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2) and the root mean square error (RMSE) between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI) decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.

  2. The family of Deg/HtrA proteases in plants

    Directory of Open Access Journals (Sweden)

    Schuhmann Holger

    2012-04-01

    Full Text Available Abstract Background The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms from bacteria to human and vascular plants. In recent years, multiple deg/htrA protease genes were identified in various plant genomes. During genome annotations most proteases were named according to the order of discovery, hence the same names were sometimes given to different types of Deg/HtrA enzymes in different plant species. This can easily lead to false inference of individual protease functions based solely on a shared name. Therefore, the existing names and classification of these proteolytic enzymes does not meet our current needs and a phylogeny-based standardized nomenclature is required. Results Using phylogenetic and domain arrangement analysis, we improved the nomenclature of the Deg/HtrA protease family, standardized protease names based on their well-established nomenclature in Arabidopsis thaliana, and clarified the evolutionary relationship between orthologous enzymes from various photosynthetic organisms across several divergent systematic groups, including dicots, a monocot, a moss and a green alga. Furthermore, we identified a “core set” of eight proteases shared by all organisms examined here that might provide all the proteolytic potential of Deg/HtrA proteases necessary for a hypothetical plant cell. Conclusions In our proposed nomenclature, the evolutionarily closest orthologs have the same protease name, simplifying scientific communication when comparing different plant species and allowing for more reliable inference of protease functions. Further, we proposed that the high number of Deg/HtrA proteases in plants is mainly due to gene duplications unique to the respective organism.

  3. Stability of Frozen Orbits Around Europa

    Science.gov (United States)

    Cardoso Dos Santos, Josué; Vilhena de Moraes, R.; Carvalho, J. S.

    2013-05-01

    Abstract (2,250 Maximum Characters): A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter IcyMoon Explorer (JUICE, ESA). In this work we are formulating theories and constructing computer programs to be used in the design of aerospace tasks as regards the stability of artificial satellite orbits around planetary satellites. The studies are related to translational motion of orbits around planetary satellites considering polygenic perturbations due to forces, such as the nonspherical shape of the central body and the perturbation of the third body. The equations of motion will be developed in closed form to avoid expansions in eccentricity and inclination. For a description of canonical formalism are used the Delaunay canonical variables. The canonical set of equations, which are nonlinear differential equations, will be used to study the stability of orbits around Europa. We will use a simplified dynamic model, which considers the effects caused by non-uniform distribution of mass of Europa (J2, J3 and C22) and the gravitational attraction of Jupiter. Emphasis will be given to the case of frozen orbits, defined as having almost constant values of eccentricity, inclination, and argument of pericentre. An approach will be used to search for frozen orbits around planetary satellites and study their stability by applying a process of normalization of Hamiltonian. Acknowledges: FAPESP

  4. Decoupling of a giant planet from its disk in an inclined binary system

    CERN Document Server

    Picogna, Giovanni

    2015-01-01

    We explore the dynamical evolution of a planet embedded in a disk surrounding a star part of a binary system where the orbital plane of the binary is significantly tilted respect to the initial disk plane. Our aim is to test whether the planet remains within the disk and continues to migrate towards the star in a Type I/II mode in spite of the secular perturbations of the companion star. This would explain observed exoplanets with significant inclination respect to the equatorial plane of their host star. We have used two different SPH codes, vine and phantom, to model the evolution of a system star+disk+planet and companion star with time. After an initial coupled evolution, the inclination of the disk and that of the planet begin to differ significantly. The period of oscillation of the disk inclination, respect to the initial plane, is shorter than that of the planet which evolves independently after about 10^4 yr following a perturbed N-body behavior. However, the planet keeps migrating towards the star b...

  5. Planetesimal Dynamics in Inclined Binary Systems: The Role of Gas-Disk Gravity

    CERN Document Server

    Zhao, Gang; Zhou, Ji-Lin; Lin, Douglas N C

    2012-01-01

    We investigate the effects of gas-disk gravity on the planetesimal dynamics in inclined binary systems, where the circumprimary disk plane is tilted by a significant angle ($i_B$) with respect to the binary disk plane. Our focus is on the Lidov-Kozai mechanism and the evolution of planetesimal eccentricity and inclination. Using both analytical and numerical methods, we find that, on one hand, the disk gravity generally narrows down the Kozai-on region, i.e., the Lidov-Kozai effect can be suppressed in certain parts of (or even the whole of) the disk, depending on various parameters. In the Kozai-off region, planetesimals would move on orbits close to the mid-plane of gas-disk, with the relative angle ($i^{'}$) following a small amplitude periodical oscillation. On the other hand, when we include the effects of disk gravity, we find that the Lidov-Kozai effect can operate even at arbitrarily low inclinations ($i_B$), although lower $i_B$ leads to a smaller Kozai-on region. Furthermore, in the Kozai-on region,...

  6. Relationships between Migration to Urban Settings and Children's Creative Inclinations

    Science.gov (United States)

    Shi, Baoguo; Lu, Yongli; Dai, David Yun; Lin, Chongde

    2013-01-01

    In this study, 909 5th- and 6th-grade children were recruited as participants, and questionnaires were used to investigate the relationships between migration to urban settings and children's creative inclinations. The study was broken down to 2 parts. Study 1 compared scores on measures of creative inclinations among migrant, rural, and urban…

  7. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary machinery essential to the propulsion and safety of the vessel must...

  8. Entrepreneurial inclinations of women from rural areas

    Directory of Open Access Journals (Sweden)

    Marković-Savić Olivera S.

    2014-01-01

    Full Text Available Entrepreneurial inclinations of women from rural areas are shaped by the lack of business ideas and economic capital, which, in addition to financial resources, includes cultural capital in the form of knowledge and skills. The paper presents a part of a broader study on the social position of women from the rural areas of northern Kosovo and Metohija, conducted in 2013. The research was predominantly focused on entrepreneurial inclinations of rural women, and the findings suggest that private enterprise in the studied population is undeveloped as a result of two dominant reasons. The first reason is the situation which is unfavorable in terms of politics and security, and therefore, not conducive to investment security, together with the specificity in the form of complex administrative business conditions requiring compliance to parallel and mutually incompatible standards (of the Republic of Serbia and of the UNMIK administration. The second important reason for the lack of entrepreneurial initiatives is the lack of ownership of property and the means of production, since banks do not give loans without guarantees in the form of ownership of the mortgage, while other forms of financial incentives are unavailable. The respondents attended programs for acquiring new knowledge and skills only in a small number of cases, while showing the greatest susceptibility to education in traditional skills, such as training in agriculture and handicrafts, which are not the skills in line with the needs of the labor market. As the most important reasons that -prevent them from having their own business, the respondents -mentioned: the lack of ideas and the lack of financial resources. In this regard, they would find incentives in the form of grants most helpful to start their own business. The absence of funds and gender inequality form the basis for the lack of ownership of property and means of production. In addition to the shortage of financial

  9. Limiting Global Warming to 2 deg C and Beyond

    Science.gov (United States)

    Lea, D. W.

    2011-12-01

    This presentation addresses the question of how feasible is it to limit global warming to a specific temperature rise, whether 1.5, 2 or 3 deg C. Inherent in the idea of limiting global warming to a specific temperature level is the notion that future GHG emissions will be subject to a top-down international agreement. In the post-Copenhagen era, however, such an agreement is unlikely, and a bottoms-up approach of national pledges will likely have to serve as a surrogate for achieving emissions reduction. In this case, an additional question is what temperature targets are realistic under scenarios that are bounded by achievable national pledges as opposed to binding mandates. The question of feasibility depends largely on future emission pathways of CO2, other GHGs, black carbon and aerosols. Those pathways depend on many societal, technological and economic factors, but it is likely that the ultimate limiting factor is the maximum possible rate of absolute emission reduction. That rate is limited by how rapidly energy infrastructure can be turned over. Most studies suggest that an absolute emission reduction rate of 3.5% is the highest rate achievable. Climate sensitivity and the current cooling effect of aerosols and earth system responses such as the rate of ocean heat uptake and carbon cycle feedbacks determine how a specific emissions pathway translates into probable climate change. A useful framework for CO2 alone is provided by the newly emerging paradigm of cumulative emissions, which holds that peak temperature can be largely predicted by the total amount of carbon emitted, regardless of pathway. Most studies suggest that 1 Tt of cumulative carbon is equivalent to ~2 deg of peak warming. A consideration of these factors suggests that limiting warming to 1.5 deg C is no longer possible under any feasible economic scenario. For one, currently emitted GHGs are equivalent to a ~1.3 deg C warming commitment. This leaves very little room for future emissions

  10. Use of IQRF technology for detection of construction inclination

    Science.gov (United States)

    Martin, Pies; Radovan, Hajovsky

    2016-06-01

    This paper deals with the application of wireless measurement of inclination of objects located at mining dumps. Measurement of inclination uses a set of sensors including a gyroscope, an accelerometer and a magnetometer. Measured data is processed by AHRS algorithm that, once applied, allows getting more precise information on rotation of the object in the area compared to unprocessed data from accelerometer or gyroscope. Measurement chain consists of two parts. The first one is a wireless module reading the data from particular sensors via I2C bus and sends it consequently to a computer that performs evaluation and visualization of inclination. Communication among particular devices is ensured by IQRF technology working within ISM band of 868MHz. Application of this approach for measurement of inclination is a reasonable choice in case of measurement of inclination by inclinometers.

  11. Non-Local Signal in Quasi-2DEG of LAO/STO

    Science.gov (United States)

    Jin, Mi-Jin; Moon, Seon Young; Modepalli, Vijayakumar; Jo, Junhyeon; Park, Jungmin; Baek, Seung-Hyub; Yoo, Jung-Woo

    2015-03-01

    Electron gas arizen at the insulating oxide interfaces exhibits high electron mobility, tunable carrier densities and related unique behaviors such as coexistence of superconductivity and ferromagnetism, Kondo resistance, etc. Itinerant electrons at the oxide hetero-interface are predicted to have long spin diffusion length, while they are under the relatively strong Rashba-type spin orbit coupling due to inversion symmetry breaking. We studied non-local spin signal induced by spin orbit coupling with additional gate-controlled Rashba field in quasi-2DEG of LaAlO3/SrTiO (LAO/STO) interface. We fabricated simple hall-bar like geometry to measure non-local signal with the variation of channel length (2 ~ 10 μm). Cleaned sample was patterned using e-beam lithography and reactive ion etching followed by oxygen treatment to anneal out oxygen vacancies. When an electric current flows one line of the hall bar structure, spin orbit coupling will induce the current flow away from the source current channel via spin hall and inverse spin hall effects. The non-local signals were studied under different angles of magnetic field and the variation of applied gate voltage. This work was supported by a grant from (No. 1.140092.01) funded by the Ulsan National Institute of Science and Technology.

  12. Tropospheric ozone over a tropical Atlantic station in the Northern Hemisphere: Paramaribo, Surinam (6 deg N, 55 deg W)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W.; Krol, M.C. [Inst. for Marine and Atmospheric Research Utrecht (Netherlands); Fortuin, J.P.F.; Kelder, H.M. [Koninklijke Nederlandse Meteorologische Dienst, De Bilt (Netherlands); Thompson, A.M. [Goddard Space Flight Center, NASA, Greenbelt, MD (United States); Becker, C.R. [Meteorologische Dienst Suriname, Paramaribo (Suriname); Lelieveld, J.; Crutzen, P.J. [Max Planck Inst. fuer Chemie, Mainz (Germany)

    2004-02-01

    We present an analysis of 2.5 yr of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6 deg N, 55 deg W). This is currently one of only three ozone sounding stations in the Northern Hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is part of the Southern Hemisphere Additional Ozone Sounding program (SHADOZ). Owing to its position close to the equator, the inter-tropical convergence zone (ITCZ) passes over Paramaribo twice per year, which results in a semi-annual seasonality of many parameters including relative humidity and ozone. The dataset from Paramaribo is used to: (1) evaluate the ozone variability relative to precipitation, atmospheric circulation patterns and biomass burning; (2) contrast ozone at the NH equatorial Atlantic with that at nearby Southern Hemisphere (SH) stations Natal (6 deg S, 35 deg W) and Ascension (8 deg S, 14 deg W); (3) compare the seasonality of tropospheric ozone with a satellite-derived ozone product: tropical tropospheric ozone columns from the modified residual method (MR-TTOC). We find that Paramaribo is a distinctly Atlantic station. Despite its position north of the equator, it resembles nearby SH stations during most of the year. Transport patterns in the lower and middle troposphere during February and March differ from SH stations, which leads to a seasonality of ozone with two maxima. MR-TTOC over Paramaribo does not match the observed seasonality of ozone due to the use of a SH ozone sonde climatology in the MR method. The Paramaribo ozone record is used to suggest an improvement for Northern Hemisphere MR-TTOC retrievals. We conclude that station Paramaribo shows unique features in the region, and clearly adds new information to the existing SHADOZ record.

  13. Radio identification of decameter-wave sources. II: The 30degdeg declination interval

    CERN Document Server

    Verkhodanov, O V; Andernach, H; 10.1134/S1990341309010052

    2009-01-01

    This paper is dedicated to the identification of decameter-wave sources of the UTR catalog within declination interval 30degdeg. UTR sources are cross-identified with CATS database catalogs within 40'x40' error boxes. The sources are deblended using the data on the coordinates of the objects and the behavior of their continuum radio spectra. The spectra of 876 sources are derived and fitted by standard analytical functions. Of these sources, 221 objects have straight-line spectra with spectral indices alpha<-1.0. All objects are catalogued and stored in the CATS database.

  14. Stochastic Orbit Prediction Using KAM Tori

    Science.gov (United States)

    2011-03-24

    central body (like the rings of Saturn ), or coalesce into a moon or planet. Hannes Alfvén famously described this coalescing of debris using apples...collision, the smashed remnants lose their inclination and eccentricity until eventually a cloud of dust orbits in a ring about the equator of the...269) One method to verify the two-body analytical formation of ⃑ ⃑ ⁄ is to numerically differentiate a

  15. Wireless Orbiter Hang-Angle Inclinometer System

    Science.gov (United States)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  16. Bioinspired dynamic inclination measurement using inertial sensors.

    Science.gov (United States)

    Vikas, Vishesh; Crane, Carl

    2015-04-16

    Biologically, the vestibular feedback is critical to the ability of human body to balance in different conditions. This balancing ability inspires analysis of the reference equilibrium position in dynamic environments. The research proposes and experimentally validates the concept of equilibrium for the human body modeled as an inverted pendulum, which is instrumental in explaining why we align the body along the surface normal when standing on a surface but not on an incline, and tend to lean backward or forward on non-static surfaces e.g. accelerating or decelerating bus. This equilibrium position--the dynamic equilibrium axis--is dependent only on the acceleration of surface of contact (e.g. gravity) and acts as the reference to the orientation measurements. The research also draws design inspiration from the two human ears--symmetry and plurality of inertial sensors. The vestibular dynamic inclinometer and planar vestibular dynamic inclinometer consist of multiple (two or four) symmetrically placed accelerometers and a gyroscope. The sensors measure the angular acceleration and absolute orientation, not the change in orientation, from the reference equilibrium position and are successful in separating gravity from motion for objects moving on ground. The measurement algorithm is an analytical solution that is not time-recursive, independent of body dynamics and devoid of integration errors. The experimental results for the two sensor combinations validate the theoretically (kinematics) derived analytical solution of the measurement algorithm.

  17. Avalanche dynamics on a rough inclined plane.

    Science.gov (United States)

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  18. InAs 2DEGs:What's the g-factor?

    Science.gov (United States)

    McCombe, B. D.; Pakmehr, Mehdi; Khaetskii, A.; Chiatti, Olivio; Fischer, S. F.; Buchholz, S.; Heyn, C.; Hansen, W.; Cahay, M.; Newrock, R. S.; Bandari, Nikhil

    2014-03-01

    Interest in spin-orbit effects in semiconductors has led us to study the electron g-factor in quasi-2DEG InAs samples. We have made magneto-transport and -photoresponse (PR) measurements on InAs QW structures in magnetic fields up to 10 T. THz cyclotron resonance (CR) is manifested in PR as a resonant envelope of the amplitude of quantum oscillations, which show clear spin-splitting (for lower mobility samples) down 4T, while direct R_xx measurements show no spin-splitting up to 9T. R_xx oscillations in a higher mobility sample show well-resolved spin-splittings over a range of fields as does the PR. We have simulated the data with a theoretical expression for 2DEG SdH oscillations (coupled with CR resonant carrier heating for the PR) and extracted g-factors from fits. We also used a different (commonly used) method, SdH oscillations vs. tilt angle of the field to extract g-factors from the angle at which the SdH frequency doubles. We find very large g-factors from fits to R_xx and PR (14 - 20), but g-factors 2-3 times smaller for these same samples from tilted field experiments (close to estimated band g-factors). These results are discussed in terms of exchange effects. Support: NSF DMR 1008138 (Buffalo); NSF ECCE 1028483(Cincinnati); DFG Fi932/4-1(Berlin).

  19. Introducing the Moon's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2014-11-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.

  20. GEO NAV/CNAV-type Broadcast Ephemeris Fitting without Rotation of Inclination

    Directory of Open Access Journals (Sweden)

    DU Lan

    2017-03-01

    Full Text Available The GPS-type broadcast ephemerides are currently used by BDS constellation. However, a 5°-rotation added on the original orbital inclination is needed in the GEOs ephemeris parameters fitting algorithm as well as in the user satellite position computation because of the singularity due to small inclination. Besides, the phenomena of exceeding the given boundary happen occasionally for some ephemeris parameters of GEOs. In order to unify the user ephemerides algorithm for the hybrid constellation, a two-step GEO broadcast ephemerides fitting algorithm was analyzed based on the first class nonsingular orbital elements. After the investigation on the reason for the variations of some ephemeris parameters out of limited range, a reduced fitting parameter set was adopted by giving the underlying one or two parameters with fixed values. Fit simulations for 5 GEOs during both eclipsing and non-eclipsing periods show that the two-step fitting algorithm has considerable robustness to ensure the success rate and fitting accuracy. The mean fitting user range error of GEOs with 2 h for NAV and 3 h data set for CNAV are better than 3 mm. For specific fit arcs with the boundary-exceeding problem, it can be fully avoided by using the fitting algorithm with a reduced fitting parameter set. However, the fitting URE will increase to 2 cm.

  1. Orbital pseudotumor

    Science.gov (United States)

    ... Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman ... 423. Review Date 8/20/2016 Updated by: Franklin W. Lusby, MD, ophthalmologist, Lusby Vision Institute, La ...

  2. Sun-synchronous satellite orbit determination

    Science.gov (United States)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  3. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  4. Inclinations of the facial profile: art versus reality.

    Science.gov (United States)

    Farkas, L G; Sohm, P; Kolar, J C; Katic, M J; Munro, I R

    1985-04-01

    The average inclinations of five basic facial profile lines and five individual facial profile segments were determined by direct anthropometry in a total group of 232 healthy young adults, all North American Caucasians. Significant sex-related differences were found only in the inclination of the forehead, the lower face, and the lower third of the face, with greater inclinations in males. These results were compared with data obtained from 49 art works produced by ancient, Renaissance, post-Renaissance, and contemporary artists and drawings of the face in scientific papers published by anthropologists, orthodontists, anatomists, and plastic surgeons. In the population study the average inclination of the general and the aesthetic profile lines, the lower face, the forehead, and the lower lip show a receding trend. The upper face is slightly protruded in the males and close to vertical in the females. The chin and the nose are equally prominent in both sexes. The only significant difference is in the greater recession of the lower face in males. The average female population values are reminiscent of those of the Renaissance. The average male inclinations come closest to the findings in the statues of antiquity. The population sample and the contemporary artists showed similar inclinations of the nasal bridge and the lower lip. Generally, the average inclination of the chin in the population is smaller than in any artistic style.

  5. Embrittlement of reduced-activation ferritic/martensitic steels irradiated in HFIR at 300 deg. C and 400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. E-mail: ku2@ornl.gov; Sokolov, M.A.; Shiba, K.; Miwa, Y.; Robertson, J.P

    2000-12-01

    Miniature tensile and Charpy specimens of four ferritic/martensitic steels were irradiated at 300 deg. C and 400 deg. C in the high flux isotope reactor (HFIR) to a maximum dose of {approx}12 dpa. The steels were standard F82H (F82H-Std), a modified F82H (F82H-Mod), ORNL 9Cr-2WVTa, and 9Cr-2WVTa-2Ni, the 9Cr-2WVTa containing 2% Ni to produce helium by (n,{alpha}) reactions with thermal neutrons. More helium was produced in the F82H-Std than the F82H-Mod because of the presence of boron. Irradiation embrittlement in the form of an increase in the ductile-brittle transition temperature ({delta}DBTT) and a decrease in the upper-shelf energy (USE) occurred for all the steels. The two F82H steels had similar {delta}DBTTs after irradiation at 300 deg. C, but after irradiation at 400 deg. C, the {delta}DBTT for F82H-Std was less than for F82H-Mod. Under these irradiation conditions, little effect of the extra helium in the F82H-Std could be discerned. Less embrittlement was observed for 9Cr-2WVTa steel irradiated at 400 deg. C than for the two F82H steels. The 9Cr-2WVTa-2Ni steel with {approx}115 appm He had a larger {delta}DBTT than the 9Cr-2WVTa with {approx}5 appm He, indicating a possible helium effect.

  6. Objects orbiting the Earth in deep resonance

    CERN Document Server

    Sampaio, J C; de Moraes, R Vilhena; Fernandes, S S

    2012-01-01

    The increasing number of objects orbiting the Earth justifies the great attention and interest in the observation, spacecraft protection and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, the TLE (Two-Line Elements) of the NORAD are studied observing the resonant period of the objects orbiting the Earth and the main resonance in the LEO region. The time behavior of the semi-major axis, eccentricity and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  7. Trajectory of a projectile on a frictional inclined plane

    Science.gov (United States)

    Wang, Xiaosun

    2014-08-01

    A closed form solution is given for the trajectory of a particle sliding on an inclined plane with Coulomb-type friction. If the inclination of the plane is less than the friction angle, the particle eventually comes to rest and expressions for the location of this point and the duration of the motion are given. If the initial launch is inclined at a small angle with respect to the upward line of greatest slope, the direction of the velocity changes rapidly during the last instants of motion.

  8. Modello metodologico per il monitoraggio degli incidenti stradali in Trentino

    Directory of Open Access Journals (Sweden)

    P. Fateh-Moghadam

    2003-05-01

    Full Text Available

    Obiettivi: realizzazione di un’infrastruttura informatica, per l’unificazione tempestiva dei flussi sugli incidenti stradali (ISTAT-ACI e sanitari con la georeferenziazione degli eventi a partire dall’anno 2000.

    Materiali e Metodi: dall’archivio di Trentino emergenza sono stati estratti gli interventi per incidente stradale selezionando la combinazione: descrizione patologica: “traumatismi”, tipologia luogo: “strada”, tipologia incidente. Dai dati di ogni Pronto soccorso è stato costruito un archivio unico contenente il totale degli accessi e sono stati estratti gli accessi per “incidente stradale” e quelli per lesioni accidentali in generale. Dall’archivio SDO si sono selezionati sia i ricoveri con il criterio “3” alla variabile mtraav (=incidente stradale che quelli per traumatismi.

    Nell’ambito del progetto “Metodi informatici predittivi per la mitigazione del rischio da incidenti stradali” (Mitris, finanziato dal Ministero della Salute, è stata realizzata l’immissione tramite interfaccia internet o decodifica automatica dei verbali informatizzati delle Forze dell’ordine, e la contestuale realizzazione di un interfaccia WebGIS
    in grado di visualizzare la localizzazione degli incidenti stradali.

    Risultati: tramite la combinazione “data nascita”,
    “data incidente”, “sesso” è stato eseguito un primo collegamento tra gli archivi. Aggiungendo alla data incidente uno o più giorni, è stato costruito un nuovo archivio PS contenente il 97,4% degli eventi raccolti dalle forze dell’Ordine e contenuti nel data base Mitris. Approccio analogo è stato seguito per il linkage con SDO e 118. Tramite interfaccia WebGIS è stata creata una mappa degli incidenti interrogabile on-line, che oltre alla semplice localizzazione riporta dinamica e esiti con possibilità di produrre statistiche e grafici. Il sistema copre attualmente

  9. On the co-orbital motion of two planets in quasi-circular orbits

    CERN Document Server

    Robutel, Philippe

    2013-01-01

    We develop an analytical Hamiltonian formalism adapted to the study of the motion of two planets in co-orbital resonance. The Hamiltonian, averaged over one of the planetary mean longitude, is expanded in power series of eccentricities and inclinations. The model, which is valid in the entire co-orbital region, possesses an integrable approximation modeling the planar and quasi-circular motions. First, focusing on the fixed points of this approximation, we highlight relations linking the eigenvectors of the associated linearized differential system and the existence of certain remarkable orbits like the elliptic Eulerian Lagrangian configurations, the Anti-Lagrange (Giuppone et al., 2010) orbits and some second sort orbits discovered by Poincar\\'e. Then, the variational equation is studied in the vicinity of any quasi-circular periodic solution. The fundamental frequencies of the trajectory are deduced and possible occurrence of low order resonances are discussed. Finally, with the help of the construction of...

  10. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization

    Science.gov (United States)

    2014-08-01

    Earth Observing Satellite Orbit Design Via Particle Swarm Optimization Sharon Vtipil ∗ and John G. Warner ∗ US Naval Research Laboratory, Washington...number of passes per day given a satellite’s orbital altitude and inclination. These are used along with particle swarm optimization to determine optimal...well suited to use within a meta-heuristic optimization method such as the Particle Swarm Optimizer (PSO). This method seeks to find the optimal set

  11. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    Science.gov (United States)

    2014-03-27

    al., 2002:228-230). Prior to the commencement of any research into aeroassisted maneuvers, a firm foundation in the understanding of atmospheric...cosine term is used for prograde orbits while the negative term is used for retrograde orbits. The r(1), r(2), and r(3) terms rerpresent the 1st... retrograde ) only target longitude crossings which occur in the same hemisphere as the 44 target are possible to overfly without changing the inclination

  12. Immagini dinamiche: appunti per un catalogo degli usi didattici

    Directory of Open Access Journals (Sweden)

    Filippo Bruni

    2013-03-01

    Full Text Available Le immagini dinamiche costituiscono un’importante risorsa per le attività didattiche. A partire da una riflessione storica, si evidenzia in primo luogo l’importanza di un loro uso efficace alla luce della classificazione operata da Clark e Lyons. In secondo luogo si segnalano alcune attività emergenti legate alla documentazione, al digital storytelling e alla formazione degli insegnanti.

  13. Orbital Maneuvering Vehicle (OMV) missions applications and systems requirements

    Science.gov (United States)

    Huber, W. G.; Cramblit, D. C.

    The routine delivery of large payloads to low earth orbit has become a reality with the Space Transportation System (STS). However, once earth orbit has been achieved, orbit transfer operations represent an inefficient use of the Space Shuttle. The Orbital Maneuvering Vehicle (OMV) will add a new and needed dimension to STS capabilities. Utilized in a reusable manner, the OMV is needed to deliver and retrieve satellites to and from orbital altitudes or inclinations beyond the practical limits of the Space Shuttle and to support basic Space Station activities. The initial OMV must also be designed to permit the addition of future mission kits to support the servicing, module changeout, or refueling of satellites in Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO), and the retrieval and deorbit of space debris. This paper addresses the mission needs along with the resulting performance implications, design requirements and operational capabilities imposed on the OMV planned for use in the late 1980s.

  14. Dependence of convective secondary flow on inclination angle in an inclined pulse tube refrigerator revealed by visualization

    Science.gov (United States)

    Shiraishi, Masao; Takamatsu, Koichi; Murakami, Masahide; Nakano, Akihiro

    2004-02-01

    Secondary flow in an inclined orifice pulse tube refrigerator at typical inclination angles of 0-180° was studied by using a smoke-wire flow visualization technique. It was revealed that the secondary flow formed a unicellular convective flow in the pulse tube and had two flow patterns depending on the angle. This dependence of flow pattern on the inclination angle is well explained by the superposition of gravity-driven convective flow on acoustic streaming. Even if the cold end was lower than the hot end, the gravity-driven convective flow occurred and the secondary flow was affected by gravity.

  15. Shrinkage and trajectory of the flat jet with inclination angle

    Institute of Scientific and Technical Information of China (English)

    Shufeng Ye; Yusheng Xie; Hongzhi Guo; Ye Huang; Shantong Jin

    2003-01-01

    The performance of the flat jet with an inclination angle was investigated by a water model. A mathematical model for theshrinkage and the trajectory of the flat jet with an inclination angle was derived theoretically and verified by experimental data of thewater model. The experimental results indicate that the inclination angle (α) has no influence on the shrinkage of the flat jet, theshrinkage of the flat jet along the width direction decreases with the increasing of the initial velocity at the exit (u0) and the initialthickness of the flat jet (t0). Enough bigger initial exit velocity (u0) and initial thickness can suppress the shrinkage of the flat jetalong the width direction and keep the flat jet stabilized. In addition, the trajectory of the flat jet with an inclination angle is parabolicand must be taking into consideration when to determine the striking distance.

  16. Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series

    Science.gov (United States)

    Noyes, Thomas; Stezelberger, Shane

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.

  17. Stability of stratified two-phase flows in inclined channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima

    2016-01-01

    Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...

  18. Developed Opinions and Inclinations of Teachers Regarding to Written Expression

    Directory of Open Access Journals (Sweden)

    Hacı Ömer BEYDOĞAN

    2012-08-01

    Full Text Available Aim of the study was to determine teachers’ developed opinions and inclinations regarding to written expression skills. For this purpose, “Opinions and Inclinations Scale Regarding Written Expression Skills” was developed by the researcher. Work group of the study comprised 326 teachers from central Kırşehir and its district elementary schools. Internal reliability coefficient of the scale was 0,94. Data obtained were subjected to frequency, percentage, arithmetic mean, t-test, variance analyzes a significance level of 0,05 and findings were evaluated. Teachers’ developed opinions and inclinations regarding written expression skills were analyzed in accordance with their seniority, field of study and the class level they were teaching. There were some significant differentiations observed in opinions and inclinations developed by teachers regarding students’ written expression skills, in respect to certain variables. Some suggestions were brought forward in accordance with obtained findings.

  19. Technical Note: Using DEG CPCs at upper tropospheric temperatures

    CERN Document Server

    Wimmer, D; Nieminen, T; Duplissy, J; Ehrhart, S; Almeida, J; Rondo, L; Franchin, A; Kreissl, F; Manninen, H E; Kulmala, M; Curtius, J; Petäjä, T

    2014-01-01

    Over the last few years, several Condensation Particle Counters (CPC) capable of measuring in the sub-3 nm size range have been developed. Here we study the performance of Diethylene glycol (DEG) based CPCs at different temperatures during Cosmics Leaving Outdoor Droplets (CLOUD) measurements at CERN. The data shown here is the first set of verification measurements for sub-3 nm CPCs under upper tropospheric temperatures using atmospherically relevant aerosol particles. To put the results in perspective we calibrated the DEG-CPC at room temperature, resulting in a cut-off diameter of 1.4 nm. All diameters refer to mobility equivalent diameters in this manuscript. At upper tropospheric temperatures between −25 °C and −65 °C, we found cut-off sizes in the range of 2.5 and 2.8 nm. Due to low number concentration after size classification, the cut-off diameters have a high uncertainty (±0.3 nm) associated with them. Operating two laminar flow DEG CPCs with different cut-off sizes together with other aeroso...

  20. Supersonic longitudinal aerodynamic characteristics of two space shuttle orbiter configurations. [conducted in the Langley Unitary Plan wind tunnel

    Science.gov (United States)

    Ellison, J. C.

    1977-01-01

    An investigation was conducted to determine the supersonic longitudinal aerodynamic characteristics of 0.015 scale models of the Rockwell International 089B and 139B space shuttle orbiter configurations and the 139B orbiter with a modifier forebody. The models each had a 45 deg swept delta wing that was blended into the body with an 81 deg swept fillet to form a double delta planform. The vertical tail had a split rudder deflected 27.5 deg on each side to form a speed brake. Tests were conducted at Mach numbers of 2.5, 3.9, and 4.6 at a Reynolds number, based on the body length of the 089B model, of 4,150,000. Angles of attack varied from -4 deg to 44 deg at 0 deg sideslip.

  1. Stellar Orbital Studies in Normal Spiral Galaxies I: Restrictions to the Pitch Angle

    CERN Document Server

    Pérez-Villegas, A; Moreno, E

    2013-01-01

    We built a family of non-axisymmetric potential models for normal non-barred or weakly-barred spiral galaxies as defined in the simplest classification of galaxies: the Hubble sequence. For this purpose a three-dimensional self-gravitating model for spiral arms PERLAS is superimposed to the galactic axisymmetric potentials. We analyze the stellar dynamics varying only the pitch angle of the spiral arms, from 4$\\deg$ to 40$\\deg$, for an Sa galaxy, from 8$\\deg$ to 45$\\deg$, for an Sb galaxy, and from 10$\\deg$ to 60$\\deg$, for an Sc galaxy. Self-consistency is indirectly tested through periodic orbital analysis, and through density response studies for each morphological type. Based on ordered behavior, periodic orbits studies show that for pitch angles up to approximately $15\\deg$, $18\\deg$, and $20\\deg$ for Sa, Sb and Sc galaxies, respectively, the density response supports the spiral arms potential, a requisite for the existence of a long-lasting large-scale spiral structure. Beyond those limits, the density ...

  2. Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016

    DEFF Research Database (Denmark)

    Spurný, P.; Borovička, Jan; Baumgarten, G.

    2017-01-01

    at 18.3km. The heliocentric orbit of this meteoroid was of Apollo type with low inclination of 1° and perihelion distance just inside the Earth's orbit. It had a relatively large semimajor axis of 2.8AU and aphelion distance 4.64AU. It is the second largest aphelion distance among all meteorites...

  3. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  4. Spreading dynamics of droplet on an inclined surface

    Science.gov (United States)

    Shen, Chaoqun; Yu, Cheng; Chen, Yongping

    2016-06-01

    A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

  5. Book review. La forma degli animali. Adolf Portmann

    Directory of Open Access Journals (Sweden)

    Manuel Graziani

    2013-09-01

    Full Text Available Nel 1931 il biologo Adolf Portmann era già talmente noto a livello internazionale per le sue ricerche da guadagnarsi la cattedra in zoologia nell'università della sua città natale, Basilea, all'età di appena 34 anni. All'attività di docente universitario ha sempre affiancato un'originale riflessione sul significato delle scienze della vita, imponendosi come una delle figure chiave nel dibattito tra biologia teoretica, estetica e antropologia filosofica. La forma degli animali, la sua opera più celebre, si pone al confine tra varie discipline e conserva un grande interesse ancora oggi che il dialogo tra estetica e biologia si è fatto nuovamente intenso. Pubblicata nel 1948 e in forma ampliata nel 1960 (da cui deriva questa prima edizione italiana a cura di Pietro Conte l'opera rappresenta il frutto più maturo delle sue ricerche "interdisciplinari".Un saggio che nasce dall'insoddisfazione nei confronti dei paradigmi scientifici consolidati e che ripropone l'idea morfologica in biologia sulla scorta del pensiero di J. W. Goethe il quale affermava che "tutto ciò che è deve anche dar cenno di sé e mostrarsi". Adolf Portmann è un convinto sostenitore che dalla forma si possano dedurne le complessive caratteristiche interne ed esterne degli animali. Secondo questa prospettiva la peculiare fisionomia dell'organismo dipende dalla congiunzione delle sue parti e dalle loro reciproche funzioni. Tuttavia l'autore non vede nello studio della forma l'alternativa al funzionalismo quanto, piuttosto, il suo necessario bilanciamento come dichiara nell'introduzione: "… per giungere alla conoscenza della vita animale di strade ce ne sono molte, e tutte possono contribuire ad arricchire la nostra esperienza. Questo lavoro si occupa della forma degli animali e si propone di mettere in luce la peculiare natura dell'aspetto visibile. Ci sono persone che si dedicano allo studio degli animali, conoscono moltissime specie, hanno imparato centinaia di nomi e

  6. Geology of the Delta, Escalante, Price, Richfield and Salina 1 deg x 2 deg NTMS quadrangles, Utah

    Science.gov (United States)

    Thayer, P. A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million sq km (1,500,000 mi(2)) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 deg x 2 deg National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket).

  7. Spatial distribution of steep lunar craters may be linked to size-dependent orbital distribution of impactors

    Science.gov (United States)

    JeongAhn, Youngmin; Malhotra, Renu; Werner, Stephanie; Lee, Jui-Chi; Trang, David; Ip, Wing-Huen; Reyes-Ruiz, Mauricio

    2016-10-01

    The depth/diameter (d/D) ratio of simple lunar craters (D15km) have smaller d/D ratios. We examine the spatial distribution of high d/D ratio (>0.18) craters using LU60645GT catalogue (Salamunićcar et al. 2012). We select craters larger than 8km for which the census is known to be almost complete over the whole lunar surface. We find that the number density of steep craters in maria is significantly lower than in highlands, which may be explained by the age differences of the background surfaces. We also find that the spatial density of steep craters in the equatorial region is lower than in the polar region. On the contrary, higher cratering flux on the lunar equator has been claimed: from the numerical calculations with the orbital distribution of observed Earth Crossing Objects (ECOs) larger than 1km (Le Feuvre & Wieczorek 2008; Ito & Malhotra 2010) and from the distribution of steepest slopes at a 25m baseline (Kreslavsky & Head, 2016). In order to reconcile our findings with previous observations, we hypothesize that the cratering rate at low latitudes has been higher for meter to decameter size ECOs than for kilometer size objects since the Late Imbrian epoch; smaller objects have triggered more frequent mass wasting on the pre-existing large steep craters (D>8km, d/D>0.18) at low latitudes, thereby reducing the surviving number of steep craters. Our hypothesis is supported by the finding that the power-law slope in the H magnitude distribution for the low inclination ECOs (i<15 deg) is steeper than for the high inclination objects. Renu Malhotra acknowledges research support from NSF (grant AST-1312498).

  8. Inferring Average Ground Profiles of the Muon Density of Inclined Air Showers from Monte-Carlo Simulations at Ultra-High Energy

    CERN Document Server

    Dembinski, Hans; Deligny, Olivier; Hebbeker, Thomas

    2009-01-01

    A standard method to measure ultra-high energy cosmic rays is the sampling of the ground particle profile of the extensive air shower that is produced in the atmosphere with an array of surface detectors. The primary energy of inclined air showers with zenith angles >60 Deg can be reconstructed by using simulated 2-D profiles of the ground density of muons. We will present an effective way to extract such profiles from a library of Monte-Carlo simulated air showers. Also, we will demonstrate a way to speed up the simulation of ground profiles of the muon density in very inclined showers by three orders of magnitude, if only the muon component in the shower is of interest.

  9. Secular orbital evolution of Jupiter family comets

    Science.gov (United States)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  10. Evaluation of performance of veterinary in-clinic hematology analyzers.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  11. Technical Note: Using DEG-CPCs at upper tropospheric temperatures

    Science.gov (United States)

    Wimmer, D.; Lehtipalo, K.; Nieminen, T.; Duplissy, J.; Ehrhart, S.; Almeida, J.; Rondo, L.; Franchin, A.; Kreissl, F.; Bianchi, F.; Manninen, H. E.; Kulmala, M.; Curtius, J.; Petäjä, T.

    2015-07-01

    Over the last few years, several condensation particle counters (CPCs) capable of measuring in the sub-3 nm size range have been developed. Here we study the performance of CPCs based on diethylene glycol (DEG) at different temperatures during Cosmics Leaving OUtdoor Droplets (CLOUD) measurements at CERN. The data shown here are the first set of verification measurements for sub-3 nm CPCs under upper tropospheric temperatures using atmospherically relevant aerosol particles. To put the results in perspective we calibrated the DEG-CPC at room temperature, resulting in a cut-off diameter of 1.4 nm. All diameters refer to mobility equivalent diameters in this paper. At upper tropospheric temperatures ranging from 246.15 K to 207.15 K, we found cut-off sizes relative to a particle size magnifier in the range of 2.5 to 2.8 nm. Due to low number concentration after size classification, the cut-off diameters have a high uncertainty (±0.3 nm) associated with them. Operating two laminar flow DEG-CPCs with different cut-off sizes together with other aerosol instruments, we looked at the growth rates of aerosol population in the CLOUD chamber for particles smaller than 10 nm at different temperatures. A more consistent picture emerged when we normalized the growth rates to a fixed gas-phase sulfuric acid concentration. All of the instruments detected larger growth rates at lower temperatures, and the observed growth rates decreased as a function of temperature, showing a similar trend for all instruments. The theoretical calculations had a similar but much smaller temperature dependency.

  12. Pressure loads and aerodynamic force information for the -89A space shuttle orbiter configuration, volume 2. [for structural strength analysis

    Science.gov (United States)

    Mennell, R. C.

    1973-01-01

    Experimental aerodynamic investigations were conducted on an 0.0405 scale representation of the Rockwell -89A Light Weight Space Shuttle Orbiter. The test purpose was to obtain pressure loads data in the presence of the ground for orbiter structural strength analysis. Aerodynamic force data was also recorded to allow correlation with all pressure loads information. Angles of attack from minus 3 deg to 18 deg and angles of sideslip of 0 deg, plus or minus 50 deg, and plus or minus 10 deg were tested in the presence of the NAAL ground plane. Static pressure bugs were used to obtain a pressure loads survey of the basic configuration, elevon deflections of 5 deg, 10 deg, 15 deg, and minus 20 deg and a rudder deflection of minus 15 deg, at a tunnel dynamic pressure of 40 psi. The test procedure was to locate a maximum of 30 static pressure bugs on the model surface at various locations calculated to prevent aerodynamic and physical interference. Then by various combinations of location the pressure bugs output was to define a complete pressure survey for the fuselages, wing, vertical tail, and main landing gear door.

  13. Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis.

    Science.gov (United States)

    Do, Thi-Huyen; Suzuki, Yuki; Abe, Naoki; Kaneko, Jun; Itoh, Yoshifumi; Kimura, Keitarou

    2011-12-01

    The degQ gene of Bacillus subtilis (natto), encoding a small peptide of 46 amino acids, is essential for the synthesis of extracellular poly-gamma-glutamate (γPGA). To elucidate the role of DegQ in γPGA synthesis, we knocked out the degQ gene in Bacillus subtilis (natto) and screened for suppressor mutations that restored γPGA synthesis in the absence of DegQ. Suppressor mutations were found in degS, the receptor kinase gene of the DegS-DegU two-component system. Recombinant DegS-His(6) mutant proteins were expressed in Escherichia coli cells and subjected to an in vitro phosphorylation assay. Compared with the wild type, mutant DegS-His(6) proteins showed higher levels of autophosphorylation (R208Q, M195I, L248F, and D250N), reduced autodephosphorylation (D250N), reduced phosphatase activity toward DegU, or a reduced ability to stimulate the autodephosphorylation activity of DegU (R208Q, D249G, M195I, L248F, and D250N) and stabilized DegU in the phosphorylated form. These mutant DegS proteins mimic the effect of DegQ on wild-type DegSU in vitro. Interestingly, DegQ stabilizes phosphorylated DegS only in the presence of DegU, indicating a complex interaction of these three proteins.

  14. Mutations Suppressing the Loss of DegQ Function in Bacillus subtilis (natto) Poly-γ-Glutamate Synthesis ▿ †

    Science.gov (United States)

    Do, Thi-Huyen; Suzuki, Yuki; Abe, Naoki; Kaneko, Jun; Itoh, Yoshifumi; Kimura, Keitarou

    2011-01-01

    The degQ gene of Bacillus subtilis (natto), encoding a small peptide of 46 amino acids, is essential for the synthesis of extracellular poly-gamma-glutamate (γPGA). To elucidate the role of DegQ in γPGA synthesis, we knocked out the degQ gene in Bacillus subtilis (natto) and screened for suppressor mutations that restored γPGA synthesis in the absence of DegQ. Suppressor mutations were found in degS, the receptor kinase gene of the DegS-DegU two-component system. Recombinant DegS-His6 mutant proteins were expressed in Escherichia coli cells and subjected to an in vitro phosphorylation assay. Compared with the wild type, mutant DegS-His6 proteins showed higher levels of autophosphorylation (R208Q, M195I, L248F, and D250N), reduced autodephosphorylation (D250N), reduced phosphatase activity toward DegU, or a reduced ability to stimulate the autodephosphorylation activity of DegU (R208Q, D249G, M195I, L248F, and D250N) and stabilized DegU in the phosphorylated form. These mutant DegS proteins mimic the effect of DegQ on wild-type DegSU in vitro. Interestingly, DegQ stabilizes phosphorylated DegS only in the presence of DegU, indicating a complex interaction of these three proteins. PMID:21965392

  15. The Codice digitale degli archivi veronesi. A research instrument

    Directory of Open Access Journals (Sweden)

    Andrea Brugnoli

    2014-04-01

    Full Text Available The Codice digitale degli archivi veronesi (Verona’s archives digital code ‹http://cdavr.dtesis.univr.it› makes available online the digital reproductions of the documents produced by corporate bodies and family of Verona between the eighth and twelfth century. The framework of the site reflects the current organisation of the archives. A brief description of the circumstances around the creation of each archive, the corporate body or individual responsible for it and its structure is provided. Each archival unit is identified by its key elements: chronological date, name and qualification of the notary, original/copy, main editions.

  16. The Codice digitale degli archivi veronesi. A research instrument

    Directory of Open Access Journals (Sweden)

    Andrea Brugnoli

    2014-04-01

    Full Text Available The Codice digitale degli archivi veronesi (Verona’s archives digital code ‹http://cdavr.dtesis.univr.it› makes available online the digital reproductions of the documents produced by corporate bodies and family of Verona between the eighth and twelfth century. The framework of the site reflects the current organisation of the archives. A brief description of the circumstances around the creation of each archive, the corporate body or individual responsible for it and its structure is provided. Each archival unit is identified by its key elements: chronological date, name and qualification of the notary, original/copy, main editions.

  17. Islam, rappresentanza degli interessi religiosi e diritto comune europeo *

    Directory of Open Access Journals (Sweden)

    Gianfranco Macrì

    2011-03-01

    Full Text Available Contributo destinato alla pubblicazione negli Atti del Convegno: Europa e Islam. Ridiscutere i fondamenti per la disciplina delle libertà religiose, svoltosi a Salerno il 3 dicembre 2007.SOMMARIO: Premessa - 1. La società «reticolare» europea: sistema di governance e valori unificanti - 2. Europa e fenomeno religioso - 3. La sostanza del Trattato di Lisbona e il ruolo delle organizzazioni religiose - 4. Il dibattito interno all’Islam europeo - 5. La Carta dei musulmani d’Europa - 6. La rappresentanza degli interessi religiosi dell’Islam in Europa - Conclusioni.

  18. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  19. Control by damping Injection of Electrodynamic Tether System in an Inclined Orbit

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2009-01-01

    Control of a satellite system with an electrodynamic tether as actuator is a time-periodic and underactuated control problem. This paper considers the tethered satellite in a Hamiltonian framework and determines a port-controlled Hamiltonian formulation that adequately describes the nonlinear...... dynamical system. Based on this model, a nonlinear controller is designed that will make the system asymptotically stable around its open-loop equilibrium. The control scheme handles the time-varying nature of the system in a suitable manner resulting in a large operational region. The performance...

  20. Possible changes of state and relevant timescales for a neutron star in LS I +61{\\deg}303

    CERN Document Server

    Papitto, Alessandro; Rea, Nanda

    2012-01-01

    The properties of the short, energetic bursts recently observed from the gamma-ray binary LS I +61{\\deg}303, are typical of those showed by high magnetic field neutron stars, and thus provide a strong indication in favor of a neutron star being the compact object in the system. Here, we discuss the transitions among the states accessible to a neutron star in a system like LS I +61{\\deg}303, such as the ejector, propeller and accretor phases, depending on the NS spin period, magnetic field and rate of mass captured. We show how the observed bolometric luminosity (>= few x 1E35 erg/s), and its broad-band spectral distribution, indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit, and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent b...

  1. Theory of Secular Chaos and Mercury's Orbit

    CERN Document Server

    Lithwick, Yoram

    2010-01-01

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, because these often dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple massive planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities can shift the frequencies into and out of secular resonance with the planets' eigenfrequencies, or with linear combinations of those frequencies. The overlap of these nonlinear secular resonances drive secular chaos in planetary systems. We quantify the resulting dynamics for the first time by calculating the locations and widths of nonlinear secular resonances. When results from both analytical calculations and numerical integrations are displayed together in a newly developed "map of the mean momenta" (MMM), the agreement is excellent. This map is particularly revealing for non-coplanar planetary systems and demonstrates graphically that...

  2. Vortex-induced vibrations of a flexible cylinder at large inclination angle.

    Science.gov (United States)

    Bourguet, Rémi; Triantafyllou, Michael S

    2015-01-28

    The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow-body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity.

  3. Analytical development of the lunisolar disturbing function and the critical inclination secular resonance

    Science.gov (United States)

    Celletti, Alessandra; Galeş, Cătălin; Pucacco, Giuseppe; Rosengren, Aaron J.

    2017-03-01

    We provide a detailed derivation of the analytical expansion of the lunar and solar disturbing functions. Although there exist several papers on this topic, many derivations contain mistakes in the final expansion or rather (just) in the proof, thereby necessitating a recasting and correction of the original derivation. In this work, we provide a self-consistent and definite form of the lunisolar expansion. We start with Kaula's expansion of the disturbing function in terms of the equatorial elements of both the perturbed and perturbing bodies. Then we give a detailed proof of Lane's expansion, in which the elements of the Moon are referred to the ecliptic plane. Using this approach the inclination of the Moon becomes nearly constant, while the argument of perihelion, the longitude of the ascending node, and the mean anomaly vary linearly with time. We make a comparison between the different expansions and we profit from such discussion to point out some mistakes in the existing literature, which might compromise the correctness of the results. As an application, we analyze the long-term motion of the highly elliptical and critically-inclined Molniya orbits subject to quadrupolar gravitational interactions. The analytical expansions presented herein are very powerful with respect to dynamical studies based on Cartesian equations, because they quickly allow for a more holistic and intuitively understandable picture of the dynamics.

  4. Decoupling of a giant planet from its disk in an inclined binary system

    Science.gov (United States)

    Marzari, F.; Picogna, G.

    According to \\cite{Triaud_2010} and \\cite{Albrecht_2012} about 40% of hot Jupiters have orbits significantly tilted respect to the equatorial plane of the star. It has been suggested \\cite{Batygin_2012} that the evolution of a protoplanetary disk under the perturbations of a binary companion may be responsible for the observed spin-orbit misalignment of these exoplanets. A fundamental requirement for this model to work is that the planet is kept within the disk during its precession. In this way the planet would continue its migration by tidal interaction with the disk and, at the same time, once the disk is dissipated it would maintain its inclination. Previous studies seem to suggest that indeed a giant planet is forced to evolve within the disks even in presence of strong perturbing forces as those induced by a companion star. By using two different SPH codes (VINE and phantom) we show that on the long term the planet definitively decouples from the disk evolution and its orbital plane significantly departs from that of the disk. For a detailed analysis an discussion we refer to \\cite{Picogna_2015}.

  5. Zoogeografia storica e attuale dei carnivori e degli ungulati italiani

    Directory of Open Access Journals (Sweden)

    Marco Masseti

    2003-10-01

    Full Text Available Come per la maggior parte degli altri paesi europei, anche l'attuale composizione delle specie a mammiferi italiane si prefigura in gran parte come il risultato della plurima e prolungata azione antropica condotta sull'ambiente naturale. Questa, avviatasi alcuni millenni or sono, condiziona oggi più che mai la ridefinizione degli equilibri ecologici del nostro Paese. All'interno dell'attuale teriofauna terrestre italiana viene segnalata la presenza di 18 specie di carnivori e di 9 artiodattili, che può rivelarsi in alcuni casi come il risultato di acclimatazioni e/o naturalizzazioni di specie esotiche avvenute in cronologie diverse, anche di epoca molto recente. All'interno dei confini biogeografici dell'Italia andrebbero anche annoverate quelle popolazioni del cervo pomellato medio-orientale, Axis axis (Erxleben, 1777, che sono state naturalizzate in epoca storica assai recente in Istria ed in alcune isole del golfo del Quarnaro (Brioni Maggiore, Cherso e Plauno. Considerazioni analoghe potrebbero forse essere condotte anche per la diffusione artificiale di Herpestes auropunctatus Hodgson, 1836, su alcune isole della Croazia. Le specie fitofaghe riferibili ai gruppi tassonomici dei lagomorfi e degli artiodattili, e che vengono convenzionalmente comprese nella categoria della cosiddetta "selvaggina", sono tra quelle che hanno più subito un'alterazione condotta in profondità dei quadri faunistici originari, proprio in virtù dell'interesse economico e culturale che ancora rappresentano. Nel caso particolare di queste specie di interesse venatorio ci troviamo quasi sempre di fronte a popolazioni che sono state sottoposte ad intensa gestione e che hanno subito frequenti estinzioni locali seguite da reiterate reintroduzioni. Attualmente, data l'espansione sia naturale che artificiale degli ecotipi indigeni e di quelli alloctoni, si osserva ormai una sovrapposizione degli areali, per cui sembra piuttosto difficile riuscire in

  6. A High Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    CERN Document Server

    Wiktorowicz, Sloane J

    2008-01-01

    We present commissioning data for the POLISH instrument obtained on the Hale 5-m telescope. The goal of this high precision polarimeter is to constrain orbital inclination of high mass X-ray binaries and to therefore obtain independent mass estimates for their black hole companions. We have obtained photon shot noise limited precision on standard stars, and we have measured the polarization of bright stars at the part per million level on a nightly basis. Systematic effects have been reduced to less than 1% of the measured polarization for polarized sources and to the part per million level for weakly polarized sources. The high sensitivity of this instrument to asymmetry suggests that valuable contributions will be made in many other fields, including studies of extrasolar planets, debris disks, and stellar astrophysics.

  7. Drop motion due to oscillations of an inclined substrate

    Science.gov (United States)

    Xia, Yi; Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2014-11-01

    A sessile drop on a stationary inclined substrate remains pinned unless the angle of inclination is greater than some critical value. Alternatively, when shaken at even small angles of inclination, the drop undergoes shape deflections which may lead to drop translation. Translation occurs when large contact angle fluctuations, favored by oscillations at resonance, overcome contact angle hysteresis. In this study, resonance is triggered by substrate-normal oscillations. The drop translation is typically observed to be of constant speed for a given set of parameters. The speed is measured experimentally as a function of resonance mode, driving amplitude and drop volume. This technique of activating the motion of drops having a particular volume can be utilized for applications of droplet selection and transport.

  8. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras K.

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  9. Interplay between geometry and temperature for inclined Casimir plates

    CERN Document Server

    Weber, Alexej

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T^D behavior of the force, we find a T^{D-1} behavior for inclined plates, and a ~T^{D-0.3} behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ~T^{D-2} occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  10. Laminar film boiling on inclined isothermal flat plates.

    Science.gov (United States)

    Nagendra, H. R.

    1973-01-01

    Laminar film boiling from an inclined flat plate has been investigated analytically. Using the singular perturbation scheme, the complete set of Navier-Stokes equations is solved. The zeroth-order perturbation coinciding with the boundary-layer equations for vertical flat plates governs the problem. The higher-order perturbations become important near the leading edge and for large values of the inclination angle from the vertical. The assumption of zero interfacial velocity shows that, except for fluids having large (rho x mu) ratios, the results can be predicted using the vertical flat plate results by defining a modified Grashof parameter containing a cos phi term. When the interfacial shear is considered, the solutions indicate that for fluids having large (rho x mu) ratios, the heat transfer rates will be larger (approximately 15% maximum) than those predicted by the simplified model using zero interfacial velocity. In general, the inclination decreases the rate of heat transfer as well as the rate of evaporation.

  11. Inclinations and black hole masses of Seyfert 1 galaxies

    CERN Document Server

    Wu, X B; Wu, Xue-Bing

    2001-01-01

    A tight correlation of black hole mass and central velocity dispersion has been found recently for both active and quiescent galaxies. By applying this correlation, we develop a simple method to derive the inclination angles for a sample of 11 Seyfert 1 galaxies that have both measured central velocity dispersions and black hole masses estimated by reverberation mapping. These angles, with a mean value of 36 degree that agrees well with the result obtained by fitting the iron K$\\alpha$ lines of Seyfert 1s observed with ASCA, provide further support to the orientation-dependent unification scheme of AGN. A positive correlation of the inclinations with observed FWHMs of H$\\beta$ line and a possible anti-correlation with the nuclear radio-loudness have been found. We conclude that more accurate knowledge on inclinations and broad line region dynamics is needed to improve the black hole mass determination of AGN with the reverberation mapping technique.

  12. Spatio-temporal Patterns in Inclined Layer Convection

    CERN Document Server

    Subramanian, Priya; Brausch, Oliver; Daniels, Karen E; Bodenschatz, Eberhard; Schneider, Tobias M

    2015-01-01

    This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle {\\gamma} and the Rayleigh number R. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former is expressed as longitudinal convection rolls with their axes oriented parallel to the incline, the latter as perpendicular transverse rolls. Our investigation is based on the standard Oberbeck-Boussinesq equations. Besides conventional methods to study roll patterns and their stability, we employ in particular, direct numerical simulations in large spatial domains comparable with experimental ones. As a result we arrive at a phase diagram of the characteristic complex 3D convection patterns in the {\\gamma}-R- plane, which compares very well to the experiments. In particular it is demonstrated that interactions of specific Fourier mo...

  13. Kozai effect on planetesimal accretion in highly inclined binaries

    Directory of Open Access Journals (Sweden)

    Zhou J.-L.

    2011-07-01

    Full Text Available Planet formation in highly inclined binaries is a complex issue. The Kozai mechanism plays an important role in this situation, since it will lead to high eccentricity and high relative impact velocity of planetesimals, thus hinder the planetesimal accretion. However, as we will show here, the presence of gas disk in some circumstance will suppress the Kozai effect by increasing the apsidal precession rate of the planetesimals, which increases the critical inclination. A criterion of the disk mass above which Kozai effect will not occur is given.

  14. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-10-01

    Full Text Available Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  15. Psychopathic Inclination Among Incarcerated Youth of Hazara Division Pakistan

    Directory of Open Access Journals (Sweden)

    Sher Dil

    2016-09-01

    Full Text Available Present study aimed at evaluating the psychopathic inclination among youth and finding the gender differences in psychopathy. An indigenously developed Psychopathy scale (Urdu has been used in this study. Alpha reliability of the scale was .90. The study was conducted on 100 males (50 criminals and 50 non-criminals and 100 females (26 criminals and 74 non-criminals using a convenient sampling technique from three districts of Hazara division: Haripur, Abbottabad, and Mansehra. Results confirmed that there is significant difference in psychopathic inclination of males and females; criminals differed significantly from the non-criminals. The study also paves way for further investigation in the field in Pakistan.

  16. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  17. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    Science.gov (United States)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  18. Environmental oil spill sensitivity atlas for the West Greenland (68 deg.-72 deg. N) coastal zone, 2nd revised edition

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, D.; Johansen, Kasper L.; Mosbech, A.; Boertmann, D.; Wegeberg, S.

    2012-12-15

    This oil spill sensitivity atlas covers the shoreline and the offshore areas of West Greenland between 68 deg. N and 72 deg. N. The coastal zone is divided into 199 shoreline segments and the offshore zone into 8 areas. A sensitivity index value is calculated for each segment/area, and each segment/area is subsequently ranked according to four degrees of sensitivity. Besides this general ranking a number of smaller areas are especially selected as they are of particular significance, they are especially vulnerable to oil spills and they have a size making oil spill response possible. The shoreline sensitivity ranking are shown on 37 maps (in scale 1:250,000), which also show the different elements included and the selected areas. Coast types, logistics and proposed response methods along the coasts are shown on another 37 maps. The sensitivities of the offshore zones are depicted on 4 maps, one for each season. Based on all the information, appropriate oil spill response methods have been assessed for each area. (Author)

  19. On the rms anisotropy at 7 deg and 10 deg observed in the COBE-DMR two year sky maps

    Science.gov (United States)

    Banday, A. J.; Gorski, K. M.; Tenorio, L.; Wright, E. L.; Smoot, G. F.; Lineweaver, C. H.; Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    The frequency-independent rms temperature fluctuations determined from the Cosmic Background Explorer-Differential Microwave Radiometer (COBE-DMR) two-year sky maps are used to infer the parameter Q(sub rms-PS), which characterizes the normalization of power-law models of primordial cosmological temperature anisotropy, for a forced fit to a scale-invariant Harrison-Zel'dovich (n = 1) spectral model. Using a joint analysis of the 7 deg and 10 deg 'cross'-rms derived from both the 53 and 90 GHz sky maps, we find Q(sub rms-PS) = 17.0(sub -2.1 sup +2.5) micro Kelvin when the low quadrupole is included, and Q(sub rms-PS) = 19.4(sub -2.1 sup +2.3) micro Kelvin excluding the quadrupole. These results are consistent with the n = 1 fits from more sensitive methods. The effect of the low quadrupole derived from the COBE-DMR data on the inferred Q(sub rms-PS) normalization is investigated. A bias to lower Q(sub rms-PS) is found when the quadrupole is included. The higher normalization for a forced n = 1 fit is then favored by the cross-rms technique.

  20. Nearly horizon skimming orbits of Kerr black holes

    CERN Document Server

    Hughes, S A

    2001-01-01

    An unusual set of orbits about extreme Kerr black holes resides at the Boyer-Lindquist radius $r = M$, the coordinate of the hole's event horizon. These ``horizon skimming'' orbits have the property that their angular momentum $L_z$ {\\it increases} with inclination angle, opposite to the familiar behavior one encounters at larger radius. In this paper, I show that this behavior is characteristic of a larger family of orbits, the ``nearly horizon skimming'' (NHS) orbits. NHS orbits exist in the very strong field of any black hole with spin $a\\agt 0.952412M$. Their unusual behavior is due to the locking of particle motion near the event horizon to the hole's spin, and is therefore a signature of the Kerr metric's extreme strong field. An observational hallmark of NHS orbits is that a small body spiraling into a Kerr black hole due to gravitational-wave emission will be driven into orbits of progressively smaller inclination angle, toward the equator. This is in contrast to the ``normal'' behavior. For circular ...

  1. Inflammation of the Orbit

    Science.gov (United States)

    ... Eye Exams, Study Finds Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  2. Long-Term Monitoring of the High-Energy Gamma-Ray Emission from LS I +61 deg 303 and LS 5039

    Science.gov (United States)

    Hadasch, D.; Torres, D. F.; Tanaka, T.; Corbet, R. H. D.; Hill, A. B.; Dubois, R.; Dubus, G.; Glanzman, T.; Corbel, S.; Li, J.; Chen, Y. P.; Zhang, S.; Caliandro, G. A.; Kerr, M.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A.; Pooley, G.

    2012-01-01

    The Fermi Large Area Telescope (LAT) reported the first definitive gigaelectron volts detections of the binaries LS I +61 deg 303 and LS 5039 in the first year after its launch in 2008 June. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated gamma-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the gamma-ray behavior of LS I +61 deg 303. An increase in flux is detected in 2009 March and a steady decline in the orbital flux modulation is observed. Significant emission up to 30 gigaelectron volts is detected by the LAT; prior data sets led to upper limits only. Contemporaneous terraelectron volt observations no longer detected the source, or found it-in one orbit-close to periastron, far from the phases at which the source previously appeared at terraelectron volt energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at gigaelectron volt and terraelectron volt energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I +61 deg 303 in the gigaelectron volt regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general gamma-ray properties remain consistent, the increased statistics of the current data set allows for a deeper investigation of its orbital and spectral evolution.

  3. Some Conditions for Matrices over an Incline To Be Invertible and General Linear Group on an Incline

    Institute of Scientific and Technical Information of China (English)

    Song Chol HAN; Hong Xing LI

    2005-01-01

    Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where L is an incline with 0 and 1. Also it is proved that L is an integral incline if and only if GLn(L) = PLn(L) for any n (n ≥ 2), in which GLn(L) is the group of all n × n invertible matrices over L and PLn (L) is the group of all n × n permutation matrices over L. These results should be regarded as the generalizations and developments of the previous results on the invertible matrices over a distributive lattice.

  4. Imaging of Orbital Infections

    OpenAIRE

    Seyed Hassan Mostafavi

    2010-01-01

    Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only...

  5. Orbital instability of close-in exomoons in non-coplanar systems

    CERN Document Server

    Hong, Yu-Cian; Nicholson, Philip D; Lunine, Jonathan I

    2015-01-01

    This work shows the dynamical instability that can happen to close-in satellites when planet oblateness is not accounted for in non-coplanar multiplanet systems. Simulations include two secularly interacting Jupiter-mass planets mutually inclined by 10 degrees, with the host planet either oblate or spherical. With a spherical host planet, moons within a critical planetocentric distance experience high inclinations and in some cases high eccentricities, while more distant moons orbit stably with low inclinations and eccentricities, as expected. These counter-intuitive dynamical phenomena disappear with an oblate host planet, in which case the moons' Laplace plane transitions from the host planet's equatorial plane to the host planet's precessing orbital plane as their semi-major axes increase, and all moons are dynamically stable with very mild changes in orbits. Direct perturbation from the perturbing planet has been investigated and ruled out as an explanation for the behavior of the innermost satellites, th...

  6. Laicità: finitezza degli ordini e governo delle differenze

    Directory of Open Access Journals (Sweden)

    Nicola Colaianni

    2013-12-01

    Full Text Available Testo della relazione al Convegno Nazionale dell’ADEC sul tema “Per una disciplina che cambia. Il diritto canonico e il diritto ecclesiastico nel tempo presente” (Bologna, 7-9 novembre 2013, destinata alla pubblicazione negli Atti del Convegno. Contributo non sottoposto a valutazioneSOMMARIO: 1. La laicità dei giudici – 2. La laicità dei giuristi – 3. Né regola né valore: un principio – 4. La finitezza degli ordini distinti: dalle materie miste alla sfera dell’indecidibile – 5. L’aconfessionalità sostanziale: a ex parte ecclesiae – 6. (segue: b ex parte status – 7. La laicità come governance delle differenze.

  7. LA FORMAZIONE DEGLI ETNICI NELLA RIFLESSIONE LINGUISTICA DI FRANCESCO CHERUBINI

    Directory of Open Access Journals (Sweden)

    Federica Guerini

    2016-09-01

    Full Text Available Il presente contributo si propone di fornire una descrizione della struttura del Vocabolario Patronimico di Francesco Cherubini e delle fonti empiriche consultate per la sua compilazione. Si accennerà poi a due questioni ricorrenti nel dibattito sulla formazione degli etnici in italiano, ovvero, la presenza di varianti allomorfiche o suppletive, e la motivazione morfo-pragmatica sottesa all’impiego di alcuni suffissi derivativi nella formazione di etnici e aggettivi deonomastici, cercando di chiarire quale attenzione tali tematiche abbiano ricevuto nella riflessione linguistica di Francesco Cherubini. Si formuleranno infine alcune osservazioni conclusive, evidenziando luci ed ombre del Vocabolario Patronimico e sottolineando alcuni degli spunti che tale opera ancora può offrire agli studiosi contemporanei. The formation of ethnic words in Francesco Cherubini’s reflection on language  The aim of this paper is to describe the structure and contents of Francesco Cherubini’s Vocabolario Patronimico, as well as the empirical sources consulted for its compilation. We will address two of the most common issues in the debate on the formation of ethnic nouns and adjectives in Italian, namely the existence of allomorphs and supplementary variants, and the morpho-pragmatic motivation displayed by some of the derivative suffixes occurring in ethnic nouns and adjectives derived from both personal and place names. We will offer a few observations on the place occupied by the above-mentioned issues in Cherubini’s thought and, by analyzing the strengths and weaknesses of the Vocabolario Patronimico, we will draw attention to a few topics which may be of some interest to contemporary scholars.

  8. Artificial frozen orbit control scheme based on J2 perturbation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since the inclination of frozen orbit with non-rotation of the perigee that occurs due to J2 perturbation must be equal to the critical inclination, this regulation has restricted the application of frozen orbit a lot. In this paper, we propose two control strategies to eliminate the secular growth of the argument of the perigee for orbits that are not at the critical inclination. One control strategy is using transverse continuous low-thrust, and the other is using both the transverse and the radial continuous low-thrusts. Fuel optimization in the second control strategy is addressed to make sure that the fuel consumption is the minimum. Both strategies have no effect on other orbital parameters’ secular motion. It is proved that the strategy with transverse control could save more energy than the one with radial control. Simulations show that the second control strategy could save 54.6% and 86% of energy, respectively, compared with the two methods presented in the references.

  9. Laminar hydromagnetic flows in an inclined heated layer

    Directory of Open Access Journals (Sweden)

    Paolo Falsaperla

    2016-05-01

    Full Text Available In this paper we investigate, analytically, stationary laminar flow solutions of an inclined layer filled with a hydromagnetic fluid heated from below and subject to the gravity field. In particular we describe in a systematic way the many basic solutions associated to the system. This extensive work is the basis to linear instability and nonlinear stability analysis of such motions.

  10. Experimental free convection heat transfer from inclined square cylinders

    Science.gov (United States)

    Ali, Mohamed

    2016-10-01

    Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.

  11. Ethical Inclinations of Tomorrow's Managers: One More Time.

    Science.gov (United States)

    Stevens, George E.

    1985-01-01

    This article reports comparison of the results of the ethical inclinations of present and future managers. Three hundred and six undergraduate business majors completed the survey. Results and implications are presented, along with a discussion of the ethics of future executives. (CT)

  12. Asymmetric bursting of Taylor bubble in inclined tubes

    Science.gov (United States)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  13. Motion on an Inclined Plane and the Nature of Science

    Science.gov (United States)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  14. Are inclined screw blades for vertical grain augers advantageous?

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1978-01-01

    Due to modern technology, screw blades are often manufactured by rolling them out of one single strip of steel. When simultaneously some blade inclination is applied, less residual stresses and/or larger possible ratios between outer and shaft diameter are claimed by some manufacturers, which seems

  15. Investigations of the radio signal of inclined showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Saftoiu, A., E-mail: allixme@gmail.com [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Apel, W.D. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); INAF Torino, Istituto di Fisica dello Spazio Interplanetario (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell& #x27; Universita Torino (Italy); and others

    2012-01-11

    We report in this paper on an analysis of 20 months of data taken with LOPES. LOPES is radio antenna array set-up in coincidence with the Grande array, both located at the Karlsruhe Institute of Technology, Germany. The data used in this analysis were taken with an antenna configuration composed of 30 inverted V-shape dipole antennas. We have restricted the analysis to a special selection of inclined showers - with zenith angle {theta}>40{sup Ring-Operator }. These inclined showers are of particular interest because they are the events with the largest geomagnetic angles and are therefore suitable to test emission models based on geomagnetic effects.The reconstruction procedure of the emitted radio signal in EAS uses as one ingredient the frequency-dependent antenna gain pattern which is obtained from simulations. Effects of the applied antenna model in the calibration procedure of LOPES are studied. In particular, we have focused on one component of the antenna, a metal pedestal, which generates a resonance effect, a peak in the amplification pattern where it is the most affecting high zenith angles, i.e. inclined showers. In addition, polarization characteristics of inclined showers were studied in detail and compared with the features of more vertical showers for the two cases of antenna models, with and without the pedestal.

  16. Analysis of Aerodynamic Noise Generated from Inclined Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    YasutakeHaramoto; ShoujiYasuda; 等

    2000-01-01

    Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery.The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel.in this study,aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numericaslly by the following two step method,First,the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme.Next.the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder.based on modified Lighthill-Curl's equation.It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow.In other works,the Peak level of the radiated noise decreases apidly with inclination of the circular cylinder.The simulated SPL for the inclined circular cylinder is compared with the measured value .and good agreement is obtained for the peak spectrum fequency of the sound pressue level and tendency of noise reduction,So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.

  17. Analysis of aerodynamic noise generated from inclined circular cylinder

    Science.gov (United States)

    Haramoto, Yasutake; Yasuda, Shouji; Matsuzaki, Kazuyoshi; Munekata, Mizue; Ohba, Hideki

    2000-06-01

    Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery. The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel. In this study, aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numerically by the following two step method. First, the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme. Next, the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder, based on modified Lighthill-Curl’s equation. It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow. In other words, the peak level of the radiated noise decreases rapidly with inclination of the circular cylinder. The simulated SPL for the inclined circular cylinder is compared with the measured value, and good agreement is obtained for the peak spectrum frequency of the sound pressure level and tendency of noise reduction. So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.

  18. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    Science.gov (United States)

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  19. Motion on an Inclined Plane and the Nature of Science

    Science.gov (United States)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  20. Experimental study of two phase flow in inclined channel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)

  1. Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source

    Energy Technology Data Exchange (ETDEWEB)

    Teamah, Mohamed A.; Elsafty, Ahmed F.; Massoud, Enass Z. [Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (Egypt)

    2012-02-15

    Double-diffusive natural convective flow in an inclined rectangular enclosure with the shortest sides being insulated and impermeable is investigated numerically. Constant temperatures and concentration are imposed along the longest sides of the enclosure. In addition, a uniform magnetic field is applied perpendicular to the longest sides. Laminar regime is considered under steady-state condition. The transport equations for continuity, momentum, energy and species transfer are solved using the finite volume technique. The validity of the numerical code used is ascertained and good agreement was found with published results. The numerical results are reported for the effect of thermal Rayleigh number on the contours of streamline, temperature, and concentration. In addition, results for the average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study is done for constant Prandtl number, Pr = 0.7; aspect ratio, A = 2 and Lewis number, Le = 2. Computations are carried out for thermal Rayleigh number ranging from 10{sup 3} to 5 x 10{sup 5}, inclination angle range of 0 deg. {<=} {gamma} {<=} 180 deg., dimensionless heat generation and absorption coefficients range of -40 {<=} {phi} {<=} 40, buoyancy ratio range of -5 {<=} N{<=} 5 and the Hartmann number range of 0{<=} Ha {<=} 70. (authors)

  2. Orbital liposarcoma.

    Science.gov (United States)

    Borbolla-Pertierra, A M; Morales-Baños, D R; Martínez-Nava, L R; Garrido-Sánchez, G A; López-Hernández, C M; Velasco-Ramos, P

    2017-02-01

    The case is presented of a 46-year-old male with right eye proptosis and conjunctival hyperaemia, of 18 months onset. A well-defined intraconal mass was found in the computed tomography. In magnetic resonance this was hypo-intense on T1, enhanced with gadolinium and hyperintense on T2. Excisional biopsy was performed, which was reported as a well-differentiated liposarcoma in the histopathology study. Liposarcoma is a malignant adipose tissue tumour. It is very rare in the orbit, with 5 histological types, the most common being myxoid. The treatment of choice is wide surgical excision and may be accompanied with radiotherapy. As it is an infiltrative tumour, It has a high rate of recurrence. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Stability of stratified two-phase flows in inclined channels

    Science.gov (United States)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  4. Cassini's Grand Finale: The Final Orbits

    Science.gov (United States)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the outer layers of Saturn's atmosphere, and the mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo, telling us: why the

  5. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  6. From Order to Chaos in Earth Satellite Orbits

    Science.gov (United States)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  7. A 360-deg Digital Image Correlation system for materials testing

    Science.gov (United States)

    Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D.

    2016-07-01

    The increasing research interest toward natural and advanced engineered materials demands new experimental protocols capable of retrieving highly dense sets of experimental data on the full-surface of samples under multiple loading conditions. Such information, in fact, would allow to capture the possible heterogeneity and anisotropy of the material by using up-to-date inverse characterization methods. Although the development of object-specific test protocols could represent the optimal choice to address this need, it is unquestionable that universal testing machines (UTM) remain the most widespread and versatile option to test materials and components in both academic and industrial contexts. A major limitation of performing standard material tests with UTM, however, consists in the scarce information obtainable with the commonly associated sensors since they provide only global (LVDTs, extensometers, 2D-video analyzers) or local (strain gages) measures of displacement and strain. This paper presents a 3D Digital Image Correlation (DIC) system developed to perform highly accurate full-surface 360-deg measurements on either standard or custom-shaped samples under complex loading within universal testing machines. To this aim, a low cost and easy to setup video rig was specifically designed to overcome the practical limitations entailed with the integration of a multi-camera system within an already existing loading frame. In particular, the proposed system features a single SLR digital camera moved through multiple positions around the specimen by means of a large rotation stage. A proper calibration and data-processing procedure allows to automatically merge the experimental data obtained from the multiple views with an accuracy of 10-2 m m . The results of a full benchmarking of the metrological performances of the system are here reported and discussed together with illustrative examples of full-360-deg shape and deformation measurements on a Grade X65 steel

  8. Magnetic inclination from Brazilian bricks and application to Archeomagnetic dating

    Science.gov (United States)

    Begnini, G. S.; Hartmann, G. A.; Trindade, R. I.

    2013-05-01

    The Earth's magnetic field (EMF) is recorded in archeological baked materials carrying a stable remanent magnetization. This magnetic record can be used for indirectly date the archeological material by comparison with "reference curves" of the EMF. In this work we present magnetic inclination data from two different sites in southeastern Brazil, an ancient and a modern one: (a) a sampling at the ancient sugarcane mill Engenho Central de Piracicaba (ECP, 1881-1974 AD), and (b) a controlled survey at the modern brickyard Olaria Schiavolin (OS). Both of them are located in the city of Piracicaba, São Paulo State, Brazil. Magnetic measurements included stepwise thermal and alternating field demagnetization, anisotropy of magnetic susceptibility (AMS) and low-field magnetic susceptibility vs. temperature. In OS, we collected 40 oriented bricks from 5 sampling points inside the brickyard oven in order to test the stability and reliability of their remanent magnetizations by comparing them with the local field (measured directly with a fluxgate magnetometer). We observed differences of +/- 3° between the local field and the IGRF. When magnetic inclinations are reported relative to the flat planes of the brick (the situation we face for real ancient bricks), the differences due to inclination of the burning plane and magnetic anomalies inside the oven never exceed 6°. These differences are averaged out by using a minimum of 6 bricks (~24 specimens) per sampling point to compute the inclination. In the ancient site ECP we collected 140 non-oriented bricks from 14 different walls; three of them were previously dated using historical records. Inclinations were defined using at least 6 bricks per wall, showing consistent average values within the same walls. When compared to the IGRF and GUFM1 models, the inclinations obtained for the dated walls agreed within the experimental error. We have then applied the same procedure to estimate the age of the remaining walls. Using

  9. Small Orbits

    CERN Document Server

    Borsten, L; Ferrara, S; Marrani, A; Rubens, W

    2012-01-01

    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.

  10. Associating Long-term Gamma-ray Variability with the Superorbital Period of LS I + 61 Deg. 303

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Scargle, J. D.; Troja, E.

    2013-01-01

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the gamma-ray binary LS I + 61?303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the approx. 26.4960 day orbital period. Here we show that, during the time of our observations, the gamma-ray emission of LS I + 61 deg. 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use gamma-ray observations to study the outflows of massive stars in eccentric binary systems.

  11. Results of a 0.03- scale aerodynamic characteristics investigation of Boeing 747 carrier (model no. AX 1319 I-1) mated with a space shuttle orbiter (model 45-0) conducted in the Boeing transonic wind tunnel (CA5), volume 1

    Science.gov (United States)

    Sarver, D.; Mulkey, T. L.; Lindahl, R. H.

    1975-01-01

    The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.

  12. COSMOS Photometric Redshifts with 30-bands for 2-deg2

    CERN Document Server

    Ilbert, O; Salvato, M; Aussel, H; McCracken, H J; Sanders, D B; Scoville, N; Kartaltepe, J; Arnouts, S; Le Floc'h, E; Mobasher, B; Taniguchi, Y; Lamareille, F; Leauthaud, A; Sasaki, S; Thompson, D; Zamojski, M; Zamorani, G; Bardelli, S; Bolzonella, M; Bongiorno, A; Brusa, M; Caputi, K I; Carollo, C M; Contini, T; Cook, R; Coppa, G; Cucciati, O; De la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Hasinger, G; Iovino, A; Kampczyk, P; Kneib, J -P; Knobel, C; Kovac, K; Le Borgne, J F; Le Brun, V; Le Fèvre, O; Lilly, S; Looper, D; Maier, C; Mainieri, V; Mellier, Y; Mignoli, M; Murayama, T; Pellò, R; Peng, Y; Pérez-Montero, E; Renzini, A; Ricciardelli, E; Schiminovich, D; Scodeggio, M; Shioya, Y; Silverman, Joseph; Surace, J; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Zucca, E

    2008-01-01

    We present accurate photometric redshifts in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A chi2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines (OII, Hbeta, Halpha and Ly) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. Delta z = zs - zp) indicates a dispersion of sigma_{Delta z/(1+zs)}=0.007 at i<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i<24 and z<1.25, the accuracy is sigma_{Delta z/(1+zs)}=0.012. The deep NIR and IRAC coverage enables the ph...

  13. LE ZANZARE ITALIANE: GENERALITÀ E IDENTIFICAZIONE DEGLI ADULTI (DIPTERA, CULICIDAE

    Directory of Open Access Journals (Sweden)

    Francesco Severini

    2009-12-01

    Full Text Available Nel presente lavoro vengono riportate le informazioni essenziali su tassonomia e biologia nonché sugli aspetti ecologici degli adulti dei Culicidi italiani. Attualmente la fauna culicidica italiana comprende 64 specie appartenenti a 2 sottofamiglie e 8 generi. Alla sottofamiglia Anophelinae appartiene soltanto il genere Anopheles, presente con 16 specie raggruppate in due sottogeneri. Alla sottofamiglia Culicinae appartengono i rimanenti 7 generi: Aedes con 6 specie raggruppate in 3 sottogeneri, Coquillettidia con 2 specie, Ochlerotatus con 20 specie raggruppate in 3 sottogeneri, Culex con 12 specie raggruppate in 4 sottogeneri, Culiseta con 6 specie raggruppate in 3 sottogeneri, Orthopodomyia e Uranotaenia con una specie ognuna. In questo contesto vengono fornite le chiavi di identificazione specifica per le zanzare adulte, in italiano e in inglese. Le chiavi sono corredate da un’ampia iconografia (figure 1-75. Alle chiavi fa seguito la diagnosi morfologica dell’adulto di ogni specie con note sulla relativa biologia e distribuzione. Per ulteriori approfondimenti viene riportata la bibliografia completa sulle zanzare della fauna italiana dal 1960 ed i precedenti lavori più autorevoli.

  14. Come e cosa desidera la narrativa italiana degli anni Zero

    Directory of Open Access Journals (Sweden)

    Gianluigi Simonetti

    2013-05-01

    Full Text Available L'articolo analizza il trattamento del tema del desiderio - erotico e amoroso - nel romanzo italiano degli ultimi anni, impegnandosi nell'esame ravvicinato di alcuni testi esemplari. La campionatura vuole da un lato isolare alcune opere rappresentative della situazione attuale della narrativa contemporanea, dall'altro  proporre un'ipotesi categoriale che seziona il campo di studio in tre parti; il sondaggio sembra infatti suggerire che le dinamiche del desiderio vengono rese in maniera specifica nei diversi ambiti della letteratura di consumo, in quella di 'nobile intrattenimento' e in quella 'forte' e letterariamente più ambiziosa. L'analisi formale risulta insomma integrata a una prospettiva di stroria dello stile, secondo un metodo che permette di utilizzare la figuralità letteraria come 'indicatore sociologico' di processi politici (e forse antropologici in atto.

  15. Le caratteristiche degli acquirenti e venditori di abitazioni

    Directory of Open Access Journals (Sweden)

    Erika Ghiraldo

    2011-12-01

    Full Text Available L’incrocio dei dati contenuti nelle dichiarazioni dei redditi con quelli contenuti negli archivi della Pubblicità Immobiliare (ex Conservatorie rende disponibili molte informazioni sulle caratteristiche dei contraenti che hanno effettuato una compravendita di unità immobiliari. Considerando principalmente le compravendite di unità immobiliari del settore residenziale effettuate da persone fisiche sono trattate informazioni sul reddito dichiarato al fisco, l’età e l’attività di lavoro prevalente. È fornito un quadro sintetico della distribuzione delle compravendite, in termini di Numero di Transazioni Normalizzate (NTN e per dimensione delle abitazioni, per ciascuna caratteristica sia per gli acquirenti che per i venditori. La disponibilità dell’informazione sulla residenza dei soggetti consente, inoltre, di condurre un’analisi sulla provenienza degli acquirenti rispetto al luogo di ubicazione dell’immobile compravenduto. E’ possibile così analizzare la composizione del mercato distinguendo la quota di acquisti imputabile a soggetti residenti nello stesso Comune di ubicazione dell’immobile (mercato comunale dalla quota alimentata da soggetti residenti in altro Comune di una stessa provincia (mercato infraprovinciale o di altra provincia (mercato extra-provinciale. Quest’ultima indagine risulta molto interessante se effettuata su singole città. Sono, quindi, riportati i risultati dell’analisi per i mercati delle città di Milano, Roma e Napoli.

  16. Updates in Orbital Tumors

    Institute of Scientific and Technical Information of China (English)

    Nila; F.Moeloek

    1993-01-01

    Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.

  17. The rotate-plus-shift C-arm trajectory: Complete CT data with less than 180{\\deg} rotation

    CERN Document Server

    Ritschl, Ludwig; Kachelrieß, Marc

    2014-01-01

    In the last decade C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm scan is performed using a circle-like trajectory around a region of interest. Therefor an angular range of at least 180{\\deg} plus fan-angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C-arm system, for example a larger C radius or a smaller C opening respectively. These technical modifications are usually not benificial in terms of handling and usability of the C-arm during classical 2D applications like fluoroscopy. The method proposed in this paper relaxes the constraint of 180{\\deg} plus fan-angle rotation to acquire a complete data set. The proposed C-arm trajectory requires a motorization of the orbital axis of the C and of ideally two orthogonal axis in the C plane. The trajectory consists of three parts: A rotation of the C around a defined iso-center and two translational movements para...

  18. Dragline control system with jib head block inclination indicators

    Energy Technology Data Exchange (ETDEWEB)

    Zverev, A.I.

    1984-06-01

    A system is described which was devised to prevent excess inclination of blocks on dragline jibs caused by various circumstances, e.g. when the jib suddenly stops rotating and the bucket is simultaneously unloaded. Such inclination has several unfavorable effects, including possible jumping of the rope from the block groove, with damage to the protective guard and other adjacent equipment and damage to the rope. The proposed system, for use on EhSh-10/60 and EhSh-10/70 draglines, is based on end sensors linked via intermediate relays to the raising and turning control systems. The drive speeds are automatically altered when the jib crosspiece approaches a stop plate, and the operator is alerted by the audible clicks of the relays in the control panel. A wiring diagram for the system is given.

  19. Microstrip Phased Array Antennas Printed on Inclined Planes

    Directory of Open Access Journals (Sweden)

    A. Papiernik

    1996-06-01

    Full Text Available This paper presents an analysis of the electromagnetic field radiated by micro-strip patch antennas printed on inclined surfaces. The theoretical approach allows to apply spatial rotations to each source. The computer simulation developed permits us to experiment different antenna structures and two original realisations are proposed: a 2-element array printed on two inclined planes and a 4-element array laid out on a pyramidal surface. In addition, it enables the choice of the phase applied to each radiator to produce a beam deflection function. A good accuracy is obtained between theoretical and experimental results. The aim of this study is to optimise the parameters of such antennas to achieve the desired radiation patterns, from printed phased arrays on conformal surfaces. We also present the theoretical behaviour of a octagonal pyramid.

  20. Inclination not force is sensed by plants during shoot gravitropism

    Science.gov (United States)

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-01-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction. PMID:27739470

  1. Inclination not force is sensed by plants during shoot gravitropism

    Science.gov (United States)

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  2. Heliospheric current sheet inclinations at Venus and Earth

    Directory of Open Access Journals (Sweden)

    G. Ma

    Full Text Available We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU and Earth (1 AU during December 1978-May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ~ 45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally, similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.

    Key words. Interplanetary physics (interplanetary magnetic fields; sources of solar wind

  3. Trunk muscle activity with different sitting postures and pelvic inclination

    OpenAIRE

    WATANABE, MASAHIRO; Kaneoka, Koji; Wada, Yusuke; Matsui, Yasushi; Miyakawa, Shumpei

    2014-01-01

    BACKGROUND AND OBJECTIVE: Sitting posture may often place large burden on trunk muscles, while trunk muscle activities in the sitting posture have not been well clarified. In this study, a difference in trunk muscle activity between two kinds of sitting postures was evaluated, focusing on low back pain induced by posture holding.MATERIAL AND METHODS: An experiment was conducted on the subjects sitting on a stable-seat and on an unstable-seat, with the pelvis inclined forward, backward, rightw...

  4. EIGENFREQUENCY ANALYSIS OF CABLE STRUCTURES WITH INCLINED CABLES

    Institute of Scientific and Technical Information of China (English)

    William Paulsen; Greg Slayton

    2006-01-01

    The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfer matrix method was inadequate for this task, and hence the larger exterior matrices were used to determine the eigenfrequency equation. Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.

  5. Forces Acting on Sessile Droplet on Inclined Surfaces

    OpenAIRE

    Annapragada, S. Ravi; Murthy, Jayathi Y.; Garimella, Suresh V.

    2009-01-01

    Although many analytical, experimental and numerical studies have focused on droplet motion, the mechanics of the droplet while still in its static state, and just before motion starts, are not well understood. A study of static droplets would shed light on the threshold voltage (or critical inclination) for initiating electrically (or gravitationally) induced droplet motion. Before the droplet starts to move, the droplet shape changes such that the forces acting at the triple contact line ba...

  6. Graphs and matroids weighted in a bounded incline algebra.

    Science.gov (United States)

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  7. On the highly inclined $v_W$ leptokurtic asteroid families

    CERN Document Server

    Carruba, V; Aljbaae, S; Huaman, M

    2016-01-01

    $v_W$ leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field $v_W$ is characterized by a positive value of the ${\\gamma}_2$ Pearson kurtosis, i.e., they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have ${\\gamma}_2(v_W) > 0.25$. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the $s-s_V$ resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of ${\\gamma}_2(v_W)$ for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the ...

  8. Comparison of Estimated and Measured Muscle Activity During Inclined Walking.

    Science.gov (United States)

    Alexander, Nathalie; Schwameder, Hermann

    2016-04-01

    While inclined walking is a frequent daily activity, muscle forces during this activity have rarely been examined. Musculoskeletal models are commonly used to estimate internal forces in healthy populations, but these require a priori validation. The aim of this study was to compare estimated muscle activity using a musculoskeletal model with measured EMG data during inclined walking. Ten healthy male participants walked at different inclinations of 0°, ± 6°, ± 12°, and ± 18° on a ramp equipped with 2 force plates. Kinematics, kinetics, and muscle activity of the musculus (m.) biceps femoris, m. rectus femoris, m. vastus lateralis, m. tibialis anterior, and m. gastrocnemius lateralis were recorded. Agreement between estimated and measured muscle activity was determined via correlation coefficients, mean absolute errors, and trend analysis. Correlation coefficients between estimated and measured muscle activity for approximately 69% of the conditions were above 0.7. Mean absolute errors were rather high with only approximately 38% being ≤ 30%. Trend analysis revealed similar estimated and measured muscle activities for all muscles and tasks (uphill and downhill walking), except m. tibialis anterior during uphill walking. This model can be used for further analysis in similar groups of participants.

  9. Analysis of sagittal condyl inclination in subjects with temporomandibular disorders

    Directory of Open Access Journals (Sweden)

    Dodić Slobodan

    2010-01-01

    Full Text Available Bacground/Aim. Disturbances of mandibular border movements is considered to be one of the major signs of temporomandibular disorders (TMD. The purpose of this study was to evaluate the possible association between disturbances of mandibular border movements and the presence of symptoms of TMD in the young. Methods. This study included two groups of volunteers between 18 and 26 years of age. The study group included 30 examineers with signs (symptoms of TMD, and the control group also included 30 persons without any signs (symptoms of TMD. The presence of TMD was confirmed according to the craniomandibular index (Helkimo. The functional analysis of mandibular movements was performed in each subject using the computer pantograph. Results. The results of this study did not confirm any significant differences between the values of the condylar variables/sagittal condylar inclination, length of the sagital condylar guidance, in the control and in the study group. Conclusion. The study did not confirm significant differences in the length and inclination of the protrusive condylar guidance, as well as in the values of the sagittal condylar inclination between the subjects with the signs and symptoms of TMD and the normal asymptomatic subjects.

  10. Imaging of Orbital Infections

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Mostafavi

    2010-05-01

    Full Text Available Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only because of the threatened vision loss associated with orbital cellulitis but also because of the potential for central nervous system complications including cavernous sinus thrombosis, meningitis, and death. "nOrbital imaging should be obtained in all patients suspected of having orbital cellulitis. CT is preferred to MR imaging, as the orbital tissues have high con-trast and the bone can be well visualized. Orbital CT scanning allows localization of the disease process to the preseptal area, the extraconal or intraconal fat, or the subperiosteal space. Axial CT views allow evaluation of the medial orbit and ethmoid sinuses, whereas coronal scans image the orbital roof and floor and the frontal and maxillary sinuses. If direct coronal imaging is not possible, reconstruction of thin axial cuts may help the assessment of the orbital roof and floor. Potential sources of orbital cellulitis such as sinusitis, dental infection, and facial cellulitis are often detectable on CT imaging. "nIn this presentation, the imaging considerations of the orbital infections; including imaging differentiation criteria of all types of orbital infections are reviewed.

  11. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    OpenAIRE

    Rana Altan Yaycıoğlu

    2012-01-01

    Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may al...

  12. The BLAST View of the Star Forming Region in Aquila (ell=45deg,b=0deg)

    CERN Document Server

    Rivera-Ingraham, Alana; Bock, James J; Chapin, Edward L; Devlin, Mark J; Dicker, Simon R; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Martin, Peter G; Mauskopf, Philip; Netterfield, Calvin B; Olmi, Luca; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2010-01-01

    We have carried out the first general submillimeter analysis of the field towards GRSMC 45.46+0.05, a massive star forming region in Aquila. The deconvolved 6 deg^2 (3\\degree X 2\\degree) maps provided by BLAST in 2005 at 250, 350, and 500 micron were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact HII regions (UCHIIRs) within the main clumps. By means of the BLAST maps we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds (IRDCs). Our spectral energy distributions of the main clumps in the field, located at ~7 kpc, reveal an active population with temperatures of T~35-40 K and masses of ~10^3 Msun for a dust emissivity index beta=1.5. The clump evolutionary stages range from evolved sources, with extended HII regions and prominent IR ...

  13. Pitch Angle Restrictions in Late Type Spiral Galaxies Based on Chaotic and Ordered Orbital Behavior

    CERN Document Server

    Perez-Villegas, Angeles; Moreno, Edmundo; Peimbert, Antonio; Velazquez, Hector M

    2011-01-01

    We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a 3-D self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, going from 10$\\deg$ to 60$\\deg$. Testing undirectly orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately $\\sim 20\\deg$, the response supports closely the potential permitting readily the presence of long lasting spiral structures. The density response tends to "avoid" larger pitch angles in the potential, by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than $\\sim 20\\deg$, would not be long-lasting structures but rather transient. On the other hand, from an extensive orbital study in phase space, we also find that for late type galaxies with pitch angles larger than $\\sim 50\\deg$, chaos becomes pervasive destroying the ordered phase space surrounding the main sta...

  14. Bilateral orbital cavernous haemangiomas.

    OpenAIRE

    Fries, P D; Char, D. H.

    1988-01-01

    Simultaneous bilateral orbital lesions are rare. The differential diagnosis includes orbital pseudotumour, metastasis, leukaemia, lymphoma, Wegener's granulomatosis, and neurofibromatosis. We report what we believe to be the first case of bilateral orbital cavernous haemangiomas.

  15. Bifurcations of lunisolar secular resonances for space debris orbits

    CERN Document Server

    Celletti, Alessandra; Pucacco, Giuseppe

    2015-01-01

    Using bifurcation theory, we study the secular resonances induced by Sun and Moon on space debris orbits around the Earth. In particular, we concentrate on a special class of secular resonances, which depends just on the debris' orbital inclination. This class is typically subdivided into three distinct types of secular resonances: those occurring at the critical inclination, those corresponding to polar orbits and a third type resulting from a linear combination of the rates of variation of the argument of perigee and the longitude of the ascending node. The model describing the dynamics of space debris includes the effects of the geopotential, as well as Sun's and Moon's attractions, and it is defined in terms of suitable action-angle variables. We consider the system averaged over both the mean anomaly of the debris and those of Sun and Moon. Such multiply-averaged Hamiltonian is used to study the lunisolar resonances which depend just on the inclination. Borrowing the technique from the theory of bifurcat...

  16. Correlations between compositions and orbits established by the giant impact era of planet formation

    CERN Document Server

    Dawson, Rebekah I; Chiang, Eugene

    2015-01-01

    The giant impact phase of terrestrial planet formation establishes connections between super-Earths' orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N-body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surface density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings,...

  17. Dynamics of two planets in co-orbital motion

    CERN Document Server

    Giuppone, C A; Michtchenko, T A; Ferraz-Mello, S

    2010-01-01

    We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities, also we assume that both planets share the same orbital plane. Initially we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analyzed in more detail using a semi-analytical model. Apart from the well known quasi-satellite (QS) orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at $(\\sigma,\\Delta\\omega) = (\\pm 60\\deg, \\mp 120\\deg)$, where \\sigma is the difference in mean longitudes and \\Delta\\omega is the difference in longitudes of pericenter. The position of these Anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities, and are found for eccentricit...

  18. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    Science.gov (United States)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  19. Inclination of magnetic fields and flows in sunspot penumbrae

    Science.gov (United States)

    Langhans, K.; Scharmer, G. B.; Kiselman, D.; Löfdahl, M. G.; Berger, T. E.

    2005-06-01

    An observational study of the inclination of magnetic fields and flows in sunspot penumbrae at a spatial resolution of 0.2 arcsec is presented. The analysis is based on longitudinal magnetograms and Dopplergrams obtained with the Swedish 1-m Solar Telescope on La Palma using the Lockheed Solar Optical Universal Polarimeter birefringent filter. Data from two sunspots observed at several heliocentric angles between 12 ° and 39 ° were analyzed. We find that the magnetic field at the level of the formation of the Fe i-line wing (630.25 nm) is in the form of coherent structures that extend radially over nearly the entire penumbra giving the impression of vertical sheet-like structures. The inclination of the field varies up to 45 ° over azimuthal distances close to the resolution limit of the magnetograms. Dark penumbral cores, and their extensions into the outer penumbra, are prominent features associated with the more horizontal component of the magnetic field. The inclination of this dark penumbral component - designated B - increases outwards from approximately 40 ° in the inner penumbra such that the field lines are nearly horizontal or even return to the solar surface already in the middle penumbra. The bright component of filaments - designated A - is associated with the more vertical component of the magnetic field and has an inclination with respect to the normal of about 35 ° in the inner penumbra, increasing to about 60 ° towards the outer boundary. The magnetogram signal is lower in the dark component B regions than in the bright component A regions of the penumbral filaments. The measured rapid azimuthal variation of the magnetogram signal is interpreted as being caused by combined fluctuations of inclination and magnetic field strength. The Dopplergrams show that the velocity field associated with penumbral component B is roughly aligned with the magnetic field while component A flows are more horizontal than the magnetic field. The observations give

  20. Orbits for the Impatient: A Bayesian Rejection Sampling Method for Quickly Fitting the Orbits of Long-Period Exoplanets

    Science.gov (United States)

    Blunt, Sarah Caroline; Nielsen, Eric; De Rosa, Robert J.; Konopacky, Quinn M.; Ryan, Dominic; Wang, Jason; Pueyo, Laurent; Rameau, Julien; Marois, Christian; Marchis, Franck; Macintosh, Bruce; Graham, James R.; GPIES Collaboration

    2017-01-01

    Direct imaging planet-finders like the Gemini Planet Imager (GPI) allow for direct imaging of exoplanets with orbital periods beyond ~10 years that are still close enough to their host stars to undergo detectable orbital motion on year or multi-year timescales, creating a need for methods that rapidly characterize newly discovered planets using relative astrometry covering a short fraction of an orbital period. We address this problem with Orbits for the Impatient (OFTI), a statistically robust and computationally efficient Bayesian rejection sampling method for fitting orbits to astrometric datasets covering small orbital fractions from directly imaged exoplanets, brown dwarfs, and wide-orbit stellar binaries. We demonstrate that OFTI produces valid orbital solutions by directly comparing its outputs with those of two Markov Chain Monte Carlo (MCMC) implementations, and compare the computational speeds of OFTI and MCMC as a function of orbital fraction spanned by input astrometry. We find that for well-sampled orbits with astrometry covering less than 15% of the total orbital period, OFTI converges on the correct orbital solution in orders of magnitude less CPU time than MCMC. Exoplanet observations with space missions such as the WFIRST coronagraph present a similar problem of sparse sampling, and we show how these methods can efficiently constrain the orbital inclination, phase, and separation of a planet such as 47 Uma c. Finally, we present some of the first orbital fits to astrometry from directly imaged exoplanets and brown dwarfs in the literature, including GJ 504 b, CD-35 2722 B, kappa And b, and HR 3549 B.

  1. Spin–Orbit Alignment of Exoplanet Systems: Ensemble Analysis Using Asteroseismology

    DEFF Research Database (Denmark)

    Campante, T. L.; Lund, M. N.; Kuszlewicz, James S.

    2016-01-01

    of a measurement of the projected spin–orbit angle λ for two of the systems allows us to estimate ψ . We find that the orbit of the hot Jupiter HAT-P-7b is likely to be retrograde ( ##IMG## [http://ej.iop.org/images/0004-637X/819/1/85/apj522683ieqn1.gif] $psi =116rc. 4_-14.7^+30.2$ ), whereas that of Kepler-25c......The angle ψ between a planet’s orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on ψ by measuring the stellar inclination i s via asteroseismology for an ensemble of 25 solar-type hosts...... and planetary orbital axes are correlated, as conveyed by a tendency of the host stars to display large values of inclination....

  2. Photoluminescence of a High Mobility 2DEG in the Fractional Quantum Hall Effect Regime

    Science.gov (United States)

    Smirnov, D.; Rudenkov, V. V.; Ashkinadze, B. M.; Cohen, E.; Christianen, P. C. M.; Maan, J. C.; Pfeiffer, L. N.

    The magneto-PL spectra of modulation-doped, ultra-high mobility GaAs/AlGaAs single heterojunctions (HJs) were studied under a perpendicularly applied magnetic field up to 33 T and at temperatures of 0.3 and 1.2 K. The spectra show remarkable intensity redistribution between free (bulk) exciton and 2DEG-hole PL channels occurring at electron filling factors, ν = 2 and 1. At 0.3 K, significant 2DEG-hole PL spectral changes are observed near ν = 2/3 and 1/3. Several heterojunctions with 2DEG density in the range of n2D - (1 - 2.7) · 1011 cm-2 display similar features. These spectral peculiarities are attributed to the modification of the 2DEG energy spectrum caused by the e-e interaction, in particular, the recombination of valence hole with the composite (fractionally-charged) particles of the magnetized 2DEG. In HJs with lower n2D < 1011 cm-2, the observed PL evolution at ν < 1 is mainly determined by an intensity redistribution between the σ+ and σ- circularly-polarized free exciton PL components. In this case, the exciton energy is lower than the energy of the 2DEG-hole system, so that the free excitons do not dissociate near the magnetized 2DEG and thus, the 2DEG-hole PL is barely observed.

  3. Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36.5 deg. C and 80 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Temizel, Neslihan; Girisken, Giray; Tas, A. Cuneyt, E-mail: cuneyt-tas@ouhsc.edu

    2011-07-20

    This study investigated the hydrothermal transformation of brushite (dicalcium phosphate dihydrate, DCPD, CaHPO{sub 4}.2H{sub 2}O) into octacalcium phosphate (OCP, Ca{sub 8}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 4}.5H{sub 2}O) in seven different newly developed biomineralization media, all inspired from the commercial DMEM solutions, over the temperature range of 36.5 deg. C to 90 deg. C with aging times varying between 1 h and 6 days. DCPD powders used in this study were synthesized in our laboratory by using a wet-chemical technique. DCPD was found to transform into OCP in the Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, HCO{sub 3}{sup -}, Cl{sup -} and H{sub 2}PO{sub 4}{sup -} containing aqueous biomineralization media in less than 72 h at 36.5 deg. C, without stirring. The same medium was able to convert DCPD into OCP in about 2 h at 75-80 deg. C, again without a need for stirring. Samples were characterized by using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). - Research highlights: {yields} New biomineralization solutions developed to convert DCPD into OCP at 36.5 deg. C to 80 deg. C. {yields} DCPD powder was the starting material. {yields} OCP was synthesized under static conditions (no need for stirring). {yields} OCP was synthesized in sealed glass media bottles in solutions free of Hepes or Tris. {yields} OCP can be synthesized at 75-80 deg. C in only 2 hours in the above solutions without stirring.

  4. Flexure fatigue testing of 90 deg graphite/epoxy composites

    Science.gov (United States)

    Peck, Ann Nancy W.

    1995-01-01

    3-point flexure tests of 90 deg graphite/epoxy specimens. Investigations will include the volume scale effect as well as frequency and span-to-thickness ratio effects. Prior to the start of the experimental study, an analytical study using finite element modeling will be performed to investigate the span-to-thickness effect. The ratio of transverse flexure stress to shear stress will be monitored and its values predicted by the FEM analysis compared with the value obtained using a 'strength of materials' based approach.

  5. Codimension 2 reversible heteroclinic bifurcations with inclination flips

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, the heteroclinic bifurcation problem with real eigenvalues and two incli- nation-flips is investigated in a four-dimensional reversible system. We perform a detailed study of this case by using the method originally established in the papers "Problems in Homoclinic Bifurcation with Higher Dimensions" and "Bifurcation of Heteroclinic Loops," and obtain fruitful results, such as the existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic loops, R-symmetric homoclinic orbit and R-symmetric periodic orbit. The double R-symmetric homoclinic bifurcation (i.e., two-fold R-symmetric homoclinic bifurcation) for reversible heteroclinic loops is found, and the existence of infinitely many R-symmetric periodic orbits accumulating onto a homoclinic orbit is demonstrated. The relevant bifurcation surfaces and the existence regions are also located.

  6. AtDeg2 – a chloroplast protein with dual protease/chaperone activity

    Directory of Open Access Journals (Sweden)

    Przemysław Jagodzik

    2014-07-01

    Full Text Available Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS and two PDZ domains (PDZ1 and PDZ2. In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.

  7. Patologie sociali, resistenze e difese degli insegnanti nell’istituzione scolastica: Considerazioni cliniche e pedagogiche

    Directory of Open Access Journals (Sweden)

    Tommaso Fratini

    2014-12-01

    Full Text Available L’articolo prende in esame il tema di alcune resistenze e difese degli insegnanti all’interno dell’istituzione scolastica. Partendo dall’attuale condizione di emergenza della scuola italiana e rifacendosi al concetto di patologia sociale di Giuseppe Di Chiara, viene argomentato come tali resistenze coprano le angosce persecutorie degli insegnanti nel loro lavoro scolastico quotidiano nel rapporto con gli allievi. L’articolo, tra le varie forme di patologia istituzionale, affronta principalmente il tema di quelle che presiedono alle resistenze degli insegnanti al lavoro introspettivo con il proprio mondo interno, conseguenza e ulteriore cagione di sensi di colpa nel rapporto con gli allievi e di fenomeni di burnout lavorativo degli stessi insegnanti. Tali fenomeni vanno nella direzione del rinforzo sia di un atteggiamento di chiusura verso la collaborazione con professionisti esterni all’istituzione scolastica, sia di un atteggiamento di minore empatia e vicinanza emotiva con la realtà interna degli allievi.

  8. Inclined layer convection in a colloidal suspension with negative Soret coefficient at large solutal Rayleigh numbers.

    Science.gov (United States)

    Italia, Matteo; Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto

    2014-10-01

    Convection in an inclined layer of fluid is affected by the presence of a component of the acceleration of gravity perpendicular to the density gradient that drives the convective motion. In this work we investigate the solutal convection of a colloidal suspension characterized by a negative Soret coefficient. Convection is induced by heating the suspension from above, and at large solutal Rayleigh numbers (of the order of 10(7)-10(8)) convective spoke patterns form. We show that in the presence of a marginal inclination of the cell as small as 19 mrad the isotropy of the spoke pattern is broken and the convective patterns tend to align in the direction of the inclination. At intermediate inclinations of the order of 33 mrad ordered square patterns are obtained, while at inclination of the order of 67 mrad the strong shear flow determined by the inclination gives rise to ascending and descending sheets of fluid aligned parallel to the direction of inclination.

  9. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study.

    Science.gov (United States)

    Rai, Nivedita; Ramaswamy, Amutha

    2015-01-01

    DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46-80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  10. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Nivedita Rai

    2015-01-01

    Full Text Available DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280 and left ( at 320 K with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  11. Orbital dystopia due to orbital roof defect.

    Science.gov (United States)

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  12. Spin–Orbit Alignment of Exoplanet Systems: Ensemble Analysis Using Asteroseismology

    DEFF Research Database (Denmark)

    Campante, T. L.; Lund, M. N.; Kuszlewicz, James S.

    2016-01-01

    The angle ψ between a planet’s orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on ψ by measuring the stellar inclination i s via asteroseismology for an ensemble of 25 solar-type hosts ...

  13. Aileron roll hysteresis effects on entry of space shuttle orbiter

    Science.gov (United States)

    Powell, R. W.

    1977-01-01

    Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

  14. On the highly inclined vW leptokurtic asteroid families

    Science.gov (United States)

    Carruba, V.; Domingos, R. C.; Aljbaae, S.; Huaman, M.

    2016-11-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field vW is characterized by a positive value of the γ2 Pearson kurtosis, i.e. they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the s - sV resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of γ2(vW) for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, and to obtain independent constraints on the family ages. While secular resonances with massive bodies in the main belt do not significantly affect the dynamical evolution of the Barcelona family, they significantly increase the γ2(vW) values of the simulated Hansa and Gallia families. Current values of the γ2(vW) for the Gallia family are reached over the estimated family age only if secular resonances with Vesta are accounted for.

  15. Critical Heat Flux in Inclined Rectangular Narrow Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Jeong J. Kim; Yong H. Kim; Seong J. Kim; Sang W. Noh; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    In light of the TMI-2 accident, in which the reactor vessel lower head survived the attack by molten core material, the in-vessel retention strategy was suggested to benefit from cooling the debris through a gap between the lower head and the core material. The GAMMA 1D (Gap Apparatus Mitigating Melt Attack One Dimensional) tests were conducted to investigate the critical heat flux (CHF) in narrow gaps with varying surface orientations. The CHF in an inclined gap, especially in case of the downward-facing narrow gap, is dictated by bubble behavior because the departing bubbles are squeezed. The orientation angle affects the bubble layer and escape of the bubbles from the narrow gap. The test parameters include gap sizes of 1, 2, 5 and 10 mm and the open periphery, and the orientation angles range from the fully downward-facing (180o) to the vertical (90o) position. The 15 ×35 mm copper test section was electrically heated by the thin film resistor on the back. The heater assembly was installed to the tip of the rotating arm in the heated water pool at the atmospheric pressure. The bubble behavior was photographed utilizing a high-speed camera through the Pyrex glass spacer. It was observed that the CHF decreased as the surface inclination angle increased and as the gap size decreased in most of the cases. However, the opposing results were obtained at certain surface orientations and gap sizes. Transition angles, at which the CHF changed in a rapid slope, were also detected, which is consistent with the existing literature. A semi-empirical CHF correlation was developed for the inclined narrow rectangular channels through dimensional analysis. The correlation provides with best-estimate CHF values for realistically assessing the thermal margin to failure of the lower head during a severe accident involving relocation of the core material.

  16. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  17. Do floating orbits in extreme mass ratio binary black holes exist?

    CERN Document Server

    Kapadia, Shasvath J; Glampedakis, Kostas

    2013-01-01

    This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar anal...

  18. On the dynamical stability of the proposed planetary system orbiting NSVS 14256825

    CERN Document Server

    Wittenmyer, Robert A; Marshall, Jonathan

    2013-01-01

    We present a detailed dynamical analysis of the orbital stability of the two circumbinary planets recently proposed to orbit the evolved eclipsing binary star system NSVS 14256825. As is the case for other recently proposed circumbinary planetary systems detected through the timing of mutual eclipses between the central binary stars, the proposed planets do not stand up to dynamical scrutiny. The proposed orbits for the two planets are extremely unstable on timescales of less than a thousand years, regardless of the mutual inclination between the planetary orbits. For the scenario where the planetary orbits are coplanar, a small region of moderate stability was observed, featuring orbits that were somewhat protected from destabilisation by the influence of mutual 2:1 mean-motion resonance between the orbits of the planets. Even in this stable region, however, the systems tested typically only survived on timescales of order 1 million years, far shorter than the age of the system. Our results suggest that, if ...

  19. Inclinations of Egyptian pyramids and finding of the divine essence

    OpenAIRE

    GRIGORIEV STANISLAV ARKADIEVICH

    2015-01-01

    The aim of this research is discovery of astronomical reasons in orientation of slopes of Egyptian pyramids used as tombs for pharaohs of Ancient Egypt. The article contains results of statistical analysis of change in inclination of slopes of the pyramids (3rd 2nd millennia BC) depending on time of their building. The first year of the corresponding pharaoh’s reign has been accepted, as usually it is considered that building of pyramids ones started during either the first or second year of ...

  20. The static response of a bowed inclined hot wire

    Science.gov (United States)

    Smits, A. J.

    1984-01-01

    The directional sensitivity of a bowed, inclined hot wire is investigated using a simple model for the convective heat transfer. The static response is analyzed for subsonic and supersonic flows. It is shown that the effects of both end conduction and wire bowing are greater in supersonic flow. Regardless of the Mach number, however, these two phenomena have distinctly different effects; end conduction appears to be responsible for reducing the nonlinearity of the response, whereas bowing increases the directional sensitivity. Comparison with the available data suggests that the analysis is useful for interpreting the experimental results.

  1. Granular flow over inclined channels with linear contraction

    CERN Document Server

    Tunuguntla, D R; Thornton, A R; Bokhove, O

    2015-01-01

    We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.

  2. Two-phase slug flow in vertical and inclined tubes

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Gas-liquid slug flow is investigated experimentally in vertical and inclined tubes.The non-invasive measuremnts of the gas-liquid slug flow are taken by using the EKTAPRO 1000 High Speed Motion Analyzer.The information on the velocity of the Talyor bubble,the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble are obtained.The experimental results are in good agreement with the available data.

  3. Stress distribution and surface instability of an inclined granular layer

    Institute of Scientific and Technical Information of China (English)

    Zheng He-Peng; Jiang Yi-Min; Peng Zheng

    2013-01-01

    Static granular materials may avalanche suddenly under continuous quasi-static drives.This phenomenon,which is important in many engineering applications,can be explained by analyzing the stability of the elastic solutions.We show this for a granular layer driven by its inclination angle in gravity,where the elastic problem can be solved generally and analytically.It is found that a loss of stability may occur only at the free surface of the layer.This result is considered to be relevant for understanding surface avalanches and the flows observed experimentally.

  4. Numerical simulation of inclination vibration in magnetic induction micromachines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J-Y; Zhou, J-B; Zhang, W-M; Meng, G [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: jerrycc@sjtu.edu.cn

    2008-02-15

    This paper studies the inclination vibration of an axial-flux magnetic induction micromachine which is supported by hydrostatic thrust bearings. A mechanical model for the rotor and the corresponding fluid-film bearing is combined with an electromagnetic force model to study the linear and nonlinear rotordynamics of the system. Results obtained for the stability show that magnetic induction micromachine would encounter severe instability problem at high speed operations. The model developed here could serve as a useful reference for design optimization and operation scheme.

  5. Numerical simulation of inclination vibration in magnetic induction micromachines

    Science.gov (United States)

    Chen, J.-Y.; Zhou, J.-B.; Zhang, W.-M.; Meng, G.

    2008-02-01

    This paper studies the inclination vibration of an axial-flux magnetic induction micromachine which is supported by hydrostatic thrust bearings. A mechanical model for the rotor and the corresponding fluid-film bearing is combined with an electromagnetic force model to study the linear and nonlinear rotordynamics of the system. Results obtained for the stability show that magnetic induction micromachine would encounter severe instability problem at high speed operations. The model developed here could serve as a useful reference for design optimization and operation scheme.

  6. Results of investigations on a 0.0405 scale model PRR version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    Science.gov (United States)

    Kingsland, R. B.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics of the space shuttle orbiter. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip of - 5 deg, 0 deg, and + 5 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  7. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 8: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at a Mach number of 5.97

    Science.gov (United States)

    Phillips, W. P.

    1984-01-01

    Aerodynamic characteristics at M=5.97 for the 140 A/B Space Shuttle Orbiter configuration and for the configuration modified by geometric changes in the wing planform fillet region and the fuselage forebody are presented. The modifications, designed to extend the orbiter's longitudinal trim capability to more forward center of gravity locations, include reshaping the baseline wing fillet, changing the fuselage forebody camber, and adding canards. The Langley 20 inch Mach 6 Tunnel at a Reynolds number of approximately 6 million based on fuselage reference length was used. The angle of attack range of the investigation varied from about 15 deg to 35 deg at 0 deg and -5 deg sideslip angles. Data are obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  8. Orbital Parameters for Two Young Spectroscopic Binaries

    Science.gov (United States)

    Karnath, Nicole

    I report orbital parameters for two low-mass, pre-main sequence spectroscopic binaries VSB 111 and VSB 126. These systems were originally identified as single-lined on the basis of visible-light spectral observations. High-resolution, infrared spectra were obtained to detect absorption lines of the secondary stars and measure radial velocities of both components in the systems. The combination of the visible and infrared observations of VSB 111 leads to a period of 902.1+/-0.9 days, an eccentricity of 0.788+/-0.008, and a mass ratio of 0.52+/-0.05. VSB 126 has a period of 12.9244+/-0.0002 days, an eccentricity of 0.18+/-0.02, and a mass ratio of 0.29+/-0.02. Visible-light photometry using the 0.8-m telescope at Lowell Observatory provided rotation periods for the primary stars in both systems, 3.74+/-0.02 days for VSB 111 and 5.71+/-0.07 days for VSB 126. Based on the vsini values, the primary rotation periods, and estimates for the primary radii, I find inclinations for the primary-star rotation axes, 42+47 -16° for VSB 111 and 54+36-29° for VSB 126, and compare these to the inclination angle of the binary orbits, iorb = 36+/-4° for VSB 111 and i orb = 45+/-4° for VSB 126, estimated from the orbital solutions. Both binaries are located in the young, star- forming cluster NGC 2264 with a complex and clumpy gas and dust structure at a distance of ~800 pc. The center-of-mass velocities of the two systems are consistent with distinct CO clouds within NGC 2264.

  9. ARTEMIS orbit raising inflight experience with ion propulsion

    Science.gov (United States)

    Killinger, Rainer; Kukies, Ralf; Surauer, Michael; Tomasetto, Angeo; van Holtz, Leo

    2003-08-01

    To demonstrate and promote North/South station keeping (inclination control) using ion propulsion, ESA on July 12, 2001 onboard Ariane 510 launched its most advanced telecommunication satellite: ARTEMIS. Due to a launcher failure the satellite was injected into a useless too low elliptic orbit. The ARTEMIS mission was salvaged by an Alenia Spazio / Astrium / ESA team at Telespazio (Fucino) using in novel modes to operate the on-board chemical and ion propulsion systems provided by Astrium. Using the chemical propulsion_ system provided by Astrium GmbH - Lampoldshausen - the inital orbit, having an apogee of half the targeted altitude. was quickly upgraded to a safe circular parking orbit at 31000 km altitude. The Liquid Apogee Engine was fired in total 8 times to achieve apogee as well as perigee raising. The final orbit raising to geostationary altitude is being performed by means of the ion propulsion system (IPP) applied in a newly designed spacecraft attitude control mode. Alenia Spazio and Astrium, in close cooperation, quickly redesigned all control and data handling software modules affected since the original spacecraft configuration was designed for inclination control only and not to generate thrust with the ion engines in a direction tangential to the orbit. The flexibility of the IPP system consisting of 4 thruster assemblies, provided in its totality by Astrium including the 2 alignment mechanisms for precision thrust direction control, had proven invaluable. To demonstrate the technologies available in Europe and to enhanced reliability, Astrium implemented two different technologies: a Kaufmann type system (EITA) provided by Astrium Ltd. - Portsmouth; and a Radiofrequency Ion Thruster Assembly (RITA) provided by Astrium GmbH - Ottobrunn. Two ion engines of different technology were mounted side by side on one ITAM (Ion Thruster Alignment Mechanism) provided by Austrian Aerospace. Artemis, after EURECA launched on 31 July 1992 and retrieved on 1 July

  10. Whole-body angular momentum in incline and decline walking.

    Science.gov (United States)

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  11. Intermediate Inclinations of Type 2 Coronal-Line Forest AGN

    CERN Document Server

    Rose, Marvin; Crenshaw, Michael; Glidden, Ana

    2015-01-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [FeVII], [FeX] and [NeV]) in their spectra. Rose, Elvis & Tadhunter (2015) suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high ionization lines is due to a specific AGN-torus inclination angle. Here we test this suggestion using mid-IR colours (4.6$\\mu$m-22$\\mu$m) from the Wide-Field Infrared Survey Explorer (WISE) for the CLiF AGN. We use the Fischer et al. (2014) result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5$\\mu$m to 30$\\mu$m colours become bluer. We show that the [W2-W4] colours for the CLiF AGN ($\\langle$[W2-W4]$\\rangle$ = 5.92$\\pm$0.12) are intermediate between SDSS type 1 ($\\langle$[W2-W4]$\\rangle$ = 5.22$\\pm$0.01) and type 2 AGN ($\\langle$[W2-W4]$\\rangle$ = 6.35$\\pm$0.03). This implies that the AG...

  12. Experimental study of collisional granular flows down an inclined plane

    Science.gov (United States)

    Azanza, Emmanuel; Chevoir, François; Moucheront, Pascal

    1999-12-01

    The collisional flow of a slightly inelastic granular material down a rough inclined plane is usually described by kinetic theories. We present an experimental study aimed at analysing the assumptions and the quantitative predictions of such theories. A two-dimensional channel coupled to a model granular material and image analysis allow detailed and complete measurement of the kinematics and structure of the flows. We determine the range of inclination and particle flux for which the flow is stationary and uniform. The characteristic profiles of solid fraction, mean velocity and granular temperature are systematically measured. Both the true collisional and the dilute kinetic regimes are examined. We show that a quasi-hydrodynamic description of these regimes seems relevant, and that the pressure and the viscosity terms are in good qualitative agreement with the prediction of the kinetic theory. The profiles are well described by the kinetic theory near the top of the flow, at low solid fraction. Conversely there are large discrepancies near the rough plane, where the material is structured in layers.

  13. Online measurement system for the surface inclination of metal workpieces

    Science.gov (United States)

    Yin, Peng; Sun, Changku; Wang, Peng; Yang, Qian

    2013-12-01

    The online measurement of the metal surfaces' parameters plays an important role in many industrial fields. Because the surfaces of the machined metal pieces have the characteristics of strong reflection and high possibilities of scattered disturbing irradiation points, this paper designs an online measurement system based on the measurement principles of linear structured light to detect whether the parameters of the machined metal surfaces' height difference and inclination fulfill the compliance requirements, in which the grayscale gravity algorithm is applied to extract the sub-pixel coordinates of the center of laser, the least squares method is employed to fit the data and the Pauta criterion is utilized to remove the spurious points. The repeat accuracy of this system has been tested. The experimental results prove that the precision of inclination is 0.046° RMS under the speed of 40mm/sec, and the precision of height difference is 0.072mm RMS, which meets the design expectations. Hence, this system can be applied to online industrial detection of high speed and high precision.

  14. Dissipative descent: rocking and rolling down an incline

    Science.gov (United States)

    Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.

    We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.

  15. Eulerian simulation of sedimentation flows in vertical and inclined vessels

    Institute of Scientific and Technical Information of China (English)

    Wu Chun-Liang; Zhan Jie-Min

    2005-01-01

    Sedimentation of particles in inclined and vertical vessels in numerically simulated using a finite volume method where the Eulerian multiphase model is applied. The particulate phase as well as the fluid phase is regarded as a continuum while the viscosity and solid stress of the particulate phase are modelled by the kinetic theory of granular flows. The numerical results show an interesting phenomenon of the emergence of two circulation vortices of the sedimentation flow in a vertical vessel but only one in the inclined vessel. Several sensitivity tests are simulated to understand the factors that influence the dual-vortex flow structure in vertical sedimentation. Result show that a larger fluid viscosity makes the two vortex centres much closer to each other and the boundary layer effect at lateral walls is the key factor to induce this phenomenon. In the fluid boundary layer particles settle down more rapidly and drag the local carrier fluid to flow downward near the lateral walls and thus form the dual-vortex flow pattern.

  16. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  17. A MODIFIED METHOD FOR IMAGE TRIANGULATION USING INCLINED ANGLES

    Directory of Open Access Journals (Sweden)

    B. Alsadik

    2016-06-01

    Full Text Available The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV, and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state – of –the –art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  18. a Modified Method for Image Triangulation Using Inclined Angles

    Science.gov (United States)

    Alsadik, Bashar

    2016-06-01

    The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  19. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk

    Science.gov (United States)

    Choi, Michael K.

    2013-01-01

    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  20. Far-infrared and submillimeter survey of the galactic plane from l = 11.5 deg to l = 17.5 deg

    Science.gov (United States)

    Campbell, M. F.; Niles, D. W.; Silverberg, R. F.; Hauser, M. G.; Stier, M. T.; Kelsall, T.; Hoffmann, W. F.; Thronson, H. A., Jr.

    1984-01-01

    Medium resolution (11 min) maps of the galactic plane are presented from l = 11.5 deg to l = 17.5 deg at wavelengths of 93 microns, 154 microns, and 190 microns. The maps are interpreted in terms of the temperature and spatial structure of diffuse far-infrared/submillimeter sources associated with evolved H II regions and a continuous ridge of galactic emission. The emission regions are found to be more extended at the longer wavelengths which implies that there must be a range of dust temperatures in the sources. The properties of the galactic ridge are similar to those of the sources.

  1. A numeric study of heat transfer in an inclined parallelogrammic cavity with a thin parting wall

    Energy Technology Data Exchange (ETDEWEB)

    Zugari, M.R.; Vullierme, J.J. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1994-11-17

    The effect of the cavity tilt (B) on the heat transfer in the parallelogrammic cavity (aspect ratio H/L = 2), with a thin parting wall (tilted as Q = 60 deg), is studied numerically using a finite difference method. The results indicate that the heat transfer is making essentially through the active walls when 90 deg < B < 170 deg (conducting case). When -90 deg < B < 90 deg (insulting case) a significant heat part goes through the parting walls and takes part in the heat transfer between the active walls. The relationship Nu = b.Gr{sup a} is determined for several cavity tilt angles B. (author). 7 refs., 5 figs., 1 tab.

  2. Quantification of metallic iodides in fucus vesiculosus and serratus heated at 80 deg, 550 deg and 1 000 deg; Quantification des iodures metalliques dans des cendres d'algues. Analyse de fucus vesiculosus et serratus chauffees a 80 degres, 550 degre et 1000 degre

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, Y. [Direction Generale de la Surete Nucleaire et de la Radioprotection (DGSNR), 75 - Paris (France)

    2004-02-01

    Metallic iodides in aqueous phase of Fucus ashes were measured by gamma spectrometry. Before the measurements, different samples of Fucus were heated at 80 deg C (Fucus vesiculosus), 550 deg C (Fucus serratus) and 1 000 deg C (Fucus serratus). The first results gave 63% of iodide salts in Fucus vesiculosus heated at 80 deg C, 27% of iodide salts in Fucus serratus (550 deg C) and no result for ashes of Fucus serratus heated at 1 000 deg C, because there was not enough mass of product for a good analysis by gamma spectrometry. (author)

  3. Secular Orbital Dynamics of Hierarchical Two Planet Systems

    CERN Document Server

    Veras, Dimitri

    2010-01-01

    The discovery of multi-planet extrasolar systems has kindled interest in using their orbital evolution as a probe of planet formation. Accurate descriptions of planetary orbits identify systems which could hide additional planets or be in a special dynamical state, and inform targeted follow-up observations. We combine published radial velocity data with Markov Chain Monte Carlo analyses in order to obtain an ensemble of masses, semimajor axes, eccentricities and orbital angles for each of 5 dynamically active multi-planet systems: HD 11964, HD 38529, HD 108874, HD 168443, and HD 190360. We dynamically evolve these systems using 52,000 long-term N-body integrations that sample the full range of possible line-of-sight and relative inclinations, and we report on the system stability, secular evolution and the extent of the resonant interactions. We find that planetary orbits in hierarchical systems exhibit complex dynamics and can become highly eccentric and maybe significantly inclined. Additionally we incorpo...

  4. PLANECHG: Earth orbit to lunar orbit delta V estimation program. User and technical documentation

    Science.gov (United States)

    1988-01-01

    The PLANECNG computer program calculates velocities for Earth-to-Mooon and Moon-to-Earth trajectories. The flight to be analyzed originates in a circular orbit of any inclination and altitude about one of the bodies, and culminates in a circular orbit of any inclination and altitude about the other body. An intermedate delta V and plane change occurs at the Lunar Sphere of Influence (SOI), the region where the vehicle is near its lowest velocity in the trajectory, and therefore where it is able to make the plane change with the lowest delta V. A given flight may penetrate the SOI at a number of points. Each point has associated with it a unique set of delta V's and total velocity. The program displays the velocities, in matrix form, for a representative set of SOI penetration points. An SOI point is identified by projecting Lunar latitude and longitude onto the SOI. The points recorded for a given flight are defined by the user, who provides a starting longitude and latitude, and an increment for each. A matrix is built with 10 longitudes forming the columns and 19 latitudes forming the rows. This matrix is presented in six reports, each containing different velocity or node information in the body of the matrix.

  5. Evaluation of non-circular orbit in thallium-201 myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shinya; Meguro, Mitsuhiko; Takeishi, Yasuchika (Yamagata Univ. (Japan). School of Medicine) (and others)

    1991-09-01

    A non-circular orbit in thallium-201 myocardial SPECT was evaluated using phantom studies. Spatial resolution, data uniformity, and defect detectability were compared with those obtained by a circular orbit. Spatial resolution in the horizontal direction was better by a non-circular orbit than by a circular orbit; however, there was little or no improvement in the vertical direction. A non-circular orbit was a little inferior to a circular orbit for data uniformity in SPECT with 180deg data acquisition. It had higher ability to detect perfusion defects in the anterior, septal, and lateral walls, corresponding to the areas where spatial resolution was improved. There was no difference in posterior defect between non-circular and circular orbits. (N.K.).

  6. The Inclination of the Planetary System Relative o the Solar Equator May Be Explained by the Presence of Planet 9

    Science.gov (United States)

    Gomes, Rodney; Deienno, Rogerio; Morbidelli, Alessandro

    2017-01-01

    We evaluate the effects of a distant planet, commonly known as planet 9, on the dynamics of the giant planets of the solar system. We find that the dynamics of the giant planets can be decomposed into a classic Lagrange–Laplace dynamics relative to their own invariant plane and a slow precession of said plane relative to the total angular momentum vector of the solar system, including planet 9. Under specific configurations for planet 9, this precession can explain the current tilt of ∼6° between the invariant plane of the giant planets and the solar equator. An analytical model is developed to map the evolution of the inclination of the inner giant planets’ invariant plane as a function of the planet 9's mass and orbital elements, and numerical simulations of the equations of motion are performed to validate our analytical approach. The longitude of the ascending node of planet 9 is found to be linked to the longitude of the ascending node of the giant planets’ invariant plane, which also constrains the longitude of the node of planet 9 on the ecliptic. Some of the planet 9 configurations that allow the explanation of the current solar tilt are compatible with those proposed to explain the orbital confinement of distant Kuiper Belt objects. This work gives an elegant explanation for the current tilt between the invariant plane of the inner giant planets and the solar equator and also adds new constraints to the orbital elements of planet 9.

  7. Polar Air Quality and Climate from a Molniya Orbit

    Science.gov (United States)

    O'Neill, N.; McConnell, J. C.; Mullins, M.; Chesser, H.; Solheim, B.; Kaminski, J.; Strong, K.; Jones, D.; Drummond, J.; Martin, R.; McElroy, C. T.; Evans, W. F.; Giroux, J. G.; Soucy, M. A.; Buijs, H. L.; Moreau, L. M.; Buttner, G.; Rahnama, P.; Rowlands, N.; Hackett, J.; Bell, A.

    2008-05-01

    The Arctic is a region of rapid climate change with warming temperatures and depleting summer ice which may be exacerbated by transport of soot and other anthropogenic material from mid-latitudes. It is also the source of winter storms delivering cold air to lower latitudes. Currently data is available for these areas from polar orbiting satellites, but only intermittently at a given location as the satellites pass overhead. Data from geostationary satellites, useful at lower latitudes, is not available for the Arctic because viewing angles to high latitude locations from geostationary orbit are poor. We are proposing the use of a satellite in a Molniya orbit for the acquisition of data for high latitudes which is a quasi-stationary orbit close to apogee. This talk will describe a proposal to the Canadian Space Agency for a mission aimed at the acquisition of air quality and climate data in boreal polar regions and mid-latitudes. Molniya orbits (named after the Russian communications satellite series that first used them) are highly elliptical orbits with an inclination of approximately 63°. At this inclination, the Earth oblateness perturbation does not cause any change to the orbit's argument of perigee. Further, if the orbit semi-major axis is chosen appropriately, the orbit can be timed to have a period of half a day (typical Molniya orbits have an apogee altitude of about 39750 km and a perigee altitude of about 600 km). The result of these two constraints is that the satellite is at apogee over the same high latitude location on the Earth every two orbits. At the alternate apogees, it is over a location at the same latitude but 180° away in longitude. Either location provides viewing coverage of the entire Earth above 60°N, and reasonable viewing down to 50°N. Further, because the satellite is travelling slowly at apogee, the viewing geometry is maintained for approximately 2/3 of the orbit (8 hr out of every 12). The suite of instruments we are

  8. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    Directory of Open Access Journals (Sweden)

    Rana Altan Yaycıoğlu

    2012-12-01

    Full Text Available Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may also be observed. Prompt intravenous antibiotic treatment should be started, and surgical drainage may be performed if patient shows failure to improve in 48 hours despite optimal management. Without treatment, the clinical course may progress to subperiosteal or orbital abscess, and even to cavernous sinus thrombosis. (Turk J Ophthalmol 2012; 42: Supplement 52-6

  9. Effect of Inclined Water Jets on Tensile Strength of Bicomponent Hydroentangled Nonwoven Fabrics

    Institute of Scientific and Technical Information of China (English)

    Mbwana Suleiman Ndaro; JIN Xiang-yu; CHEN Ting; YU Chong-wen

    2007-01-01

    The effects of inclined water jets on bicomponent hydroentangled fabrics were investigated. The PET/COPET and PA6/PET hydroentangled fabrics were made by using designed inclined water jet apparatus. Effects of basis weight, water ts inclination angle and water jet pressure were discussed. The comparison was made on the average tensile strength of fabrics made by perpendicular water jets (0° inclination angle) and inclined water jets of 20° with pressure levels of 3 bars and 7 bars. It was found that increases of water jet pressure, the fabrics tensile strength were increased. Furthermore, increases of water jets inclination angle, fabric tensile strength of 60 g/m2 fabrics decreased while for 100 g/m2 fabrics tensile strength increased.

  10. The Effects of Various Running Inclines on Three-Segment Foot Mechanics and Plantar Fascia Strain

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-12-01

    Full Text Available Purpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°. Methods. Twelve male participants ran at 4.0 m · s-1 in the four different inclinations. Three-dimensional kinematics of the foot segments and plantar fascia strain were quantified for each incline and contrasted using one-way repeated measures ANOVA. Results and conclusions. The results showed that plantar fascia strain increased significantly as a function of running incline. Given the projected association between plantar fascia strain and the aetiology of injury, inclined running may be associated with a greater incidence of injury to the plantar fascia.

  11. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  12. The Delta low-inclination satellite concept, an opportunity to enhance the science return of the Swarm mission

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Leger, Jean-Michel; Olsen, Nils;

    of these data, however, would be possible if a fourth “Delta” satellite were to be launched soon enough to join the constellation at a similar altitude but much lower inclination orbit (such as 60°). Such a satellite would provide less geographical coverage but a much faster mapping of all local times over...... and investigation efforts are now hampered by the still limited local time coverage provided by this constellation. This affects our ability to accurately characterize time changes in the ionospheric and magnetospheric field contributions, and to model the electrical conductivity of the Earth’s mantle. It also...... these latitudes. In this presentation we will present the rational for such a Delta mission and discuss the benefit it would bring....

  13. In situ observations of BrO over Antarctica - ER-2 aircraft results from 54 deg S to 72 deg S latitude

    Science.gov (United States)

    Brune, W. H.; Anderson, J. G.; Chan, K. R.

    1989-01-01

    Bromine monoxide was observed in situ during nine flights of the NASA ER-2 aircraft from Punta Arenas, Chile (54 deg S latitude), to 72 deg S latitude over the Palmer Peninsula, Antarctica. The first flight for the BrO detection system was on August 28. The distribution of BrO inside the chemically perturbed region defined by greatly elevated ClO abundances was different from that found just outside. Inside, the BrO mixing ratio was 6.1 + or - 1.1 pptv above the 440 K potential temperature surface, 4.7 + or - 2.0 pptv between the 400 and 440 K surfaces, and less than 4 pptv below the 400 K surface. At high latitudes outside the chemically perturbed region, the BrO mixing ratio was 5.4 + or - 1.4 pptv near the 450 K surface, but decreased to 2.9 + or - 1.2 pptv at the 420 K surface. The abundance of BrO showed no discernible temporal trend during the course of the nine flights. Away from the south polar region, at latitudes between 47 deg S and 37 deg N and potential temperatures between 435 and 500 K (18.5- to 20.7-km altitude), the BrO mixing ratio was 0.5-3.0 pptv.

  14. The Relationship between the Friction Coefficient and the Asperities Original Inclination Angle

    OpenAIRE

    Guan Cheng-yao; Qi Jia-fu; Qiu Nan-sheng; Zhao Guo-chun; Zhang Hou-he; Yang Qiao; Bai Xiang-dong; Wang Chao

    2013-01-01

    Because of the contact deformation, the inclination angle of the contact face is decreased gradually when contact and deformation. Base on the change of inclination angle of the contact surface, the concept “friction repose angle” set out. The tangent of the initial inclination angle of two asperities is three time of the tangent of the “friction repose angle”. The relationship set up a bridge between the initial surface geometric configuration (can be detect) and the configuration which afte...

  15. Tidally Induced Bars in Dwarf Galaxies on Different Orbits around a Milky Way-like Host

    Science.gov (United States)

    Gajda, Grzegorz; Łokas, Ewa L.; Athanassoula, E.

    2017-06-01

    Bars in galaxies may develop through a global instability or as a result of an interaction with another system. We study bar formation in disky dwarf galaxies orbiting a Milky Way-like galaxy. We employ N-body simulations to study the impact of the initial orbital parameters: the size of the dwarf galaxy orbit, and the inclination of its disk with respect to the orbital plane. In all cases, a bar develops in the center of the dwarf during the first pericenter on its orbit around the host. Between subsequent pericenter passages, the bars are stable, but at the pericenters, they are usually weakened and shortened. The initial properties and details of the further evolution of the bars depend heavily on the orbital configuration. We find that for the exactly prograde orientation, the strongest bar is formed for the intermediate-sized orbit. On the tighter orbit, the disk is too disturbed and stripped to form a strong bar. On the wider orbit, the tidal interaction is too weak. The dependence on the disk inclination is such that weaker bars form in more inclined disks. The bars experience either a very weak buckling or none at all. We do not observe any secular evolution, possibly because the dwarfs are perturbed at each pericenter passage. The rotation speed of the bars can be classified as slow (R CR/l bar ˜ 2-3). We attribute this to the loss of a significant fraction of the disk rotation during the encounter with the host galaxy.

  16. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Das, Palash, E-mail: d.palash@gmail.com; Biswas, Dhrubes, E-mail: d.palash@gmail.com [Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India)

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  17. Strumentazione multisensore selettiva per il monitoraggio in continuo degli odori nel settore ambientale

    OpenAIRE

    Giuliani, Stefano

    2012-01-01

    2010 - 2011 L’odore indotto dall’esercizio degli impianti di ingegneria sanitaria ambientale è ritenuto la causa principale di disturbo che la popolazione residente nelle vicinanze avverte. Sebbene alle emissioni odorigene sia solo raramente associato un reale rischio tossicologico-sanitario, sia per la natura raramente pericolosa degli odoranti che per le concentrazioni generalmente molto basse, nell’immaginario collettivo, ai cattivi odori si associano spesso condizioni di “non salubrità...

  18. Experimental measurement of the solubility of bismuth phases in water vapor from 220 deg. C to 300 deg. C: Implications for ore formation

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Jason M. [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States); Wood, Scott A., E-mail: swood@uidaho.edu [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States)

    2009-04-15

    Preliminary measurements were carried out of the solubility of the O{sub 2-}buffering assemblage bismuth + bismite (Bi{sub 2}O{sub 3}) in aqueous liquid-vapor and vapor-only systems at temperatures of 220, 250 and 300 deg. C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid-vapor experiments at 220 deg. C yielded Bi concentrations ({+-}1{sigma}) in the condensed liquid of 0.22 {+-} 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 {+-} 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 deg. C were in the same range as those at 220 deg. C, whereas those at 300 deg. C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 deg. C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations ({+-}1{sigma}) of Bi in the vapor-only solubility experiments at 220 deg. C were 235 {+-} 78 mg/L for an initial water volume of 0.5 mL, and at 300 deg. C were 56 {+-} 30 mg/L and 33 {+-} 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity. The experiments reported here suggest that significant Bi transport is possible in the vapor phase. Comparison of the liquid

  19. Evaluation of myocardial SPECT imaging reconstructed from 270deg projection data. A study using a cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kashikura, Kenichi [Japan Science and Technology Corp., Akita (Japan). Akita Lab.; Kobayashi, Hideki; Kashikura, Akemi

    1997-01-01

    SPECT reconstruction is commonly performed using 360deg or 180deg projection data. However, it is also possible to reconstruct SPECT images using other projection data arcs. The purpose of this study was to characterize images obtained by limiting the projection data to 270deg by discarding the projection views with severe attenuation. A series of phantom studies was performed with and without plastic chambers simulating perfusion defects using {sup 201}Tl and {sup 99m}Tc. Images using 270deg, 360deg, and 180deg projection arcs were identically reconstructed from the same data. In the absence of plastic chambers, intraslice uniformity in a given slice was assessed by computing the coefficient of variation (CV) of average counts in 8 ROIs within the slice. Interslice uniformity was assessed by computing the CV of average counts in five short axial slices. With plastic chambers in place, the variability in defect contrasts was assessed by computing the CV of defect contrasts in 4 chambers, located on the anterior, lateral, inferoposterior, and septal walls. The intraslice uniformity of the 270deg images were considerably inferior to those of the 360deg and 180deg images. The interslice uniformity was highest in the 360deg images, and lowest in the 180deg images. The variation in defect contrasts in the 270deg image was higher than those of the other two images. The 270deg images showed a high defect contrast in the septum and high counts in the anterior and anteroseptal wall. Because a large variation in defect contrasts within a segment might result in false positive or negative in diagnosis, 270deg imaging is not recommended over 360deg or 180deg imaging. (author)

  20. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  1. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  2. Polygons in billiard orbits

    CERN Document Server

    Don, Henk

    2011-01-01

    We study the geometry of billiard orbits on rectangular billiards. A truncated billiard orbit induces a partition of the rectangle into polygons. We prove that thirteen is a sharp upper bound for the number of different areas of these polygons.

  3. Tether de-orbiting of satellites at end of mission

    Science.gov (United States)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  4. NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    Science.gov (United States)

    Sun, J.; Xiong, X.; Butler, J.

    2012-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  5. Effects of lumbar extensor fatigue and surface inclination on postural control during quiet stance.

    Science.gov (United States)

    Lin, Dingding; Nussbaum, Maury A

    2012-11-01

    A number of work environments require workers to perform tasks on inclined surfaces. Such tasks, along with muscle fatigue, can impair postural control and increase falling risks. The objective of this study was to determine the effects of surface inclination angle, standing direction, and lumbar extensor fatigue on postural control during quiet standing. A group of 16 young, healthy participants were tested while standing on inclined surfaces before and after lumbar extensor fatigue (induced by repetitive isotonic exercise). Three inclination angles (0°, 18° and 26°) and three standing directions (uphill, downhill, and lateral facing) were examined. Postural control was assessed using several measures derived from center-of-pressure time series and subjectively perceived stability. Significant main and interactive effects of inclination angle and standing direction were found for all dependent measures. The adverse effects of standing on inclined surfaces were found to differ between the three standing directions. In general, dose-response relationships with inclination angle were evident, particularly in the lateral-facing direction. Fatigue-related effects differed between conditions, suggesting that the adverse effect of lumbar extensor fatigue on postural control depend on inclination angle and standing direction. These findings may facilitate the development of fall prevention interventions for work involving inclined surfaces.

  6. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  7. Impact of Droplets on Inclined Flowing Liquid Films

    CERN Document Server

    Che, Zhizhao; Matar, Omar K

    2015-01-01

    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are marked...

  8. Drops transformed from a continuous flow on a superhydrophobic incline

    Science.gov (United States)

    Katariya, Mayur; Ng, Tuck Wah

    2013-08-01

    Biochemical analysis with discrete drops on superhydrophobic surfaces will benefit from low loss, low contamination and open access features, but is challenged by the ability to generate them. A simple approach for delivering the drops from a continuous flow through an inclined superhydrophobic surface here showed the rear pinning contact line to be strongly influential in retention, providing potential for volume control, yet without any lossy daughter droplet formation. At a high flowrate regime prior to jetting, the liquid body was found to develop a grown out section that was able to flip up and down to be airborne, depending on the gravitational effect. While the section was airborne, the drop was able to increase its volume without the action of the three-phase mechanics dictating detachment.

  9. Shape Optimization of Inclined Ribs as Heat Transfer Augmentation Device

    Institute of Scientific and Technical Information of China (English)

    Kwang-Yong Kim; Hong-Min Kim

    2006-01-01

    This work presents numerical optimization techniques for the design of a rectangular channel with inclined ribs to enhance turbulent heat transfer.The response surface method with Reynolds-averaged Navier-Stokes analysis is used for optimization.Shear stress transport turbulence model is used as a turbulence closure.Computational results for local heat transfer rate show a reasonable agreement with the experimental data.Width-to-rib height ratio and attack angle of the rib are chosen as design variables.The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with the weighting factor.Full-factorial experimental design method is used to determine the data points.Optimum shapes of the channel have been obtained in a range of the weighting factor.

  10. Warped extra dimension and inclined events at Pierre Auger Observatory

    CERN Document Server

    Kisselev, A V

    2016-01-01

    The generalized solution for the warp factor of the Randall-Sundrum metric is presented which is symmetric with respect to both branes and explicitly periodic in extra variable. Given that the curvature of the 5-dimensional space-time is small, the expected rate of neutrino-induced inclined events at the Surface Detector of the Pierre Auger Observatory is calculated. Both the "downward-going" (DG) and "Earth-skimming" (ES) neutrinos are considered. By comparing the expected event rate with the recent Auger data on searching for neutrino candidates, the lower bound on the fundamental gravity scale M_5 is obtained. The ratio of the number of the ES air showers to the number of the DG showers is estimated as a function of M_5.

  11. Numerical modeling of incline plate LiBr absorber

    Science.gov (United States)

    Karami, Shahram; Farhanieh, Bijan

    2011-03-01

    Among major components of LiBr-H2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5 absorption. An analysis for linear distribution of wall temperature condition carries out to investigate the reliability of the present numerical method through comparing with previous investigation. The effect of plate angle on heat and mass transfer parameters is investigated and the results show that absorption mass flux and heat and mass transfer coefficient increase as the angle of the plate increase. The main parameters of absorber design, namely Nusselt and Sherwood numbers, are correlated as a function of Reynolds Number and the plate angle.

  12. Apparatus for metering the angle of inclination of construction projects

    Energy Technology Data Exchange (ETDEWEB)

    Zaripov, M.F.; Kovshov, G.N.; Lavrov, B.V.

    1980-08-30

    A design is submitted for an apparatus to be used in metering the inclination angle of construction projects such as wells. This apparatus consists of a hinged universal joint, both internal and external frames, a pendulum with a ferromagnetic probe mounted on the internal frame, two sources for the formation of a controlled magnetic field, magnetic posts which are in-line with the frame axis, and a conversion-metering circuit. A two-phase current generator is mounted on the external frame and a ferromagnetic probe is placed at a 45-degree angle to the rotation axis for the internal frame, perpendicular to the vertical posts. Such a configuration serves to improve the metering accuracy by removing error and instability in the magnetic field source current.

  13. Convective flows of colloidal suspension in an inclined closed cell

    Science.gov (United States)

    Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey

    2016-12-01

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).

  14. Ecoulements denses de grains secs sur plan incliné

    OpenAIRE

    DA CRUZ, F; PROCHNOW, M; AZANZA, E; ROGNON, P; RAGOUILLIAUX, A; TOCQUER, L; MOUCHERONT, P; ROUX, JN; Coussot, P.; CHEVOIR, F

    2003-01-01

    La compréhension des écoulements denses de grains secs a fait de récents progrès grâce aux expériences sur matériaux modèles et aux simulations numériques discrètes. Nous illustrons ces progrès sur l'exemple des écoulements sur plan incliné rugueux. Ils se caractérisent par un seuil d'écoulement dépendant non seulement de l'inclinaison mais aussi de l'épaisseur, et par un régime d'écoulement stationnaire au-dessius du seuil, dont la vitesse s'exprime précisément en fonction de l'épaisseur d'a...

  15. Traumatic transconjunctival orbital emphysema.

    OpenAIRE

    Stroh, E M; Finger, P T

    1990-01-01

    Orbital emphysema can be produced by trans-conjunctival migration of air from a high pressure airgun. In an industrial accident an 8 mm conjunctival laceration was produced in the superior fornix which acted as a portal of entry for air into the subconjunctival, subcutaneous, and retrobulbar spaces. Computed tomography revealed no evidence of orbital fracture and showed that traumatic orbital emphysema occurred without a broken orbital bone.

  16. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    Science.gov (United States)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  17. An ultrasonically enhanced inclined settler for microalgae harvesting.

    Science.gov (United States)

    Hincapié Gómez, Esteban; Marchese, Anthony J

    2015-01-01

    Microalgae have vast potential as a sustainable and scalable source of biofuels and bioproducts. However, algae dewatering is a critical challenge that must be addressed. Ultrasonic settling has already been exploited for concentrating various biological cells at relatively small batch volumes and/or low throughput. Typically, these designs are operated in batch or semicontinuous mode, wherein the flow is interrupted and the cells are subsequently harvested. These batch techniques are not well suited for scaleup to the throughput levels required for harvesting microalgae from the large-scale cultivation operations necessary for a viable algal biofuel industry. This article introduces a novel device for the acoustic harvesting of microalgae. The design is based on the coupling of the acoustophoretic force, acoustic transparent materials, and inclined settling. A filtration efficiency of 70 ± 5% and a concentration factor of 11.6 ± 2.2 were achieved at a flow rate of 25 mL·min(-1) and an energy consumption of 3.6 ± 0.9 kWh·m(-3) . The effects of the applied power, flow rate, inlet cell concentration, and inclination were explored. It was found that the filtration efficiency of the device is proportional to the power applied. However, the filtration efficiency experienced a plateau at 100 W L(-1) of power density applied. The filtration efficiency also increased with increasing inlet cell concentration and was inversely proportional to the flow rate. It was also found that the optimum settling angle for maximum concentration factor occurred at an angle of 50 ± 5°. At these optimum conditions, the device had higher filtration efficiency in comparison to other similar devices reported in the previous literature.

  18. Inclined transpression in the Neka Valley, eastern Alborz, Iran

    Science.gov (United States)

    Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.

    2016-09-01

    Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary (θ') is between 6° and 20°. The estimated oblique convergence angle (α), therefore, ranges between 31° and 43°. The average kinematic vorticity number (W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.

  19. Orbital Maneuvering Vehicle (OMV) remote servicing kit

    Science.gov (United States)

    Brown, Norman S.

    1988-01-01

    With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.

  20. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  1. Eccentricity generation in hierarchical triple systems with non-coplanar and initially circular orbits

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    In a previous paper, we developed a technique for estimating the inner eccentricity in coplanar hierarchical triple systems on initially circular orbits, with comparable masses and with well separated components, based on an expansion of the rate of change of the Runge-Lenz vector. Now, the same technique is extended to non-coplanar orbits. However, it can only be applied to systems with ${I_{0}140.77^{\\circ}}$, where ${I}$ is the inclination of the two orbits, because of complications arising from the so-called 'Kozai effect'. The theoretical model is tested against results from numerical integrations of the full equations of motion.

  2. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis

    Science.gov (United States)

    Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-10-01

    The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈0.3, whereas the multiples are on nearly circular (e¯=0.04-0.04+0.03) and coplanar (i¯=1.4-1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.

  3. Shift control method for the local time at descending node based on sun-synchronous orbit satellite

    Institute of Scientific and Technical Information of China (English)

    Yang Yong'an; Feng Zuren; Sun Linyan; Tan Wei

    2009-01-01

    This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.

  4. Simulation of the Impacts of Single LEO Satellite Orbit Parameters on the Distribution and Number of Occultation Events

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Focusing on carrying out GPS occultation observations with a receiver set on LEO satellite, this paper develops the LEO orbit simulation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of the receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameters including argument of latitude (AOL), right ascension of ascending node (RAAN), orbit height and orbit inclination on the distribution and number of occultation events observed with a single LEO satellite are discussed through simulation and some conclusions are drawn.

  5. Research Progress on Inclined Spray Cooling%倾斜式喷雾冷却研究进展

    Institute of Scientific and Technical Information of China (English)

    李丽荣; 刘妮; 黄千卫

    2015-01-01

    Spray cooling is characterized by high heat exchange capability, small temperature difference between working fluid and heated surface, low coolant mass flux, low working fluid consumption, without boiling hysteresis and contact thermal resistance between working fluid and heated surface. In recent years, its application prospect has gotten widely attention in the field of electronic cooling. However, there is a lack of a uniform theory of spraying cooling for industry applications. The principle and characteristic of inclined spraying cooling were introduced, and the significant achievements in recent years on the effect of spray inclination angels to heat transfer were reviewed. The investigation results on inclined spraying cooling were summarized based on time sequence, including the spray nozzle movement orbits, the boundary curvilinear equation of the spraying action area with different spray inclination angles and the ways to further improve the heat transfer efficient. In addition, the difference of the existing experimental conclusions was analyzed emphatically and the available conclusions on the inclination angles were given. The advances in the applications of spray inclination were described briefly, and the key problems that have not been solved were discussed.%喷雾冷却有换热能力强、工质与热表面温差小、冷却工质流量小、工质耗量低、无沸腾滞后性、工质与固体表面之间无接触热阻等优点.近年来,其在电子冷却领域的应用前景正得到众多研究者的关注.但目前仍缺乏统一的理论来指导实际应用.本文在介绍了倾斜式喷雾冷却工作原理及特点的基础上,综述了近年来国内外学者关于喷雾倾角对喷雾换热的影响所开展的研究,按时间顺序总结了倾斜式喷雾冷却的研究成果,包括喷嘴的运动轨迹,不同喷雾倾角下喷雾区域的边界方程以及进一步提高喷雾效率的途径.针对已有实验结论的互异性

  6. Painless orbital myositis

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2012-01-01

    Full Text Available Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  7. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  8. Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells.

    Science.gov (United States)

    Ojima, Yoshihiro; Mohanadas, Thivagaran; Kitamura, Kosei; Nunogami, Shota; Yajima, Reiki; Taya, Masahito

    2017-04-01

    Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease, was cloned and expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. In-frame deletion and subsequent complementation of the degQ were carried out to examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain showed that deletion of degQ induced protein accumulation and resulted in a significant decrease in protease activity within the periplasmic space. OMVs from the wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the OMVs showed a prominent band at ~37 kDa. Nanoliquid chromatography-tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821, and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative evaluation showed that degQ-deficient cells had a fivefold increase in OMV production compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress.

  9. Cognitive self-affirmation inclination : An individual difference in dealing with self-threats

    NARCIS (Netherlands)

    Pietersma, Suzanne; Dijkstra, Arie

    2012-01-01

    The current research shows that people differ in their inclination to use positive self-images when their self is threatened (i.e., cognitive self-affirmation inclination, CSAI). Just as self-affirmation manipulations do, the use of positive self-images induces open mindedness towards threatening me

  10. Improving the accuracy of GRACE Earth's gravitational field using the combination of different inclinations

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng; Chenggang Shao; Jun Luo; Houze Xu

    2008-01-01

    In this paper,the GRACE Earth's gravitational field complete up to degree and order 120 is recovered based on the combination of different inclinations using the energy conservation principle.The results show that because different inclinations of satellite are sensitive to the geopotential coefficients with different degrees/and orders m.the design of GRACE exploiting 89° inclination can effectively improve the accuracy of geopotential zonal harmonic coefficients.However,it is less sensitive to the geopotential tesseral harmonic coefficients.Accordingly.the second group of GRACE exploiting lower inclination is required to determine high-accurately the geopotential tesseral harmonic coefficients and cover the shortage of the single group of GRACE exploiting 89° inclination.Two groups of GRACE individually exploiting 89°+(82°-84°)inclinations are the optimal combination of the Earth'S gravitational field recovery complete up to degree and order 120.In the degree 120,the joint accuracy of cumulative geoid height based on two groups of GRACE individually exploiting 89° and 83° inclinations is averagely two times higher than the accuracy of a group of GRACE exploiting 89° inclination.

  11. Cognitive self-affirmation inclination : An individual difference in dealing with self-threats

    NARCIS (Netherlands)

    Pietersma, Suzanne; Dijkstra, Arie

    2012-01-01

    The current research shows that people differ in their inclination to use positive self-images when their self is threatened (i.e., cognitive self-affirmation inclination, CSAI). Just as self-affirmation manipulations do, the use of positive self-images induces open mindedness towards threatening me

  12. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    Science.gov (United States)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  13. Cognitive self-affirmation inclination : An individual difference in dealing with self-threats

    NARCIS (Netherlands)

    Pietersma, Suzanne; Dijkstra, Arie

    The current research shows that people differ in their inclination to use positive self-images when their self is threatened (i.e., cognitive self-affirmation inclination, CSAI). Just as self-affirmation manipulations do, the use of positive self-images induces open mindedness towards threatening

  14. Flow characteristics of an inclined air-curtain range hood in a draft.

    Science.gov (United States)

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  15. Earth Oblateness and Relative Sun Motion Considerations in the Determination of an Ideal Orbit for the Nimbus Meteorological Satellite

    Science.gov (United States)

    Bandeen, William R.

    1961-01-01

    It is desired that the Nimbus meteorological satellite always cross the equator around local noon and, half-an-orbit later, cross the equator in the other direction around local midnight. The application of the phenomenon of nodal regression toward this end is discussed, and an analysis of the parameters angles of inclination, periods, and heights of such "ideal" circular orbits is presented. Also, the relative motion of the apparent versus the fictitious mean sun is briefly discussed.

  16. Morphology of the very inclined debris disk around HD 32297

    Science.gov (United States)

    Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Milli, J.; Baudoz, P.; Mawet, D.; Mouillet, D.; Lebreton, J.; Maire, A.-L.

    2012-08-01

    Context. Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that constrains their properties, in particular the spatial distribution of dust. For a long time, this challenging objective was, in most cases, only within the realm of space telescopes from the visible to the infrared. New techniques combining observing strategy and data processing now allow very high-contrast imaging with 8-m class ground-based telescopes (10-4 to 10-5 at ~1'') and complement space telescopes while improving angular resolution at near infrared wavelengths. Aims: We present the results of a program carried out at the VLT with NACO to image known debris disks with higher angular resolution in the near-infrared than ever before in order to study morphological properties and ultimately detect the signpost of planets. Methods: The observing method makes use of advanced techniques of adaptive optics, coronagraphy, and differential imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" such as GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects such as circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence provide constraints on the morphology of debris disks. Results: From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6 μm) and Ks (2.2 μm) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6″. The modeling stage confirms a very high inclination (i = 88°) and the presence of an inner cavity inside r0 ≈ 110 AU. We also find that the spine (line of maximum intensity along the midplane) of the disk is curved, which we

  17. Generalized Hill-Stability Criteria for Hierarchical Three-Body Systems at Arbitrary Inclinations

    CERN Document Server

    Grishin, Evgeni; Zenati, Yossef; Michaely, Erez

    2016-01-01

    A fundamental aspect of the three-body problem is the stability of triple systems. Most stability studies have focused on the co-planar three-body problem, deriving analytic criteria for the dynamical stability of such pro/retrograde systems. Numerical studies of inclined systems phenomenologically mapped their stability regions, but neither explain their physical origin, nor provided satisfactory fit for the dependence of stability on the inclination. Here we present a novel approach to study the stability of hierarchical three-body systems at arbitrary inclinations. This approach accounts not only for the instantaneous stability of such systems, but also for the secular stability and evolution through Lidov-Kozai cycles and evection. Thereby we are able to generalize the Hill-stability criteria to arbitrarily inclined triple systems, and explain the existence of quasi-stable regimes and characterize the inclination dependence of their stability. We complement the analytic treatment with an extensive numeric...

  18. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  19. Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

    Science.gov (United States)

    Marlow, Victoria L.; Porter, Michael; Hobley, Laura; Kiley, Taryn B.; Swedlow, Jason R.; Davidson, Fordyce A.

    2014-01-01

    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation. PMID:24123822

  20. The Structure of Dark Molecular Gas in the Galaxy - I: A Pilot Survey for 18-cm OH Emission Towards $l \\approx 105^{\\deg}, b \\approx +1^{\\deg}$

    CERN Document Server

    Allen, Ronald J; Engelke, Philip D

    2015-01-01

    We report the first results from a survey for 1665, 1667, and 1720 MHz OH emission over a small region of the Outer Galaxy centered at $l \\approx 105.0\\deg , b \\approx +1.0\\deg$ . This sparse, high-sensitivity survey ($\\Delta Ta \\approx \\Delta Tmb \\approx 3.0 - 3.5$ mK rms in 0.55 km/s channels), was carried out as a pilot project with the Green Bank Telescope (GBT, FWHM $\\approx 7.6'$) on a 3 X 9 grid at $0.5\\deg$ spacing. The pointings chosen correspond with those of the existing $^{12}$CO(1-0) CfA survey of the Galaxy (FWHM $\\approx 8.4'$). With 2-hr integrations, 1667 MHz OH emission was detected with the GBT at $\\gtrsim 21$ of the 27 survey positions ($\\geq 78\\%$ ), confirming the ubiquity of molecular gas in the ISM as traced by this spectral line. With few exceptions, the main OH lines at 1665 and 1667 MHz appear in the ratio of 5:9 characteristic of LTE at our sensitivity levels. No OH absorption features are recorded in the area of the present survey, in agreement with the low levels of continuum bac...

  1. Analysis of the thin layer of Galactic warm ionized gas in the range 20 < l < 30 deg, -1.5 < b < +1.5 deg

    CERN Document Server

    Paladini, R; Davies, R D; Giard, M

    2005-01-01

    We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ~ 10'. This is carried out using radio continuum data at 1.4 GHz, 2.7 GHz and 5 GHz in the coordinate region 20 < l < 30 deg, -1.5 < b < +1.5 deg. For this purpose, we evaluate the zero level of the 2.7 and 5 GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero level corrections are T_{zero}(2.7 GHz)=0.15 +/- 0.06 K and T_{zero}(5 GHz)=0.1 +/- 0.05 K. We separate the thermal (free-free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index -2.1 for the free-free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for |b| = 0 deg, the fraction of thermal emission reaches a maximum value of 82%, while at 1.4 GHz, the corresponding value is 68%. In addition, for the thermal emission, the analysis in...

  2. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    Science.gov (United States)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  3. Satellite de-orbiting via controlled solar radiation pressure

    Science.gov (United States)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  4. The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital stability

    CERN Document Server

    Scheirich, P; Jacobson, S A; Ďurech, J; Kušnirák, P; Hornoch, K; Mottola, S; Mommert, M; Hellmich, S; Pray, D; Polishook, D; Krugly, Yu N; Inasaridze, R Ya; Kvaratskhelia, O I; Ayvazian, V; Slyusarev, I; Pittichová, J; Jehin, E; Manfroid, J; Gillon, M; Galád, A; Pollock, J; Licandro, J; Alí-Lagoa, V; Brinsfield, J; Molotov, I E

    2014-01-01

    Using our photometric observations taken between April 1996 and January 2013 and other published data, we derive properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\\deg} and -83{\\deg}, respectively, with the mean radius of the uncertainty area of 4{\\deg}, and the orbital period is 16.1508 +\\- 0.0002 h (all uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +\\- 0.20 deg/yr^2, i.e., consistent with zero. The drif...

  5. Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina

    Science.gov (United States)

    Zhang, Ke; Hamilton, Douglas P.

    2008-01-01

    We investigate the orbital history of the small neptunian satellites discovered by Voyager 2. Over the age of the Solar System, tidal forces have caused the satellites to migrate radially, bringing them through mean-motion resonances with one another. In this paper, we extend our study of the largest satellites Proteus and Larissa [Zhang, K., Hamilton, D.P., 2007. Icarus 188, 386-399] by adding in mid-sized Galatea and Despina. We test the hypothesis that these moons all formed with zero inclinations, and that orbital resonances excited their tilts during tidal migration. We find that the current orbital inclinations of Proteus, Galatea, and Despina are consistent with resonant excitation if they have a common density 0.4<ρ¯<0.8 g/cm. Larissa's inclination, however, is too large to have been caused by resonant kicks between these four satellites; we suggest that a prior resonant capture event involving either Naiad or Thalassa is responsible. Our solution requires at least three past resonances with Proteus, which helps constrain the tidal migration timescale and thus Neptune's tidal quality factor: 9000orbital evolution around an oblate primary.

  6. Fabrication of Pneumatic Microvalve for Tall Microchannel Using Inclined Lithography

    Directory of Open Access Journals (Sweden)

    Maho Kaminaga

    2016-12-01

    Full Text Available We used inclined lithography to fabricate a pneumatic microvalve for tall microchannels such as those used to convey large cells. The pneumatic microvalve consists of three layers. The upper layer is the actual liquid microchannel, which has a parallelogram-shaped cross section of width 500 μm, height 100 μm, and an acute angle of 53.6°. The lower layer is a pneumatic microchannel that functions as an actuator, and the middle layer is a thin polydimethylsiloxane membrane between the upper and lower layers. The operation of the pneumatic microchannel actuator causes the thin membrane to bend, resulting in the bending of the liquid microchannel and its closure. It was confirmed that the closure of the liquid microchannel completely stopped the flow of the HeLa cell suspension that was used to demonstrate the operation of the microvalve. The HeLa cells that passed through the microchannel were also observed to retain their proliferation and morphological properties.

  7. Measuring Inclinations and Attitudes of University Teachers towards Sports Activities

    Institute of Scientific and Technical Information of China (English)

    Shaimaa Abed Mutar A1-Tamimi

    2015-01-01

    The researcher wants to know the inclinations of the teachers in A1-Mustansiriyah University into participation in sports activities and the obstacles. The aims are to build measure of trends and tendencies toward university teachers about exercise and sporting activities and identify the reasons that prevent teachers from exercise. This measure contained on 25 open questions directed by the researcher toward the university teachers, and the distribution of the questions was on three areas: cognitive domain, behavioral domain and emotional domain. These areas have a relationship between tendencies and attitudes of teachers towards sports activities, in addition to the knowledge of the problems and obstacles that prevent this group from participating in sports activities. There is a lack of correlation between the desire to practice physical activity and the presence of a sports hall at the university in terms of statistics. The difficulties in the practice of sports activities, including economic, social and other factors, insecurity and instability exist. There is a good correlation between the previous practice of physical activity and the current desire to practice in terms of statistical activities.

  8. Sagging of evaporating droplets of colloidal suspensions on inclined substrates.

    Science.gov (United States)

    Espín, Leonardo; Kumar, Satish

    2014-10-14

    A droplet of a colloidal suspension placed on an inclined substrate may sag under the action of gravity. Solvent evaporation raises the concentration of the colloidal particles, and the resulting viscosity changes may influence the sag of the droplet. To investigate this phenomenon, we have developed a mathematical model for perfectly wetting droplets based on lubrication theory and the rapid-vertical-diffusion approximation. Precursor films are assumed to be present, the colloidal particles are taken to be hard spheres, and particle and liquid dynamics are coupled through a concentration-dependent viscosity and diffusivity. Evaporation is assumed to be limited by how rapidly solvent molecules can transfer from the liquid to the vapor phase. The resulting one-dimensional system of nonlinear partial differential equations describing the evolution of the droplet height and particle concentration is solved numerically for a range of initial particle concentrations and substrate temperatures. The solutions reveal that the interaction between evaporation and non-Newtonian suspension rheology gives rise to several distinct regimes of droplet shapes and particle concentration distributions. The results provide insight into how evaporation and suspension rheology can be tuned to minimize sagging as well as the well-known coffee-ring effect, an outcome which is important for industrial coating processes.

  9. A conservation law model for bidensity suspensions on an incline

    Science.gov (United States)

    Wong, Jeffrey T.; Bertozzi, Andrea L.

    2016-09-01

    We study bidensity suspensions of a viscous fluid on an incline. The particles migrate within the fluid due to a combination of gravity-induced settling and shear induced migration. We propose an extension of a recent model (Murisic et al., 2013) for monodisperse suspensions to two species of particles, resulting in a hyperbolic system of three conservation laws for the height and particle concentrations. We analyze the Riemann problem and show that the system exhibits three-shock solutions representing distinct fronts of particles and liquid traveling at different speeds as well as singular shock solutions for sufficiently large concentrations, for which the mechanism is essentially the same as the single-species case. We also consider initial conditions describing a fixed volume of fluid, where solutions are rarefaction-shock pairs, and present a comparison to recent experimental results. The long-time behavior of solutions is identified for settled mono- and bidisperse suspensions and some leading-order asymptotics are derived in the single-species case for moderate concentrations.

  10. Droplet impact patterns on inclined surfaces with variable properties

    Science.gov (United States)

    Lockard, Michael; Neitzel, G. Paul; Smith, Marc K.

    2014-11-01

    Bloodstain pattern analysis is used in the investigation of a crime scene to infer the impact velocity and size of an impacting droplet and, from these, the droplet's point and cause of origin. The final pattern is the result of complex fluid mechanical processes involved in the impact and spreading of a blood drop on a surface coupled with the wetting properties of the surface itself. Experiments have been designed to study these processes and the resulting patterns for the case of a single Newtonian water droplet impacting a planar, inclined surface with variable roughness and wetting properties. Results for Reynolds numbers in the range of (9,000 - 27,000) and Weber numbers in the range of (300 - 2,600) will be presented. Transient video images and final impact patterns will be analyzed and compared with results from traditional bloodstain pattern-analysis techniques used by the forensics community. In addition, preliminary work with a new Newtonian blood simulant designed to match the viscosity and surface tension of blood will be presented. Supported by the National Institute of Justice.

  11. Droplet Impact on Inclined Surfaces for Forensic Bloodstain Analysis

    Science.gov (United States)

    Smith, Marc; Lockard, Michael; Neitzel, G. Paul

    2015-11-01

    During a crime scene investigation, bloodstains are used to infer the size, impact angle, and velocity of the blood droplet that produced the stain. This droplet impact process was explored using experiments and numerical simulations of droplets impacting planar, inclined surfaces with different roughness and wetting properties over a range of Reynolds numbers (1,000 - 5,500) and Weber numbers (200 - 2,000) typical of some forensics applications. Results will be presented showing how the size and shape of the final elliptical bloodstain varies with impact angle and surface roughness. The common forensics practice to predict the impact angle is fairly accurate for near-normal impacts, but it under-predicts the angle for oblique impacts less than about 40° and this effect worsens for rougher surfaces. The spreading of the droplet normal to the impact plane is shown to follow that of a droplet under normal impact as the impact velocity increases. This effect is also lessened by increased surface roughness. The reasons for these effects will be explored using a new GPU-based wavelet-adaptive flow simulation, which can resolve the flows near the solid surface and near the moving contact line of these droplets for the large Reynolds and Weber numbers of these experiments. Supported by the National Institute of Justice.

  12. The Exoplanet Orbit Database

    CERN Document Server

    Wright, Jason T; Marcy, Geoffrey W; Han, Eunkyu; Feng, Ying; Johnson, John Asher; Howard, Andrew W; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai

    2010-01-01

    We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 421 planets orbiting 357 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biase...

  13. Electrical spin injection and detection in high mobility 2DEG systems

    Science.gov (United States)

    Ciorga, M.

    2016-11-01

    In this review paper we present the current status of research related to the topic of electrical spin injection and detection in two-dimensional electron gas (2DEG) systems, formed typically at the interface between two III-V semiconductor compounds. We discuss both theoretical aspects of spin injection in case of ballistic transport as well as give an overview of available reports on spin injection experiments performed on 2DEG structures. In the experimental part we focus particularly on our recent work on all-semiconductor structures with a 2DEG confined at an inverted GaAs/(Al,Ga)As interface and with a ferromagnetic semiconductor (Ga,Mn)As employed as a source of spin-polarized electrons.

  14. Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1976-01-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.

  15. Giovanni Degli Alessandri: i primi anni del direttorato agli Uffizi fra nuovi e vecchi ruoli

    Directory of Open Access Journals (Sweden)

    Chiara Pasquinelli

    2011-11-01

    Full Text Available La figura di Giovanni Degli Alessandri (1765-1830, presidente dell’Accademia di Belle Arti di Firenze e direttore degli Uffizi tra gli anni napoleonici e la Restaurazione di Ferdinando III d’Asburgo-Lorena, è quella di un personaggio chiave nella politica artistica fiorentina, e toscana più in generale. Nel saggio si esaminano i primi anni del suo direttorato alla Galleria, i rapporti con Antonio Canova, il suo ruolo all’interno dell’entourage di Elisa Baciocchi Bonaparte, oltre a considerare alcuni spunti legati al rinnovamento degli Uffizi, nonché la delicata vicenda del passaggio in città di Dominique-Vivant Denon, direttore del Louvre. L’obbiettivo è quello di introdurre elementi di approfondimento relativamente a una figura molto nota ma poco studiata.

  16. A high sensitivity HI survey of the sky at delta < -25 deg Final data release

    CERN Document Server

    Bajaja, E; Larrarte, J J; Morras, R; Poppel, W G L; Kalberla, P M W

    2005-01-01

    We present the final data release of the high sensitivity lambda 21-cm neutral hydrogen survey of the sky south of delta < -25 degr. A total of 50980 positions lying on a galactic coordinate grid with points spaced by (Delta l, Delta b) = ((0.5 deg)/cos b, 0.5 deg) were observed with the 30-m dish of the Instituto Argentino de Radioastronomia (IAR). The angular resolution of the survey is HPBW = 0.5 deg and the velocity coverage spans the interval -450 km/s to +400 km/s (LSR). The velocity resolution is 1.27 km/s and the final rms noise of the entire database is 0.07 K. The data are corrected for stray radiation and converted to brightness temperatures.

  17. Preseptal and orbital cellulitis

    OpenAIRE

    Emine Akçay; Gamze Dereli Can; Nurullah Çağıl

    2014-01-01

    Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...

  18. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  19. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ke(

    2001-01-01

    [1]Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333-397.[2]McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397-416.[3]Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116-2118.[4]Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.[5]Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41-52.[6]Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.

  20. Family of Orbiters

    Science.gov (United States)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  1. Subband Structure of a Two-Dimensional Electron Gas Formed at the Polar Surface of the Strong Spin-Orbit Perovskite KTaO3

    Energy Technology Data Exchange (ETDEWEB)

    King, P.D.C.

    2012-03-01

    We demonstrate the formation of a two-dimensional electron gas (2DEG) at the (100) surface of the 5d transition-metal oxide KTaO{sub 3}. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, we find no experimental signatures of a Rashba spin splitting, which has important implications for the interpretation of transport measurements in both KTaO{sub 3}- and SrTiO{sub 3}-based 2DEGs. The polar nature of the KTaO{sub 3}(100) surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO{sub 3}(100).

  2. Reclutamento e formazione dei poliziotti: il caso degli ufficiali della gendarmeria francese

    Directory of Open Access Journals (Sweden)

    François Dieu

    2007-04-01

    Full Text Available Partendo dal caso degli ufficiali della gendarmeria francese, questo articolo illustra il modo in cui il reclutamento e la formazione possono contribuire, informalmente, alla ripartizione del potere nelle organizzazioni di polizia. Tramite la diversità delle vie di reclutamento si costituisce, di fatto, un vero e proprio sistema di "caste", con una stratificazione degli ufficiali in tre livelli gerarchici, che produce, al di là dei principi meritocratici, delle ineguaglianze manifeste nella ripartizione del potere nell'organizzazione della gendarmeria.

  3. Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions

    Science.gov (United States)

    Liu, Bin; Lai, Dong

    2017-09-01

    We study the effect of an external companion on the orbital and spin evolution of merging black hole (BH) binaries. A sufficiently nearby and inclined companion can excite Lidov–Kozai (LK) eccentricity oscillations in the binary, thereby shortening its merger time. During such LK-enhanced orbital decay, the spin axis of the BH generally exhibits chaotic evolution, leading to a wide range (0°–180°) of the final spin–orbit misalignment angle from an initially aligned configuration. For systems that do not experience eccentricity excitation, only modest (≲ 20^\\circ ) spin–orbit misalignment can be produced, and we derive an analytic expression for the final misalignment using the principle of adiabatic invariance. The spin–orbit misalignment directly impacts the gravitational waveform and can be used to constrain the formation scenarios of BH binaries and dynamical influences of external companions.

  4. Evaluation of buccolingual inclination of posterior teeth in different facial patterns using computed tomography

    Directory of Open Access Journals (Sweden)

    Suomo Mitra

    2011-01-01

    Full Text Available Background and Objective: Buccolingual inclination of teeth is an essential factor in establishing good occlusion. The objective of this study was to evaluate the buccolingual inclination of molar teeth in different vertical skeletal patterns by using computed tomography scans. Materials and Methods: Coronal section of the jaws obtained from computed tomograms were used to measure the buccolingual inclination of the long axis of the molars relative to their skeletal base. Forty male adult individuals with class I dental occlusion were selected. They were classified as short (Group 1, average (Group II, and long faced (Group III as per their skeletal patterns measured by GoGn-SN, FH-MP, Y-axis and facial height index in cephalograms. Statistical Analysis: ANOVA and Tukey HSD tests were applied to calculate if there were any significant differences in the mean molar inclination between the groups. Pearson′s coefficients of correlation were calculated between the facial parameters and tooth inclination. Results: The differences in the mean molar inclination between the short, average, and long faced groups is significant for mandibular 1 st and 2 nd molars and maxillary 2 nd molars. Conclusion: Variations in mean molar inclination values are observed between short, average, and long faced groups.

  5. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    Science.gov (United States)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  6. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  7. Sagittal osteotomy inclination in medial open-wedge high tibial osteotomy.

    Science.gov (United States)

    Lee, Seung-Yup; Lim, Hong-Chul; Bae, Ji Hoon; Kim, Jae Gyoon; Yun, Se-Hyeok; Yang, Jae-Hyuk; Yoon, Jung-Ro

    2017-03-01

    Unlike postoperative changes in posterior tibial slope after medial open-wedge high tibial osteotomy, sagittal osteotomy inclination has not been examined. It has been recommended that the osteotomy line in the sagittal plane be parallel to the medial posterior tibial slope. The purpose of this study was to determine the frequency of parallel osteotomy in medial open-wedge high tibial osteotomy. To determine the sagittal osteotomy inclination, the angle between the medial joint line and the osteotomy line was measured in the lateral radiograph. A positive angle value indicates that the osteotomy is anteriorly inclined relative to the medial posterior tibial slope. Correlation between the sagittal osteotomy inclination and posterior tibial slope was also evaluated. The mean sagittal osteotomy inclination was 15.1 ± 7.5°. The majority 87.1 % of knees showed an anterior-inclined osteotomy. There was a significantly positive correlation between the postoperative posterior tibial slope and the sagittal osteotomy inclination (r, 0.33; 95 % confidence interval (CI) 0.19-0.46; P osteotomy inclination (r, 0.35; 95 % CI 0.21-0.47; P osteotomy in the sagittal plane relative to the medial joint line was planned, only 12.9 % of cases achieved osteotomy parallel to the medial posterior tibial slope in the sagittal plane. Because of high rate of the anterior-inclined osteotomy and their correlations with posterior tibial slope, surgeons should make all efforts to perform parallel osteotomy relative to medial posterior tibial slope. IV.

  8. Reidar Løvlie and Plate Tectonic consequences of sedimentary inclination shallowing

    Science.gov (United States)

    Torsvik, Trond H.

    2014-05-01

    Reidar Løvlie was my mentor and supervisor in the early 1980s and he thought me all about laboratory experiments and palaeomagnetic methods, but also various aspects of science philosophy. My first fieldworks were together with him and I enjoyed memorable trips to the Bear Island, Spitsbergen and Scotland. Acquisition of magnetism in sediments was always a favourite topic of Reidar and in the early 1980s he was particularly interested in sedimentary inclination shallowing. From one of our fieldtrips to Spitsbergen we sampled unconsolidated flood-plain deposits of hematite-bearing Devonian red sand/siltstone from Dicksonfjorden. These were used for redeposition experiments in a coil system that could simulate different latitudes (field inclinations) and in 1994 we published a paper entitled"Magnetic remanence and fabric properties of laboratory-deposited hematite-bearing red sandstone" that demonstrated the tangent relationship between inclinations of detrital remanent magnetization and the ambient magnetic field. Inclination (I) error in sediments is latitude dependent, antisymmetric and the bias closely mimics errors produced by octupole fields of the same sign as the dipole field. Inclination shallowing is commonly predicted from tan (Observed Inclination) = f * tan (Field Inclination) where f is the degree of inclination error. In our study we calculated a f value of 0.4 and this laboratory value (and many others) is significant lower than those estimated from the E/I or the magnetic fabric methods developed in the past decade (f typically around 0.6). There is now little doubt that inclination shallowing in detrital sediments is a serious problem that affects plate reconstructions and apparent polar wander paths. As an example, a f value of 0.6 amounts to a latitude error of 1600 km at around 50 degrees N or S (comparable to the effects of octupole contributions as high as 22%) and this have led to erroneous Pangea reconstructions.

  9. A planet on an inclined orbit as an explanation of the warp in the $\\beta$ Pictoris disk

    CERN Document Server

    Mouillet, D; Papaloizou, J C B; Lagrange, A M

    1997-01-01

    We consider the deformation that has recently been observed in the inner part of the circumstellar disk around Beta Pictoris with the HST. Our recent ground based adaptive optics coronographic observations confirm that the inner disk is warped. We investigate the hypothesis that a yet undetected planet is responsible for the observed warp, through simulations of the effect of the gravitational perturbation due to a massive companion on the disk. The physical processes assumed in the simulations are discussed: since the observed particles do not survive collisions, the apparent disk shape is driven by the underlying collisionless parent population. The resulting possible parameters for the planet that are consistent with the observed disk deformation are reviewed.

  10. Solution of the flyby problem for large space debris at sun-synchronous orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.

    2016-05-01

    the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.

  11. Geometric characterization of the Arjuna orbital domain

    CERN Document Server

    Marcos, C de la Fuente

    2014-01-01

    Arjuna-type orbits are characterized by being Earth-like, having both low-eccentricity and low-inclination. Objects following these trajectories experience repeated trappings in the 1:1 commensurability with the Earth and can become temporary Trojans, horseshoe librators, quasi-satellites, and even transient natural satellites. Here, we review what we know about this peculiar dynamical group and use a Monte Carlo simulation to characterize geometrically the Arjuna orbital domain, studying its visibility both from the ground and with the European Space Agency Gaia spacecraft. The visibility analysis from the ground together with the discovery circumstances of known objects are used as proxies to estimate the current size of this population. The impact cross-section of the Earth for minor bodies in this resonant group is also investigated. We find that, for ground-based observations, the solar elongation at perigee of nearly half of these objects is less than 90 degrees. They are best observed by space-borne te...

  12. Patterns of orbital disorders

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2014-08-01

    Full Text Available This article discusses various patterns of presentations of orbital lesions. Since this article has been authored by an otolaryngologist, the entire concept has been viewed from otolaryngologist's angle. With the advent of nasal endoscope trans nasal access to orbit is becoming the order of the day. Major advantage being that external skin incision is avoided.

  13. LUNISOLAR INVARIANT RELATIVE ORBITS

    OpenAIRE

    Walid Ali Rahoma

    2013-01-01

    The present study deal with constructing an analytical model within Hamiltonian formulation to design invariant relative orbits due to the perturbation of J2 and the lunisolar attraction. To fade the secular drift separation over the time between two neighboring orbits, two second order conditions that guarantee that drift are derived and enforced to be equal.

  14. Reticulohistiocytoma of the Orbit

    Science.gov (United States)

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  15. Height Compensation Using Ground Inclination Estimation in Inertial Sensor-Based Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Sang Kyeong Park

    2011-08-01

    Full Text Available In an inertial sensor-based pedestrian navigation system, the position is estimated by double integrating external acceleration. A new algorithm is proposed to reduce z axis position (height error. When a foot is on the ground, a foot angle is estimated using accelerometer output. Using a foot angle, the inclination angle of a road is estimated. Using this road inclination angle, height difference of one walking step is estimated and this estimation is used to reduce height error. Through walking experiments on roads with different inclination angles, the usefulness of the proposed algorithm is verified.

  16. An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media.

    Science.gov (United States)

    Pathak, Shreekant P; Singh, Twinkle

    2014-01-01

    The present paper discusses the analysis of solution of groundwater flow in inclined porous media. The problem related to groundwater flow in inclined aquifers is usually common in geotechnical and hydrogeology engineering activities. The governing partial differential equation of one-dimensional groundwater recharge problem has been formed by Dupuit's assumption. Three cases have been discussed with suitable boundary conditions and different slopes of impervious incline boundary. The numerical as well as graphical interpretation has been given and its coding is done in MATLAB.

  17. Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Science.gov (United States)

    Shi, Yun. Y.; Nelson, R. L.; Young, D. H.

    1990-01-01

    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints.

  18. A High Earth, Lunar Resonant Orbit for Lower Cost Space Science Missions

    CERN Document Server

    Gangestad, Joseph W; Persinger, Randy R; Ricker, George R

    2013-01-01

    NASA astrophysics robotic science missions often require continuous, unobstructed fields-of view (FOV) of the celestial sphere and orbits that provide stable thermal- and attitude-control environments. To date, the more expensive "flagship" missions use the second Earth/Sun Lagrange point (L2) approximately 1.5 million km from the Earth outside the orbit of the Moon or a "drift away" orbit to distances >10 million km. A High Earth Orbit (HEO) offers similar advantages with regard to continuous, unobstructed FOV and a thermally stable environment with minimal station-keeping requirements. The "P/2-HEO," an orbit in 2:1 resonance with the orbit of the Moon, also provides the opportunity for data downlink at orbit perigee distances close to the Earth allowing for lower-cost communications systems. The P/2-HEO oscillates on the order of 12 years and trades orbit eccentricity for orbit inclination. This orbit variability can be selected for optimum spacecraft performance by proper choice of the conditions using a ...

  19. Orbital Plots Using Gnuplot

    Science.gov (United States)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  20. Degradation of PsbO by the Deg protease HhoA Is thioredoxin dependent.

    Directory of Open Access Journals (Sweden)

    Irma N Roberts

    Full Text Available The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA. rHhoA cleaved reduced eukaryotic (specifically, spinach PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803, no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA was detected in the PSII-enriched membrane fraction.

  1. The air oxidation behavior of lanthanum ion implanted zirconium at 500 deg. C

    CERN Document Server

    Peng, D Q; Chen, X W; Zhou, Q G

    2003-01-01

    The beneficial effect of lanthanum ion implantation on the oxidation behavior of zirconium at 500 deg. C has been studied. Zirconium specimens were implanted by lanthanum ions using a MEVVA source at energy of 40 keV with a fluence range from 1x10 sup 1 sup 6 to 1x10 sup 1 sup 7 ions/cm sup 2 at maximum temperature of 130 deg. C, The weight gain curves were measured after being oxidized in air at 500 deg. C for 100 min, which showed that a significant improvement was achieved in the oxidation behavior of zirconium ion implanted with lanthanum compared with that of the as-received zirconium. The valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy; and then the depth distributions of the elements in the surface of the samples were obtained by Auger electron spectroscopy. Glancing angle X-ray diffraction at 0.3 deg. incident angles was employed to examine the modification of its phase transformation because of the lanthanum ion implantation in the oxide films. It was obviously fou...

  2. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  3. A Byzantine chant collection from Sicily: a collaboration between Copenhagen and Piana degli Albanesi (Palermo)

    DEFF Research Database (Denmark)

    Sanfratello, Giuseppe

    2016-01-01

    The aim of this paper is to give an account of the collaboration between a collector of the Byzantine chant tradition of Piana degli Albanesi (Palermo) in Sicily, namely fr. Bartolomeo Di Salvo, and the editorial board of the Monumenta Musicae Byzantinae, i.e. an institution under the aegis......, Collections, Ethnomusicology, Critical edition, Monumenta Musicae Byzantinae (MMB)...

  4. Age characteristic of morphometric parameters of an orbit in adults

    Directory of Open Access Journals (Sweden)

    Dubyna S.O.

    2015-03-01

    Full Text Available Background. The knowledge of a morphometric characteristics of an orbit are important in planning of surgical interventions after craniofacial injuries and a number of ophthalmologic and oncological diseases. Objective. To determine the standard morphometric parameters of an orbit in humans of different age groups. Methods. Research was performed in Donetsk diagnostic center with the use of computer tomography-scans. 96 people aged from 21 to 74 years took part in the research with their consent; 32 people – the first period of mature age (men – 22-35 years, women – 21-35 years; 32 people – the second period of mature age (men – 36-60 years, women – 36-55 years; 32 people –aged group (men – 61-74 years, women – 56-74 years – without pathologies of a craniofacial zone. Orbit length, its depth, angle between medial and lateral walls, width and height of an orbital entrance, inclination angle were measured. Results. Significant asymmetry in values of the length of the lower orbital wall in the first period of mature age was revealed. It affects the value of this parameter as a morphometric standard during surgical intervention, and justifies the measurement at least in two planes: frontal and axial. Conclusion. It was established that there are no reliable differences between morphometric parameters of an orbit in persons of various age groups, except the depth of an orbit and length of its lower wall in the second period of the mature age. Citation: Dubyna SO, Yabluchansky MI. [Age characteristic of morphometric parameters of an orbit in adults]. Morphologia. 2015;9(1:29-33. Ukrainian.

  5. System and antenna design considerations for highly elliptical orbits as applied to the proposed Archimedes Constellation

    Science.gov (United States)

    Paynter, C.; Cuchanski, M.

    1995-01-01

    The paper discusses various aspects of the system design for a satellite in a highly elliptical inclined orbit, and presents a number of antenna design options for the proposed Archimedes mission. A satellite constellation was studied for the provision of multi media communication services in the L and S Band for northern latitudes. The inclined elliptical orbit would allow coverage of Europe, America, and East Asia. Using Canada and North America as the baseline coverage area, this paper addresses system considerations such as the satellite configuration and pointing, beam configuration, and requirements for antennas. A trade-off is performed among several antenna candidates including a direct radiating array, a focal-fed reflector, and a single reflector imaging system. Antenna geometry, performance, and beam forming methods are described. The impact of the designs on the antenna deployment is discussed.

  6. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    Science.gov (United States)

    Hoots, F. R.; Fitzpatrick, P. M.

    1979-01-01

    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  7. Phosphorylation of DegU is essential for activation of amyE expression in Bacillus subtilis

    Indian Academy of Sciences (India)

    Monica Gupta; K Krishnamurthy Rao

    2014-12-01

    Alpha ()-amylase (amyE) is one of the major exo-enzymes secreted by Bacillus subtilis during the post-exponential phase. The DegS-DegU two-component system regulates expression of majority of post-exponentially expressed genes in B. subtilis. It has been demonstrated that varying levels of the phosphorylated form of DegU (DegU-P) control different cellular processes. Exo-protease production is observed when effective concentration of DegU-P rises in the cell, whereas swarming motility is favoured at very low amounts of DegU-P. In this study we show that like other exo-proteases, expression of amyE is positively regulated by increase in DegU-P levels in the cell. We also demonstrate that residues at the DNA-binding helix-turn-helix (HTH) motif of DegU are necessary for the amyE expression. This observation is further reinforced by demonstrating the direct interaction of DegU on amyE promoter.

  8. Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.

    Science.gov (United States)

    Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-10-11

    The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text

  9. Angles-only relative navigation in highly elliptical orbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jia; CUI Nai-gang

    2010-01-01

    For angles-only relative navigation system only measures line-of-sight information,there are inherent problems in the ability to determine the range between Chaser and Target.Angles-only relative navigation is an at tractive alternative for inspecting or rendezvous with noncooperative target,if adequate accuracy can be achieved.Angles-only relative navigation model considering J2 perturbation is presented for tracking and rendezvous with nonco operative target in highly elliptical orbit.Impulsive out-of-plane maneuvers of the Chaser axe used to improve the navigation accuracy.The frrst impulse burns in cross-track directions to change the orbit inclination of the Chaser.The second impulse burns after one orbit period to change the orbit of the Chaser back.The simulation results show that the relative navigation system without maneuvers can' t correct the initial state errors,while impulsive out-of plane maneuvers of the Chaser improves the navigation accuracy.Angles-only relative navigation with chaser vehicle maneuvers to improve observability is effective when the spacecrafts are in highly elliptical orbits.

  10. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  11. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics.

    Science.gov (United States)

    Duarte, Márcia; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Junca, Howard; Pieper, Dietmar H

    2014-01-01

    Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de

  12. Generating unaveraged equations of motion in common orbital elements

    Science.gov (United States)

    Veras, Dimitri

    2014-05-01

    Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.

  13. Orbit Stabilization of Nanosat

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  14. A theory of static friction between homogeneous surfaces based on compressible elastic smooth microscopic inclines

    CERN Document Server

    Thun, Freeman Chee Siong; Chan, Kin Sung

    2014-01-01

    We develop a theory of static friction by modeling the homogeneous surfaces of contact as being composed of a regular array of compressible elastic smooth microscopic inclines. Static friction is thought of as the resistance due to having to push the load over these smooth microscopic inclines that share a common inclination angle. As the normal force between the surfaces increases, the microscopic inclines would be compressed elastically. Consequently, the coefficient of static friction does not remain constant but becomes smaller for a larger normal force, since the load would then only need to be pushed over smaller angles. However, a larger normal force would also increase the effective compressed area between the surfaces, as such the pressure is distributed over this larger effective compressed area. The relationship between the normal force and the common angle is therefore non-linear. Overall, static friction is shown to depend on the normal force, apparent contact area, Young's modulus, and the compr...

  15. Radio emission of highly inclined cosmic ray air showers measured with LOPES

    CERN Document Server

    Petrovic, Jelena; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Buitink, S; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2006-01-01

    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50$^{\\circ}$, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80$^{\\circ}$. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.

  16. Detection method of inclination angle in image measurement based on improved triangulation.

    Science.gov (United States)

    Zhang, Jinfeng; Zhang, Jiye

    2015-02-01

    Image distortion seriously affects the accuracy in microscope image measurement. One source of such distortion is related to the tilting of the microscope stage during laser scanning, thereby resulting in various degrees of inclination angles. This paper describes a novel technique that improves the traditional laser triangulation method by using multiple parallel laser beams that can solve the inclination problem. Moreover, a multi-light-spot measurement device, based on the improved laser triangulation technique, is proposed that can accurately detect the degree and directions of the inclination angles in real time. Furthermore, experimental results generated from a prototype of this device show that the new measurement system can effectively detect small inclination angles at a precision up to ±0.5  μrad.

  17. Magnetic Field - Inclination Component for the Epoch 2010.0 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows isoclinic lines (lines of constant inclination of the Earth's magnetic field), derived from the International Geomagnetic Reference Field (IGRF)...

  18. Hiding Planets Behind a Big Friend: Mutual Inclinations of Multi-Planet Systems with External Companions

    CERN Document Server

    Lai, Dong

    2016-01-01

    The {\\it Kepler} mission has detected thousands of planetary systems with 1-7 transiting planets packed within 0.7~au from their host stars. There is an apparent excess of single-transit planet systems that cannot be explained by transit geometries alone, when a single planetary mutual inclination dispersion is assumed. This suggests that the observed compact planetary systems have at least two different architectures. We present a scenario where the "Kepler dichotomy" can be explained by the action of an external giant planet (or stellar) companion misaligned with the inner multi-planet system. The external companion excites mutual inclinations of the inner planets, causing such systems to appear as "Kepler singles" in transit surveys. We derive approximate analytic expressions (in various limiting regimes), calibrated with numerical calculations, for the mutual inclination excitations for various planetary systems and perturber properties (mass $m_p$, semi-major axis $a_p$ and inclination $\\theta_p$). In ge...

  19. Magnetic Field - Secular Variation of the Inclination Component for the Epoch 2010.0 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows lines of equal annual change (secular variation) in the inclination of the Earth's magnetic field, derived from the International Geomagnetic...

  20. Effect of VDT keyboard height and inclination on musculoskeletal discomfort for wheelchair users.

    Science.gov (United States)

    Wu, Swei-Pi; Yang, Chien-Hsin

    2005-04-01

    This study investigated the effect of keyboard height and inclination on musculoskeletal discomfort for wheelchair users. Eight Taiwanese male wheelchair users (28.75 +/- 8.75 years) were recruited as participants to perform nine experimental combinations of data entry tasks. Three keyboard heights and three inclinations were evaluated. Musculoskeletal discomfort was estimated by Rating of Perceived Exertion and Subjective Preference Ranking. Each subject performed a data entry task for all nine experimental combinations in a random order. The seated posture of all participants during the data entry operation was the upright posture. The height of the screen's center was adjusted according to the eye level of each subject. Analysis showed the keyboard height and keyboard inclination significantly affected rating of musculoskeletal discomfort. It is suggested that the optimum keyboard height choice is elbow-level height or 5 cm below elbow level with the keyboard inclination horizontal to the seat of the wheelchair.